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On the Benjamin–Ono equation on T

and its periodic and quasiperiodic solutions

Patrick Gérard, Thomas Kappeler, and Petar Topalov

Abstract. In this paper, we survey our recent results on the Benjamin–Ono equation on the

torus. As an application of the methods developed we construct large families of periodic or

quasiperiodic solutions, which are not C 1-smooth.

Dedicated to the memory of our friend and colleague Misha Shubin

1. Introduction

In this paper, we consider the Benjamin–Ono (BO) equation on T ,

@t u D H@2
xu � @x.u2/; x 2 T WD R=2�Z; t 2 R; (1)

where u � u.t; x/ is real valued and H denotes the Hilbert transform, defined as the

Fourier multiplier

f D
X

n2Z

Of .n/einx 7!
X

n¤0

�i sign.n/ Of .n/einx:

We refer to the recent survey [25] for a discussion of the origin of this equation as

a model for long, unidirectional internal gravity waves in a two layer fluid and for a

comprehensive bibliography.

Our study of (1) focuses on the following topics: wellposedness in Sobolev spaces,

traveling waves and their orbital stability, long time behaviour of solutions (i.e., on

properties of their orbits such as boundedness, orbital stability, recurrence), aspects of

integrability, and the construction of periodic and quasiperiodic solutions.
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Sharp wellposedness in Sobolev spaces. The wellposedness of (1) in Sobolev spaces

H s
r � H s.T ;R/ has been extensively studied in the last 40 years – see e.g. references

in [20]. To state our results we need to recall the following result of [1] (cf. also [24]).

It says that for any initial data u in H s
r with s > 3=2, there exists a unique solution v

in C.R; H s
r / of (1) with vjtD0 D u such that the solution map �.t/u WD v.t/,

� W R � H s
r ! H s

r ; .t; u/ 7! �.t; u/ � �.t/u;

is continuous.

Theorem 1 ([12]). (i) For any s > �1=2, the map � extends as a continuous

map, � W R � H s
r ! H s

r .

(ii) No such extension exists for s D �1=2. In more detail, there exists a sequence

.u.k//k�1 in C 1.T ; R/ with the property that u.k/ ! 0 in H
�1=2
r , but the

function t 7! h�.t/u.k/ j eixi does not converge to 0 on any time interval

I � R with jI j > 0.

Note that
R 2�

0 udx is a prime integral of (1). In particular, for any a 2 R and

s > �1=2, the solution map �.t/ leaves the subspace

H s
r;a WD

²

u 2 H s
r

ˇ

ˇ

ˇ

ˇ

2�
Z

0

u dx D a

³

invariant. We denote by �a.t/ the restriction of �.t/ to H s
a .

Addendum to Theorem 1. In [13, 14] we prove that for any t 2 R, a 2 R, and

�1=2 < s < 0, �a.t/W H s
r;a ! H s

r;a is nowhere locally uniformly continuous and that

for any s � 0, �a.t/W H s
r;a ! H s

r;a is real analytic.

Remark 1. Theorem 1 (i) improves on a result by Molinet [18] (cf. also [20]), saying

that for any s � 0, � W R � H s
r ! H s

r extends as a continuous map and Theorem 1 (ii)

improves on a result by Angulo Pava and Hakkaev [3], saying that no such exten-

sion exists for s < �1=2. The Addendum to Theorem 1 improves on a result by

Molinet [18, 19], saying that for any a 2 R and s � 0, �a.t/W H s
r;a ! H s

r;a is ana-

lytic near the zero solution.

We refer to [20] for a comprehensive bibliography on the wellposedness of (1).

We note that our method of proof is different from the methods used in the papers

cited above (cf. Theorem 4 below).

Traveling waves. Recall that a solution t 7! �.t/U of (1) with U 2 H s
r , s > �1=2, is

said a traveling wave with profile U and velocity c 2 R if �.t/U D U.� � ct/. Amick

and Toland [2] listed all C 1-smooth profiles of traveling waves of (1),

Ur;N;˛;a.x/ D N Ur.Nx C ˛/ C a; N 2 N; ˛ 2 T ; a 2 R;
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where Ur .x/ D 1�r2

1�2r cos xCr2 , 0 < r < 1, are the traveling wave profiles with corres-

ponding velocity cr W D 1Cr2

1�r2 , found by Benjamin [5].

Theorem 2 ([12]). For any s > �1=2 the following holds:

(i) any traveling wave in H s
r has a profile of the form Ur;N;˛;a and hence in

particular is C 1-smooth;

(ii) any traveling wave is orbitally stable in H s
r (see also Remark 5 below).

Remark 2. Theorem 2 (ii) improves on a result by Angulo Pava and Natali [4], saying

that the traveling waves with profile of the form Ur;N;˛;a are orbitally stable in H
1=2
r .

Long time behaviour of solutions. For solutions of the Benjamin–Ono equation on

the line, the question of main interest concerning their long time behaviour is to know

whether they admit an asymptotic description as t ! 1. Since T is compact, such a

description typically does not exist for solutions of (1). In such a case, one is interested

to know properties of the orbits of solutions such as boundedness, orbital stability, or

recurrence.

Theorem 3 ([12]). For any u 2 H s
r with s > �1=2 the following holds:

(i) the orbit ¹�.t/u j t 2 Rº is relatively compact in H s
r ;

(ii) the solution R ! H s
r ; t 7! �.t/u, is almost periodic;

(iii) supt2R k�.t/uks � M where M > 0 can be chosen uniformly on bounded

subsets of H s
r .

Addendum to Theorem 3. The solutions of Theorem 1 of (1) are orbitally stable in

the sense explained in Remark 5 below.

Remark 3. We point out that a solution R ! H s
r ; t 7! �.t/u of (1) being almost

periodic implies that it is Poincaré recurrent. In particular, Theorem 3 (ii) improves

on results by Deng, Tzvetkov, and Visciglia [8] and Deng [7]. In these papers (cf.

also references in [7, 8]) invariant measures are constructed on Sobolev spaces of

various order of regularity, which then are used to show that for a.e. initial data, the

corresponding solutions are Poincaré recurrent.

Theorem 3 (iii) improves on results of similar type, which can be derived from the

BO hierarchy, obtained in [6, 22]. The BO hierarchy consists of a sequence Hj .u/,

j � 0, of prime integrals of (1). The boundedness of .Hj /0�j �n can be shown to

be equivalent to the boundedness of the H n=2-norm. Furthermore, Talbut [26] proved

such estimates for the H s-norms, �1=2 < s < 0, for smooth solutions of (1).

Nonlinear Fourier transform. Our proofs of Theorems 1–3 rely on the integrability

of the BO equation. In fact, we show that this equation is integrable in the strongest
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possible sense. To state this result, we first need to introduce some more notation.

As already mentioned above,
R 2�

0
udx is a prime integral of (1). Furthermore, for any

solution u.t;x/ of (1) and any a 2 R, ua.t;x/ D a C u.t;x � 2at/ is again a solution.

We therefore restrict ourselves to consider equation (1) on the Sobolev spaces H s
r;0.

By h�
C � h� .N; C/, � 2 R, we denote the weighted `2-sequence spaces defined by

h�
C WD ¹z D .zn/n�1 j zn 2 CI kzk� < 1º, where

kzk� WD
�

1
X

nD1

n2� jznj2
�1=2

:

Theorem 4 ([10, 12]). There exists a map

ˆW
G

s>�1=2

H s
r;0 !

G

s>�1=2

h
sC1=2
C ; u 7! �.u/ WD .�n.u//n�1

so that the following properties hold for any s > �1
2

:

(NF1) ˆWH s
r;0 ! h

sC1=2
C is a homeomorphism and ˆ and its inverse map bounded

subsets to bounded ones;

(NF2) for any u 2 H s
r;0, and any n � 1, �n.�.t/u/ D ei!nt�n.u/ where

!n � !n.u/ WD n2 � 2

n
X

kD1

kj�k.u/j2 � 2n
X

k>n

j�k.u/j2: (2)

It follows that for any n � 1, j�n.�.t/u/j2 is independent of t .

(NF3) The map ˆ does not continuously extend to a map H �1=2 ! h0
C.

Addendum to Theorem 4. In [13, 14], we prove that for any s > �1=2, the maps

ˆW H s
r;0 ! h

sC1=2
C and ˆ�1W h

sC1=2
C ! H s

r;0 are real analytic.

Remark 4. (i) The differential d0ˆ of ˆ at 0 is given by the weighted Fourier

transform, F Œv� D �. 1p
n

Ov.n//n�1. Furthermore, the linearization of (1) at the zero

solution is given by @t v D H@2
xv. The solutions of the latter equation in H s

r;0 are given

by
P

n¤0 ei sign.n/n2t Ov.n/einx : For this reason, we refer to ˆ as a nonlinear Fourier

transform.

(ii) It is well known that (1) is Hamiltonian,

@t u D @xrH ; H .u/ WD 1

2�

2�
Z

0

�1

2
.j@xj1=2u/2 � 1

3
u3

�

dx;
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where @x is the Poisson structure, which corresponds to the Poisson bracket, defined

for functionals F; G on H s
r;0 with sufficiently regular L2-gradients,

¹F; Gº.u/ D 1

2�

2�
Z

0

.@xrF /rGdx:

We prove that for any n, m � 1,

¹�n; �mº D 0; ¹�n; N�mº D �iınm;

implying that ¹j�nj2; j�mj2º D 0. In addition, we show that H ı ˆ�1 is a function

of j�nj2, n � 1, alone. Hence, ˆ is canonical, j�nj2, n � 1, are actions, and the phases

of �n, n � 1, angles. In this way, the quantities �n, n � 1, are globally defined Birkhoff

coordinates of (1) on H s
r;0 for any s > �1=2.

(iii) For any n � 1, !n is referred to as the nth BO frequency. By (2), it is an affine

function of the actions.

Remark 5. By Theorem 4, one infers that for � 2 h
sC1=2
C , s > �1=2,

Iso.�/ WD ¹u 2 H s
r;0 j j�n.u/j2 D j�nj2 for all n � 1º;

is an invariant torus for (1). Any such torus is Lyapunov stable in the sense that for

any initial data u 2 H s
r;0 near Iso.�/, the solution �.t/u stays close to Iso.�/ for all

t 2 R.

In the remaining part of this introduction, we briefly comment on applications of

Theorem 4 and on elements of its proof. We keep our exposition as short as possible

and refer to our papers for more details.

The Benjamin–Ono equation admits finite-dimensional integrable subsystems. To

define them, we need to introduce some more notation. We say that u 2 S

s>�1=2 H s
r;0

is a finite gap potential if there exists N 2 N so that �n.u/ D 0 for any n > N . We

denote by UN the set of all such potentials in
S

s>�1=2 H s
r;0 with �N ¤ 0. Further-

more, we say that u 2
S

s>�1=2 H s
r;0 is a one gap potential if there exists N � 1 so

that �n.u/ ¤ 0 if and only if n D N . In particular, such a potential is in UN . The-

orem 4 implies that, for any N � 1, UN is contained in
T

s>�1=2 H s
r;0. An element

u 2 UN is of the form

u.x/ D �2Re
�

eix Q0
N .eix/

QN .eix/

�

; QN .z/ D
N
Y

j D1

.1 � qj z/;

where 0 < jqj j < 1 for any 1 � j � N (see [10]). The time evolution of potentials in

UN can be explicitly described, using the frequencies, defined in (NF2) of Theorem 4.
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These solutions coincide with the ones constructed by Satsuma and Ishimori [23] and

further studied by Dobrokhotov and Krichever [9]. We refer to these solutions as finite

gap solutions or (periodic in x) multi-solitons. They are quasiperiodic in time. The

one gap solutions coincide with the traveling waves of Theorem 2 and are periodic in

time.

In Section 3 we address the questions whether there are periodic and quasiperiodic

solutions in time of (1) which are not (multi-)solitons. Both questions are answered

affirmatively – see Theorem 5, Proposition 3, and Theorem 6. The proof of these

results is based on the action to frequency map, studied in Section 2. To the best of

our knowledge, results of this type are not known for integrable PDEs such as the

Korteweg–de Vries (KdV) equation or the nonlinear Schrödinger (NLS) equation.

We expect, but have not verified, that such results also hold for many of these PDEs

although the action to frequency map might be significantly more complicated and

hence the results more difficult to prove. In this connection, we only mention that the

Hessian of the KdV and the NLS Hamiltonian are known to be strictly convex in a

neighborhood of the zero solution (cf. [16, 21] for details).

A key ingredient of the proof of Theorem 4 is the Lax pair formulation of (1),

@t Lu D BuLu � LuBu, where

Lu D �i@x � Tu; Bu WD i.Tj@x ju � T 2
u /; (3)

and Tu denotes the Toeplitz operator, defined for potentials u in H s
r;0, s > �1=2. Here,

the pseudo-differential operators Lu and Bu act on the Hardy space

HC WD ¹u 2 H 0 j Ou.n/ D 0 for all n < 0º

with Lu being self-adjoint (cf. [12, Corollary 2]). The Lax pair formulation implies

that the spectrum of Lu is preserved by (1). For any u 2 H s
r;0, the latter is discrete,

bounded from below and consists of a sequence of simple real eigenvalues, which we

list in increasing order, �0 < �1 < � � � (cf. [10] (s D 0) and [12] (�1=2 < s < 0) as

well as [11]). They satisfy


n WD �n � �n�1 � 1 � 0 for all n � 1; (4)

where 
n, referred to as the nth gap of the spectrum of Lu (cf. [10, Appendix C]),

turns out to be the action variable j�nj2, mentioned in Remark 4. The spectrum of Lu

is encoded by the generating function,

H�.u/ WD h.Lu C �/�11 j 1i: (5)

This function is at the heart of the construction of the map ˆ. It admits an expansion

at � D 1, whose coefficients constitute the BO-hierarchy, mentioned in Remark 3.
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In Appendix A we show that H�.u/ can be viewed as the relative determinant of

Lu C � C 1 with respect to Lu C �.

2. Action to frequency map

The aim of this section is to study the action to frequency map, mentioned in Section 1.

We restrict ourselves to potentials u 2 H 0
r;0.

Recall that for any n � 1, the actions j�n.u/j2 of (1), associated to a potential

u 2 L2
r;0 � H 0

r;0, coincide with the gap lengths 
n � 
n.u/, n � 1, defined in (4). By

Theorem 4, the actions 
.u/ WD .
n.u//n�1 fill out the positive quadrant `
1;1
�0 of the

`1-sequence space `1;1 � `1;1.N; R/,

`
1;1
�0 WD

°

.xn/n�1 2 `1.N; R/
ˇ

ˇ

ˇ xn � 0 for all n � 1;
X

n�1

nxn < 1
±

:

The frequencies !n � !n.
/, n � 1, (cf. (2)), when viewed as functions on the space

of actions `
1;1
�0 , can then be conveniently written as

!n.
/ D n2 � 2 L!n.
/; L!n.
/ WD
X

k�1

k
k �
X

k>n

.k � n/
k: (6)

Note that L!n � L!n.
/, n � 1, satisfy

lim
n!1

L!n D
X

k�1

k
k; L!n � L!n�1 D
X

k�n


k � 0 for all n � 1; (7)

(with L!0.
/ WD 0) and

. L!n � L!n�1/ � . L!nC1 � L!n/ D 
n � 0 for all n � 1: (8)

To describe the range of the map 
 7! . L!n.
//n�1, we introduce the Banach space c,

defined as the R-vector space of real valued, convergent sequences y WD .yn/n�1,

endowed with the sup-norm kyk WD supn�1 jynj. For the sequel, it is convenient to set

for any y D .yn/n�1 in c,

y0 WD 0; y1 WD lim
n!1

yn:

Denote by c" the subset of c of sequences y D .yn/n�1 satisfying

0 � yn � ynC1; .yn � yn�1/ � .ynC1 � yn/ � 0 for all n � 1:

By (7)–(8), for any 
 2 `
1;1
�0 , the sequence . L!n.
//n�1 is in c". The normalized action

to frequency map is defined as

{�W `
1;1
�0 ! c"; 
 7! . L!n.
//n�1:



P. Gérard, T. Kappeler, and P. Topalov 176

Proposition 1. The map {�W `
1;1
�0 ! c" is a homeomorphism.

Remark 6. To the best of our knowledge, comparable results for integrable PDEs

such as the KdV equation or the NLS equation are not known. For partial results in

this direction for the KdV equation, we refer to [16] and references therein.

Proof. By (8), {� is one-to-one. To see that {� is onto, consider y D .yn/n�1 in c". Let


n WD .yn � yn�1/ � .ynC1 � yn/ for all n � 1: (9)

Then, by the definition of c", 
n � 0 for any n � 1. By telescoping, one has for any

n � 1,

yn � yn�1 D lim
N !1

N
X

kDn


k D
X

k�n


k:

and for any n � 0,

y1 � yn D
X

k�n

.ykC1 � yk/ D
X

k�n

X

j >k


j D
X

j >n


j .j � n/;

or yn D y1 � P

j >n 
j .j � n/. In particular, for n D 0, y1 D P

k�1 k
k . Hence,


 WD .
n/n�1 2 `
1;1
�0 and yn D

P

k�1 k
k �
P

k>n.k � n/
k for any n � 1. We thus

have proved that {�.
/ D y.

Finally, note that {� is the restriction of a linear map `1;1 ! c, whose norm is

bounded by 2. Indeed, since for any .xn/n�1 2 `1;1 and any n � 1,

X

k�1

kxk �
X

k>n

.k � n/xk D
n

X

kD1

kxk C n
X

k>n

xk;

one has

ˇ

ˇ

ˇ

X

k�1

kxk �
X

k>n

.k � n/xk

ˇ

ˇ

ˇ �
n

X

kD1

kjxkj C n
X

k>n

jxkj � 2
X

k�1

kjxk j: (10)

This implies that {� W `
1;1
�0 ! c" is continuous. Going through the proof of the ontoness

of {�W `
1;1
�0 ! c", one sees that {��1W c" ! `

1;1
�0 is continuous as well. Indeed, assume

that .y.k//k�1 is a sequence in c", converging to y D .yn/n�1 2 c". By (9), it follows

that for any n � 1, the nth component 

.k/
n of 
 .k/ WD {��1.y.k// converges to the nth

component 
n of 
 WD {��1.y/ and
P

n�1 n

.k/
n D y

.k/
1 converges to

P

n�1 n
n D y1.

One then infers that for any N � 1,
P

n�N n

.k/
n converges to

P

n�N n
n. Given any

" > 0, choose N � 1 so that
P

n�N n
n < "=4 and k" � 1 so that for any k � k",
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j
P

n�N n

.k/
n �

P

n�N n
nj < "=4. It then follows that j
P

n�N n

.k/
n j < "=2 for any

k � k". From
X

n�1

nj
 .k/
n � 
nj �

X

n�N

n
 .k/
n C

X

n�N

n
n C
X

n<N

nj
 .k/
n � 
nj;

one then concludes that 
 .k/ converges to 
 in `1;1.

Remark 7. A result similar to the one of Proposition 1 can be derived for the restric-

tion {�J of {� to the subset `
1;1
�0;J of `

1;1
�0 ,

{�J W `
1;1
�0;J ! c";J ; .
np

/p 7! . L!np
/p:

Here J WD ¹n1 < n2 < � � � < n�º is a subset of N with either n� D 1 or n� D N C 1

for some integer N � 0. The sets `
1;1
�0;J and c";J are defined in these two cases as

follows.

(i) Case J infinite. In this case, the subset J is of the form J WD ¹np j p � 1º,

`
1;1
�0;J is the subset

`
1;1
�0;J WD ¹.
n/n�1 2 `

1;1
�0 j 
n > 0 for all n 2 J; 
n D 0; n … J º;

and c";J the set of strictly increasing sequences yJ WD .ynp
/p�1 of positive numbers,

satisfying

y1 WD lim
p!1

ynp
< 1;

ynp
� ynp�1

np � np�1

�
ynpC1

� ynp

npC1 � np

> 0 for all p � 1;

where we set n0 D 0 and y0 D 0. Note that for any .
n/n�1 in `
1;1
�0;J ,

L!np
� L!np�1

D .np � np�1/
X

q�p


nq
for all p � 1;

where we recall that L!0 D 0. For any p � 1, one then has

L!np
� L!np�1

np � np�1

�
L!npC1

� L!np

npC1 � np

D 
np
:

(ii) Case J finite. In this case, the subset J is of the form J WD ¹np j 1 � p � N º,

`
1;1
�0;J denotes the subset

`
1;1
�0;J WD ¹.
n/n�1 2 `

1;1
�0 j 
n > 0 for all n 2 J I 
n D 0 for all n … J º;

and c";J the set of strictly increasing finite sequences yJ WD .ynp
/1�p�N of real

numbers, satisfying

ynp
� ynp�1

np � np�1

�
ynpC1

� ynp

npC1 � np

� 0 for all 1 � p � N ;
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where we set n0 D 0, y0 D 0 and nN C1 D nN C 1, ynN C1
D ynN

. Note that for any

.
n/n�1 in `
1;1
�0;J ,

L!np
� L!np�1

D .np � np�1/
X

q�p


nq
for all 1 � p � N :

In this case, L!n D L!nN
for any n � nN and for any 1 � p � N ,

L!np
� L!np�1

np � np�1

�
L!npC1

� L!np

npC1 � np

D 
np
:

It is convenient to extend {� to a linear map �W `1;1 ! c. This extension is given

by

�Œx� D
�

n
X

kD1

kxk C n
X

k>n

xk

�

n�1
for all x D .xn/n�1 2 `1;1:

Then � is a bounded by (10). Denote by Q the quadratic form, induced by �. For

any x 2 `1;1, Q.x/ is given by

Q.x/ D hx j �.x/i D
X

n�1

xn

n
X

kD1

kxk C
X

n�1

nxn

X

k>n

xk:

Since
P

n�1 xn

Pn
kD1 kxk D

P

k�1 kxk

P

n�k xn, Q.x/ can be written as

Q.x/ D
X

n�1

nx2
n C 2

X

n�1

nxn

X

k>n

xk: (11)

As a quadratic form, Q extends to `1;1=2 � `1;1=2.N; R/ and

jQ.x/j �
X

n�1

�p
njxnj

�2 C 2
X

n�1

p
njxnj

X

k>n

p
kjxkj

� 2
X

n�1

p
njxnj

X

k�n

p
kjxkj � 2kxk2

`1;1=2 :

(We mention that the quadrant `
1;1=2
�0 , filled out by the actions, corresponds to the

phase space of potentials H
�1=4
r;0 , for which the map ˆ is well defined by Theorem 4.)

By (11) one has

Q.x/ D
X

n�1

n
�

x2
n C 2xn

X

k>n

xk

�

:

Hence, by completing squares one obtains

Q.x/ D
X

n�1

n
�

xn C
X

k>n

xk

�2

�
X

n�1

n
�

X

k>n

xk

�2
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or Q.x/ D P

n�1 n.s2
n � s2

nC1/ where sn WD P

k�n xk. It implies

Q.x/ D s2
1 C

X

n�2

s2
n D

X

n�1

s2
n:

In particular, one sees that Q is a positive semidefinite quadratic form on `1;1=2 and

that �Q, when restricted to `
1;1
�0 , coincides with the quadratic part of the Hamiltonian

H of the BO equation, when expressed in the action variables 
 D .
n/n�1 (cf. [10,

Proposition 8.1]),

H D
X

n�1

n2
n �
X

n�1

�

X

k�n


n

�2

: (12)

Since �2Q is the Hessian of H , the latter can thus be viewed as a concave function.

In summary, Q has the following properties.

Proposition 2. The quadratic form Q is well defined on `1;1=2. It is positive semidef-

inite and satisfies

jQ.x/j � 2kxk2
`1;1=2 for all x 2 `1;1=2:

Furthermore,

inf¹Q.x/ j kxk`1;1=2 D 1º D 0; (13)

hence Q is not positive definite.

Proof. It remains to prove (13). For an arbitrary integer N � 2, consider the sequence

xN WD .x
.N /
n /n�1 2 `1;1=2 with x

.N /
n D 0 for any n > N and

x.N /
n D 1

aN

.�1/nC1 for all 1 � n � N ; aN WD
N

X

nD1

p
n:

Then kxN k`1;1=2 D 1 and .s
.N /
n /2 � 1=a2

N , implying that Q.xN / � N

a2
N

. Since

aN �
N

Z

0

p
xdx D 2

3
N 3=2; a2

N � 4

9
N 3;

it follows that Q.xN / � 9
4N 2 . As N � 2 is arbitrary, (13) holds.

3. Applications

As an illustration of our analysis of the action to frequency map we apply our results

to construct families of periodic solutions of the BO equation, which are not traveling

waves, and families of quasiperiodic solutions, which are not finite gap solutions.
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Periodic solutions. Our first result addresses the question, whether there are periodic

in time solutions of (1), which are not finite gap solutions.

Theorem 5. (i) For T > 0 with T=� rational, any T -periodic solution in L2
r;0 of (1)

is a finite gap solution.

(ii) For any positive irrational number b, there exists a strictly increasing sequence

.np/p�1 in N and a sequence of actions 
 D .
n/n�1 in `
1;1
�0;J , J WD ¹npW p 2 Nº,

satisfying
X

p�1

n3
p
np

D 1; !np
.
/ 2 bZ; for all p � 1;

where !n.
/ is given by (6). As a consequence, any potential u0 in the torus (cf. [10,

Section 3])

Iso
 WD ¹u 2 L2
r;0 j 
n.u/ D 
n for all n � 1º (14)

is not in H 1
r;0 and the solution u.t/ of the BO equation with u.0/ D u0 (cf. Theorem 1)

is periodic in time with period T D 2�=b. Therefore, Iso
 is entirely filled up with

T -periodic solutions.

Proof. (i) Let u.t/ be the solution of (1) with initial condition u.0/ D u0 2 L2
r;0. By

Theorem 1, ˆ.u.t// D .�n.t//n�1 2 h
1=2
C is given by

�n.t/ D �n.0/ei t!n; j�n.0/j2 D 
n � 
n.u0/ for all n � 1;

Hence, u is T -periodic if and only if, for every n � 1 with �n.0/ ¤ 0,

!n 2 !Z; ! WD 2�

T
:

By assumption, ! is rational. Choose p; q 2 Z with q � 1 so that ! D p=q. Since

u0 is in L2
r;0, 
 D .
n/n�1 2 `

1;1
�0 and formula (6) for the frequencies hold. It then

follows that for any n � 1 with �n.0/ ¤ 0,

�2
X

k�1

k
k C 2
X

k>n

.k � n/
k 2 1

q
Z:

Assume that there are infinitely many integers n with �n.0/ ¤ 0. Since one has
P

k>n.k � n/
k ! 0 as n ! 1, one concludes that �2
P

k�1 k
k 2 1
q
Z. Con-

sequently, for infinitely many integers n, one has 2
P

k>n.j � n/j�k.0/j2 2 1
q
Z, which

contradicts that
P

k>n.k � n/
k converges to 0. Hence, there are only finitely many

integers n with �n.0/ ¤ 0, which implies that u.t/ is a finite gap solution.

(ii) Our task is to find a strictly increasing sequence .np/p�1 of N and a sequence


 D .
n/n�1 in `
1;1
�0;J , J WD ¹np j p 2 Nº, (cf. Remark 7 (i)), so that there exists a

sequence .mp/p�1 in Z with the property that

n2
p � 2 L!np

D mpb for all p � 1; (15)
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and

L!np
D y1 �

X

q>p

.nq � np/
nq
; y1 D

X

p�1

np
np
: (16)

To find such sequences, we use that by a result due to Weyl [27], the set

Db WD ¹n2 C kb j n 2 Z�0; k 2 Zº

is dense in R. Given an arbitrary positive real number y1, choose a sequence ."p/p�1

of the form

"p WD "04�p for all p � 1; (17)

where "0 > 0 is chosen so that

"0 < 4y1: (18)

For any p � 1, we then choose integers np � 0 and kp so that

�p WD 2y1 � n2
p C kpb 2 Œ"p; 2"p�: (19)

By the definition of the sequence ."p/p�1, .�p/p�1 is a strictly decreasing sequence

of positive numbers, converging to 0 as n ! 1,

0 < �pC1 � 2"pC1 D "p=2 < "p � �p :

By induction on p, it is possible to choose np � 1 for any p � 1, so that n1 � 1 and

npC1 � 2np . (Indeed, for every integer N , the set

¹n2 C kb j 0 � n � N; k 2 Zº

is discrete, so what is left over after removing it from Db is still dense in R.) Thinking

of �p as 2y1 � 2 L!np
and hence of 2y1 � �p as 2 L!np

, we define for any p � 2 (cf.

Remark 7 (i)),


np
WD ap � apC1; ap WD �p�1 � �p

2.np � np�1/
> 0: (20)

Using that np � np � np�1 and npC1 � np � np , one sees that

np

np � np�1

.�p�1 � �p/ � np

npC1 � np

.�p � �pC1/ � �p�1 � 2�p C �pC1: (21)

Since by (19), "p � �p � 2"p and by (17), "p�1 � 4"p D 0 , one gets from (20)

and (21),

2np
np
� "p�1 � 4"p C "pC1 D "pC1:

Consequently, 
np
> 0 and, for some c > 0,

n3
p2
np

� .2p�1n1/22np
np
� 4p�1n2

1"pC1 D 4p�1n2
1

"0

4pC1
� c > 0;
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implying that
P

n3
p
np

D 1. On the other hand, by (20),

2np
np
� np

np � np�1

.�p�1 � �p/ � �p�1 � �pI

hence, by telescoping and by the bound (18) of "0,
X

p�2

np
np
� �1=2 � "1 D "0=4 < y1:

Now, define 
n1
> 0 so that the second identity in (16) holds,


n1
WD 1

n1

�

y1 �
X

p�2

np
np

�

> 0:

It remains to check the identities in (15). Using the definition (20) of 
np
, p � 2, one

verifies that for any p � 1, �p D 2
P

q>p.nq � np/
nq
and thus, by the definition

of �p ,

L!p D n2
p � 2y1 C 2

X

q>p

.nq � np/
nq
D kpb for all p � 1:

This completes the proof of item (ii).

Remark 8. (i) It is possible to choose the sequence ."p/p�1, constructed in the proof

of Theorem 5 (ii), so that u … H s
r;0 for some 0 < s < 1.

(ii) The sequence .np/p�1, constructed in the proof of Theorem 5 (ii), needs to be

sparse in the following sense: if .np/p�1 is a strictly increasing sequence in N and


 D .
k/k�1 a sequence of actions in `
1;1
�0;J , J WD ¹np j p � 1º, with the property that

there exists an infinite set of integers n in J so that n � 1 and n C 1 are also contained

in J , then the frequencies cannot satisfy (15). Indeed, the frequencies satisfy on `
1;1
�0

the identities (with !0 D 0)

!kC1 � 2!k C !k�1 D 2 C 2
k for all k � 1:

Hence, if !np
2 bZ for any p � 1, it then would follow that 2 C 2
n.u/ 2 bZ for

infinitely many n in J , implying that 2 2 bZ. This however contradicts the assumption

of b being irrational.

The following result says that there are many finite gap solutions of the BO equa-

tion which are periodic in time, but not traveling waves.

Proposition 3. For any rational number of the form 1=a, a 2 N, any N 2 N , and

any strictly increasing sequences .np/1�p�N , .kp/1�p�N in N with

kp � kp�1

np � np�1

� kpC1 � kp

npC1 � np

> 0 for all 1 � p � N ;
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(where we set n0 WD 0, nN C1 WD nN C 1, k0 WD 0, and kN C1 WD kN ), the following

holds: the sequence of actions, 
 D .
n/n�1 2 `
1;1
�0;J , defined by


np
WD 1

a

� kp � kp�1

np � np�1

� kpC1 � kp

npC1 � np

�

for all 1 � p � N ;

and J WD ¹np j 1 � p � N º (cf. Remark 7(ii)), has frequencies !np
� !np

.
/, 1 �
p � N , given by

!np
D n2

p � 2 L!np
2 1

a
Z; L!np

D 1

a
kp for all 1 � p � N :

As a consequence, any potential u0 in the torus Iso
 (cf. (14)) is a finite gap potential,

the solution u.t/ of (1) with u.0/ D u0 periodic in time with period T D 2�a, and

hence Iso
 entirely filled with T -periodic solutions.

Remark 9. Since by Theorem 2, the traveling waves of the BO equation coincide

with the one gap solutions, it follows from Proposition 3 that there is a plenitude of

periodic in time solutions of (1) which are finite gap solutions, but not traveling waves.

Proof. The claimed results follow from Remark 7 (ii).

Quasiperiodic solutions. The aim of this paragraph to construct quasiperiodic solu-

tions of (1), which are not finite gap solutions. We begin with describing the !-qua-

siperiodic in time solutions of (1) in terms of the map ˆ of Theorem 4 where ! is a

frequency vector in Rd , d � 2, with Q-linearly independent components.

Definition 1. Let E be a Banach space and ! 2 Rd , d � 2 with Q-linearly inde-

pendent components. A function u 2 C.R; E/ is said !-quasiperiodic if there exists

a function U 2 C.Td ; E/, so that u.t/ D U.t!/ for any t 2 R. Here, by notational

convenience, the vector t! denotes also the class of vectors t! C .2�Z/d . The func-

tion U is referred to as the profile of u.

Proposition 4. Let U W Td ! H s
r;0 with s > �1=2 and let ! be a vector in Rd , d � 2,

with Q-linearly independent components. Then U is the profile of a !-quasiperiodic

solution of (1) in H s
r;0 if and only if ˆ.U.'// is of the form

ˆ.U.'// D .�neik.n/�'/n�1 for all ' 2 Td ; (22)

where .�n/n�1 2 h
sC1=2
C and .k.n//n�1 is a sequence in Zd with the property that for

any n � 1,

�n D 0 or k.n/ � ! D n2 � 2

n
X

kD1

kj�k j2 � 2n
X

k>n

j�k j2: (23)
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Remark 10. For any !-quasiperiodic solution of (1) with action variables


 D .
n/n�1 2 `
1;1C2s
�0 ;

the invariant torus

Iso
 WD ¹u 2 H s
r;0 j 
n.u/ D 
n for all n � 1º

is filled with !-quasiperiodic solutions of (1). The corresponding profiles are given

by (22) with .�n/n�1 being an arbitrary element in the set ˆ.Iso
 /.

Proof. Let U be the profile of an !-quasiperiodic solution u.t/ in H s
r;0.T / of (1). It

is to show that (22)–(23) hold. Let

.�n.'//n�1 WD ˆ.U.'// 2 h
sC1=2
C for all ' 2 Td :

Since by Definition 1, U is in C.Td ; H s
r;0/, the map Td ! h

sC1=2
C ; ' 7! .�n.'//n�1

is continuous and by (NF2) in Theorem 1, for any n � 1,

�nei t!n D �n.t!/ for all t 2 R; (24)

where .�n/n�1 WD .�n.0//n�1 2 h
sC1=2
C . Since by assumption, the components of !

are linearly independent in Q, the Fourier coefficients O�n.k/, k 2 Zd , of �n can be

computed as

O�n.k/ D .2�/�d

Z

Td

�n.'/e�ik�' d' D lim
T !1

T �1

T
Z

0

�n.t!/e�i tk�! dt:

Furthermore, by formula (24) for �n.t!/, one has

lim
T !1

T �1

T
Z

0

�n.t!/e�i tk�! dt D �n lim
T !1

T �1

T
Z

0

ei t.!n�k�!/ dt:

Note that the right-hand side of the latter identity vanishes if !n ¤ k � !, and equals �n

if !n D k � !. Consequently, for any given n � 1, the following dichotomy holds: in the

case where there is no k 2 Zd , satisfying !n D k � !, it follows that O�n.k/ D 0 for any

k 2 Zd . Hence, the continuous function �n vanishes, implying that �n D �n.0/ D 0.

Otherwise, since the components of ! are linearly independent over Q, there exists

exactly one k.n/ 2 Zd such that !n D k.n/ � ! and �n.'/ equals �neik.n/�' . We thus

have proved that (22)–(23) hold.

Conversely, if ˆ ı U is given by the expression (22), U is a continuous map

Td ! H s
r;0 since ˆ�1 is continuous. Furthermore, by (23), ˆ.U.t!// D .�nei t!n/n�1

so that t 7! U.t!/ is a !-quasiperiodic solution of (1) with profile U .
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The following result illustrates how Proposition 4 can be used to construct !-qua-

siperiodic solutions of (1), which are not C 1-smooth, hence in particular not finite

gap solutions.

Theorem 6. Let b be an irrational real number and ! WD .1; b/ 2 R2. For any

s > �1=2, there exists an !-quasiperiodic solution of (1) in H s
r;0 n S

�>s H �
r;0.

Proof. Let s > �1=2 be given. In view of Proposition 4, it suffices to find a sequence

.�n/n�1 in h
sC1=2
C n

S

�>s h
�C1=2
C with �n D j�nj > 0 and a sequence .k.n//n�1 in Z2

so that

k.n/ � ! D n2 � 2

n
X

kD1

k�2
k � 2n

X

k>n

�2
k for all n � 1:

The latter identities imply that for any n � 1,

.k.nC1/ � k.n// � ! D 2n C 1 � 2

1
X

j DnC1

�2
j ;

.k.nC1/ � 2k.n/ C k.n�1// � ! D 2 C 2�2
n;

with k.0/ WD 0 2 Z2. It is convenient to reformulate our problem. Let

`.n/ WD k.nC1/ � 2k.n/ C k.n�1/ for all n � 1:

Since

k.nC1/ D `.n/ C 2k.n/ � k.n�1/; n � 1;

our problem can be described equivalently as follows: find a sequence .
n/n�1 in R>0,

belonging to `
1;1C2s
C n S

�>s `
1;1C2�
C , a sequence .`.n//n�1 in Z2, and k.1/ 2 Z2 so

that k.0/ D 0 and

`.n/ � ! D 2 C 2
n for all n � 1; k.1/ � ! D 1 � 2

1
X

j D1


j ; (25)

where, for any n � 1, 
n is related to �n by �n D p

n.

Using the density of the additive subgroup ! � Z2 D Z C bZ in R, it is straight-

forward to construct sequences .
n/n�1 and .`.n//n�1, which satisfy the first set of

identities in (25). But it is more involved to construct such sequences satisfying at the

same time the second identity in (25), which can be rephrased as

1 � 2

1
X

j D1


j 2 ! � Z2: (26)

Accordingly, we proceed in two steps.
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Step 1. Let ."n/n�1 be a sequence in R>0 that belongs to `
1;1C2s
�0 n

S

�>s `
1;1C2�
�0

and satisfies

4

1
X

nD1

"n < 1: (27)

By the density of ! � Z2 in R, there exist m.n/ 2 Z2, n � 1, so that

2 C "n � m.n/ � ! � 2 C 2"n:

For any n � 1, let N
n be the number in Œ"n=2; "n�, defined by

m.n/ � ! D 2 C 2 N
n:

By (27), it then follows that

x WD 1 � 2

1
X

j D1

N
j 2
�1

2
; 1

�

:

Step 2. We correct m.n/ and N
n so that (26) is satisfied with k.1/ D 0. To this end,

we inductively construct a sequence .ın/n�1 in R>0, which belongs to ! � Z2 and

satisfies

x D
1

X

j D1

ıj ; 0 < ın < 21�n; for all n � 1: (28)

We begin with ı1. Since 1
2

< x < 1, there exists ı1 2 ! � Z2 so that x � 1
2

< ı1 < x � 1
4

.

It follows that 0 < ı1 < 1 and that y1 WD x � ı1 satisfies

1

4
< y1 <

1

2
; x D ı1 C y1:

Since 1
4

< y1 < 1
2

, there exists ı2 2 ! � Z2 so that y1 � 1
4

< ı2 < y1 � 1
8

. One con-

cludes that 0 < ı2 < 2�1 and that y2 WD y1 � ı2 satisfies

1

8
< y2 <

1

4
; x D ı1 C ı2 C y2:

Continuing inductively in this way, we construct sequences .yn/n�1, .ın/n�1 in R>0

with .ın/n�1 belonging to ! � Z2, so that for any n � 1,

0 < ın <
1

2n�1
;

1

2nC1
< yn <

1

2n
; x D

n
X

j D1

ıj C yn:

Hence, we obtain x D P1
j D1 ıj . By construction, ın is of the form ın D p.n/ � ! with

p.n/ 2 Z2 and hence we define


n WD N
n C ın

2
> 0; `.n/ WD m.n/ C p.n/ 2 Z2; for all n � 1:
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Since . N
n/n�1 is in `
1;1C2s
�0 n

S

�>s `
1;1C2�
�0 , and since ın satisfies 0 < ın < 21�n for

any n � 1; .
n/n�1 is also in `
1;1C2s
�0 n S

�>s `
1;1C2�
�0 . Furthermore,

2 C 2
n D 2 C 2 N
n C ın D m.n/ � ! C p.n/ � ! D `.n/ � !

and k.1/ D 0, as 1 � 2
P1

j D1 
j D 1 � 2
P1

j D1 N
j � P1
j D1 ıj D 0 D 0 � !:

Remark 11. In contrast to the periodic in time solutions of (1) of Theorem 5 (cf. also

Remark 8 (ii)), the action variables of the !-quasiperiodic solutions constructed in the

proof of Theorem 6 are all strictly positive.

A. Generating function

The aim of this appendix is to show that the generating function H�.u/, defined in (5)

(cf. [10, 12]), is the relative determinant of Lu C � C 1 by Lu C �, where Lu is the

Lax operator of (1) (cf. (3)).

First, let us introduce the notion of a relative determinant in a setup, sufficient for

our purposes. To motivate the definition of such a determinant, consider a positive

Hermitian N � N matrix A with complex valued coefficients. We list its eigenvalues

in increasing order and with their multiplicities, �1 � �2 � � � � � �N and consider

the one-parameter family of matrices A C �. It is then straightforward to verify that

for any � > ��1, the following, well-known formula holds,

d

d�
log.det.A C �// D trace.A C �/�1:

This formula motivates the following definition of a relative determinant. Let A and

A0 be two self-adjoint operators, acting on the Hardy space HC and assume that both

are semibounded (from below) and have compact resolvents. Hence, their spectrum

is discrete, real, and bounded from below. The spectrum of A and the one of A0 then

consist of increasing sequences .�n/n�0 and .�n/n�0, respectively, of real eigenval-

ues, converging to 1. Let �� WD max¹��0; ��0º. Then for any � > ��, A C � and

A0 C � are invertible. We say that A C � admits a determinant relative to A0 C �

(for � > ��) if for any � > ��, .A C �/�1 � .A0 C �/�1 is of trace class and if there

exists a C 1-function,

.��; 1/ ! R>0; � 7! detA0C�.A C �/;

satisfying the normalization condition detA0C�.A C �/ ! 0 as � ! 1, and for any

�� < � < 1, the variational formula

d

d�
log

�

detA0C�.A C �/
�

D trace
�

.A C �/�1 � .A0 C �/�1
�

:
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To state our result on H�.u/, recall that for any u 2 H s
r;0 with s > �1=2, the spectrum

of the Lax operator Lu is given by a sequence of simple real eigenvalues,

�0 < �1 < � � � ;

and (cf. [10, 12])

�n D n �
X

k>n


k; 
k WD �k � �k�1 � 1 � 0; for all k � 1: (29)

The sequence .
k/k�1 is an element in the weighted `1-space `1;1C2s .

Proposition 5. For any u 2 H s
r;0 with s > �1=2 the following holds:

(i) for any � > ��0, .Lu C 1 C �/�1 � .Lu C �/�1 is of trace class;

(ii) Lu C 1 C � admits a determinant relative to Lu C � and

H�.u/ D detLuC�.Lu C 1 C �/ for all � > ��0:

Proof. We use arguments developed in the proof of [10, Lemma 3.2].

(i) By functional calculus, .Lu C 1 C �/�1 � .Lu C �/�1 is a self-adjoint operator

on HC with eigenvalues

1

�n C 1 C �
� 1

�n C �
D � 1

.�n C 1 C �/.�n C �/
:

One then concludes from (29) and the decay properties of the 
n that

.Lu C 1 C �/�1 � .Lu C �/�1

is of trace class for any � > ��0 and that its trace is given by

�
X

n�0

.�n C 1 C �/�1.�n C �/�1:

(ii) Denote by S the shift operator on HC and by S� its adjoint,

S W HC ! HC; f 7! eixf ;

S�W HC ! HC; f 7! e�ix.f � hf j1i1/:

By a straightforward computation, one has (cf. [10, (3.3)])

S�.Lu C �/S D Lu C � C 1 (30)

and (cf. [10, Lemma 3.1])

.S�.Lu C �/S/�1 D S�.Lu C �/�1S � h� j S�w�i
hw� j 1i S�w�; (31)
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where w� WD .Lu C �/�11. Combining the identities (30)–(31), one gets

.Lu C 1 C �/�1 � .Lu C �/�1 D I� � II� ; (32)

where

I� WD S�.Lu C �/�1S � .Lu C �/�1; II� WD h� j S�w�i
hw� j 1i S�w�:

Note that II� is an operator of rank 1 and hence in particular of trace class. Its trace can

be computed as follows. Denote by .fn/n�0 the orthonormal basis of eigenfunctions

of Lu, introduced in [10] (s D 0) and [12] (�1=2 < s < 0). Computing the trace of

II� with respect to this basis one obtains from Parseval’s identity,

trace.II�/ D
X

n�0

hfn j S�w�i
hw� j 1i hS�w� j fni D kS�w�k2

hw� j 1i :

Using that S�w� D e�ixw� � hw� j 1ie�ix and that

hw�j1i D h.Lu C �/�11 j 1i � 0;

since .Lu C �/�1 is a positive operator, one infers

trace.II�/ D kS�w�k2

hw� j 1i D kw�k2

hw� j 1i � jhw� j 1ij2
hw� j 1i D kw�k2

hw� j 1i � hw� j 1i: (33)

Since, by (32), the operator I� is the sum of two operators of trace class, it is itself of

trace class. Computing its trace with respect to the orthonormal basis .einx/n�0, one

obtains

trace.I�/ D
X

n�0

h.Lu C �/�1Seinx j Seinxi � h.Lu C �/�1einx j einxi

D �h.Lu C �/�11 j 1i D �hw� j 1i: (34)

Combining (32), (33), and (34) we arrive at

trace
�

.Lu C 1 C �/�1 � .Lu C �/�1
�

D � kw�k2

hw� j 1i :

Since

hw� j 1i D
X

n�0

jh1 j fnij2
�n C �

; kw�k2 D
X

n�0

jh1 j fnij2
.�n C �/2

one has,1

� kw�k2

hw� j 1i D d

d�
log

�

X

n�0

jh1 j fnij2
�n C �

�

1Note that by (5) for a given u 2 H s
r;0

, H�.u/ is real analytic for � > ��0.
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and hence

d

d�
log

�

X

n�0

jh1 j fnij2
�n C �

�

D trace
�

.Lu C 1 C �/�1 � .Lu C �/�1
�

: (35)

Since when expanding H�.u/ D h.Lu C � Id/�11 j 1i with respect to the orthonormal

basis .fn/n�0, one obtains

H�.u/ D
X

n�0

jh1 j fnij2
�n C �

and since lim�!1 H�.u/ D 0 we proved that H�.u/ is the determinant of Lu C 1 C �

relative to Lu C �.

In the remaining part of this appendix we study in more detail how for any given

u 2 H s
r;0, s > �1=2, H�.u/ is related to the spectrum of Lu. First, note that it follows

from (35) that

d

d�
log H� D d

d�

�

log
� 1

�0 C �

�

C
X

n�1

log
��n�1 C 1 C �

�n C �

��

;

implying that (cf. [10, Proposition 3.1] and [12])

H�.u/ D 1

�0 C �

Y

n�1

�n�1 C 1 C �

�n C �
: (36)

Therefore, H�.u/ is determined by the periodic spectrum of Lu. Since the latter is

invariant by the flow of (1), H�.u/ is a one-parameter family of prime integrals of this

equation. The question arises if, conversely, H�.u/ determines the spectrum of Lu.

To this end, we take a closer look at the product representation (36) of H�.u/. Setting

�n WD �n�1 C 1 for any n � 1, one has

�0 < �1 � �1 < �2 � �2 < � � � :

Furthermore, for any n � 1, �n D �n if and only if 
n D 0. Hence,

H�.u/ D 1

�0 C �

Y

n2Ju

�n C �

�n C �
; Ju WD ¹n � 1 j 
n > 0º:

Note that ��n, n 2 Ju, are the zeros of H�.u/ and ��n, n 2 Ju [ ¹0º, its poles.

All the poles and zeros of H�.u/ are simple. The question raised above can now be

rephrased as follows: does H�.u/ besides �n.u/, n 2 Ju, and �n.u/, n 2 Ju [ ¹0º,

also determine the eigenvalues �n.u/ with 
n.u/ D 0? The following result says that

this is indeed the case.
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Proposition 6. For any u 2 H s
r;0, s > �1=2, the generating function H�.u/ determ-

ines the entire spectrum of Lu.

Proof. Since ��0 is a pole of H�.u/, it is determined by the generating function. If

��1 is a zero of H�.u/, then �1 D �0 C 1 < �1 and hence ��1 is a pole of H�.u/. If

�.�0 C 1/ is not a zero of H�.u/, then �0 C 1 is the periodic eigenvalue �1 of Lu and

hence also determined by H�.u/. Arguing inductively, the claimed result follows.

Remark 12. With the help of a conformal map, Hochstadt proved a result corres-

ponding to the one of Proposition 6 for Hill’s operator, which is a Lax operator for the

Korteweg–de Vries equation (cf. [15, 17]). Note that in contrast, the proof of Propos-

ition 6 is elementary.
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