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On the spectral properties

of the Hilbert transform operator on multi-intervals

Marco Bertola, Alexander Katsevich, and Alexander Tovbis

Abstract. Let J; E � R be two multi-intervals with non-intersecting interiors. Consider the

operator

AWL2.J / ! L2.E/; .Af /.x/ D 1

�

Z

J

f .y/ d y

y � x ;

and let A� be its adjoint. We introduce a self-adjoint operator K acting on L2.E/ ˚ L2.J /,

whose off-diagonal blocks consist of A and A�. In this paper we study the spectral properties

of K and the operators A�A and AA�. Our main tool is to obtain the resolvent of K , which

is denoted by R, using an appropriate Riemann–Hilbert problem, and then compute the jump

and poles of R in the spectral parameter �. We show that the spectrum of K has an absolutely

continuous component Œ0; 1� if and only if J andE have common endpoints, and its multiplicity

equals to their number. If there are no common endpoints, the spectrum of K consists only of

eigenvalues and 0. If there are common endpoints, then K may have eigenvalues imbedded

in the continuous spectrum, each of them has a finite multiplicity, and the eigenvalues may

accumulate only at 0. In all cases, K does not have a singular continuous spectrum. The spectral

properties of A�A and AA�, which are very similar to those of K , are obtained as well.

1. Introduction

Let J , E be two Lebesgue measurable subsets of R. Consider the following Finite

Hilbert Transform (FHT) operator

AWL2.J / ! L2.E/; .Af /.x/ D 1

�

Z

J

f .y/ dy

y � x ; (1.1)

whose adjoint is

.A�g/.w/ D 1

�

Z

E

g.x/ dx

w � x
WL2.E/ ! L2.J /: (1.2)
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An important and classical problem is to determine the nature of the spectrum of A,

e.g., find its discrete and/or continuous parts and their multiplicities. When J D E,

A acts on the Hilbert space L2.J /, and one can talk about the spectrum of A. In

this setting the spectrum of A for different sets J was thoroughly studied starting in

the 50’s and 60’s, see, e.g., [22–24, 26, 28, 30, 31]. For example, in the case where

J D E D R, the operatorA is the usual Hilbert transform. The latter is well known to

be anti-self-adjoint, and its spectrum consists of two eigenvalues ˙i . In particular, the

spectrum of A�A and AA� is C1 (because the two operators are equal to the identity

operator). This is easily seen by conjugating A with the Fourier transform, which

maps A to the multiplication operator by i sgn.�/, where � is the Fourier variable and

sgn is the signum function, see, for example, [21]. Here and throughout the paper, the

Fourier transform and its inverse are defined as follows:

Q�.�/ WD .F �/.�/ D 1p
2�

Z

R

�.t/ei�t d t; (1.3a)

�.t/ D .F �1 Q�/.t/ D 1p
2�

Z

R

Q�.�/e�i�td�: (1.3b)

The operatorA is thus rather simple from the spectral point of view. In another known

case [25], where J D E is a finite interval, the operator A in L2 is not even a Fred-

holm operator (the range is dense, but not closed). In this case, the spectrum of A is

absolutely continuous, of multiplicity 1, and coincides with the interval Œ�i; i � of the

imaginary axis [24].

More recently, the problem was investigated in a number of new settings when

J 6D E. Here, J and E can be intervals or multi-intervals. A multi-interval is defined

as a union of finitely many non-intersecting, closed, possibly unbounded, intervals

with non-empty interior each. The analysis in [2, 3, 19, 20] is based on the existence

of a differential operator that commutes with the finite Hilbert transform, which was

found in [15, 16].

Starting with [5], the authors initiated the program of investigating the cases where

J and E are multi-intervals subject to the restriction that the interiors of J and E are

disjoint. In [5] we consider an arrangement, in which E consists of two compact

intervals, J consists of any finite number of intervals that are all located between

the two E intervals, and dist.E; J / > 0. Since the use of commuting differential

operator no longer applies when either E or J consists of more than one subinterval,

the main tool in this paper is based on a matrix Riemann–Hilbert problem (RHP)

approach to integral operators with integrable kernels in the sense of [12]. The main

findings of [5] include that the singular values of A (ordered in decreasing order)

tend to zero exponentially fast and an explicit expression for the leading term of the

asymptotics. Let K be the self-adjoint operator acting on L2.E/ ˚ L2.J /, whose
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off-diagonal blocks consist of A and A� (see (2.2) below). In [5] we also showed that

all the eigenvalues of K are simple and calculated the leading order behavior of its

eigenvectors (in terms of Riemann Theta functions) as the spectral parameter � ! 0.

This operator is very convenient to work with as K
2 is a block diagonal operator with

the blocks AA� and A�A. Speaking more generally, if J and E are arbitrary multi-

intervals and dist.E; J / > 0, it is easy to see that the operator K is compact, and the

spectra of A�A and AA� are purely discrete. In fact, in the present paper we establish

that K is of trace-class (that it is of Hilbert–Schmidt class is a simple exercise).

Before going forward, let us fix some terminology. The term endpoint denotes an

endpoint of any of the intervals that make up E or J . An endpoint is called simple

if it belongs only to one interval. An endpoint z is called double if it belongs to two

adjacent intervals of different types, that is, if z 2 E \ J .

The approach of [5] works well when dist.E; J / > 0, that is, when the integral

operator K is not singular. However, the case when dist.E; J / D 0 leads to some

technical difficulties, like, for example, construction of parametrices for the asymp-

totic solution of the RHP. These type of problems were overcome in [4], where we

used the RHP approach in the case where J D Œa; 0� and E D Œ0; b� for a < 0 < b,

i.e., when 0 is the only double endpoint. The results of [4] match with and in some

instances generalize those of [20]. An arrangement where J and E have multiple

common endpoints is considered in [17]. We assume there that J and E are multi-

intervals, and their union is the whole line: J [E D R. In this case, the corresponding

RHP can be solved explicitly. Just as in [4], the spectrum is the segment Œ0; 1�, the

spectrum is purely absolutely continuous, and its multiplicity equals to the number of

double endpoints. Additionally, in [17] we find an explicit diagonalization of the two

operators.

In this paper we build on the results of [5, 17] and extend the RHP approach fur-

ther by allowing J and E to be general multi-intervals that can touch at any number

of points, that is, J and E can have multiple double endpoints. Our goal is to per-

form a qualitative analysis of the spectrum of K as well as of A�A and AA�, which

includes determining what spectral components it has and their multiplicities. It is

quite interesting that without performing an explicit asymptotic analysis of the RHP

when �! 0 that is similar to the one in [5], and without access to an explicit solution

of the RHP as in [17], much information can still be obtained by investigating K and

the related RHP. Our main results are formulated in Section 2 below. In addition to the

RHP analysis, our main tools include the Kato–Rosenblum theorem on the stability

of the absolutely continuous spectrum of a self-adjoint operator with respect to trace

class perturbations.

In Section 6 we consider an example when U D R. In this case, an explicit diag-

onalization of K is found similarly to [17], and the properties of its spectrum turn out

to be in agreement with our general qualitative analysis.
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2. Main results

As is stated in the introduction, the goal of the paper is to obtain the properties of

the spectrum of A�A and AA� when E and J are closed multi-intervals with disjoint

interior VJ \ VED ¿. Here and in what follows, VU denotes the interior of the setU . The

operator A commutes with Möbius transformations mapping R onto R (Lemma 3.1)

and, hence, it matters whether the setsE;J have common points on the extended line.

More precisely, if bothE and J extend to infinity, we should consider 1 as a common

endpoint. The stated goal is essentially equivalent to studying the spectral properties

of the self-adjoint operator K D A˚ A�WL2.U / ! L2.U / with U D E [ J . The

latter is an operator with the kernel

K.x; y/ D �
J
.x/�

E
.y/� �

J
.y/�

E
.x/

�.x � y/
; (2.1)

where, for a subset S � R, we denote by �
S

its indicator function. Here the conven-

tion is that

KŒf �.x/ D
Z

U

K.x; y/f .y/ dy:

In matrix form, we can represent K as follows:

K D
�
0 A

A� 0

�

WL2.E/˚ L2.J / ! L2.E/˚ L2.J /: (2.2)

The operator K is a convenient object to study because it is clearly self–adjoint and

K
2 D AA� ˚ A�A D

�
AA� 0

0 A�A

�

WL2.E/˚ L2.J / ! L2.E/˚ L2.J /: (2.3)

Thus, knowing Sp.K/, the spectrum of K , it is easy to find the spectrum of AA� and

A�A. Hence, analysing Sp.K/ is also an important goal of this paper.

It is well known that

Sp.K/ D Spac.K/ [ Spsc.K/ [ Spp.K/; (2.4)

where Spac;Spsc;Spp denote the absolutely continuous, singular continuous, and

point spectra of K , respectively. The main result of this paper, Theorem 2.1, describes

the connection between the geometry of the multi-intervals E; J and the spectral

components of K .

The main tool to studying the spectrum of K is to construct the (nonsingular)

resolvent operator R.�/ D 1
�

K.Id � 1
�

K/�1 D .Id � 1
�

K/�1 � Id.

It is a matter of inspection to ascertain that K is a Hilbert–Schmidt operator if

E and J have no common endpoints (which implies that either E or J is bounded).
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In such case, therefore, the spectrum is purely discrete, and each eigenvalue has finite

multiplicity.

Naturally, two adjacent intervals of the same type are considered belonging to one

interval. Our main theorem below provides a detailed description of Sp.K/.

Theorem 2.1. Let K D A ˚ A�W L2.U / ! L2.U / be the operator with the ker-

nel (2.1). Here U D E [ J , and J;E � R are multi-intervals with disjoint interiors.

1. Sp.K/ � Œ�1; 1�.
2. The points �D ˙1 and �D 0 are not eigenvalues of K . The eigenvalues of K ,

if they exist, are symmetric with respect to � D 0 and have finite multiplicities.

Moreover, they can accumulate only at � D 0.

3. If there are n � 1 (n 2 N) double endpoints, then Spac.K/ D Œ�1; 1�, and the

multiplicity of Spac.K/ equals n.

4. If there are no double endpoints, then K is of trace class. In this case, Sp.K/

consists only of eigenvalues and � D 0, which is the accumulation point of the

eigenvalues.

5. The singular continuous component is empty, i.e., Spsc.K/ D ¿.

Remark 2.2. According to (1), all spectral components in (2.4) are subsets of Œ�1;1�,
i.e., the eigenvalues of K are embedded in the absolutely continuous spectrum

Spac.K/ provided that both components are not empty.

Remark 2.3. When there is at least one double endpoint, the presence of eigenvalues

is not guaranteed. For example, it is shown in [4, Proposition 4] that A�A and AA�

do not have eigenvalues when J D ŒbL; 0� and E D Œ0; bR� (i.e., 0 is a double end-

point). Here bL < 0 < bR. This implies that K does not have eigenvalues, because

otherwise K
2 (and A�A, AA�) would have had eigenvalues as well (see (2.3)). The

analysis of embedded point spectrum is generally quite complicated (see, e.g., [1]). At

this time, the authors do not know whether the presence of a gap implies the existence

of eigenvalues when at least one double endpoint is present. In this case, if eigenvalues

exist, they are necessarily embedded.

The proofs of (1), (3), (4) and part of (2) are given in Section 3. They are based on

the known facts about the spectrum of multi-interval Hilbert transforms, see [4,5,17],

and the spectral trace class perturbation theorem by Kato and Rosenblum [14]. An

important part of our argument is Theorem 3.5, which states that the operator A is

of trace class provided that there are no double endpoints. The proof of (5) requires

a deep study of the solution �.zI �/ of a Riemann–Hilbert problem (RHP), which is

associated with K on a certain (infinite-sheeted) Riemann surface � 2 R, see Sec-

tion 4. We also add more details about �.zI�/ there. The remaining part of (2) (finite
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multiplicities of the eigenvalues), completing the proof of Theorem 2.1, is given in

Section 5.

In addition, in Section 6 we obtain an explicit diagonalization of the operator K in

the case when U D R (see (6.20)). This is done by following an approach analogous

to the one in [17], which is based on finding �.zI �/ explicitly (see [17] for more

details). Results in this section are consistent with the assertions of Theorem 2.1.

They also show that in this case K does not have eigenvalues (see Theorem 6.1).

Results from Theorem 2.1 can be naturally extended from the operator K to K
2

(cf. (2.3)), thereby allowing us to obtain the analogue of Theorem 2.1 for AA� and

A�A. This is also done in Section 5.

Theorem 2.4. Consider the operators A and A� defined by (1.1) and (1.2), respect-

ively. The operatorsAA� andA�A are unitarily equivalent. Also, the following asser-

tions hold when B D AA� or A�A.

1. Sp.B/ � Œ0; 1�.

2. �D 0; 1 are not eigenvalues of B . The eigenvalues of B have finite multiplicit-

ies, and they can accumulate only at � D 0.

3. If there are n � 1 (n 2 N) double endpoints, then Spac.B/ D Œ0; 1�, and the

multiplicity of Spac.B/ equals n.

4. If there are no double endpoints, then B is of trace class. In this case, Sp.B/

consists only of eigenvalues and � D 0, which is the accumulation point of the

eigenvalues.

5. The singular continuous spectrum of B is empty, i.e., Spsc.B/ D ¿.

3. Proof of Theorem 2.1 (1, 3, 4 and part of 2)

3.1. Theorem 2.1 (1): spectral interval

Denote by H the Hilbert transform on R. Then A D …E ı H ı…J where …E ;…J

are the projectors on L2.E/;L2.J /, respectively. It is well known that kHk D 1 (see

e.g., [21, Section 4.6]), hence kAk � 1. Consequently, the spectral radius of K is also

bounded by 1, and Theorem 2.1 (1) is proven.

3.2. Theorem 2.1 (4), first part

We have already commented that if there are no double endpoints, i.e., the sets J; E

are separated (in the extended line), then the self-adjoint operator K is a Hilbert–

Schmidt operator, see also [5]. Then its spectrum is purely discrete and the eigenvalues
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(counted with multiplicity) form an `2 sequence. In fact, it will be shown below that

the operator K is of trace class if there are no double endpoints.

3.3. Multiplicity of the continuous spectrum

In this section we need a more detailed description of the multi-intervals E; J . Let

E D
r

[

j D1

Ej ; J D
r

[

j D1

Jj ; (3.1)

be the representations of E and J as unions of r < 1 multi-intervals. Since the

interiors of E and J do not intersect, we can arrange for the following properties to

hold (see Figure 1 for an illustration):

1. Ji < Jj for i < j , i.e., the sets are ordered (ditto for the E collection);

2. dist.Jj ; Jk/ > 0 for j ¤ k (ditto for E);

3. for all j D 1 : : : r the set Uj WD Jj [ Ej is a single interval;

4. for all i < j we have Ei < Jj and Ji < Ej and in particular the distance

dist.Ei ; Jj / > 0 for i ¤ j ;

5. for every j D 1; : : : ; r the intersection Jj \Ej consists of nj endpoints of the

sub-intervals.

E1

J1

E2

J2 J3

E3 D ;

Figure 1. An example of arrangement of J , E. The intervals Uj are Uj D Ej [ Jj . Note that

U3 D J3 in this example.

Lemma 3.1. Let m.x/ D axCb
cxCd

with a; b; c; d 2 R and ad � bc D 1 be a Möbius

tranformation mapping R to R; let UWL2.R;dx/!L2.R;dx/ be the corresponding

unitary tranformation defined by

U.f /.x/ D f .m.x//

.cx C d/
: (3.2)

Then the Hilbert transform H on R commutes with U: H ı U D U ı H .
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Proof. Let g D Hf . Then, using dm= dx D 1
.cxCd/2 we obtain

�
g.m.y//

cy C d
D

Z

R

f .�/ d �

.cy C d/.� �m.y//

D
Z

R

f .m.x// d x
cxCd

.cy C d/.cx C d/.m.x/�m.y//

D
Z

R

f .m.x// d x
cxCd

x � y ; (3.3)

where � D m.x/. Note also that (3.2) preserves the L2 norm of f .

Lemma 3.1 implies that the spectral properties of H and all its possible restric-

tions are invariant under Möbius transformations. In particular, our operator A is

A D …E H…J , where …U is the projection operator on the multi-interval U . In this

case, if we define zA D …m�1.E/H…m�1.J /, then zAU D UA.

Lemma 3.2. Let AWL2.J / ! L2.E/ be the operator (1.1) and K D A ˚ A�. If

dist.J;E/ > 0, then K is of trace-class.

Proof. Let 
 be a union of Jordan curves separating J from E, see Figure 2. Recall

thatU DE [ J and U D S

j Uj . Note that, under the assumption that dist.J;E/ > 0,

it follows from the definition that for each j eitherEj or Jj is empty, andUj is a single

interval that coincides with whichever of the two is nonempty, see Figure 1.

Consider the Hilbert space L D L2.U [ 
; j d zj/ ' L2.J /˚ L2.E/˚ L2.
/.

LetAextW L ! L be the operator with the kernel �
J
.y/�

E
.x/=.�.x � y//. Thus,Aext

coincides with A when the former is restricted toL2.J /! L2.E/. We show thatAext

is the product of two Hilbert–Schmidt operators, which immediately implies that A is

of trace class. Indeed, let Tk W L ! L; k D 1; 2, be the following operators:

T1.f /.w/ D �
 .w/

�

Z

J

f .y/ dy

w � y
; T2.g/.x/ D �E .x/

2i�

Z




g.w/ dw

x � w
: (3.4)

The orientation of the contour 
 is chosen so that all points of E are on the positive

side. By construction, it follows immediately that both T1; T2 are Hilbert–Schmidt.

Consider the composition

T2 ı T1.f /.x/ D �
E
.x/

2i�2

Z




Z

J

f .y/ dy

w � y

dw

x � w
: (3.5)

An application of Cauchy’s residue theorem shows that T2 ı T1 D Aext. Thus, Aext,

A
�
ext, and Aext C A

�
ext are all of trace class. Since Aext C A

�
ext D K ˚ O, where

OWL2.
/ ! L2.
/ is the zero operator, we prove that K is of trace class.
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Figure 2. An example of an arrangement of J , E and 
 when there are no common endpoints.

Note that J or E may have an unbounded component (in the picture it is E), but not both

simultaneously.

Remark 3.3. Iterating the argument in the proof of Lemma 3.2 one can represent

Aext as a product of an arbitrary number of Hilbert–Schmidt operators. This means

that the eigenvalues �j (counted with multiplicity) of K form a sequence in `p for all

p 2 .0; 1�, namely,

X

j �1

�
p
j < 1; for all p such that 0 < p � 1: (3.6)

Lemma 3.4. Suppose r D 1 in (3.1), i.e., J D J1, E D E1, and U D U1. Suppose

U D E [ J is a single compact interval Œa; b�, and J and E have n endpoints in

common (i.e., there are n double endpoints). Then KWL2.U /!L2.U / has absolutely

continuous spectrum Œ�1; 1� of multiplicity n.

Proof. There are two cases that need to be considered.

1. The leftmost and rightmost sub-intervals in U are of the same type: either both

are parts of J or both are parts of E.

2. The leftmost and rightmost sub-intervals in U are of opposite types (e.g., the

one on the left is a part of J , and the one on the right is a part of E).

First case. For definiteness, suppose that both leftmost and rightmost intervals are

part of E. Let KextWL2.R/ ! L2.R/ be the operator with the same kernel as K

(see (2.1)). The two operators act in a similar way, but Kext acts on functions defined

on all of R. Consider K0W L2.R/ ! L2.R/ defined the same way as Kext (i.e.,

with the kernel (2.1)), but with E replaced by yE D E [ U c . Here U c D R n U ,

i.e., yE “extends”E to infinity.

The number n of common endpoints between J and yE is the same as between J

andE. It is shown in Theorem 6.1 that K0 has absolutely continuous spectrum Œ�1;1�
with multiplicity n. We also have

K0 D Kext C � ; (3.7)

where � is the operator with the kernel

S.x; y/ D �
J
.x/�

U c .y/� �
U c .y/�J

.x/

�.x � y/
: (3.8)
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Since dist.J; U c/ > 0, this operator is of trace class by Lemma 3.2 and, hence, K0

is a trace–class perturbation of Kext. By the Kato and Rosenblum [14, Theorem 4.4

of Chapter X], they have the same absolutely continuous spectrum with the same

multiplicity.

Finally, KextW L2.R/ ! L2.R/ coincides with the direct sum O ˚ K , where

KWL2.U / ! L2.U / is the original operator with the kernel (2.1), and OWL2.U c/ !
L2.U c/ is the zero operator. Therefore, the multiplicities of Spac.K/ and Spac.Kext/

are the same.

Second case. Let U D J [ E D Œa; b�. For definiteness, suppose that the leftmost

subinterval is part of J , and the other is part of E so that a 2 J; b 2 E. Define yJ and
yE by extending the corresponding two sub-intervals up to infinity. Let K0 be defined

as Kext with the replacements J ! yJ and E ! yE. Let E1 WD yE n E D Œb;1/ and

J1 D yJ n J D .�1; a�. Similarly to the previous case, we have

K0 D Kext C K1 C � ; (3.9)

where the two operators � ;K1 have kernels, respectively,

S.x; y/ D �
J1
.x/�

E
.y/� �

E1
.y/�

J
.x/

�.x � y/
C �

J
.x/�

E1
.y/� �

E
.y/�

J1
.x/

�.x � y/
; (3.10)

K1.x; y/ D �
J1
.x/�

E1
.y/� �

E1
.y/�

J1
.x/

�.x � y/ : (3.11)

Since dist.J1;E/ > 0 and dist.E1;J / > 0, it follows that � is of trace class as shown

earlier.

However K1 is not trace-class becauseE1; J1 are both unbounded and “meet”

at infinity. Indeed, by Lemma 3.1 the spectral properties of the Hilbert transform are

invariant under Möbius transformations that preserve the real line (i.e., SL2.R/).

Thus, the spectral properties of K1 are equivalent to those of yK defined with

J D Œ�1; 0� andE D Œ0; 1�. This case was analyzed in [4] where it was shown to have

(only) absolutely continuous spectrum on Œ�1; 1� of multiplicity one.

On the other hand, Theorem 6.1 and Lemma 3.1 show that Sp.K0/ D Œ�1; 1�,
with the absolutely continuous part of multiplicity nC 1, where n is the number of

common endpoints between J and E, and the additional C1 multiplicity is due to the

fact that yJ and yE meet at infinity (which can be mapped to a finite point by a Möbius

transformation).

Since K0 is now a trace–class perturbation of Kext C K1 as per (3.9), the multi-

plicity of Spac.K0/must be the sum of the multiplicities of Spac.K/ and Spac.K1/.
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The last statement follows, because the operator

Kext C K1WL2.R/ ! L2.R/

coincides with the direct sum K ˚ K1, where KWL2.E [ J / ! L2.E [ J / and

K1WL2.E1 [ J1/ ! L2.E1 [ J1/ (we used here the same notation K1 for the

original and restricted operators with a slight abuse of notation). It then follows that

the multiplicity of Spac.K/ equals n.

The following theorem completes the proof of Theorem 2.1 (3).

Theorem 3.5. Let AWL2.J / ! L2.E/ be the operator (1.1) and K D A˚ A�. Let

nD Pr
j D1 nj be the total number of double endpoints inU . If n> 0, then the operator

K has absolutely continuous spectrum Œ�1; 1� with multiplicity n.

Proof. Let K be the operator discussed above with the kernel (2.1). Consider the

operators Kj WL2.Uj / ! L2.Uj / defined by the kernels

Kj .x; y/ D
�

Jj
.x/�

Ej
.y/ � �

Jj
.y/�

Ej
.x/

�.x � y/
: (3.12)

Consider also the operators HjkWL2.U / ! L2.U / that are given by the kernels

Hjk.x; y/ D
�

Jj
.x/�

Ek
.y/� �

Ik
.y/�

Ej
.x/

�.x � y/ ; j 6D k: (3.13)

Since dist.Jj ;Ek/ > 0 for j ¤ k, all the operators Hjk are trace class by Lemma 3.2.

Using the two families of operators, represent the full operator K as follows

K D
r

M

j D1

Kj C
X

j <k

Hjk: (3.14)

Therefore, K is a trace-class perturbation of the self-adjoint operator

K˚ WD
r

M

j D1

Kj :

The Kj are endomorphisms of the collection of orthogonal subspaces ¹L2.Uj /ºr
j D1

in L2.U /. The spectrum of K˚ is the disjoint union of the spectra of each Kj . By

Lemma 3.4, each Kj has absolutely continuous spectrum Œ�1;1�with multiplicity nj .

Hence, K˚ has absolutely continuous spectrum on Œ�1; 1� of multiplicity n D P
nj .

By [14, Theorem 4.4 and p. 542], the absolutely continuous parts of K and K˚ are

unitarily equivalent, and the theorem is proven.
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3.4. Theorem 2.1 (2 (first part), 4)

In this section we prove that � D ˙1 and 0 are not eigenvalues of K , and the eigen-

values accumulate at 0 if there are no double endpoints. We begin by proving that

� D ˙1 are not eigenvalues. Assume, by contrapositive, that, for example, � D 1 is

an eigenvalue. Then, there exists � 2 L2.U /with K� D �. Let �J and �E denote the

restrictions of � onto J and E, respectively. Whenever necessary, they are extended

by zero to all of R. The kernel of A is the usual Hilbert transform kernel. Using that

kHkL2.R/ D 1, where H is the conventional Hilbert transform on all of R, we obtain

a contradiction

kK�k2
L2.U /

D kH�J k2
L2.E/

C kH�E k2
L2.J /

< kH�J k2
L2.R/

C kH�E k2
L2.R/

D k�J k2
L2.J /

C k�E k2
L2.E/

D k�k2
L2.U /

: (3.15)

Here kH�J kL2.E/ is the L2 norm of H�J restricted to E, kH�E kL2.J / is defined

similarly, and we have used that H�J and H�E are analytic and, thus, nonzero in

R n J and R n E, respectively.

Next, if � 2 L2.J /, then A� � 0 if and only if � � 0, since A� is analytic in the

interior of E. Similarly, A� 6� 0 if  6� 0, where  2 L2.E/. Therefore, � D 0 is

not an eigenvalue of K .

Finally, by Lemma 3.2 and Theorem 3.5, K is a trace class operator if and only

if there are no double endpoints. In the latter case, � D 0 is not an eigenvalue implies

that K has a sequence of eigenvalues convergent to � D 0. Thus, we proved The-

orem 2.1 (4).

4. Proof of Theorem 2.1 (5)

To prove the remaining items of Theorem 2.1, we need to introduce the following

RHP 4.1 that is closely related with the resolvent of K . This approach goes back

to [12], see also [6]. A good introduction to RHPs can be found, for example, in [7,8].

In the rest of the paper we will use the following three Pauli matrices:

�1 D
�
0 1

1 0

�

; �2 D
�
0 �i
i 0

�

�3 D
�
1 0

0 �1
�

: (4.1)

4.1. Riemann–Hilbert problem and the resolvent of K

Let us consider the following RHP.
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RHP 4.1. Find a matrix–valued function �.zI �/ such that for any fixed parameter

� 2 C n Œ�1; 1�,
a. the matrix �.zI�/ is analytic together with its inverse in z 2 xC n U ;

b. �.zI�/ satisfies the jump condition

�C.zI�/ D ��.zI�/
�

1 � 2i

�
f .z/gT .z/

�

; z 2 U D J [ E; (4.2)

where

f T .x/ D Œ�E .x/; �J .x/�; gT .x/ D Œ��J .x/; �E.x/�I (4.3)

c. �.1I�/ D 1;

d. the limiting values �˙.zI�/ are in L2
loc near the endpoints of the intervals.

The jump condition (4.2) equivalently reads (the jump being understood at all

interior points of the respective intervals)

�C.zI�/D ��.zI�/
�
1 0
2i
�

1

�

; z 2 J; (4.4)

�C.zI�/D ��.zI�/
�
1 �2i

�

0 1

�

; z 2 E: (4.5)

Remark 4.2. Using standard arguments, one can show that the requirement (d) in the

RHP 4.1 implies the uniqueness of solution �.zI�/ of the RHP 4.1. The existence of

a solution in C n Œ�1; 1� will be proven in Theorem 4.7 below. Moreover, the solution

has the following symmetries

�. NzI N�/ D �.zI�/; �.zI ��/ D �3�.zI�/�3: (4.6)

Remark 4.3. Let z�.zI�/ denote the solution of the RHP 4.2 were the jump matrices

on the multi intervals J; E are interchanged, that is, (4.4) is the jump relation on

E and (4.5) is the jump relation on J . Then it is straightforward to check that the

solutions of the two RHPs are related by

z�.zI�/ D �2�.zI�/�2: (4.7)

For example, the first symmetry follows from the fact that the matrix V.zI �/ D
�. NzI N�/ satisfies the same RHP 4.1. The proof of the second symmetry is also straight-

forward. Additionally, it can be shown that if the solution to the RHP 4.1 exists, then

it must satisfy

det�.zI�/ � 1: (4.8)
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Remark 4.4. We can now observe that the RHP 4.1 is related with the operator K

since its kernelK.x; y/ given by (2.1) can be represented as

K.x; y/ D f T .x/g.y/

�.x � y/
; (4.9)

with f; g given by (4.3).

Let us now study the local behavior of �.zI �/ near the endpoints. Consider for

example a simple right endpoint z D a of E. Denote by A, B the first and second

columns of the matrix � , respectively. Then (4.4)–(4.5) imply that A.z/ is analytic at

z D a, and B.z/C 2i
�

ln.z�a/
2i�

A.z/ is analytic in the punctured neighborhood of z D a.

The requirement (d) of the RHP 4.1 forces us to conclude that the latter expression is

actually analytic (no pole). In other words,

�.zI�/ D O.1/

�

1 �2i
�

ln.z�a/
2i�

0 1

�

: (4.10)

Here and henceforth, O.1/ denotes a matrix-valued function which is locally analytic

in z and invertible. A similar argument applies to all simple endpoints of J;E.

Consider a double endpoint. Without loss of generality, according to Lemma 3.1

and the Remark 4.3, we can place it at z D 0 with E locally on the right of z D 0

and J on the left. The first issue is the type of growth behavior that the entries of �

have near z D 0. To this end, we observe that the jump matrices in (4.4), (4.5) are

constant in z and, therefore, we can analytically continue �.z/ on the universal cover

of a punctured neighborhood of z D 0. Such analytic continuation has the following

multivaluedness:

�.z/ D �.ze2i�/

�
1 2i

�

0 1

��
1 0
2i
�

1

�

D �.ze2i�/

�
1 � 4

�2
2i
�

2i
�

1

�

D �.ze2i�/M0;

(4.11)

provided =z > 0. Similar calculations show that �.z/ D �.ze2i�/M0 is valid for

=z < 0 as well.

The matrix M0 plays an important role in the analysis below. To calculate its

eigenvalues and eigenvectors, it is convenient to introduce a new variable �, which is

related to � as follows:

�.�/ D �1
2

C 1

i�
ln

�1 �
p
1 � �2

�

�

; �.�/ D � 1

sin.��/
: (4.12)

We choose the branch of the square root so that 1�
p

1��2

�
D i C O.��1/ as � !

1 and the branch of logarithm in (4.12) so that �.�/ is a conformal mapping of

C n Œ�1; 1� into the vertical strip j<.�/j < 1
2

. Note that �.1/ D 0: We will also
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D1
D 1

2

1

2

Figure 3. The slit �-plane is mapped to the strip j<�j < 1
2

. The other strips j<� � kj < 1
2

in

the �-plane are mapped to the same slit �-plane and represent the various sheets of the branched

map �.�/.

consider the analytic continuation of this map as a map from the Riemann surface

R of �.�/ onto C. Figure 3 provides a visualization of the map (4.12) between the

main sheet of R, both shores of the branch cut Œ�1; 1� included, and the vertical strip

j<�j � 1
2

. In general, each sheet of R is mapped onto the corresponding integer-

shifted vertical strip j<�j � 1
2

, so that � becomes a global coordinate on R. Note

that �.�/ is a single-valued meromorphic function on C. The determination of the

logarithm in (4.12) is consistent with condition (d) from RHP 4.1.

Direct calculations show that e˙2�i�.�/ are the eigenvalues of M0, and

C�1
C e2i���3 D M0C

�1
C ; (4.13)

where

CC.�/ WD
�
1 �e�i��

1 ei��

�

D
�1 �i�

1�
p

1��2

1 �i�

1C
p

1��2

�

; detCC D 2 cos.��/: (4.14)

To simplify notations, here and henceforth we often use � instead of �.�/. We also

introduce

C�.�/ WD CC.�/

�
1 2i

�

0 1

�

D
�
1 �ei��

1 e�i��

�

: (4.15)

In the following proposition we derive the local behavior of �.zI�/ for z near a double

endpoint.

Proposition 4.5. Let � 2 C n Œ�1; 1�. If z D 0 is a double endpoint with E adjacent

to the right of z D 0, then any matrix valued function �.zI�/ satisfying conditions (a)

and (b) of the RHP 4.1 that is also L2
loc in a small disk D centered at z D 0 can be
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written in the form

�.zI�/ D Y.zI�/z�.�/�3C˙.�.�//; z 2 D \ C
˙; (4.16)

where C
˙ denote the upper/lower complex half plane and �.�/,C˙ are given by (4.12),

(4.14), and (4.15) respectively. Here Y.zI�/ denotes a matrix valued function analytic

near z D 0 and with detY.0I�/ ¤ 0.

Proof. Define the matrix function

P.zI�/ WD z��3C˙.�/; z 2 C n R; (4.17)

where the subscript “C” is for =.z/ > 0, and “�” is for =.z/ < 0. Note also that z�

is defined as the principal power, with a branch-cut along the negative real axis. We

note that detP.zI �/ D 2 cos�� is constant in z. A direct computation shows that P

satisfies the jump condition:

PC.zI�/D P�.zI�/
�
1 �2i

�

0 1

�

; z 2 R
C; (4.18)

PC.zI�/D P�.zI�/
�
1 0
2i
�

1

�

; z 2 R
�; (4.19)

whereP˙.zI�/ are to be understood as the boundary values of the respective matrices

at a point z 2 R. Indeed, the first equation follows from (4.15). The second equation

becomes e2i���3CC D CCM0 as it takes into account the jump of z��3 on R�. Now,

(4.19) follows from (4.13).

For � 62 Œ�1; 1�, �.�/ in (4.12) satisfies j<�.�/j < 1
2

, with <.�.�// D 1
2

for � 2
.�1;0/ and <.�.�//D �1

2
for � 2 .0; 1/. So, the required inequality is a consequence

of the maximum principle for harmonic functions, see Figure 3. Hence, the matrix

entries of P.zI�/ are all in L2
loc near the origin for � 62 Œ�1; 1�.

Now, let �.zI �/ satisfy conditions (a) and (b) of the RHP 4.1 with entries in L2
loc

near z D 0. Then �P�1 has no jumps in a neighborhood of the origin and, hence,

it may only have an isolated singularity at z D 0. The L2
loc condition together with

j<�.�/j < 1
2

implies that the singularity is removable. Thus, the matrix � has pre-

cisely the proposed representation (4.16).

Remark 4.6. We should also point out that the solution �.zI �/ of the RHP 4.1, if it

exists, solves a Fuchsian differential equation in z of the form

� 0.zI�/ D
� X

zj 2@E[@J

Aj

z � zj

�

�.zI�/;

where the matrices Aj are independent of z. These matrices, for a fixed �, depend on

the position of the endpoints according to the so–called Schlesinger equations [13],
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which express the fact that the monodromy representation induced by a fundamental

solution of this ODE is independent of the position of the endpoints of the multi-

intervals J;E.

The main tool for the analysis of the remaining Theorem 2.1 (4,5) is the following

theorem for the so-called regularized resolvent defined by Id CR.�/D .Id � 1
�

K/�1.

Theorem 4.7. The resolvent R.�/ of K is an integral operator with the kernel

R.x; yI�/ WD 1

�

f T .x/�T .xI�/��T .yI�/g.y/
�.x � y/

; (4.20)

where �.zI �/ is the solution of the RHP 4.1. Moreover, the operator Id � 1
�

K has

bounded inverse if and only if the RHP 4.1 is solvable, and the solution is given by

�.zI�/ D 1 �
Z

U

F.xI�/ � gT .x/ dx

x � z
; (4.21)

where F.xI�/ D .Id CR.�//Œf �.x/.

Proof. Assume that �.zI �/ is the solution of the RHP 4.1. We first show that the

integral operator R.�/ with the kernel (4.20) is bounded from L2.U / into L2.U /.

Fix some � 2 C n Œ�1; 1�. We first note that, according to Remark 4.6, �˙.zI �/
is analytic on U with the exception of the endpoints, where the local behavior of

�˙.zI �/ is given either by (4.10) (simple endpoint) or by Proposition 4.5 (double

endpoint). Thus, the task of proving that R is bounded requires only a local ana-

lysis in a neighborhood of each endpoint. If z is a simple endpoint, the result is

established in [5]. Even though the geometry of the intervals in [5] is slightly less

general than the one here, the argument is purely local and applies in our situation

as well. Suppose now that z D 0 is a double endpoint. Since the problem is local,

we can assume that y is confined to a small neighborhood of z D 0. Obviously,
R

U nD"
R.x; yI �/�.y/ d y 2 L2.U / for any � 2 L2.U /, where D" is an "-neigh-

borhood of the origin, " > 0. Consider now the integral overD". Using the analyticity

of Y.zI�/ from Proposition 4.5, we obtain

��1.yI�/�.xI�/ D C�1
˙ y���3 Œ1 C O.x � y/� x��3C˙; x ! y; (4.22)

where, according to Proposition 4.5, the subindices of C; C�1 are determined by

inequalities ˙=x > 0, ˙=y > 0 respectively. In (4.22), O.x � y/ denotes a mat-

rix whose coefficients vanish to at least first order at x D y. This matrix is uniform

for x; y 2 D" with a sufficiently small " because of formula (4.16). Since the integ-

ral operator corresponding to the O.x � y/ term is nonsingular and j<�.�/j < 1
2

, it
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remains to show that the integral operator with the kernel

R0.x; yI�/ D
gT .y/C�1

C . x
y
/��3CCf .x/

��.x � y/ (4.23)

is a bounded operator in L2.U /. According to (4.3), the kernel R0 is a linear combin-

ation of . x
y
/˙� and characteristic functions of E;J , so we can restrict our attention to

the integral operator

r Œ��.y/ D
Z

U

. x
y
/��.x/�.x/

x � y d x; (4.24)

where � is either �
E

or �
J

, and � 2L2.U /. Using again that j<�.�/j< 1
2

and appeal-

ing to [11, Lemma 4.2, p. 32], it is straightforward to conclude that r WL2.U / !
L2.U / is a bounded operator. Thus, we proved that R.�/ is a bounded operator in

L2.U /.

Let us now prove that the integral operator R.�/ with the kernel (4.20) is the

resolvent of K . The equation for the resolvent is

.Id CR/ ı
�

Id � 1
�

K

�

D Id () R � 1

�
K D 1

�
R ı K: (4.25)

As it was shown above, the kernel (4.20) defines a bounded integral operator R in

L2.U /, and we now verify that it satisfies (4.25). Indeed, the kernel R ıK of R ı K

is

1

�
R ıK.z;w/ D 1

.��/2

Z

U

f T .z/�T .zI�/��T .xI�/g.x/
z � x

f T .x/g.w/

x �w d x:

(4.26)

Note that ��T solves

��T
C D ��T

�

�

1 C 2i

�
gf T

�

; z 2 U; (4.27)

so that for x 2 U

��T
C
.x/ � ��T

�
.x/ D 2i

�
��T

�
.x/g.x/f T .x/; (4.28)

and the right-hand side does not depend on the side of the boundary value being taken

because

��T
C
.x/g.x/f T .x/ D ��T

�
.x/

�

1 C 2i

�
g.x/f T .x/

�

g.x/f T .x/
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and f T .x/g.x/ � 0. Thus, (4.26) yields

Z

U

f T .z/�T .z/
�

��T
C .x/� ��T

� .x/
�

g.w/
1

.z � x/.x �w/
d x

2i�2�

D
Z

U

f T .z/�T .z/
�

��T
C .x/� ��T

� .x/
�

g.w/
1

z � w

�
1

z � x C 1

x � w

�
d x

2i�2�
:

(4.29)

To simplify notations, we drop the � dependence in �.xI�/ here and in the rest of the

proof. We show that (4.29) splits into two essentially equal integrals. Indeed, choose

z 62 U and, using Cauchy’s theorem together with the fact that �.1/ D 1, we have

Z

U

��T
C .x/� ��T

� .x/

z � x
d x

2i�
D 1 � ��T .z/: (4.30)

Substituting (4.30) into (4.29) we finally obtain

1

��.z � w/
f T .z/�T .z/

"

1���T .z/
‚ …„ ƒ
Z

U

�

��T
� .x/� ��T

C .x/
�

z � x
d x

2i�

C

��T .w/�1

‚ …„ ƒ
Z

U

�

��T
� .x/ � ��T

C .x/
�

x �w
d x

2i�

#

g.w/ (4.31)

D R.z;w/ � 1

�
K.z;w/: (4.32)

Thus, we have shown that RK D R � 1
�

K . Hence, the integral operator R with the

kernel R given by (4.20) is the regularized resolvent.

Vice versa, suppose now that Id � 1
�

K is invertible, and denote by Id CR its

resolvent. Define

F.z/ D .Id CR/ Œf �.z/: (4.33)

Here the equation is understood as applying the resolvent in an entry-wise fashion to

each of the two entries of the vector f defined in (4.3). Then define

�.zI�/ WD 1 �
Z

U

F.x/gT .x/

��.x � z/ d x: (4.34)
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We then observe that .�C.x/� ��.x//f .x/ D 0 for x 2 U , so that we have

�˙.zI�/f .z/ D f .z/ �
Z

U

F.x/gT .x/f .z/

��.x � z/ d x

D f C 1

�
KŒF � D f C F �

�

Id � 1
�

K

�

ŒF �

D f C F �
�

Id � 1
�

K

�h�

Id � 1
�

K

��1

Œf �
i

D f C F � f D F: (4.35)

To verify that (4.34) satisfies the RHP 4.1, we see that the condition �.1/ D 1 is

immediate. Regarding the jump condition we use the Sokhotskii–Plemelj formula for

x 2 U :

�C.xI�/ � ��.xI�/ D �2i� F.x/g
T .x/

��

(4.35)D �2i
�
��.xI�/f .x/gT .x/:

This latter equation is equivalent to the jump condition of the RHP 4.1. Condition (d)

from the RHP 4.1 follows from the fact that F.z/ is given by (4.33) where the

resolvent operator is now, by hypothesis, a bounded operator in L2.U /.

Thus, for any � in the resolvent set of K , there exists �.zI�/ given by (4.34) that

solves the RHP 4.1.

Using Remark 4.2, one can show that the RHP 4.1 is uniquely solvable if and

only if the operator Id � 1
�

K has a bounded inverse, i.e., when � 6D Sp.K/, where

Sp.K/ � Œ�1; 1�.
Remark 4.8. It is easy to show using the identity f T .z/g.z/ � 0, z 2 U , that the

kernel R.x; yI �/ in (4.20) does not have a jump across U . One can then combine

this fact with the first equation of (4.6) to prove that R.x; yI N�/ D R.x; yI�/ when

x; y 2 U .

4.2. Study of the spectrum of K by means of analytic continuation of the RHP

solution across the spectral interval .�1; 1/

According to Theorems 3.5 and 4.7, in the case of double endpoints the RHP 4.1 does

not have a solution for any � 2 Œ�1; 1�. In this section we discuss the meromorphic

continuation of the solution �.zI�/ to the RHP 4.1 over the segment � 2 Œ�1;1� to the

Riemann surface R of �.�/ beyond this segment. We will then use this continuation

to analyze the resolvent R on Œ�1; 1�. Since � is a global coordinate on R, it will

be convenient to introduce the notation �.zI �/ WD �.zI�.�//, where �.�/ is defined

by (4.12).
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RHP 4.9. Let z1; : : : ;zN ,N 2N, be the double endpoints (common endpointsJ \E).

For a point � 2 C n .1
2

C Z/ we are looking for a matrix function �.zI �/ with the

following properties:

1. the matrix �.zI �/ is analytic together with its inverse in z 2 xC n U ;

2. �.zI �/ satisfies the jump condition

�C.zI �/D ��.zI �/
�

1 0

�2i sin.��/ 1

�

; z 2 J; (4.36)

�C.zI �/D ��.zI �/
�
1 2i sin.��/

0 1

�

; z 2 EI (4.37)

3. �.1I �/ D 1;

4. the limiting values �˙.zI �/ are in L2
loc for any z 2 U n ¹z1; : : : ; zN º;

5. the local behavior of �.zI�/ near the double endpoints is given by (4.16) with

C˙ given by (4.14) and (4.15).

Corollary 4.10. For any � satisfying j<�j < 1
2

the solution �.zI �/ of the RHP 4.9

exists and coincides with the solution �.zI�/ D �.zI�.�// of the RHP 4.1.

Proof. According to (4.12), conditions (a)–(c) of the RHPs 4.1 and 4.9 are the same.

Moreover, conditions (d) and (e) of the RHP 4.9 imply condition (d) of the RHP 4.1

provided j<�j < 1
2

. Now, the statement of the corollary follows from Theorem 4.7

and Proposition 4.5.

We now aim to show that the solution �.zI�/ of the RHP 4.1 admits an extension

to a meromorphic function of � in the whole �--plane. The proof proceeds in two

steps.

• First, we prove that � admits an extension to a meromorphic function of � in

C n .Z C 1
2
/. Observe that the points �D 1

2
C 2Z are all mapped to �D �1, while the

points � D �1
2

C 2Z are mapped to � D 1. This implies that, in addition to � D 1,

the poles of �.zI �/ can possibly accumulate at half integer �.

• We then prove that near each of the points � D 1
2

C k, k 2 Z, �.zI �/ is also

meromorphic (i.e., has only finitely many poles).

The first point is proven in the next lemma.

Lemma 4.11. The solution of the RHP 4.9 admits a meromorphic extension to the

domain � 2 C n .Z C 1
2
/.

Proof. Let c be an endpoint of E or J , and let Dc be a small disk centered at z D c.

We choose these disks centered at every endpoint of E and J small enough so that
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they are disjoint. Define ˆ.zI �/ WD �.zI �/ outside of these disks, and

ˆ.zI �/ WD

8

ˆ̂
ˆ
<̂

ˆ̂
ˆ̂
:

�.zI �/V ˙1.˙.z � e/I �/; z 2 De;

�.zI �/W ˙1.˙.z � f /I �/; z 2 Df ;

�.zI �/P�1
R
.z � qI �/; z 2 Dq;

�.zI �/P�1
L
.z � pI �/; z 2 Dp;

(4.38)

where

V.zI �/ WD
�

1 � sin.��/ ln.z/
�

0 1

�

; W.zI �/ WD
�

1
sin.��/ ln.z/

�
1

�

; (4.39)

P
R
.zI �/ D P.zI �/ is the parametrix given by (4.17), and P

L
D �2PR

�2. Here e is

a simple endpoint of E, f is a simple endpoint of J , q is a double endpoint having

E adjacent on the right, and p is a double endpoint having E adjacent on the left,

see Figure 4. The sign “C” in (4.38) is for the case that e (respectively, f ) is a right

endpoint of E (respectively, J ), and the sign “�” is for the left endpoints.

The results of Proposition 4.5 and the discussion immediately preceding it show

that the matrix ˆ.zI �/ is a piecewise analytic matrix-valued function on the comple-

ment of the contour † that consists of the disks around the endpoints together with

the part of U outside of these disks (see Figure 4), and ˆ is uniformly bounded with

respect to z 2 C. It is the solution of a RHP with jumps on†, where the jump matrices

on the circles @Dc depend analytically on � 2 C n Z C 1
2

. Moreover, the product of all

the jump matrices at an intersection of any disk Dc taken according to the orientation

of each jump contour equals to the identity matrix 1.

Under these circumstances, it is known, see [10, Proposition 3.2] and also the ori-

ginal paper [32], that the solutionˆ.zI�/ of the corresponding RHP either never exists

or is meromorphic in �, with poles at an exceptional locus of points that may accumu-

late only at the boundary of the domain of analyticity in the parameter space �. The

first option is not possible due to Corollary 4.10. Therefore, ˆ.zI �/ is meromorphic

with respect to � 2 C n .Z C 1
2
/, which implies the statement of the lemma.

We now need to prove that the solution �.zI �/ of the RHP 4.9 is also mero-

morphic near �D 1
2

C k, k 2 Z. To this end we first prove the lemma where, according

to Remark 4.3, it is sufficient to consider E to the right of a double endpoint.

Lemma 4.12. Let zj , j D 1; : : : ; N , be a double endpoint with E adjacent from the

right. Define

• for k D �1;�2; : : : ,

Qk.zI �/ WD
�
1 0

0 1
2 cos ��

��
1 0

�.z � zj /
2jkj�1 1

�

.z � zj /��3C˙.�/I (4.40a)
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1 0
2i 1

1 2i

0 1

W.z f I P 1

R
.z qI V .z eI

Figure 4. An example of the contour † supporting the jump discontinuities of the RHP for the

matrix ˆ. Indicated near each arc is the corresponding jump matrix. The black line segment

represents J , and the red line segment represents E.

• for k D 0; 1; 2; : : : ,

Qk.zI �/ WD
� 1

2 cos ��
0

0 1

��
1 �.z � zj /

2kC1

0 1

�

.z � zj /
��3C˙.�/; (4.40b)

where ˙=z > 0, respectively. Then the local behaviour of the solution �.zI �/ near

z D zj and near the points � 2 1
2

C k, where k 2 Z, can be represented by

�.zI �/ D Y
.j /

k
.zI �/Qk.zI �/; j D 1; : : : ; N: (4.41)

Moreover, detY
.j /

k
� 1, and the matrix functions Y

.j /

k
.zI�/ are analytic in z in �-inde-

pendent disks centered at zj .

Proof. We consider the case when E is adjacent to zj from the right. The fact that

det Y
.j /

k
� 1 follows from (4.14). The analyticity of Y

.j /

k
.zI �/ with respect to z in

a �-independent neighborhood of the double endpoint zj follows from the fact that

�.zI �/Q�1
k
.zI �/ is analytic near zj . The other case when J is adjacent to zj from

the right can be considered analogously.

Proposition 4.13. Assume zj D 0 in (4.40). Then the matrices Qk.zI �/ with z ¤ 0

are analytic in some neighborhoods of �D 1
2

C k for all k 2 Z. For �D 1
2

C k, where

k D �1;�2; : : : , we have

lim
"!0

Qk.zI
1

2
� jkj C "/ D

�
z

1
2

�jkj .�1/kiz 1
2

�jkj

.�1/kz
� 1

2
Cjkj

ln z
�

z� 1
2

Cjkj� 1
�i
z� 1

2
Cjkj ln z

�

; (4.42)

where the expression is for z in the upper half plane. Similarly, for � D 1
2

C k and

k D 0; 1; : : : we have

lim
"!0

Qk.zI
1

2
C k C "/ D

�
.�1/kz

1
2

Ck
ln z

�
�z 1

2 CkC 1
�i
z

1
2 Ck ln z

z� 1
2

�k .�1/kiz� 1
2

�k

�

: (4.43)

These equations can be easily modified for =z < 0 using (4.15) and (4.40).
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Proof. Multiplication of all the factors in the first case of (4.40) yields

Qk.zI �/ D
�

z� �e�i��z�

�z�C2jkj�1Cz��

2 cos ��
�z�C2jkj�1e�i��Cz��ei��

2 cos ��

�

: (4.44)

Substituting � D 1
2

C k C " into (4.44) we derive (4.42) after some algebra. All other

cases can be considered analogously.

With these preparations we can finally prove the meromorphic continuation of

�.zI �/ onto the whole �-plane.

Lemma 4.14. The solution of the RHP 4.9 admits an extension to a meromorphic

function of � 2 C.

Proof. We know from Lemma 4.11 that the matrix �.zI �/ admits a meromorphic

extension to � 2 C n .Z C 1
2
/. In principle, that lemma does not rule out an accumu-

lation of poles near the points Z C 1
2

. Therefore, we still need to prove that �.zI�/ is

meromorphic also in neighborhoods of each of the points �k D 1
2

C k, k 2 Z. This

part of the proof is now only a minor revision of Lemma 4.11 and, therefore, we use

the same notation from that proof. Fix k 2 Z and define

ˆ.zI �/ D

8

ˆ
ˆ̂

<̂

ˆ̂
ˆ̂
:

�.zI �/V ˙1.˙.z � e/I �/; z 2 De;

�.zI �/W ˙1.˙.z � f /I �/; z 2 Df ;

�.zI �/Q�1
k
.z � qI �/; z 2 Dq;

�.zI �/�2Q
�1
k
.z � pI �/�2; z 2 Dp;

(4.45)

where V;W are defined in (4.38), and Qk – in (4.40). Define ˆ.zI �/ D �.zI �/
outside of the disks from (4.45). Here, as in Lemma 4.11, e is a simple endpoint ofE,

f is a simple endpoint of J , q is a double endpoint having E adjacent on the right,

whereas p is a double endpoint havingE adjacent on the left. The sign “C” is for the

case when e (respectively, f ) is a right endpoint of E (respectively, J ), and the sign

“�” for the left endpoints. Choose a small neighborhood S of � D 1
2

C k. The same

reasoning used in Lemma 4.11 now applies to � 2 S due to Lemma 4.12. Thus, we

conclude that �.zI �/ is meromorphic in a neighborhood of � D 1
2

C k.

4.3. Absence of singular continuous spectrum, Theorem 2.1 (5)

Before proceeding we briefly summarize the consequences of Lemma 4.14, see

also (4.12) and Figure 3. Since the main strip <� 2 .�1
2
; 1

2
/ corresponds to � 62 Œ�1;1�,

Theorem 4.7 implies that none of the poles of �.zI �/ (which is the solution to the

RHP 4.9) occurs in that strip. Thus, if any, the only poles in the closure of the main

strip may occur on the lines <� D ˙1
2

, that is, on the shores of the segment .�1; 1/
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of the spectral � plane. If K has a continuous spectrum, that is, if there is at least

one double endpoint, then the poles of �.zI �/, as we are going to show in Section

5, correspond to the embedded point spectrum of K . Thus, to complete the spectral

description of K , in the following theorem we prove the absence of singular continu-

ous spectrum. This will prove Theorem 2.1 (5).

Theorem 4.15. The singular continuous component of Sp.K/ is empty, i.e.,

Spsc.K/ D ¿:

Proof. Let �.zI�/ be the solution of the RHP 4.1. It is clear that a pole �0; :<�0j D 1
2

,

of the solution �.zI �/ of the RHP 4.9 corresponds to the pole �0 D �.�0/, �0 2
.�1; 1/ of �.zI �/. Since det.�.zI �// � 1, the poles (in �) of �.zI�/ and ��1.zI�/
coincide. Thus, the kernel R.x; yI�/ of the resolvent operator of K , given by (4.20),

is meromorphic in �. Then so is the jump��R.x;yI�/ WDR.x;yI�C/�R.x;yI��/
over � 2 .�1; 0/[ .0; 1/. In particular,��R.x; yI�/ has no more than finitely many

poles on any closed subinterval of .�1; 1/ n ¹0º.

Pick any � 2 C1
0 . VJ [ VE/. Let �1 D P� be the projection of � onto the direct

sum of all the eigenspaces of K (i.e., the subspace of discontinuity with respect to K ,

see, e.g., [14, Section X.1.1]). Set �2 WD � � �1. Let E� denote the resolution of the

identity associated with K . Using the properties of E� (i.e., P
2 D P and E�P D

P E�, see, e.g., [14, Sections VI.5.1 and X.1.1]), we have by starting with P�1 D �1:

��2
.�/ WD .E�.� � �1/; � � �1/ D .E��; �/ � .E��1; �1/: (4.46)

We want to prove that ��2
.�/ is smooth for any � 6D 0 not in the point spectrum

of K . Let Œ�1; �2� be any interval that does not contain any eigenvalue of K such that

�1 < � < �2. Without loss of generality we may assume �1 > 0. The case �2 < 0

can be considered analogously. Then E��1 D E�1
�1, and the second term on the right

in (4.46) is locally constant with respect to �. Also, E� D E�1
C EŒ�1;��. According

to [9, p. 921], E� is computed by the formula

E� D �1
2�i

lim
"!0C

�Z

�1

ŒR1.t C i"/ � R1.t � i"/� d t; (4.47)

if � is not an eigenvalue. Here

R1.�/ WD .� Id �K/�1 :

Clearly, R1.�/ D .1=�/.Id CR.�//. Therefore,

.EŒ�1;���; �/ D �1
2�i�

�Z

�1

Z

U

Z

U

�tR.x; yI t/�.x/ N�.y/ dx dy d t (4.48)
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is a locally smooth function of � because R.x; yI t/ is C1 on supp � � supp � �
Œ�1; �2�. By construction, ��2

.�/ is a continuous function of �. We just proved that it

may fail to be smooth only at the eigenvalues of K and at �D 0. Since the number of

eigenvalues of K is finite in any set Œ�1;�"/ [ ."; 1�, " > 0, this implies that ��2
.�/

is absolutely continuous. Since the span of C1
0 . VJ [ VE/ is dense in L2.U /, we see

that K has no singular continuous spectrum.

5. Proofs of Theorem 2.1 (2) and Theorem 2.4

5.1. End of proof of Theorem 2.1 (2)

We will now prove the remaining part of Theorem 2.1 (2), namely, that each eigen-

value �0 2 .�1; 1/ of K has a finite-dimensional eigenspace. The symmetry of the

eigenvalues with respect to � D 0 follows by noticing that if K.�; /T D �.�; /T ,

� 6D 0, � 2 L2.E/,  2 L2.J /, .�;  / 6� 0, then

K.��; /T D ��.��; /T ;

see (2.2). This also follows from the symmetry (4.6) of the solution �.zI �/ of the

RHP 4.1.

Proposition 5.1. Any pole, in the spectral variable �, of the solution �.zI �/ to the

RHP 4.1 is a simple pole.

Proof. Since K is a bounded, self-adjoint operator, the resolvent R of K has only

simple poles, and

j�j�1k Id CR.�/k D Œdist.�;Sp.K//��1

(see [29, Example 2 on p. 224]). So, if �0 is a pole of R.�/, then kR.�/k � c
j���0j ,

� ! �0, for some c > 0. Then, according to (4.21), �.zI �/ also has a pole at �0

whose order can not exceed one.

Let �0 2 .�1; 1/ be a simple pole of �.zI�/ with the Laurent expansion near �0

given by

�.zI�/ D �0.z/

� � �0

C �1.z/C O.� � �0/; (5.1)

where the term O.� � �0/ is uniform near any point of analyticity (in z) of �.zI �/.
The representation (5.1) can be modified in a natural way so that it works near simple

and double endpoints, see (4.10) and Proposition 4.5 respectively.
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Proposition 5.2. The matrix �0.z/ in (5.1) can be written as follows

�0.z/ D
�
a

b

�

‰.z/; (5.2)

where a; b 2 C are constants that are not both zero, and the vector

‰.z/ WD Œ 1.z/;  2.z/�

has the jump condition and asymptotics given by

‰C.z/ D ‰�.z/
�

1 � 2i

�0

�C�E
.z/C 2i

�0

���J
.z/

�

; ‰.z/ D O.z�k/ as z ! 1
(5.3)

with some k D 1; 2; : : : . Here

�C WD
�
0 1

0 0

�

; �� WD
�
0 0

1 0

�

: (5.4)

Proof. The jump conditions in (5.3) follow immediately from equations (5.2) and (5.1)

and RHP 4.1. Also, note that the matrix �0.z/ is analytic at z D 1 and vanishes

because

�.zI�/ D 1 C O.z�1/:

This implies that there is k 2 N such that

�0.z/ D O.z�k/;

and this implies also the same bound for ‰ in (5.3).

Thus, it remains to prove (5.2). In view of (5.1) and the relation ��1.zI �/ D
�2�

T .zI�/�2, we can expand formula (4.20) for the resolvent in a neighbourhood of

� D �0 as follows:

R.x; yI�/

D 1

�0.�� �0/2
g.y/T �2.�

0/T .y/�2�
0.x/f .x/

.x � y/

C 1

.� � �0/

�g.y/T
�

�2.�
0/T .y/�2�

1.x/C �2.�
1/T .y/�2�

0.x/
�

f .x/

�0.x � y/

� g.y/T�2.�
0/T .y/�2�

0.x/f .x/

�2
0.x � y/

�

C O.1/: (5.5)

If follows from Proposition 5.1 that the kernel R should have a first order pole in �,

so that the coefficient of the second–order pole in (5.5) must be identically (in x; y)
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zero. Now, the numerator of the second order pole equals

Œ��0
22.y/�J .y/��0

21.y/�E .y/; C�0
12.y/�J .y/C�0

11.y/�E .y/�

�
�
�0

11.x/�E.x/C �0
12.x/�J .x/

�0
21.x/�E.x/C �0

22.x/�J .x/

�

D ���0
22.y/�

0
11.x/C�0

12.y/�
0
21.x/

�

�J .y/�E.x/

C ���0
21.y/�

0
12.x/C�0

11.y/�
0
22.x/

�

�E .y/�J .x/

C ���0
22.y/�

0
12.x/C�0

12.y/�
0
22.x/

�

�J .y/�J .x/

C ���0
21.y/�

0
11.x/C�0

11.y/�
0
21.x/

�

�E .y/�E .x/: (5.6)

This expression is identically zero if and only if the two rows of �0 are proportional

by a constant. This is so because, for example, �0
22.y/�

0
12.x/ � �0

12.y/�
0
22.x/ � 0

implies �0
22.y/=�

0
12.y/ D �0

22.x/=�
0
12.x/ and both sides must be constants because

they depend on different variables.

Corollary 5.3. The leading order term Rsing.x; yI�/ WD R�0
.x;y/

���0
of R.x; yI�/ near

a pole � D �0 does not have a jump across x; y 2U , where the residue R�0
.x; y/ of

the resolvent kernel R.x; yI�/ at �0 is given by

R�0
.x; y/ WD g.y/T

�

�2.�
0/T .y/�2�

1.x/C �2.�
1/T .y/�2�

0.x/
�

f .x/

�0.x � y/
: (5.7)

Proof. Equation (5.7) follows directly from (5.5), where the O..� � �0/
�2/ term is

zero, and (5.2). Indeed, from (5.2) it follows that .�0/T .y/�2�
0.x/ � 0 and hence

the last term in the simple-pole term of (5.5) is zero. Also, since Rsing.x; yI �/ is the

singular part in � of R.x; yI �/, it follows from Remark 4.8 that R�0
.x; y/ has no

jump across U .

Lemma 5.4. The kernel R�0
.x; y/ is degenerate.

Proof. Substituting (5.1) into the RHP 4.1 we obtain the following jump conditions

and the asymptotics for the Laurent coefficients �0;1.z/:

�0
C.z/ D �0

�.z/
�

1 � 2i

�0

�C�E
.z/C 2i

�0

���J
.z/

�

; (5.8)

�0.z/ D O.z�1/; z ! 1; (5.9)

�1
C.z/ D �1

�.z/
�

1 � 2i

�0

�C�E
.z/C 2i

�0

���J
.z/

�

C �0
�.z/

� 2i

�2
0

�C�E
.z/ � 2i

�2
0

���J
.z/

�

; (5.10)

�1.z/ D 1 C O.z�1/; (5.11)
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where

det�0 � 0; Tr.�0�2.�
1/T �2/ � 0: (5.12)

The determinant and trace conditions follow from the property det�.zI �/ � 1 (see

equation (4.8)).

Inserting (5.2) into the trace condition (5.12) gives

0 � Œb;�a��1.z/

�
 2.z/

� 1.z/

�

H) Œb;�a��1.z/ D h.z/‰.z/ (5.13)

for some scalar function h.z/ to be identified. Next, our goal is to show that h.z/ is a

rational function. This is done in three steps.

• First, multiplying (5.10) on the left by Œb;�a� and noticing that Œb;�a��0.z/ �
0, we obtain that hC.z/D h�.z/ for z 2 U . This means that h.z/ extends analytically

across U .

• Second, let z0 2 C be any point other than an endpoint of J or E where both

components of‰ vanish. Then �0.z0/ D 0 and so, according to (5.1), det�.z0I�/ D
det�1.z0/ C O.� � �0/. If a zero z0 of the vector ‰ has multiplicity �, then h.z/

may have a pole of order at most � since the left side of (5.13) is bounded.

• Zeroes of ‰ cannot accumulate at any z� 2 C. Assuming the opposite, let z�

be a point where the zeroes of ‰ accumulate. If z� is not an endpoint, then �.zI �/
and, consequently, �0.z/ are analytic at z� (see (5.1)). By (5.2), such accumulation

implies that �0.z/ � 0, and �0 is not a pole. Suppose z� is an endpoint, for example,

z� is a double endpoint. Since z�.�/�3C˙.�.�// is analytic in � in a neighborhood of

�0, then (4.16) implies that Y.zI �/ has a pole at �0. Thus, we can repeat the same

argument with the matrix function Y.zI �/ (which is analytic near z�) and its residue

Y 0.z/ D �0.z/z��.�0/�3C�1
˙ .�.�0//. In the case when z� is a simple endpoint one

can use (4.10) instead of (4.16).

• Finally, observe that by (5.11) the left-hand side of the second equation in (5.13)

tends to Œb;�a� at z D 1. Hence, we conclude that h.z/ has polynomial growth of

degree not exceeding k (see (5.3)) and, therefore, according to Liouville’s theorem, it

is a rational function.

We also observe that (5.13) and (5.2) imply

�2.�
0/T .y/�2�

1.x/ D h.x/

�
 2.y/

� 1.y/

�

Œ 1.x/;  2.x/�: (5.14)
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Substituting (5.14) into (5.7) we obtain

R�0
.x; y/ D g.y/T

�

�2.�
0/T .y/�2�

1.x/C �2.�
1/T .y/�2�

0.x/
�

f .x/

�0.x � y/
D i

h.x/ � h.y/
�0.x � y/

g.y/T �2‰
T .y/‰.x/f .x/: (5.15)

The expression
h.x/�h.y/
�0.x�y/

is a finite linear combination of products of rational func-

tions in x and y separately with at most as many terms as the degree of the scalar

rational function h.z/. Thus, R�0
is a degenerate kernel.

To obtain a more explicit expression for R�0
.x; y/ we simplify (5.15). Suppose

h.x/DSt.x/=Sb.x/, whereSt and Sb are some polynomials without common factors.

Then

h.x/ � h.y/
x � y D St .x/Sb.y/� St .y/Sb.x/

.x � y/Sb.x/Sb.y/
D

P

m;n bmnx
myn

Sb.x/Sb.y/
; bmn D bnm;

(5.16)

where .bmn/ is the Bézout matrix of the polynomials St .x/; Sb.x/. Using equa-

tions (4.1) and (4.3), we get

g.y/T�2‰
T .y/‰.x/f .x/

D Œ�
J
.y/ C�

E
.y/�

�
0 �i
i 0

��
 1.y/ 1.x/  1.y/ 2.x/

 2.y/ 1.x/  2.y/ 2.x/

��
�

E
.x/

�
J
.x/

�

D Ci� 1.x/�E
.x/C  2.x/�J

.x/
��

 1.y/�E
.y/C  2.y/�J

.y/
�

: (5.17)

Combining (5.15)–(5.17) gives

R�0
.x; y/ D B.x; y/H.x/H.y/; (5.18a)

where

B.x;y/ WD ���1
0

X

m;n

bmnx
myn; H.x/ WD  1.x/�E

.x/C  2.x/�J
.x/

Sb.x/
: (5.18b)

From (5.3), (5.4), and (5.13) it follows thatH.z/ is analytic in a neighborhood of any

z 2 VE [ VJ .

Let RC.x; yI�/ andR�.x; yI�/ be the analytic continuations in � of the kernel of

the resolvent across the cut Œ�1;1� from above and from below, respectively. It follows

from Lemma 4.14 that R˙.x; yI�/ are meromorphic functions of � as long as neither

x nor y coincides with an endpoint of E and J . The locations of the poles, of course,

are independent of the choice of x; y. Let �0 be a pole of, say, RC.x; yI�/. Then, by

symmetry (see Remark 4.8), �0 is also a pole of R�.x; yI�/. In what follows, with a
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slight abuse of notation, we denote by R.x; yI �/ the kernel, which is the average of

RC.x; yI�/ and R�.x; yI�/. The residue of R.x; yI�/ at �0 is then

res
�D�0

R.x; yI�/ D 1

2
. res
�D�0

RC.x; yI�/C res
�D�0

R�.x; yI�//: (5.19)

Applying (5.18) to RC.x; yI�/ and R�.x; yI�/, combining the two residues, and

using the symmetry of R˙ (see Remark 4.8), we get that the residue of R defined

in (5.19) equals

R�0
.x; y/ D < .B.x; y/H.x/H.y// : (5.20)

Clearly, R�0
.x; y/ in (5.20) is real-valued and satisfies R�0

.x; y/ D R�0
.y; x/.

Theorem 5.5. Let �0 be an eigenvalue of K imbedded in the continuous spectrum.

Then the corresponding eigenspace has a finite dimension bounded by twice the

degree of the rational function h.z/ from Proposition 5.1.

Proof. First, we show that the residue of the resolvent defined according to (5.19)

defines the projector in L2.U / onto the corresponding eigenspace. A similar state-

ment in the case of an isolated eigenvalue is well known [29]. Here our situation is a

bit more complex, since all the eigenvalues are imbedded in the continuous spectrum.

Nevertheless, the proof is fairly straightforward. We could not find a reference in any

of the well-known texts on operator theory, so we decide to give it here for complete-

ness. As is known, the projector onto the eigenspace of K corresponding to �0 can

be computed as follows:

P�0
D lim

ı!0

yE.�0�ı;�0Cı/ D �1
2�i�0

lim
ı!0

lim
"!0C

�0CıZ

�0�ı

ŒR.t C i"/ � R.t � i"/� d t;

(5.21)

where all the limits are in the sense of strong operator convergence. Pick any two

functions �1;2 2 C1
0 . VE [ VJ /. Using that the kernels of R˙ are analytic with respect

to x; y away from the endpoints of J and E and is a meromorphic function of �, it is

immediate that

lim
"!0C

�0CıZ

�0�ı

.R.t ˙ i"/�1; �2/ d t D lim
"!0C

�0CıZ

�0�ı

.R˙.t ˙ i"/�1; �2/ d t D
Z

B˙.ı/

R˙.�/ d�

D ˙�i res
�D�0

.R˙.�/�1; �2/CO.ı/; (5.22)

whereB˙.ı/ is the half-circle centered at �0 with radius ı in the upper and lower half-

planes, respectively, oriented in the counter clockwise direction. Substituting (5.22)
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into (5.21) we obtain

.P�0
�1; �2/ D �1

2�i�0

�i
�

. res
�D�0

RC.�/C res
�D�0

R�.�//�1; �2

�

D �1
�0

. res
�D�0

R.�/�1; �2/; (5.23)

where the last equality follows from the definition (5.19). Therefore, the operators on

the left and on the right in (5.23) act the same way on C1
0 . VE [ VJ /. Comparing (5.23)

and (5.19) implies that the kernel of P�0
is the expression in (5.20).

SinceR�0
.x;y/ is self-adjoint, real-valued (cf. (5.20)) and degenerate (cf. (5.18)),

we can represent it in the form

R�0
.x; y/ D

N
X

m;nD1

amnfm.x/fn.y/ D
N 0
X

nD1

˛ngn.x/gn.y/ (5.24)

for some real, symmetric matrix .amn/ and real-valued functions

fn.x/ 2 C1. VE [ VJ /:

The latter are are analytic on VE [ VJ . Here ˛n are non-zero eigenvalues of .amn/

(hence, N 0 < N ), and gn’s are obtained by a unitary transformation from the fn’s.

Without loss of generality we can assume that the set of functions ¹fnº is linearly

independent in C1. VE [ VJ /. Then the set ¹gnº is linearly independent as well. To

prove that P�0
is of finite rank we just need to show that gn 2L2.U / for all n. Clearly,

we can find � 2 C1
0 . VE [ VJ /, such that

R

U gn.x/�.x/ d x 6D 0 if n D 1 and equals

zero for all other n. Since P�0
� 2 L2.U /, it follows that g1 2 L2.U /. Repeating the

same argument for all n implies the desired result.

Finally, from (5.16), (5.18), (5.20), and (5.24) it follows that the dimension of the

eigenspace of K corresponding to �0 does not exceed twice the degree of the rational

function h, i.e., 2max.degSb; degSt /.

5.2. Proof of Theorem 2.4

The first half of (2) is proven similarly to Theorem 2.1 (2). Alternatively, this state-

ment can be proven by showing that if �2 is an eigenvalue of B , then � (and �� if

� 6D 0) is an eigenvalue of K , and then invoking Theorem 2.1.

By changing variables

K
2 D

Z

�2 dE� D
0Z

1

t dE�
p

t C
1Z

0

t dEp
t D

1Z

0

t d.Ep
t �E�

p
t /; (5.25)
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it follows that the resolution of the identity associated with K
2 is given by

V� D
´

E
Œ�

p
�;

p
��
; � > 0;

0; � � 0:
(5.26)

HereEŒa;b� WD s-limı!0CE.a�ı;b�, andE� is assumed to be strongly continuous from

the right, see [14, Section X.1.1]. The above definition ensures that V� is strongly con-

tinuous from the right as well. Now, (1) and (5), the rest of (2), as well as the first half

of (3), follow directly from (5.26) and the corresponding assertions of Theorem 2.1.

To prove the second half of (3) we show that AA� and A�A are unitarily equival-

ent. Indeed, let A D V.A�A/1=2 be the polar decomposition of A. Here V is a partial

isometry with Ran V D RanA, which is uniquely defined by the condition KerV D
KerA (see [14, Section VI.7]). Using that KerA� D .RanA/? (see [14, eq. (5.10)

Chapter III]) and that both A and .�1/A� are Hilbert transforms (i.e., densely defined

with zero kernels), it follows that KerV D KerA D 0 and RanV D RanA D L2.E/.

Hence, V WL2.J /! L2.E/ is an isometry. Then AA� D VA�AV �, and the result fol-

lows. Therefore, in particular, the absolutely continuous spectra ofAA� andA�A have

the same multiplicity, and the latter equals to half of the multiplicity of Spac.K
2/.

Consider now (4). If there are no double endpoints, Theorem 2.1 implies that K
2

and, therefore, B is of trace class. The last statement of (4) follows from the standard

operator theory.

Remark 5.6. In the proof of Theorem 2.4 we showed that

Spac.AA
�/ D Spac.A

�A/ D Œ0; 1�

with the same multiplicity n. It is instructive to prove this assertion directly by follow-

ing the arguments of Theorem 3.5. Consider first the simple case of r D 1 in (3.1), with

both endpoints of U D U1 belonging to E D E1 (Lemma 3.4, first case). Using (3.7),

we obtain

K
2
0 D K

2
ext C �

2 C Kext� C �Kext: (5.27)

According to the proof of Lemma 3.4, � and, therefore, �
2 C Kext� C �Kext, are

trace class operators. Hence, the absolutely continuous parts of K
2
0 and K2

ext are

unitarily equivalent. Since (a) K
2
0 and K

2
ext are block diagonal relative to the decom-

position L2.R/ D L2. yE/ ˚ L2.J /; (b) diagonal blocks of a block-diagonal trace

class operator are also trace class, and; (c) each diagonal block of K
2
0 has absolutely

continuous spectrum Œ0;1� of multiplicity n (see [17]), we conclude that the absolutely

continuous spectrum of each block of K2
ext is the interval Œ0; 1�, and its multiplicity

equals n. Restricting the blocks of K
2
ext to the blocks of K

2 similarly to how this is

done at the end of the proof of the first case in Lemma 3.4, we obtain the desired

assertion.
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In a similar fashion, we use (3.9) and (3.14) to prove the assertion in all the remain-

ing cases. The key observation is that all the cross terms not containing trace class

operators are zero when the right-hand sides of (3.9) and (3.14) are squared. Con-

sider, for example, (3.9). Now, K
2
0 is a trace class perturbation of .Kext C K1/2 D

K
2
ext C K

2
1, because, by construction, KextK1 D K1Kext D 0. In (3.14) we get

from (3.12)
� r

M

j D1

Kj

�2

D
r

M

j D1

K
2
j ; (5.28)

and the rest of the argument is analogous.

6. Spectrum and diagonalization of the operator K when U D R

In this section we extend an approach, which was originally developed in [17], see

also [18]. One is given a collection of 2n points bj 2 R, 1 � j � 2n (i.e., all bj are

double endpoints). We assume that they are arranged in ascending order: bj < bj C1,

1 � j < 2n. Define

J WD Œb1; b2� [ Œb3; b4� [ � � � [ Œb2n�1; b2n�; (6.1a)

E WD Œb2; b3� [ Œb4; b5� [ � � � [ Œb2n; b1�; (6.1b)

where

Œb2n; b1� WD .�1; b1� [ Œb2n;1/: (6.1c)

For clarity, the interval Œb2n; b1� is the closed interval (on the extended line) from b2n

to C1 and from �1 to b1. In terms of (3.1) this means that r D 1 and U1 D U D R.

We have assumed that the point at infinity belongs to E, but this does not affect the

generality of the argument due to Lemma 3.1. Define

ˇod.z/ D
n

Y

j D1

.z � b2j �1/; ˇev.z/ D
n

Y

j D1

.z � b2j /; ˇ.z/ D ˇev.z/=ˇod.z/;

(6.2a)

V�.z/ D lnˇ.z/; �.z/ D < V�.z/; (6.2b)

where we choose the standard branch of the logarithm.

The following facts are proven for x 2 J in [17], and the proofs for x 2 E are

analogous.

(1) One has

= V�.x/ D �; x 2 J and = V�.x/.x/ D 0; x 2 E: (6.3)
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(2) The behavior of � on the subintervals .b2j �1; b2j /� J and .b2j ; b2j C1/� E

satisfies

�0.x/ < 0; x 2 J; �.x/ ! C1; x ! bC
2j �1; �.x/ ! �1; x ! b�

2j ;

(6.4a)

�0.x/ > 0; x 2 E; �.x/ ! �1; x ! bC
2j ; �.x/ ! C1; x ! b�

2j C1:

(6.4b)

Therefore, �.x/ is monotonic and invertible on each subinterval, and the range of

�.x/ on each subinterval is R.

(3) One has

�0.x/ D Q.x/

ˇod.x/ˇev.x/
; Q.x/ WD ˇ0

ev.x/ˇod.x/� ˇev.x/ˇ
0
od.x/; (6.5)

and Q.x/ > 0 is bounded away from zero on R.

Suppose that

s D �.z/=2; z 2 .b2m; b2mC1/ � E

and

t D �.x/=2; x 2 .b2k�1; b2k/ � J:

Then

cosh.s � t/ D cosh
��.z/ � �.x/

2

�

D cosh
� V�.z/ � . V�.x/� i�/

2

�

D i sinh
� V�.z/ � V�.x/

2

�

: (6.6)

Moreover,

2 sinh
� V�.z/ � V�.x/

2

�

D
s

ˇ.z/

ˇ.x/
�

s

ˇ.x/

ˇ.z/

D ˇev.z/ˇod.x/ � ˇev.x/ˇod.z/

D

D .z � x/
Pn

i;j D1Bij z
i�1xj �1

D

D .z � x/
P2n

j D1 �jPj .z/Pj .x/

D
; (6.7)

where B WD B.ˇev; ˇod/ D .Bij / is the Bézout matrix of the polynomials ˇev.z/;

ˇod.z/, and

D WD ˇod.z/
p

ˇ.z/ˇod.x/
p

ˇ.x/: (6.8)
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Using (6.3), we find

D D sgn.ˇod.z//i

p

2n
Y

j D1

jz � bj j sgn.ˇod.x//

p

2n
Y

j D1

jx � bj j

D i sgn.ˇod.z// sgn.ˇod.x//

p

2n
Y

j D1

jx � bj jjz � bj j: (6.9)

Introduce two isometries

TinWL2.J / ! L2
n.R/; TexWL2.E/ ! L2

n.R/; (6.10a)

such that

Lhin.t/ WD .Tinh/.t/

WD
p
2
� sgn.ˇod.x//h.x/

p

j�0.x/j
ˇ
ˇ
ˇ
xD��1

1
.2t/
; : : : ;

sgn.ˇod.x//h.x/
p

j�0.x/j
ˇ
ˇ
ˇ
xD��1

2n�1
.2t/

�

;

(6.10b)

Lhex.s/ WD .Texh/.s/

WD
p
2
� sgn.ˇod.z//h.z/

p

�0.z/

ˇ
ˇ
ˇ
zD��1

2
.2s/

; : : : ;
sgn.ˇod.x//h.z/

p

�0.z/

ˇ
ˇ
ˇ
zD��1

2n
.2s/

�

;

(6.10c)

where L2
n.R/ is the direct sum of n copies of L2.R/, L2

n.R/ D Ln
j D1 L

2.R/. Here

we set kLhk2 D k Lh1k2 C � � � C k Lhnk2, where Lh D . Lh1; : : : ; Lhn/ 2 L2
n.R/ and k Lhmk is

the conventionalL2.Im/ norm. Also, in (6.10), ��1
k

is the inverse of �.x/ on the k-th

interval .bk; bkC1/. By convention, the 2n-th interval is R n .b1; b2k/, i.e., it includes

the point at infinity.

Changing variables in the definition of A gives

.TexAT
�1

in
Lhin/m.s/

D sgn.ˇod.zm//

�

s

2

�0.zm/

n
X

kD1

Z

R

sgn.ˇod.xk// Lhk.t/
p

j�0.xk/j=2.xk � zm/
d t

D 2 sgn.ˇod.zm//

�

n
X

kD1

Z

R

sgn.ˇod.xk// Lhk.t/
p

j�0.xk/j�0.zm/.xk � zm/
d t; (6.11a)

where

xk WD ��1
k .2t/; zm WD ��1

m .2s/: (6.11b)
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Combining (6.11), (6.5), (6.6), and (6.7), we find

sgn.ˇod.xk// sgn.ˇod.zm//
p

j�0.xk/j�0.zm/:xk � zm/
D � 1

2 cosh.s � t/

n
X

j D1

�jPj .xk/Pj .zm/
p

Q.xk/Q.zm/
: (6.12)

Define two matrix functions

Min W D ¹M .in/

jk
.t/º; Mjk.t/ WD Pj .xk/

r
�j

Q.xk/
; xk WD ��1

k .2t/; (6.13a)

Mex W D ¹M .ex/
jm .s/º; Mjm.s/ WD Pj .zm/

r
�j

Q.zm/
; zm WD ��1

m .2s/: (6.13b)

It is shown in [17] that ¹M .in/

jk
.t/º is an orthogonal matrix for all t 2 R. The proof

that ¹M .in/

jk
.s/º, s 2 R, is an orthogonal matrix is analogous. Substituting (6.12) and

(6.13) into (6.11) gives

.TexAT
�1

in
Lhin/m.s/ D �

n
X

j D1

M
.ex/

jm .s/

n
X

kD1

Z

R

M
.in/

jk
.t/ Lhk.t/

� cosh.s � t/
d t: (6.14)

In compact form, (6.14) can be written as follows

TexAT
�1

in
Lhin D M

T
exKMin

Lhin; (6.15)

where K is the operator of component-wise convolution with �1=.� cosh.t//.

Equation (6.14) matches with the results in [17] in the case nD 1 (see [17, (2.12)]).

Indeed, suppose J D Œ�b; b�, andE D .�1; b�[ Œb;1/. Then (6.5) and (6.7) imply

that �1 D 2b andQ.x/ � 2b, i.e., Mex � Min � 1 in (6.13). Observe also that there

is one sign change between (6.14) and [17, (2.12)]. The sign change arises because

Tex in (6.10) is the negative of Tex in [17, (2.11)].

Let F WL2
n.R/ ! L2

n.R/ denote the map consisting of n component-wise one-

dimensional Fourier transforms (cf. (1.3)). Using (6.14) and [27, integral 2.5.46.5],

we get

K D F
�1

� �1
cosh.��=2/

Idn

�

F ; (6.16)

where � is the spectral (Fourier) variable, and Idn is the n � n identity matrix. There-

fore, (6.14) gives

Af D .F MexTex/
�1

� �1
cosh.��=2/

Idn

�

.F MinTin/f: (6.17)

Applying the adjoint to (6.17), we get that K satisfies

K D
�
0 A

A� 0

�

D U�1

�
0 �1

cosh.��=2/
Idn

�1
cosh.��=2/

Idn 0

�

U; (6.18a)
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where

U WD
�
F MexTex 0

0 F MinTin

�

WL2
2n.R/ ! L2

2n.R/; (6.18b)

is an isometry. As is easily checked, the following self-adjoint isometry diagonalizes

the middle operator on the right in (6.18)

V WD 1p
2

�
Idn Idn

Idn � Idn

�

WL2
2n.R/ ! L2

2n.R/; (6.19)

therefore

K D U�1V �1

�� 1
cosh.��=2/

Idn 0

0 1
cosh.��=2/

Idn

�

V U: (6.20)

The range of the function .cosh.��=2//�1 is .0; 1�, and each value is taken twice.

Hence, we proved the following result.

Theorem 6.1. Suppose r D 1 in (3.1), and J1 [ E1 D U1 D R, i.e., U consists of

only one interval and coincides with all of R. In this case the spectral interval of K

is Œ�1; 1�, the spectrum is absolutely continuous (i.e., there are no eigenvalues), and

its multiplicity equals to the number of double endpoints (which is twice the number

of subintervals in J1 or E1).
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