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Berezin–Toeplitz quantization associated with

higher Landau levels of the Bochner Laplacian

Yuri A. Kordyukov

Abstract. In this paper, we construct a family of Berezin–Toeplitz type quantizations of a com-

pact symplectic manifold. For this, we choose a Riemannian metric on the manifold such that

the associated Bochner Laplacian has the same local model at each point (this is slightly more

general than in almost-Kähler quantization). Then the spectrum of the Bochner Laplacian on

high tensor powers Lp of the prequantum line bundle L asymptotically splits into clusters of

size O.p3=4/ around the points pƒ, where ƒ is an eigenvalue of the model operator (which can

be naturally called a Landau level). We develop the Toeplitz operator calculus with the quantum

space, which is the eigenspace of the Bochner Laplacian corresponding to the eigenvalues from

the cluster. We show that it provides a Berezin–Toeplitz quantization. If the cluster corresponds

to a Landau level of multiplicity one, we obtain an algebra of Toeplitz operators and a formal

star-product. For the lowest Landau level, it recovers the almost Kähler quantization.

Dedicated to the memory of Misha Shubin

1. Introduction

The main goal of our paper is to construct a family of Berezin–Toeplitz quantizations

based on appropriate eigenspaces of the Bochner Laplacian under a certain condition

on the Riemannian metric on the symplectic manifold (which is slightly more general

than the almost-Kähler one). More precisely, let .X; B/ be a closed symplectic mani-

fold of dimension 2n. Assume that there exists a Hermitian line bundle .L; hL/ on X

with a Hermitian connection rL such that

B D iRL; (1)

where RL is the curvature of the connection rL defined as RL D .rL/2.
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Let g be a Riemannian metric on X and .E; hE / be a Hermitian vector bundle of

rank r on X with a Hermitian connection rE . For any p 2 N, let Lp WD L˝p be the

pth tensor power of L and let

rLp˝E W C 1.X; Lp ˝ E/ ! C 1.X; T �X ˝ Lp ˝ E/

be the Hermitian connection on Lp ˝ E induced by rL and rE . Consider the induced

Bochner Laplacian �Lp˝E acting on C 1.X; Lp ˝ E/ by

�Lp˝E D .rLp˝E /�rLp˝E ; (2)

where .rLp˝E /�WC 1.X;T �X ˝ Lp ˝ E/ ! C 1.X;Lp ˝ E/ is the formal adjoint

of rLp˝E .

For an arbitrary x 2 X , one can introduce a second order differential operator

acting on C 1.TxX; Ex/ (the model operator), which is obtained from the Bochner

Laplacian �Lp˝E by freezing coefficients at x (see (19) below and [22] for more

details). It is the Bochner Laplacian on a constant curvature Hermitian line bundle

over the Euclidean space TxX . It can be also considered as the magnetic Laplacian

with constant magnetic field. We consider the skew-adjoint operator Bx WTxX ! TxX

such that

Bx.u; v/ D g.Bxu; v/; u; v 2 TxX:

Its eigenvalues have the form ˙iaj .x/; j D 1; : : : ; n; with aj .x/ > 0. The spectrum

of the model operator consists of eigenvalues of the form
Pn

j D1.2kj C 1/aj .x/ with

.k1; : : : ; kn/ 2 Z
n
C. Each eigenvalue has infinite multiplicity and is called a Landau

level.

We assume that the functions aj can be chosen to be constants:

aj .x/ � aj ; x 2 X; j D 1; : : : ; n: (3)

This is a condition on the Riemannian metric g, which can be satisfied for any sym-

plectic manifold X . In this case, the spectrum of the model operator is independent of

x and coincides with the countable discrete set

† WD
°

ƒk WD
n

X

j D1

.2kj C 1/aj W k D .k1; : : : ; kn/ 2 Z
n
C

±

: (4)

If J D 1
2�

B is an almost-complex structure (the almost Kähler case), then aj D 2� ,

j D 1; : : : ; n, and

† D ¹2�.2k C n/W k 2 ZCº: (5)

As shown in [22] (see also [14]), for any K > 0, there exists c > 0 such that for any

p 2 N the spectrum of �Lp˝E in the interval Œ0; K� is contained in the cp3=4-neigh-

borhood of p†. In other words, the spectrum of �Lp˝E asymptotically splits into

clusters around p† of size O.p3=4/.
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Next, we fix one of these clusters associated with ƒ 2 † and develop the Toeplitz

operator calculus associated with the eigenspace of the Bochner Laplacian corres-

ponding to eigenvalues from this cluster. Consider an interval I D .˛; ˇ/ such that

.˛; ˇ/ \ † D ¹ƒº. By the above mentioned fact, there exist �0 > 0 and p0 2 N such

that, for any p > p0,

�.�Lp˝E / � .�1; p.ƒ � �0// [ .p˛; pˇ/ [ .p.ƒ C �0/; 1/:

The spectral projection of the operator �Lp˝E associated with .p˛;pˇ/ is independ-

ent of the choice of I and will be denoted by Pp;ƒ.

For f 2 C 1.X; End.E//, we define the associated Toeplitz operator to be the

sequence of bounded linear operators

Tf;p D Pp;ƒfPp;ƒW L2.X; Lp ˝ E/ ! L2.X; Lp ˝ E/; p 2 N:

Theorem 1.1. Let f;g 2 C 1.X; End.E//. Then, for the product of the Toeplitz oper-

ators ¹Tf;pº and ¹Tg;pº, we have

Tf;pTg;p D Tfg;p C O.p�1/: (6)

Moreover, if f; g 2 C 1.X/, then, for the commutator of the operators ¹Tf;pº and

¹Tg;pº, we have

ŒTf;p; Tg;p� D ip�1T¹f;gº;p C O.p�1=2/; (7)

where ¹f; gº is the Poisson bracket on the symplectic manifold .X; B/.

Thus, the Toeplitz operators provide a Berezin–Toeplitz quantization for the com-

pact symplectic manifold .X; B/. The limit p ! C1 for Toeplitz operators can be

thought of as a semiclassical limit, with semiclassical parameter „ D 1
p

! 0. The-

orem 1.3 shows that this quantization has a correct semiclassical limit.

In the case when the set Kƒ WD ¹k 2 Z
n
CW ƒk D ƒº consists of a single element,

we construct the algebra of Toeplitz operators associated with ƒ.

Definition 1.2. A Toeplitz operator is a sequence ¹Tpº D ¹Tpºp2N of bounded linear

operators TpWL2.X;Lp ˝ E/ ! L2.X;Lp ˝ E/, satisfying the following conditions.

(i) For any p 2 N, we have

Tp D Pp;ƒTpPp;ƒ:

(ii) There exists a sequence gl 2 C 1.X; End.E// such that

Tp D Pp;ƒ

�

1
X

lD0

p�lgl

�

Pp;ƒ C O.p�1/;
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i.e. for any natural k there exists Ck > 0 such that





Tp � Pp;ƒ

�

k
X

lD0

p�lgl

�

Pp;ƒ





 � Ckp�k�1:

Theorem 1.3. Assume that Kƒ consists of a single element. Then, for any f; g 2
C 1.X; End.E//, the product of the Toeplitz operators ¹Tf;pº and ¹Tg;pº is a Toep-

litz operator in the sense of Definition 1.2. More precisely, it admits the asymptotic

expansion

Tf;pTg;p D
1

X

rD0

p�r TCr .f;g/;p C O.p�1/; (8)

with some Cr .f; g/ 2 C 1.X; End.E//, where the Cr are bidifferential operators. In

particular, C0.f; g/ D fg and, for f; g 2 C 1.X/, we have

C1.f; g/ � C1.f; g/ D i¹f; gº: (9)

The idea to use Toeplitz operators for quantization of Kähler manifolds was sug-

gested by Berezin in [4]. We refer the reader to [3, 12, 24, 35] for some recent surveys

on Berezin–Toeplitz and geometric quantization. For a general compact Kähler mani-

fold, the Berezin–Toeplitz quantization was constructed by Bordemann, Meinrenken,

and Schlichenmaier [5], using the theory of Toeplitz structures of Boutet de Monvel

and Guillemin [6]. In this case, the quantum space is the space of holomorphic sec-

tions of tensor powers of the prequantum line bundle over the Kähler manifold. For

an arbitrary symplectic manifold, Guillemin and Vergne suggested to use the kernel

of the spinc Dirac operator as a quantum space. The corresponding Berezin–Toeplitz

quantization was developed by Ma and Marinescu [25, 26]. It is based on the asymp-

totic expansion of the Bergman kernel outside the diagonal obtained by Dai, Liu, and

Ma [11]. Another candidate for the quantum space was suggested by Guillemin and

Uribe [17]. It is the space of eigensections of the renormalized Bochner Laplacian cor-

responding to eigenvalues localized near the origin. In this case, the Berezin–Toeplitz

quantization was recently constructed in [19,21], based on Ma and Marinescu’s work:

the Bergman kernel expansion from [27] and Toeplitz calculus developed in [26] for

spinc Dirac operator and Kähler case (also with an auxiliary bundle). We note also that

Charles [8] proposed recently another approach to quantization of symplectic mani-

folds and Hsiao and Marinescu [18] constructed a Berezin–Toeplitz quantization for

eigensections of small eigenvalues in the case of complex manifolds.

In our paper, we follow the approach to Toeplitz operator calculus developed

in [19,21,25,26]. Asymptotic expansions of the kernels of spectral projections, which

we need in our case, are proved in [22]. When ƒ D ƒ0 is the lowest Landau level, our

results are reduced to the results obtained in [19, 21], which hold for any Riemannian
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metric g (not necessarily satisfying the condition (3)). We mention that, in two sim-

ultaneous papers [9, 10], Charles studies the same subject, using the methods of [8].

There are several papers devoted to Toeplitz operators acting on spectral sub-

spaces of the Landau Hamiltonian in R
2n (see, for instance, [7, 15, 28–30, 32, 33] and

references therein). For constant magnetic fields, such operators are related with the

Toeplitz operators acting on Bargmann–Fock type spaces of polyanalytic functions

(see, for instance, [1,2,13,16,20,34,36] and references therein). In particular, in [20],

quantization schemes defined by polyanalytic Toeplitz operators are discussed.

The paper is organized as follows. In Section 2, we introduce an algebra A of

integral operators on X defined in terms of conditions on their smooth Schwartz ker-

nels. In Section 3, we show that Toeplitz operators in the sense of Definition 1.2

belong to A. In Section 4, using the results of the previous sections, we prove the first

part of Theorem 1.1 and reduce the proof of its second part to a similar statement in

the Euclidean case. The proof of this statement is given in Section 5. In Section 6, we

prove that the set of Toeplitz operators coincides with the algebra A in the case when

Kƒ consists of a single element, which gives a characterization of Toeplitz operators

in terms of their Schwartz kernels in the form introduced in [26, Theorem 4.9]. Using

Theorems 6.1 and 1.1, we easily complete the proof of Theorem 1.3.

2. Algebra of integral operators

In this section, we introduce an algebra A of integral operators on X defined in

terms of conditions on their smooth Schwartz kernels. Our motivation comes from

the description of Toeplitz operators in terms of their Schwartz kernels introduced

in [25, 26]. Later, we will show that Toeplitz operators in the sense of Definition 1.2

belong to this algebra, and, if Kƒ consists of a single element, the set of Toeplitz

operators coincides with A.

We introduce normal coordinates near an arbitrary point x0 2 X . We denote by

BX .x0; r/ and BTx0
X .0; r/ the open balls in X and Tx0

X with center x0 and radius r ,

respectively. Let rX > 0 be the injectivity radius of X . We identify BTx0
X .0; rX /

with BX .x0; rX / via the exponential map expX
x0

WTx0
X ! X . Furthermore, we choose

trivializations of the bundles L and E over BX .x0; rX /, identifying their fibers LZ

and EZ at Z 2 BTx0
X .0; rX / Š BX .x0; rX / with the spaces Lx0

and Ex0
by parallel

transport with respect to the connections rL and rE along the curve Z W Œ0; 1� 3 u !
expX

x0
.uZ/. Denote by rLp˝E and hLp˝E the connection and the Hermitian metric

on the trivial bundle with fiber .Lp ˝ E/x0
induced by these trivializations.

We choose an orthonormal base ¹ej W j D 1; : : : ; 2nº in Tx0
X such that

Bx0
e2k�1 D ake2k; Bx0

e2k D �ake2k�1; k D 1; : : : ; n: (10)
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Thus, we have

Bx0
D

n
X

kD1

akdZ2k�1 ^ dZ2k: (11)

We introduce a coordinate chart x0
W B.0; c/ � R

2n ! X defined on the ball

B.0;c/ WD ¹Z 2 R
2nW jZj < cº with some c 2 .0; rX /, which is given by the restriction

of the exponential map expX
x0

composed with the linear isomorphism R
2n ! Tx0

X

determined by the base ¹ej º.

Let dvTX denote the Riemannian volume form of the Euclidean space .Tx0
X;gx0

/.

We define a smooth function � on BTx0
X .0; rX/ Š BX .x0; rX / by the equation

dvX .Z/ D �.Z/dvTX.Z/; Z 2 BTx0
X .0; rX /:

Let ¹„pº be a sequence of linear operators

„pW L2.X; Lp ˝ E/ ! L2.X; Lp ˝ E/

with smooth kernel „p.x; x0/ with respect to dvX . Consider the fiberwise product

TX �X TX D ¹.Z; Z0/ 2 Tx0
X � Tx0

X W x0 2 Xº. Let �W TX �X TX ! X be the

natural projection given by �.Z; Z0/ D x0. The kernel „p.x; x0/ induces a smooth

section „p;x0
.Z; Z0/ of the vector bundle ��.End.E// on TX �X TX defined for all

x0 2 X and Z; Z0 2 Tx0
X with jZj; jZ0j < rX .

Denote by P the Bergman kernel in R2n given by

P .Z; Z0/ D 1

.2�/n

n
Y

j D1

aj exp
�

�1

4

n
X

kD1

ak

�

jzkj2 C jz0
kj2 � 2zk Nz0

k

�

�

: (12)

We will use the same notation for the corresponding scalar function P .Z; Z0/ D
P .Z; Z0/ IdEx0

on Tx0
X � Tx0

X with values in End.Ex0
/.

Definition 2.1 ([25, 26]). We say that

p�n„p;x0
.Z; Z0/ Š

k
X

rD0

.Qr;x0
P /.

p
pZ;

p
pZ0/p� r

2 C O.p� kC1
2 / (13)

with some Qr;x0
2 End.Ex0

/ŒZ; Z0�, 0 � r � k, depending smoothly on x0 2 X ,

if there exist "0 2 .0; rX � and C0 > 0 with the following property: for any l 2 N,

there exist C > 0 and M > 0 such that for any x0 2 X , p � 1 and Z; Z0 2 Tx0
X ,

jZj; jZ0j < "0, we have

ˇ

ˇ

ˇ
p�n„p;x0

.Z; Z0/�
1
2 .Z/�

1
2 .Z0/ �

k
X

rD0

.Qr;x0
P /.

p
pZ;

p
pZ0/p� r

2

ˇ

ˇ

ˇ

Cl .X/

� Cp� kC1
2 .1 C p

pjZj C p
pjZ0j/M exp.�

p

C0pjZ � Z0j/ C O.p�1/:
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Here C m0

.X/ is the C m0

-norm for the parameter x0 2 X . We say that Gp D
O.p�1/ if for any l; l1 2 N, there exists Cl;l1

> 0 such that C l1-norm of Gp is

estimated from above by Cl;l1
p�l .

The expansion (13) will be called the full off-diagonal expansion for the kernel

of „p .

Definition 2.2. We introduce the class A, which consists of sequences of linear oper-

ators ¹TpW L2.X; Lp ˝ E/ ! L2.X; Lp ˝ E/º, satisfying the following conditions.

(i) For any p 2 N, we have

Tp D Pp;ƒTpPp;ƒ:

(ii) For any "0 > 0 and l 2 N, there exists C > 0 such that

jTp.x; x0/j � Cp�l

for any p 2 N and .x; x0/ 2 X � X with d.x; x0/ > "0. (Here d.x; x0/ is the

geodesic distance.)

(iii) The kernel of Tp admits the full off-diagonal expansion

p�nTp;x0
.Z; Z0/ Š

k
X

rD0

Kr;x0
.
p

pZ;
p

pZ0/p� r
2 C O.p� kC1

2 /

for any k 2 N, x0 2 X , Z; Z0 2 Tx0
X , jZj; jZ0j < "0 with some "0 2 .0; rX=4/,

with

Kr;x0
.Z; Z0/ D .Qr;x0

P /.Z; Z0/;

where Qr;x0
2 End.Ex0

/ŒZ; Z0� is a family of polynomials, depending smoothly

on x0, of the same parity as r .

One can easily check the following properties of A.

Proposition 2.3. The set A is an involutive algebra. For any ¹Tpº 2 A, the operator

Tp is bounded in L2.X; Lp ˝ E/ with the norm, uniformly bounded in p.

For any F;G 2 C 1.Tx0
X � Tx0

X;End.Ex0
//, exponentially decreasing away the

diagonal, we denote by F � G 2 C 1.Tx0
X � Tx0

X; End.Ex0
// the smooth kernel of

the composition of the corresponding integral operators in L2.Tx0
X; Ex0

/:

.F � G/.Z; Z0/ D
Z

Tx0
X

F.Z; Z00/G.Z00; Z0/dZ00:

Proposition 2.4. For any ¹T 0
pº; ¹T 00

p º 2 A, the coefficients Kr;x0
.Z; Z0/ in the full

off-diagonal expansion for the kernel of the composition ¹T 0
p ı T 00

p º are related with
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the analogous coefficients K 0
r;x0

.Z;Z0/ and K 00
r;x0

.Z;Z0/ for ¹T 0
pº and ¹T 00

p º, respect-

ively, by

Kr;x0
D

X

r1Cr2Dr

K 0
r1;x0

� K 00
r2;x0

: (14)

3. Description of the kernels of Toeplitz operators

In this section, we show that any Toeplitz operator ¹Tpº in the sense of Definition 1.2

belongs to the algebra A introduced in the previous section. It is easy to see that it

suffices to do this for the operator ¹Tf;pº determined by f 2 C 1.X; End.E//.

Let Pp;ƒ.x; x0/, x; x0 2 X , be the smooth kernel of Pp;ƒ with respect to the

Riemannian volume form dvX . The Schwartz kernel of Tf;p is given by

Tf;p.x; x0/ D
Z

X

Pp;ƒ.x; y/f .y/Pp;ƒ.y; x0/dvX .y/: (15)

Lemma 3.1. For any " > 0 and l; m 2 N, there exists C > 0 such that for any p � 1

and .x; x0/ 2 X � X with d.x; x0/ > " we have

jTf;p.x; x0/jC m � Cp�l :

Here jTf;p.x; x0/jC k denotes the pointwise C k-seminorm of the section Tf;p at a

point .x; x0/ 2 X � X , which is the sum of the norms induced by hL; hE and g of

the derivatives up to order k of Tf;p with respect to the connection rLp˝E and the

Levi-Civita connection rTX evaluated at .x; x0/.

Proof. The proof follows from (15) and the off-diagonal exponential estimate for

Pp;ƒ.x; x0/ (see [22]) as in [27, Lemma 4.2].

By [22], for any k 2 N, the kernel of Pp;ƒ admits the full off-diagonal expansion

p�nPp;ƒ;x0
.Z; Z0/ Š

k
X

rD0

Fr;x0
.
p

pZ;
p

pZ0/p� r
2 C O.p� kC1

2 /: (16)

Here, for any r � 0, the coefficient Fr;x0
2 C 1.Tx0

X � Tx0
X; End.Ex0

// has the

form

Fr;x0
.Z; Z0/ D Jr;x0

.Z; Z0/P .Z; Z0/; (17)

where Jr;x0
.Z; Z0/ is a polynomial in Z; Z0, depending smoothly on x0, of the same

parity as r and deg Jr;x0
� �.ƒ/ C 3r , where �.ƒ/ D max¹jkjW ƒk D ƒº.
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Recall the description of the leading coefficient F0;x0
.Z; Z0/. We introduce the

connection on the trivial line bundle on Tx0
X Š R2n, with the connection one-form

˛ given by

˛D

n
X

kD1

1

2
ak.Z2k�1 dZ2k � Z2k dZ2k�1/: (18)

Its curvature is constant: d˛ D Bx0
.

Let H .0/ be the associated Bochner Laplacian on C 1.R2n/:

H
.0/ D .d � i˛/�.d � i˛/: (19)

The spectrum of H
.0/ coincides with † and consists of eigenvalues of infinite multi-

plicity. Considered as an operator on C 1.Tx0
X;Ex0

/ Š C 1.R2n;Ex0
/, the operator

H .0/ ˝ idEx0
is exactly the model operator at x0 mentioned in the introduction. So,

the assumption (3) guarantees that, in a suitable coordinates, the model operator is

independent of x0. Let Pƒ be the orthogonal projection on the eigenspace of H
.0/

with the eigenvalue ƒ (see Section 5 for more information on Pƒ).

The leading coefficient in (16) is given by

F0;x0
.Z; Z0/ D Pƒ.Z; Z0/: (20)

As in [27, Lemma 4.7], using an explicit formula for F1;x0
given in [22], one can show

that, for any Z; Z0 2 Tx0
X , F1;x0

.Z; Z0/ is a scalar operator in Ex0
, and, therefore,

commutes with any operator in Ex0
.

Since Pp;ƒ is a projection, we have

Pƒ � F1;x0
C F1;x0

� Pƒ D F1;x0
; (21)

Pƒ � F2;x0
C F1;x0

� F1;x0
C F2;x0

� Pƒ D F2;x0
: (22)

Lemma 3.2. For any f 2 C 1.X; End.E//, the operator ¹Tf;pº belongs to A. The

coefficients Kr;x0
.f / 2 C 1.Tx0

X � Tx0
X; End.Ex0

// of the full off-diagonal expan-

sion for the kernel of Tf;p are given by

Kr;x0
.f / D

X

r1Cr2CkDr

Fr1;x0
� 1

kŠ
.dkfx0

/0 � Fr2;x0
; (23)

where

.dkfx0
/0.Z/ D

X

j˛jDk

@˛fx0

@Z˛
.0/Z˛

and we denote

.dkfx0
/0 � Fr2;x0

.Z; Z0/ D .dkfx0
/0.Z/Fr2;x0

.Z; Z0/:
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In particular, we have

K0;x0
.f / D f .x0/Pƒ; (24)

K1;x0
.f / D f .x0/F1;x0

C Pƒ � .dfx0
/0 � Pƒ; (25)

and, for f 2 C 1.X/,

K2;x0
.f / D f .x0/F2;x0

C F1;x0
� .dfx0

/0 � Pƒ

C Pƒ � .dfx0
/0 � F1;x0

C Pƒ � 1

2
.d2fx0

/0 � Pƒ: (26)

Proof. The proof goes along the same lines as the proof of [27, Lemma 4.6], so we

just highlight the main points.

The fact that ¹Tf;pº belongs to A follows easily from (15), (16), and Proposi-

tion 2.4. By (15) and (16), we also get

p�nTf;p;x0
.Z; Z0/ Š

1
X

rD0

p� r
2

X

r1Cr2Dr

Z

Fr1;x0
.
p

pZ;
p

pW /fx0
.W /

� Fr2;x0
.
p

pW;
p

pZ0/dW:

Now we write the Taylor expansion for fx0
at 0:

fx0
.W / D

X

˛2Z
2n
C

@˛fx0

@W ˛
.0/

W ˛

˛Š
;

We infer that

p�nTf;p;x0
.Z; Z0/ Š

X

˛2Z
2n
C

1
X

rD0

p� r
2

X

r1Cr2Cj˛jDr

Z

Fr1;x0
.
p

pZ;
p

pZ0/

� @˛fx0

@W ˛
.0/

.
p

pW /˛

˛Š
Fr2;x0

.
p

pW;
p

pZ0/dW;

which proves (23).

Using (23), (21), (22), and the fact that F1;x0
.Z; Z0/ commutes with any operator

in Ex0
, one can easily derive (24), (25), and (26).

4. The composition theorem

Now we will use the results of the previous sections to prove Theorem 1.1. In this

section, we will prove the first part of the theorem and reduce the proof of the second

part to the proof of a similar statement in the Euclidean case, which will be given in

the next section.
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Let f; g 2 C 1.X; End.E//. By Proposition 2.4, the operator Tf;pTg;p belongs

to A, and, by (14), the coefficients Kr;x0
.f; g/ 2 C 1.Tx0

X � Tx0
X; End.Ex0

// of

the full off-diagonal expansion for the kernel of Tf;pTg;p are given by

Kr;x0
.f; g/ D

X

r1Cr2Dr

Kr1;x0
.f / � Kr2;x0

.g/: (27)

To prove (6), it is sufficient to show that

Kr;x0
.f; g/ D Kr;x0

.fg/: r D 0; 1:

By (27), (24), and the fact that Pƒ commutes with g.x0/, we get

K0;x0
.f; g/ D K0;x0

.f / � K0;x0
.g/

D f .x0/Pƒ � g.x0/Pƒ D f .x0/g.x0/Pƒ D K0;x0
.fg/:

Next, by (27), (24), (25), and (21), we have

K1;x0
.f; g/ D K1;x0

.f / � K0;x0
.g/ C K0;x0

.f / � K1;x0
.g/

D .f .x0/F1;x0
C Pƒ � .dfx0

/0 � Pƒ/ � g.x0/Pƒ

C f .x0/Pƒ � .g.x0/F1;x0
C Pƒ � .dgx0

/0 � Pƒ/

Df .x0/g.x0/F1;x0
C Pƒ � .dfx0

/0g.x0/ � Pƒ

C Pƒ � f .x0/.dgx0
/0 � Pƒ

D f .x0/g.x0/F1;x0
C Pƒ � .d.fg/x0

/0 � Pƒ

DK1;x0
.fg/;

since Pƒ and F1;x0
commute with g.x0/ and f .x0/ and h � Pƒ � Pƒ D h � Pƒ for

any h. This proves (6).

Now suppose that f; g 2 C 1.X/. Then we have

Kr;x0
.f; g/ � Kr;x0

.g; f / D 0; r D 0; 1: (28)

Let us compute K2;x0
.f; g/. By (27), (24), (25), and (26), we have

K2;x0
.f; g/ D

�

f .x0/F2;x0
C F1;x0

� .dfx0
/0 � Pƒ C Pƒ � .dfx0

/0 � F1;x0

C Pƒ � 1

2
.d2fx0

/0 � Pƒ

�

� g.x0/Pƒ

C
�

f .x0/F1;x0
C Pƒ � .dfx0

/0 � Pƒ

�

�
�

g.x0/F1;x0
C Pƒ � .dgx0

/0 � Pƒ

�

C f .x0/Pƒ �
�

g.x0/F2;x0
C F1;x0

� .dgx0
/0 � Pƒ

C Pƒ � .dgx0
/0 � F1;x0

C Pƒ � 1

2
.d2gx0

/0 � Pƒ

�

:
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Using (22), we collect the terms with f .x0/g.x0/. Since Pƒ and F1;x0
commute with

g.x0/ and f .x0/, h � Pƒ � Pƒ D h � Pƒ for any h, we get

K2;x0
.f; g/ D f .x0/g.x0/F2;x0

C F1;x0
� .dfx0

/0g.x0/ � Pƒ C Pƒ � .dfx0
/0g.x0/ � F1;x0

� Pƒ

C Pƒ � 1

2
.d2fx0

/0g.x0/ � Pƒ C F1;x0
� f .x0/.dgx0

/0 � Pƒ

C Pƒ � .dfx0
/0g.x0/ � Pƒ � F1;x0

C Pƒ � .dfx0
/0 � Pƒ � .dgx0

/0 � Pƒ

C Pƒ � f .x0/.dgx0
/0 � F1;x0

C Pƒ � 1

2
f .x0/.d2gx0

/0 � Pƒ

D f .x0/g.x0/F2;x0
C F1;x0

� .d.fg/x0
/0 � Pƒ

C Pƒ � .d.fg/x0
/0 � F1;x0

C Pƒ � 1

2
.d2fx0

/0g.x0/ � Pƒ

C Pƒ � .dfx0
/0 � Pƒ � .dgx0

/0 � Pƒ

C Pƒ � 1

2
f .x0/.d2gx0

/0 � Pƒ:

Finally, we see that

K2;x0
.f; g/ � K2;x0

.g; f /

D Pƒ � .dfx0
/0 � Pƒ � .dgx0

/0 � Pƒ � Pƒ � .dgx0
/0 � Pƒ � .dfx0

/0 � Pƒ:

(29)

Thus, we have reduced the proof of (7) to the linear model.

We consider the linear space R2n equipped with the symplectic form

!a D
n

X

kD1

akdZ2k�1 ^ dZ2k

(cf. (11)).

Proposition 4.1. For linear functions F and G on R
2n, we have

ŒPƒF Pƒ; PƒGPƒ� D ¹F; GºaPƒ;

where ¹F; Gºa is the Poisson bracket on the symplectic manifold .R2n; !a/

A proof of Proposition 4.1 will be given in the next section. Now we demonstrate

how it allows us to complete the proof of (7).
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Observe that, for linear functions F and G, the Poisson bracket ¹F; Gºa is a

constant function on R2n, and, by (11), it is easy to see that, for any f; g 2 C 1.X/,

¹f; gº.x0/ D ¹.dfx0
/0; .dgx0

/0ºa:

Therefore, identity (7) follows immediately from (28), (29), and Propositions 4.1

and 2.3.

5. The model case

In this section, we prove Proposition 4.1, thus completing the proof of Theorem 1.1.

First, we need to recall some information on the spectral theory of the model oper-

ator H .0/, see [27].

We will use the complex coordinates z 2 Cn Š R2n, zj D Z2j �1 C iZ2j ; with

j D 1; : : : ; n; in the linear space R
2n. Put

@

@zj

D 1

2

� @

@Z2j �1

� i
@

@Z2j

�

;
@

@Nzj

D 1

2

� @

@Z2j �1

C i
@

@Z2j

�

:

Define first order differential operators bj ; bC
j ; j D 1; : : : ; n; on C 1.R2n; Ex0

/ by

the formulas

bj D �2
@

@zj

C 1

2
aj Nzj ; bC

j D 2
@

@Nzj

C 1

2
aj zj ; j D 1; : : : ; n:

Then bC
j is the formal adjoint of bj on L2.R2n; Ex0

/, and

H
.0/ D

n
X

j D1

bj bC
j C ƒ0:

We have the commutation relations

Œbi ; bC
j � D bi b

C
j � bC

j bi D �2ai ıij ; Œbi ; bj � D ŒbC
i ; bC

j � D 0; (30)

and, for any polynomial g.z; Nz/ on z and Nz,

Œg.z; Nz/; bj � D 2
@

@zj

g.z; Nz/; Œg.z; Nz/; bC
j � D �2

@

@Nzj

g.z; Nz/: (31)

By [26, (1.98)], we have

.bC
j P /.Z; Z0/ D 0; .bj P /.Z; Z0/ D aj . Nzj � Nz0

j /P .Z; Z0/: (32)



Y. A. Kordyukov 156

We introduce first order differential operators Nbj ; NbC
j ; j D 1; : : : ;n; on C 1.R2n;Ex0

/

by the formulas

Nbj D �2
@

@Nzj

C 1

2
aj zj ; NbC

j D 2
@

@zj

C 1

2
aj Nzj ; j D 1; : : : ; n:

They commute with the operators bj ; bC
j ; j D 1; : : : ; n; and satisfy the same commut-

ation relations (30) as bj ; bC
j . We have

. NbC
j P /.Z; Z0/ D aj Nz0

j P .Z; Z0/; . Nbj P /.Z; Z0/ D aj zj P .Z; Z0/: (33)

Recall that any function ˆ 2 L2.R2n; Ex0
/ of the form

ˆ D bk
�

f .z/ exp
�

�1

4

n
X

j D1

aj jzj j2
��

; (34)

where f is an analytic function in C
n Š R

2n and k 2 Z
n
C, is an eigenfunction of

the operator H
.0/ with the eigenvalue ƒk D

Pn
j D1.2kj C 1/aj . In particular, the

eigenspace of H
.0/ associated with an eigenvalue ƒ consists of functions ˆ given

by (34) with k 2 Kƒ.

In the case when Ex0
D C, an orthonormal basis of the eigenspace of H

.0/ asso-

ciated with the lowest eigenvalue ƒ0 is formed by the functions

'ˇ .Z/ D
� aˇ

.2�/n2jˇ jˇŠ

n
Y

iD1

ai

�1=2

zˇ exp
�

�1

4

n
X

j D1

aj jzj j2
�

; ˇ 2 Z
n
C: (35)

An orthonormal basis of the eigenspace associated with the eigenvalue ƒ is given by

(see, for instance, [7])

'k;ˇ D 1

.2jkjakkŠ/1=2
bk'ˇ ; ˇ 2 Z

n
C; k 2 Kƒ: (36)

Thus, the spectral projection Pƒ in L2.R2n; Ex0
/ is given by

Pƒ D
X

k2Kƒ

Pƒk
;

where Pƒk
is the smoothing operator with the kernel

Pƒk
.Z; Z0/ D

X

ˇ2Z
n
C

'k;ˇ .Z/'k;ˇ .Z0/ D 1

2jkjakkŠ
bk

z
Nbk
z0P .Z; Z0/ (37)

(see also (55) below for an explicit formula). We can also write the following formula

for the operator Pƒk
itself:

Pƒk
D 1

2jkjakkŠ
bk

P .bC/k: (38)
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Observe that

bC
j Pƒk

D Pƒk�ej
bC

j ; bj Pƒk
D PƒkCej

bj ; j D 1; : : : ; n;

where .e1; : : : ; en/ is the standard basis in Z
n. Indeed, using (38) and (30), we get

bC
j Pƒk

D 1

2jkjakkŠ
ŒbC

j ; bk�P .bC/k D 1

2jkjakkŠ
2aj kj bk�ej P .bC/k D Pƒk�ej

bC
j :

The second identity follows by taking adjoints.

Next, we show that, for a linear function

F.z; Nz/ D
n

X

j D1

Fzj
zj C F Nzj

Nzj ;

we have

ŒF; Pƒk
� D

n
X

j D1

1

aj

ŒFzj
bC

j .Pƒk
� PƒkCej

/ C F Nzj
bj .Pƒk

� Pƒk�ej
/�: (39)

Observe that

Œzj ; Pƒk
� D 1

aj

.Pƒk�ej
� Pƒk

/bC
j D 1

aj

bC
j .Pƒk

� PƒkCej
/: (40)

Indeed, using (38), (31), and (32), we get

Œzj ; Pƒk
� D 1

2jkjakkŠ

�

Œzj ; bk�P .bC/k C bkŒzj ; P �.bC/k
�

D 1

2jkjakkŠ

�

2kj bk�ej P .bC/k � 1

aj

bk
P .bC/kCej

�

D 1

aj

.Pƒk�ej
� Pƒk

/bC
j :

Taking adjoints, we infer that

Œ Nzj ; Pƒk
� D 1

aj

bj .Pƒk
� Pƒk�ej

/ D 1

aj

.PƒkCej
� Pƒk

/bj : (41)

From (40) and (41), we get (39).

Using (39), we compute

Pƒk1
F Pƒk2

D ık1;k2
F Pƒk2

C ŒPƒk1
; F �Pƒk2

D ık1;k2
F Pƒk2

C
n

X

`D1

1

a`

�

.ık1�e`;k2
� ık1;k2

/F Nz`
b`

� .ık1;k2
� ık1Ce`;k2

/Fz`
bC

`

�

Pƒk2
: (42)
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Now we are ready to complete the proof of Proposition 4.1. For linear functions

F and G, using (42), we get

Pƒk1
F Pƒk

GPƒk2

D ık1;kF Pƒk
GPƒk2

C
n

X

`D1

1

a`

�

.ık1�e`;k � ık1;k/F Nz`
b` � .ık1;k � ık1Ce`;k/Fz`

bC
`

�

Pƒk
GPƒk2

:

Next, we transpose Pƒk
and G and apply (39):

Pƒk1
F Pƒk

GPƒk2

D ık1;kık;k2
F GPƒk2

C
n

X

`D1

1

a`

ık;k2

�

.ık1�e`;k � ık1;k/F Nz`
b` � .ık1;k � ık1Ce`;k/Fz`

bC
`

�

GPƒk2

C
n

X

j D1

1

aj

ık1;kF
�

.ıkCej ;k2
� ık;k2

/Gzj
bC

j C .ık�ej ;k2
� ık;k2

/G Nzj
bj

�

Pƒk2

C
n

X

j;`D1

1

aj a`

�

.ık1�e`;k � ık1;k/F Nz`
b` � .ık1;k � ık1Ce`;k/Fz`

bC
`

�

�
�

.ıkCej ;k2
� ık;k2

/Gzj
bC

j C .ık�ej ;k2
� ık;k2

/G Nzj
bj

�

Pƒk2
:

In the case when k1; k; k2 2 Kƒ, we necessarily have k1 ˙ e` 62 Kƒ, k ˙ ej 62 Kƒ.

Thus, from the last formula, we conclude that Pƒk1
F Pƒk

GPƒk2
D 0, unless k1 D

k2 D k, and in the latter case, we have

Pƒk
F Pƒk

GPƒk

D F GPƒk
C

n
X

`D1

1

a`

Œ�F Nz`
b` � Fz`

bC
`

�GPƒk

C
n

X

j D1

1

aj

F Œ�Gzj
bC

j � G Nzj
bj �Pƒk

C
n

X

j;`D1

1

aj a`

Œ�F Nz`
b` � Fz`

bC
`

�Œ�Gzj
bC

j � G Nzj
bj �Pƒk

:

We see that

Pƒk
F Pƒk

GPƒk
� Pƒk

GPƒk
F Pƒk

D
n

X

j D1

1

a2
j

.Fzj
G Nzj

� F Nzj
Gzj

/.bC
j bj � bj bC

j /Pƒk
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D
n

X

j D1

2

aj

.Fzj
G Nzj

� F Nzj
Gzj

/Pƒk
D ¹F; GºaPƒk

;

which completes the proof of Proposition 4.1.

6. Characterization of Toeplitz operators

In the case when Kƒ consists of a single element, we prove that the set of Toeplitz

operators coincides with the algebra A, which gives a characterization of Toeplitz

operators in terms of their Schwartz kernels, This type of characterization was intro-

duced in [26, Theorem 4.9]. Using this result and Theorem 1.1, we easily complete

the proof of Theorem 1.3.

Theorem 6.1. Assume that Kƒ consists of a single element. A sequence of bounded

linear operators ¹TpW L2.X; Lp ˝ E/ ! L2.X; Lp ˝ E/º is a Toeplitz operator in

the sense of Definition 1.2 if and only if it belongs to A.

The fact that any Toeplitz operator in the sense of Definition 1.2 belongs to A is

proved in Section 3 and holds without any assumption on ƒ. Thus, we assume that

¹Tpº belongs to A and prove that it is a Toeplitz operator in the sense of Definition 1.2.

The proof is divided in several steps and in the beginning we don’t assume that Kƒ

consists of a single element.

The following is an analog of [27, Lemma 4.12]. Recall that K0;x0
.Z;Z0/ denotes

the leading coefficient in the full off-diagonal expansion for the kernel of Tp ,

Proposition 6.2. The coefficient K0;x0
.Z; Z0/ has the form

K0;x0
.Z; Z0/ D

X

k;k02Kƒ

bk
z

Nbk0

z0ŒQkk0;x0
P �

with some polynomials Qkk0;x0
.z; Nz0/ for any x0 2 X and Z; Z0 2 Tx0

X .

Proof. By Definition 2.2 (i) and (14), we get

K0;x0
D Pƒ ı K0;x0

ı Pƒ: (43)

By (43) and (38), it follows that

K0;x0
D Pƒ ı K0;x0

D
X

k2Kƒ

1

2jkjakkŠ
bk ı P ı .bC/k ı K0;x0

: (44)
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By [27, (2.12)], there exists Fk 2 CŒz; Z0� such that

.P ı .bC/k ı K0;x0
/.Z; Z0/ D Fk � P .Z; Z0/:

Plugging this in (44), we get

K0;x0
.Z; Z0/ D

X

k2Kƒ

1

2jkjakkŠ
bk

zFk.z; Z0/P .Z; Z0/: (45)

Similarly, using (43), (38), and (45), we can write

K0;x0
D K0;x0

ı Pƒ D
X

k02Kƒ

1

2jk0jak0
k0Š

K0;x0
ı bk0 ı P ı .bC/k0

D
X

k;k02Kƒ

1

2jkjCjk0jakCk0
kŠk0Š

bk
zFkP ı bk0 ı P ı .bC/k0

: (46)

Now we proceed as follows:

.FkP ı bk0

/.Z; Z0/ D . NbC
z /k0

.FkP /.Z; Z0/

D
X

l�k0

�

k0

l

�

2jlj @jlj

@zl
Fk.z; Z0/. NbC

z /k0�l
P .Z; Z0/

D
X

l�k0

�

k0

l

�

2jlj @jlj

@zl
Fk.z; Z0/.a Nz0/k0�l

P .Z; Z0/

D Fkk0P .Z; Z0/ (47)

with some Fkk0 2 CŒz; Z0�.

By [27, Proof of Lemma 2.2], there exists Qkk0 2 CŒz; Nz0� such that

.Fkk0P ı P /.Z; Z0/ D 2jkjCjk0jakCk0

kŠk0ŠQkk0P .Z; Z0/: (48)

Combining (46), (47), and (48), we complete the proof.

The following is an analog of the well-known upper estimate for the Wick symbol.

Proposition 6.3. We have

jK0;x0
.Z; Z/j � lim sup

p!1
kTpk

for any x0 2 X and Z 2 Tx0
X .

Proof. By Definition 1.2 (i), we get

Tp.x; x0/ D .Pp;ƒTpPp;ƒ/.x; x0/

D
Z

Pp;ƒ.x; y/Tp.y; y 0/Pp;ƒ.y 0; x0/dvX .y/ dvX .y 0/: (49)
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For any x; y 2 X , Pp;ƒ.y; x/ is a linear map from .Lp ˝ E/x to .Lp ˝ E/y . For

x 2 X and v 2 .Lp ˝ E/x , introduce S
p
x;v 2 C 1.X:Lp ˝ E/ by

Sp
x;v.y/ D Pp;ƒ.y; x/v; y 2 X:

Observe that

hSp
x;v; S

p
x0;v0i D

Z

X

hPp;ƒ.y; x/v; Pp;ƒ.y; x0/v0idvX .y/

D
Z

X

hv; Pp;ƒ.x; y/Pp;ƒ.y; x0/v0idvX .y/

Dhv; Pp;ƒ.x; x0/v0i:

In particular, we have

hSp
x;v; Sp

x;vi D hv; Pp;ƒ.x; x/vi D pnjvj2
�

Pƒ.0; 0/ C O.p� 1
2 /

�

;

and

kSp
x;vk D pn=2jvj

�

.Pƒ.0; 0//1=2 C O.p� 1
2 /

�

:

By (49), we infer that for x; x0 2 X , v 2 .Lp ˝ E/x and v0 2 .Lp ˝ E/x0 ,

hv; Tp.x; x0/v0i D
Z

X

hSp
x;v.y/; Tp.y; y 0/S

p
x0;v0.y

0/idvX .y/ dvX .y 0/

D hSp
x;v; TpS

p
x0;v0i:

It follows that

p�njTp.x; x0/j � kTpk
�

Pƒ.0; 0/ C O.p� 1
2 /

�

: (50)

Fix x0 2 X and write x D expX
x0

.Z/ and x0 D expX
x0

.Z0/. Then. by (iii), we get

p�nTp.x; x0/ D p�nTp;x0
.Z; Z0/ Š K0;x0

.
p

pZ;
p

pZ0/ C O.p� 1
2 /

for jZj; jZ0j < ". It follows that, for jZj; jZ0j < "
p

p,

K0;x0
.Z; Z0/ Dp�nTp;x0

� 1
p

p
Z;

1
p

p
Z0

�

C O.p� 1
2 /

Dp�nTp

�

expX
x0

� 1
p

p
Z

�

; expX
x0

� 1
p

p
Z

��

C O.p� 1
2 /

�kTpk
�

1 C O.p� 1
2 /

�

;

which completes the proof.
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From now on, we will assume that Kƒ consists of a single element. The following

is an analog of [27, Proposition 4.11]. We give a different proof, which is shorter than

in [27] and based on Proposition 6.3.

Proposition 6.4. Assume that Kƒ consists of a single element k 2 Z
n
C. Then

K0;x0
.Z; Z0/ D Qx0

Pƒk
.Z; Z0/

for any x0 2 X and Z; Z0 2 Tx0
X with some Qx0

2 End.Ex0
/.

Proof. By Proposition 6.2, using Leibniz rule, we get

K0;x0
.Z; Z0/ D

X

l�k

X

l0�k

�

k

l

��

k

l0

�

@2k�l�l0

@zk�l@z0k�l0
Qkk;x0

.z; Nz0/bl
z

Nbl0

z0P .Z; Z0/: (51)

To compute bl
z

Nbl0

z0P , we write P as the product

P .Z; Z0/ D
n

Y

j D1

Pj .Zj ; Z0
j /

and treat each factor separately. Then we get, for lj � l 0
j ,

b
lj
j;zj

Nbl 0
j

j;z0
j

Pj .Zj ; Z0
j / D 2

l 0
j a

lj
j l 0

j Š. Nzj � Nz0
j /

lj �l 0
j L

.lj �l 0
j

/

l 0
j

�aj jzj � z0
j j2

2

�

Pj .Zj ; Z0
j /;

where L
.m/

k
, k; m 2 ZC, is the generalized Laguerre polynomial:

L
.m/

k
.x/ D x�mex

kŠ

dk

dxk
.e�xxmCk/ D

k
X

j D0

�

k C m

k � j

�

.�x/j

j Š
; x � 0;

The formula for lj � l 0
j is obtained by considering the adjoints.

In particular, for lj D l 0
j , we have

b
lj
j;zj

Nblj

j;z0
j
Pj .Zj ; Z0

j / D 2lj a
lj
j lj ŠLlj

�aj jzj � z0
j j2

2

�

Pj .Zj ; Z0
j /; (52)

where Lk D L
.0/

k
, k 2 ZC, is the Laguerre polynomial, and

b
lj
j;zj

Nblj

j;z0
j
Pj .Zj ; Zj / D 2lj a

lj
j lj ŠPj .0; 0/: (53)

For lj ¤ l 0
j , we get

b
lj
j;zj

Nbl 0
j

j;z0
j

Pj .Zj ; Zj / D 0: (54)
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By (52) and (37), we derive an explicit formula for Pƒk
.Z; Z0/:

Pƒk
.Z; Z0/ D 1

.2�/n

n
Y

j D1

aj Lkj

�aj jzj � z0
j j2

2

�

� exp
�

�1

4

n
X

kD1

ak.jzkj2 C jz0
kj2 � 2zk Nz0

k/
�

: (55)

Taking into account (53) and (54), the equality (51) for Z D Z0 takes the form

K0;x0
.Z; Z/ D

X

l�k

2jljallŠ

�

k

l

�2
@2k�2l

@zk�l@z0k�l
Qkk;x0

.z; Nz/P .0; 0/:

By Proposition 6.3, we get

X

l�k

2jljallŠ

�

k

l

�2
@2k�2l

@zk�l@z0k�l
Qkk;x0

.z; Nz/ D const.

Comparing the top degree coefficients in both sides of the last identity, one can easily

see that Qkk;x0
.z; Nz/ D Qx0

D const. Since Qkk;x0
is a polynomial of z and Nz0, this

implies Qkk;x0
.z; Nz0/ D Qx0

.

From now on, we will closely follow the arguments of the proof of [27, The-

orem 4.9]. So we will be brief.

Define a section g0 2 C 1.X; End.E//, setting

g0.x0/ D Qx0
;

where Qx0
2 End.Ex0

/ is given by Proposition 6.4.

The following is an analog of [27, Proposition 4.17]. Its proof is based on Propos-

ition 6.4 and therefore a little bit shorter than the proof of [27, Proposition 4.17].

Proposition 6.5. We have p�n.Tp � Tg0;p/.Z; Z0/ Š O.p�1/.

Proof. Consider the sequence of operators

Rp D p1=2.Tp � Tg0;p/; p 2 N:

It is easy to see that it is in A. Moreover, computing the full off-diagonal expansions

for the kernels of Tp and Tg0;p, we get

p�nRp;x0
.Z; Z0/ Š .K1;x0

� K1;x0
.g0//.

p
pZ;

p
pZ0/ C O.p�1=2/:

We apply Proposition 6.4 to ¹Rpº and infer that

.K1;x0
� K1;x0

.g0//.Z; Z0/ D Sx0
Pƒk

.Z; Z0/

for any x0 2 X and Z; Z0 2 Tx0
X with some Sx0

2 End.Ex0
/.
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Since K1;x0
� K1;x0

.g0/ D .Q1;x0
� Q1;x0

.g0//P , where Q1;x0
and Q1;x0

.g0/

are odd, we conclude that

.K1;x0
� K1;x0

.g0//.Z; Z0/ D 0

for any x0 2 X and Z; Z0 2 Tx0
X , which completes the proof.

By Proposition 6.5, we have Tp D Pp;ƒg0Pp;ƒ C O.p�1/. Consider the operator

p.Tp � Pp;ƒg0Pp;ƒ/. It is easy to see that it belongs to A. By Proposition 6.4, the

leading coefficient K 0
0;x0

.Z; Z0/ in the full off-diagonal expansion for the kernel of

p.Tp � Pp;ƒg0Pp;ƒ/ has the form

K 0
0;x0

.Z; Z0/ D Q0
x0

Pƒk
.Z; Z0/

for any x0 2 X and Z; Z0 2 Tx0
X with some Q0

x0
2 End.Ex0

/. Setting

g1.x0/ D Q
0
x0

;

we get a section g1 2 C 1.X; End.E//, and, as in Proposition 6.5, we will show that

p.Tp � Pp;ƒg0Pp;ƒ/ D Pp;ƒg1Pp;ƒ C O.p�1/;

which implies

Tp D Pp;ƒ.g0 C p�1g1/Pp;ƒ C O.p�2/:

So we can proceed by induction to complete the proof of Theorem 6.1.

Using Theorems 6.1 and 1.1, one can easily complete the proof of Theorem 1.3.
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