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Invariant subspaces of elliptic systems II: Spectral theory

Matteo Capoferri and Dmitri Vassiliev

Abstract. Consider an elliptic self-adjoint pseudodifferential operator A acting on m-columns
of half-densities on a closed manifold M , whose principal symbol is assumed to have simple
eigenvalues. We show that the spectrum of A decomposes, up to an error with superpolynomial
decay, into m distinct series, each associated with one of the eigenvalues of the principal sym-
bol of A. These spectral results are then applied to the study of propagation of singularities in
hyperbolic systems. The key technical ingredient is the use of the carefully devised pseudodif-
ferential projections introduced in the first part of this work, which decompose L2.M / into
almost-orthogonal almost-invariant subspaces under the action of both A and the hyperbolic
evolution.

In memory of Misha Shubin,

whose support was invaluable to the second author at the beginning of his career

1. Statement of the problem

In this paper we continue the analysis of invariant subspaces of elliptic systems initi-
ated in [12], focussing on the spectral-theoretic aspects of the problem.

Let M be a connected closed manifold of dimension d � 2. (When d D 1, the
punctured cotangent bundle T �M n ¹0º is not connected. Although this is not a fun-
damental obstacle, we assume the dimension of the manifold to be at least 2 to avoid
repeated discussions on the difference between d D 1 and d � 2.) We denote by
.x1; : : : ; xd / local coordinates on M .

As in [12], we denote by C 1.M/ the linear space of m-columns of smooth
complex-valued half-densities over M and by L2.M/ its closure with respect to the
inner product

hv; wi WD
Z

M

v�w dx;
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where dx WD dx1 : : : dxd . Accordingly, we denote by H s.M/, s 2 R, the corres-
ponding Sobolev spaces. Here and further on, � stands for Hermitian conjugation
when applied to matrices and for adjunction when applied to operators.

Let ‰s be the space of classical pseudodifferential operators of order s acting
from H s.M/ to L2.M/. For an operator B 2 ‰s , we denote by Bprin and by Bsub its
principal and subprincipal symbols, respectively.

Let A 2 ‰s , s 2 R, s > 0, be an elliptic self-adjoint linear operator, where ellipt-
icity means that

det Aprin.x; �/ ¤ 0 for all .x; �/ 2 T �M n ¹0º:

Throughout this paper, we assume that the eigenvalues of Aprin are simple. We
denote by mC (resp. m�) the number of positive (resp. negative) eigenvalues of
Aprin.x; �/. We denote by h.j /.x; �/ the eigenvalues of Aprin.x; �/ and by P .j /.x; �/

the corresponding eigenprojections. Eigenvalues are enumerated in increasing order,
with positive index j D 1; 2; : : : ; mC for positive h.j /.x; �/ and negative index j D
�1; �2; : : : ; �m� for negative h.j /.x; �/.

The spectrum of our operator AWH s.M/ ! L2.M/ is discrete and accumulates to
infinity. More precisely, if mC � 1, the spectrum accumulates to C1; if m� � 1, the
spectrum accumulates to �1; and if mC � 1 and m� � 1, the spectrum accumulates
to ˙1.

Let us recall a few results from [12] which will be useful later on.

Definition 1.1. We say that a symmetric pseudodifferential operator B is nonnegative

(resp. nonpositive) modulo ‰�1 and write

B � 0 mod ‰�1 .resp. B � 0 mod ‰�1/

if there exists a symmetric operator C 2 ‰�1 such that B C C � 0 (resp. B C C � 0).

Theorem 1.2. Let A be as above and let ı be the Kronecker symbol.

(a) [12, Theorem 2.2] There exist m pseudodifferential operators Pj 2 ‰0 satis-

fying

(i) .Pj /prin D P .j /,

(ii) Pj D P �
j mod ‰�1,

(iii) Pj Pl D ıjlPj mod ‰�1,

(iv)
P

j Pj D Id mod ‰�1,

(v) ŒA; Pj � D 0 mod ‰�1.

These operators are uniquely determined, modulo ‰�1, by A.
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(b) [12, Theorem 2.5] We have

P �
j APj � 0 mod ‰�1 for j D 1; : : : ; mC;

P �
j APj � 0 mod ‰�1 for j D �1; : : : ; �m�:

Theorem 1.2 tells us that, given an elliptic self-adjoint operator A 2 ‰s , one can
construct a unique orthonormal basis of pseudodifferential projections commuting
with A. These projections partition L2.M/ into m invariant subspaces under the
action of A, modulo C 1.M/. Furthermore, they allow one to decompose A into
precisely m (non-elliptic) sign definite operators P �

j APj 2 ‰s .
In the light of the above results, one would be led to think that the decomposition

A D
X

j

P �
j APj mod ‰�1

could be used, somehow, to obtain a similar decomposition at the level of the spectrum
of A, at least in the limit j�j ! C1. It is well known that, asymptotically, positive
eigenvalues of Aprin account for the positive spectrum of A and negative eigenvalues
of Aprin for the negative spectrum of A. One’s hope would be to use pseudodifferential
projections to achieve a finer partition of the spectrum of A into m distinct families,
singling out the contribution of each individual eigenvalue of Aprin.

Now, the naive approach of looking at the spectra of the operators P �
j APj does

not look very promising, in that the latter are not elliptic, hence the standard spectral-
theoretic and asymptotic techniques cannot be applied. If one is to succeed in achiev-
ing the above spectral decomposition without abandoning completely the realm of
elliptic operators, a more clever strategy is needed.

Remark 1.3. There are at least two other rather natural approaches to the problem at
hand.

(1) The first approach would involve working with negative order operators. For
fixed � in the resolvent set of A, one can consider the negative order operators

Rj WD P �
j .A � � Id/�1Pj ; j D �m�; : : : ; �1; 1; : : : ; mC;

and study the asymptotics of their counting functions as the spectral parameter tends
to zero, in the spirit of [3, 4]. We decided not to pursue this approach, which presents
nontrivial technical obstacles, but to develop a novel strategy instead. The latter will
have the advantage of allowing us to obtain our results without the need to work with
non-elliptic operators.

(2) The second approach would involve microlocally diagonalizing the operator
A, i.e. constructing an almost-unitary operator B such that B�AB is a diagonal matrix
operator, modulo ‰�1; see, for example, [7,15,23,24,26,33]. In the context of Dirac
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operators, such a B is sometimes referred to as the Foldy–Wouthuysen transform. In
constructing the operator B one encounters the issue that the almost-unitary operator
B is not defined uniquely, not even at the level of the principal symbol, but only up
to gauge transformations (see also [13, Section 5]). Neglecting to account for these
gauge transformations and the curvatures that they bring about has led to mistakes
in some publications, see [13, Section 11]. Furthermore, there may be topological
obstructions to the existence of a global diagonalization: the issue here is that it is not
always possible to adjust the gauge so that the eigenvectors of the principal symbol
become (globally defined) smooth m-columns on T �M n ¹0º. Finally, the diagon-
alization procedure affects the asymptotics of the local counting function, in that it
involves conjugation by a pseudodifferential operator. This makes diagonalization, in
a sense, a less natural approach when it comes to studying the spectral properties of A.
We refer the reader to [8] for a detailed analysis of the almost-unitary operator B . The
use of pseudodifferential projections has the advantage of circumventing these issues
altogether.

All in all, the results from Theorem 1.2 warrant the following natural questions.

Question 1. Can we exploit the pseudodifferential projections Pj to achieve a parti-

tion of the spectrum of A into m disjoint families of eigenvalues?

Question 2. Can we exploit the pseudodifferential projections Pj to advance the cur-

rent understanding of spectral asymptotics for elliptic systems?

Question 3. Can we exploit the pseudodifferential projections Pj to advance the cur-

rent understanding of propagation of singularities for hyperbolic systems?

The goal of this paper is to provide a rigorous affirmative answer to Questions 1,
2, and 3.

2. Main results

Our main results can be summarised in the form of five theorems stated in this section.
We will assume that mC � 1 and will be dealing with the asymptotics of the pos-

itive eigenvalues of A. The case of negative eigenvalues can be handled by replacing
A with �A.

Let
0 < �1 � �2 � � � � � �k � � � � ! C1 (2.1)

be the positive eigenvalues of A enumerated in increasing order with account of
multiplicity. The task at hand is to partition the eigenvalues (2.1) into mC separate
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series corresponding to the mC different positive eigenvalues of Aprin. Hence, we will
assume that mC � 2.

In order to partition eigenvalues (2.1) into series we introduce the operators

Aj WD A � 2
X

lD1;:::;mC

l¤j

P �
l APl ; j D 1; : : : ; mC: (2.2)

Each operator Aj is “simpler” than our original operator A in that the principal symbol
of Aj

.Aj /prin D h.j /P .j / �
X

l¤j

jh.l/jP .l/ (2.3)

has only one positive eigenvalue, namely, h.j /.x; �/. Note also that formula (2.2)
implies

ŒAj ; Al � D 0 mod ‰�1; j; l D 1; : : : ; mC: (2.4)

Let � be the Heaviside function. For a self-adjoint operator B we denote by

BC WD B�.B/ D 1

2
.B C jBj/ (2.5)

its nonnegative part. Then, [12, Theorem 2.7] implies

AC D
mC
X

j D1

AC
j mod ‰�1; (2.6)

AC
j AC

l
D 0 mod ‰�1; j; l D 1; : : : ; mC; j ¤ l: (2.7)

Examination of formulae (2.4), (2.6) and (2.7) suggests that there should be a relation
between the positive spectra of A and Aj , see Appendix A, and Remark A.9 therein in
particular, for a compelling argument to this effect. The precise nature of this relation
is established by the three theorems given below.

For a self-adjoint operator B we denote its spectrum by �.B/, and we denote by

�C.B/ WD �.B/ \ .0; C1/ D �.BC/ n ¹0º (2.8)

its positive part. Let

0 < �
.j /
1 � �

.j /
2 � � � � � �

.j /

k
� � � � ! C1 (2.9)

be the positive eigenvalues of Aj enumerated in increasing order with account of
multiplicity. The following two theorems show that the positive eigenvalues of the
operators Aj , j D 1; : : : ;mC, approximate the positive eigenvalues of the operator A,
and vice versa.
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Theorem 2.1. For each j D 1; : : : ; mC we have

dist.�.j /

k
; �C.A// D O.k�1/ as k ! C1: (2.10)

Theorem 2.2. We have

dist
�

�k;

mC
[

j D1

�C.Aj /
�

D O.k�1/ as k ! C1: (2.11)

Theorems 2.1 and 2.2 do not quite achieve the sought after partition of the spec-
trum (2.1) in that they do not establish a one-to-one correspondence between the
positive eigenvalues of the operator A and the positive eigenvalues of the operat-
ors Aj , j D 1; : : : ; mC. The issue here is that formulae (2.10) and (2.11) establish
asymptotic closeness of the spectra but do not provide sufficient information on the
closeness of individual eigenvalues enumerated in our particular way. The following
theorem addresses this issue and shows that the above construction is indeed “pre-
cise”.

Let us combine the sequences (2.9), j D 1; : : : ;mC, into one sequence and denote
it by

0 < �1 � �2 � � � � � �k � � � � ! C1: (2.12)

Here we combine them with account of multiplicities.

Theorem 2.3. For any ˛ > 0 there exists an r˛ 2 Z such that

�k D �kCr˛
C O.k�˛/ as k ! C1: (2.13)

Theorem 2.3 will allow us to derive two-term asymptotic formulae for the eigen-
value counting function of A refining previous results [1, 2, 13], see Section 5. Of
course, Theorems 2.1 and 2.2 follow from Theorem 2.3, but we listed them as separ-
ate results for the sake of logical clarity.

Our last major result is an application of the above technology to first order hyper-
bolic systems. Let A be first order, s D 1, without any restrictions on mC and m�.
Consider the associated hyperbolic initial value problem

�

�i
@

@t
C A

�

v D 0; vjtD0 D v0: (2.14)

We call propagator the solution operator of (2.14), namely, the time-dependent unit-
ary operator

U.t/ WD e�i tA: (2.15)

It was shown in [11, 13] that U.t/ can be approximated, modulo C 1.RI ‰�1/

(i.e. modulo an integral operator with infinitely smooth time-dependent integral ker-
nel), by the sum of precisely m invariantly defined oscillatory integrals U .j /.t/ global
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in space and in time. Each oscillatory integral U .j /.t/ is a Fourier integral operator
whose Schwartz kernel is a Lagrangian distribution associated with the Lagrangian
submanifold of T �

R � T �M � T �M generated by the Hamiltonian flow of h.j /.
These are m distinct smooth manifolds which encode information on the propagation
of singularities in the hyperbolic system (2.14).

Theorem 2.4. Let A 2 ‰1 be an elliptic self-adjoint first order m � m operator. Sup-

pose that the eigenvalues of its principal symbol are simple. Then

U .j /.t/ D Pj U.t/ D U.t/Pj mod C 1.RI ‰�1/;

j 2 ¹�m�; : : : ; �1; 1; : : : ; mCº: (2.16)

In fact, we will prove a stronger result, see Corollary 4.3.
Another important special case is that of nonnegative second order operators. For

example, the operator of linear elasticity (Lamé operator) falls into this category,
see [12, Section 8.2] for details. For such operators, we have m D mC and the propag-
ator is defined as

U.t/ WD e�i t
p

A: (2.17)

By means of a suitable modification of techniques from [11, 13], it will be shown
in Section 4 that in this case the propagator can also be approximated, modulo
C 1.RI ‰�1/, by the sum of precisely m invariantly defined oscillatory integrals
U .j /.t/ global in space and in time. This leads to the following analogue of The-
orem 2.4.

Theorem 2.5. Let A 2 ‰2 be a nonnegative elliptic self-adjoint second order m � m

operator. Suppose that the eigenvalues of its principal symbol are simple. Then

U .j /.t/ D Pj U.t/ D U.t/Pj mod C 1.RI ‰�1/; j 2 ¹1; : : : ; mº: (2.18)

Remark 2.6. Theorem 2.5 admits a further generalisation to the case when A is a
nonnegative operator of positive even order 2n. In this case, the propagator is defined
as

U.t/ D e�i tA1=2n

; (2.19)

compare with (2.17). Proving Theorem (2.5) in this more general case does not present
any additional difficulties: one can retrace the arguments given in Section 4.2 repla-
cing

p
A with A1=2n, as appropriate. In particular, as explained in Section 4.2, one

does not need to actually compute A1=2n in order to construct the operator (2.19).
The reason why we state our main result for second order operators is twofold. On
the one hand, it simplifies the presentation; on the other hand, the case n D 1 has a
clearer physical meaning.
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Note that Theorems 2.4 and 2.5 cannot be obtained by elementary functional-
analytic arguments involving an expansion over eigenvalues and eigenfunctions of the
operator A. Formulae (2.16) and (2.18) are to do with the propagation of singularities,
a phenomenon which is not detected by the Spectral Theorem.

The paper is structured as follows.
Section 3 is the core of our paper: it contains the proofs of Theorems 2.1–2.3. In

Section 3.1 we show that the positive spectrum of A is approximated by the union
of the spectra of the Aj , j D 1; : : : ; mC, and vice versa, up to an error of order
O.��1/. In Section 3.2 we demonstrate that our construction is asymptotically pre-
cise, namely, that when performing the above approximation no eigenvalue is missed.
A key ingredient is a carefully devised partition of the positive semi-axis, provided in
Section 3.2.1.

Section 4 is concerned with the analysis of hyperbolic systems. In Section 4.1
we focus on first order systems: after briefly recalling the construction of the propag-
ator (wave group), we analyse the relation between the representation of the latter
in terms of oscillatory integrals and our pseudodifferential projections, thus proving
Theorem 2.4. In Section 4.2 we perform a similar analysis for nonnegative second
order operators, proving Theorem 2.5.

Finally, in Section 5 we show how results from Section 3, Section 4 and the first
part of this work [12] can be used to refine our understanding of asymptotic distribu-
tion of eigenvalues for first order systems.

The paper is complemented by two appendices.

3. Spectral analysis: partitioning the spectrum

3.1. Separating positive eigenvalues into m
C distinct series

The goal of this section is to show that the positive spectrum of the operators Aj

defined by (2.2) and the positive spectrum of A are mutually close, so as to prove
Theorems 2.1 and 2.2.

Further on in this section, all estimates are to be understood as asymptotic estim-
ates as k ! C1, unless otherwise specified.

Proof of Theorem 2.1. Let u
.j /

k
be a normalised eigenfunction of Aj corresponding to

the eigenvalue �
.j /

k
, i.e.

Aj u
.j /

k
D �

.j /

k
u

.j /

k
; (3.1)

ku
.j /

k
kL2 D 1: (3.2)
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For every S 2 ‰�1, in view of the identity

Su
.j /

k
D .�

.j /

k
/�nS.Aj /nu

.j /

k
; n D 1; 2; : : : ;

and Weyl’s law

�
.j /

k
D

� 1

.2�/d

Z

h.j /.x;�/<1

dVolT �M

��s=d

ks=d C o.ks=d /; (3.3)

see Theorem B.1, we have
Su

.j /

k
D O.k�1/: (3.4)

The above asymptotic estimate (as well as similar estimates in subsequent formulae)
is understood in the strongest possible sense: any given partial derivative is estimated
by any given negative power of k uniformly over M .

We claim that
kPlu

.j /

k
kL2 D O.k�1/ for l ¤ j : (3.5)

Indeed, taking into account (2.2) and using (3.4), for l ¤ j we have

� sgn.h.l//P �
l APlu

.j /

k
D �

.j /

k
Plu

.j /

k
C O.k�1/;

which implies

� sgn.h.l//hPlu
.j /

k
; P �

l APlu
.j /

k
i D �

.j /

k
kPl u

.j /

k
k2

L2 C O.k�1/: (3.6)

Combining (3.6) with Theorem 1.2(b) and using once again (3.4), we obtain

�
.j /

k
kPlu

.j /

k
k2

L2 � O.k�1/;

which is equivalent to (3.5).
Formulae (3.1)–(3.4) imply

Aj Plu
.j /

k
D �

.j /

k
Plu

.j /

k
C O.k�1/;

which combined with (3.3) and (3.5) yields

kAj Plu
.j /

k
kL2 D O.k�1/ for l ¤ j: (3.7)

By elliptic regularity formulae (3.5) and (3.7) give us

Plu
.j /

k
D O.k�1/ for l ¤ j: (3.8)

Now, (2.2) and (3.1) imply

Au
.j /

k
D �

.j /

k
u

.j /

k
C 2

X

lD1;:::;mC

l¤j

P �
l APlu

.j /

k
;
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which, on account of (3.8), can be recast as

Au
.j /

k
D �

.j /

k
u

.j /

k
C O.k�1/: (3.9)

Formulae (3.2) and (3.9) yield (2.10).

Proof of Theorem 2.2. Let uk 2 L2.M/ be a normalised eigenfunction of A corres-
ponding to the eigenvalue �k > 0, i.e.

Auk D �kuk; (3.10)

kukkL2 D 1: (3.11)

The task at hand is to show that there exists a j 2 ¹1; : : : ; mCº such that

Aj v.j / D �kv.j / C O.k�1/ (3.12)

for some smooth v.j / with kv.j /kL2 D 1. Indeed, formula (3.12) and the fact that
kv.j /kL2 D 1 imply (2.11).

Arguing as in the proof of Theorem 2.1, one can show that for every S 2 ‰�1

we have
Suk D O.k�1/; (3.13)

where the asymptotic estimate (as well as similar estimates in subsequent formulae)
is understood in the strongest possible sense: any given partial derivative is estimated
by any given negative power of k uniformly over M .

We claim that

Pluk D O.k�1/ for every l 2 ¹�1; : : : ; �m�º: (3.14)

Indeed, formula (3.10), Theorem 1.2(a), and formula (3.13) imply

P �
l APluk D �kPluk C O.k�1/ (3.15)

for every l , which, in turn, implies

huk ; P �
l APluki D �kkPlukk2

L2 C O.k�1/: (3.16)

Combining (3.16) with Theorem 1.2(b) and using once again (3.13) we obtain, for
l < 0,

�kkPlukk2
L2 � O.k�1/

and hence
kPlukkL2 D O.k�1/: (3.17)
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By elliptic regularity, (3.15), (3.17), and (3.11) give us (3.14) (recall that Pl and A

commute modulo ‰�1).
Now, in view of properties of differential projections, (3.13) and (3.14), we have

uk D
mC
X

lD1

Pluk C O.k�1/: (3.18)

Formulae (3.18) and (3.11) imply that

kPj ukkL2 � 1

mC C 1
(3.19)

for some j 2 ¹1; : : : ; mCº. By direct inspection we have

Aj Pj uk D �kPj uk C O.k�1/; (3.20)

see (2.2), (3.10), and (3.13).
Formulae (3.19) and (3.20) give us (3.12) with v.j / D Pj uk=kPj ukkL2 .

We summarise below in the form of a proposition some of the results obtained
along the way in the above proofs, as they will be useful later on.

Proposition 3.1. (a) Let uk be a normalised eigenfunction of A corresponding to the

eigenvalue �k . Then

Pluk D O.k�1/ for every l 2 ¹�1; : : : ; �m�º: (3.21)

(b) Let u
.j /

k
be a normalised eigenfunction of Aj corresponding to the eigen-

value �
.j /

k
. Then

Plu
.j /

k
D O.k�1/ for every l ¤ j: (3.22)

(c) Under the same assumptions of part (b), we have

Au
.j /

k
D �

.j /

k
u

.j /

k
C O.k�1/: (3.23)

3.2. Spectral completeness

The goal of this section is to prove Theorem 2.3. The first steps in this direction were
Theorems 2.1 and 2.2 which we proved in Section 3.1. The missing ingredient is
taking account of the enumeration of eigenvalues, i.e. showing that none were missed
when approximating the positive spectrum of A by the positive spectra of the Aj ,
j D 1; : : : ; mC.
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Remark 3.2. Note that if (2.13) from Theorem 2.3 holds for some ˛ > 0, then it
holds for all 0 < Q̨ � ˛ with r Q̨ D r˛. We will make use of this fact at various points
of forthcoming arguments: whenever required, we will assume, without loss of gen-
erality, that ˛ is as large as needed.

The proof of Theorem 2.3 is more sophisticated than that of Theorems 2.1 and 2.2.
It requires devising a carefully chosen partition of the positive semi-axis and a number
of preparatory results which will be given in Sections 3.2.1 and 3.2.2 respectively,
before addressing the actual proof in Section 3.2.3.

Throughout this section we adopt the following notation:

N.�I �/ WD #¹�k j � � � � �k � � C �º;

zN.�I �/ WD #¹�k j � � � � �k � � C �º:

We will use the capital letter C for denoting some positive constants, the precise
values of which are unimportant and may change from line to line.

3.2.1. Partition of the positive semi-axis. We seek a partition of the positive semi-
axis .0; C1/ into subintervals .�n; �nC1�, n D 0; 1; 2; : : : , satisfying the following
properties:

(a) limn!1 �n D C1,

(b) the length of these intervals, �nC1 � �n, tends to zero in such a way that it
would allow us to achieve the required remainder term estimate in (2.13),

(c) each �n, n D 1; 2; : : : , is at a distance & n� from the set of all eigenval-
ues (2.1) and (2.12), for some sufficiently large  > 1.

Let ˛ > 0 be the exponent from Theorem 2.3. Put

�0 WD 0; (3.24)

�n WD nˇ C cnn�1; n D 1; 2; : : : ; (3.25)

where

ˇ WD 1

1 C ˛d
s

(3.26)

and the cn are some real numbers. Note that ˇ 2 .0; 1/ and it can be made arbitrarily
small by choosing ˛ sufficiently large.

Lemma 3.3. If

cn 2 Œ�ˇ=4; ˇ=4� for all n D 1; 2; : : : ; (3.27)

then the �n form a strictly increasing sequence.
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Proof. Our choice of ˇ guarantees �0 < �1. Therefore, it is enough to show that

nˇ C ˇ

4n
< .n C 1/ˇ � ˇ

4n
(3.28)

for all n D 1; 2; : : :. Clearly, (3.28) implies �n < �nC1, cf. (3.25), because n�1 >

.n C 1/�1.
The inequality (3.28) is an immediate consequence of the Mean Value Theorem.

Lemma 3.3 tells us that the sequence �n constructed in accordance with equa-
tions (3.24)–(3.27) yields a partition of the positive semi-axis, thus establishing prop-
erty (a).

Property (b) is established by the following Lemma.

Lemma 3.4. We have

�nC1 � �n D O.�
� ˛d

s
n / as n ! C1: (3.29)

Proof. Formula (3.25) implies

�nC1 � �n D O.nˇ�1/ D O..�1=ˇ
n /ˇ�1/ D O.�

1� 1
ˇ

n / as n ! C1: (3.30)

Combining (3.30) and (3.26) we obtain (3.29).

Suppose that �k 2 .�n; �nC1�. Using Theorem B.1, we obtain

�n D b�s=d ks=d C o.ks=d / as k ! C1:

This gives us a different take on the statement of Lemma 3.4 in that it allows us to
equivalently recast (3.29) as

�nC1 � �n D O.k�˛/ as k ! C1: (3.31)

Finally, the following Lemma establishes that the cn can be chosen in such a way
that our partition possesses property (c).

Lemma 3.5. There exist constants  > 1 and C > 0 such that, for a suitable choice

of cn in (3.25) compatible with condition (3.27), we have

dist
�

�n;

mC
[

j D1

�C.Aj / [ �C.A/
�

� C n� (3.32)

for all n D 1; 2; : : : .
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�n D nˇ C cnn�1 �nC1

�k
�kCr˛

& n� & n� & n� & n�

� �
� ˛d

s
n

ˇ D 1

1C ˛d
s

 D 1 C ˇd
s

Figure 1. Construction of the partition of the positive semi-axis

Proof. In order to prove the lemma, it is enough to estimate from below the size of
the largest gap in the set

�

mC
[

j D1

�C.Aj / [ �C.A/
�

\
h

�n � ˇ

4n
; �n C ˇ

4n

i

: (3.33)

To begin with, let us estimate from above the number of eigenvalues we can have in
the interval Œ�n � ˇ

4n
; �n C ˇ

4n
�.

Theorem B.1 tells us that

N
�

�nI ˇ

4n

�

C zN
�

�nI ˇ

4n

�

D o.n
ˇd
s /: (3.34)

The quantity

sup
x2Œ�n� ˇ

4n ;�nC ˇ
4n �

dist
�

x;
�

mC
[

j D1

�C.Aj / [ �C.A/
�

\
h

�n � ˇ

4n
; �n C ˇ

4n

i�

is minimised when the eigenvalues �k and �k are equidistributed in Œ�n � ˇ
4n

;

�n C ˇ
4n

�. As we are looking at an interval of length ˇ
2n

, formula (3.34) implies that
we can choose cn such that (3.32) holds for

 D 1 C dˇ

s
: (3.35)

The construction of our partition is summarised in Figure 1.
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3.2.2. Preparatory lemmata. We will now state and prove a few simple lemmata.

Lemma 3.6. Let �1 � �2 � � � � � �r be real numbers and let uk , k D 1; : : : ; r , be

an orthonormal set in L2.M/. Suppose that

k.A � �k/ukkL2 � "; k D 1; : : : ; r: (3.36)

Then

#¹� j � 2 �.A/ \ Œ�1 �
p

r"; �r C
p

r"�º � r: (3.37)

Proof. Without loss of generality, we can assume that �r � 0 and �1 D ��r . Arguing
by contradiction, suppose (3.37) is not true. Then one can choose a u 2 L2.M/ such
that

u D
r

X

kD1

akuk; (3.38)

r
X

kD1

jakj2 D 1; (3.39)

orthogonal to the eigenfunctions of A corresponding to eigenvalues in Œ��r � p
r";

�r C p
r"�.

On the one hand, the Spectral Theorem implies

kAukL2 > �r C
p

r": (3.40)

On the other hand, using formulae (3.36), (3.38), (3.39), the triangle inequality in
L2.M/, and the Cauchy–Schwarz inequality in C

r , we obtain

kAukL2 �






r
X

kD1

ak.A � �k/uk







L2
C







r
X

kD1

ak�kuk







L2
�

p
r" C �r : (3.41)

Formulae (3.40) and (3.41) give us a contradiction.

Lemma 3.7. Let u
.j /

k
be a normalised eigenfunction of Aj corresponding to the

eigenvalue �
.j /

k
. Then

hu.j /

k
; u

.l/

k0 i D O.n�1/ (3.42)

for l ¤ j and for all k; k0 such that �
.j /

k
; �

.l/

k0 2 .�n; �nC1�.

Proof. Using Proposition 3.1(b) and properties of pseudodifferential projections we
get

hu.j /

k
; u

.l/

k0 i D hPj u
.j /

k
; Plu

.l/

k0 i C O.n�1/

D hPlPj u
.j /

k
; u

.l/

k0 i C O.n�1/ D O.n�1/:
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Lemma 3.8. Let ak; bk , k D 1; : : : ; r , be nonnegative real numbers. Suppose that

r
X

kD1

ak � C (3.43)

and
r

X

kD1

bn D 1: (3.44)

Then there exists a Qk 2 ¹1; : : : ; rº such that

a Qk � Cb Qk : (3.45)

Proof. Suppose
ak > C bk for all k D 1; : : : ; r: (3.46)

Then summing both sides of (3.46) over k and using (3.44) we obtain
Pr

kD1 ak > C;

which contradicts (3.43).

In the proof of Theorem 2.3 we will need to construct a set of orthonormal func-
tions out of a set of r functions which are only approximately orthonormal, up to an
error that decays superpolynomially. The Gram–Schmidt process, as well as its stand-
ard modifications, yields a number of terms growing factorially with r , thus resulting
in an overall error that is too big for our purposes. The following lemma will give us
an orthonormalisation procedure which circumvents this shortcoming.

Lemma 3.9. Let F be an Hermitian r � r matrix such that

kF � Ikmax � 1

3r2
; (3.47)

where I is the r � r identity matrix and kF kmax WD max1�j;k�r jFjkj is the max

matrix norm. Then there exists an Hermitian matrix G such that

GF G D I (3.48)

and

kG � Ikmax � kF � Ikmax: (3.49)

Proof. It is easy to see that under the condition (3.47) the matrix F is positive definite.
Put

R WD F � I (3.50)

and define

G WD F �1=2 D
1

X

kD0

�

�1
2

k

�

Rk: (3.51)
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The series on the right-hand side of (3.51) converges in the max matrix norm as soon
as kRkmax < r�1, which is guaranteed by (3.47). Of course, (3.51) implies (3.48).

Formulae (3.51), (3.50) and (3.47) imply

kG � Ikmax �
1

X

kD1

ˇ

ˇ

ˇ

ˇ

�

�1
2

k

�ˇ

ˇ

ˇ

ˇ

kRkkmax � 1

2
kRkmax C

1
X

kD2

rkkRkk
max

� 1

2
kRkmax C r2kRk2

max

1 � rkRkmax
� 1

2
kRkmax C

1
3
kRkmax

1 � 1
3r

� kRkmax:

In the above calculation we used the weighted submultiplicative property of the max
matrix norm, kRkkmax � rkkRkk

max.

Lastly, we recall for the reader’s convenience a fact from elementary functional
analysis.

Lemma 3.10. Let B be a self-adjoint operator in a Hilbert space .H;k � kH / with dis-

crete spectrum. Let R be a positive number. Let �k , k D 1; : : : ; r , be all the eigenvalues

of B on the closed interval Œ�R; R�, and let vk be the corresponding eigenfunctions.

Then for any v 2 D.B/, v ¤ 0, satisfying

hvk; viH D 0; k D 1; : : : ; n; (3.52)

we have

kBvkH > RkvkH : (3.53)

3.2.3. Proof of Theorem 2.3. We start by proving two propositions establishing that,
for sufficiently large n, we have the same number of eigenvalues �k and �k in each
interval .�n; �nC1�.

Proposition 3.11. There exists a natural number K such that for all n > K we have

N
��n C �nC1

2
I �nC1 � �n

2

�

� zN
��n C �nC1

2
I �nC1 � �n

2

�

: (3.54)

Proof. Suppose zN.
�nC�nC1

2
I �nC1��n

2
/ D r . This means that the interval .�n; �nC1�

contains precisely r elements �pC1 � � � � � �pCr from the sequence (2.12) (recall
that we have no eigenvalues in a neighbourhood of the endpoints of our partition).

Each �pCk , k D 1; : : : ; r , is an eigenvalue of Aj for some j . Let us denote by
vk , k D 1; : : : ; r , the corresponding normalised eigenfunctions. Here we assume that
eigenfunctions corresponding to the same operator Aj are chosen to be orthogonal.

In view of Lemma 3.7, we have

hvk ; vk0i D ıkk0 C O.n�1/; k; k0 D 1; : : : ; r; (3.55)



M. Capoferri and D. Vassiliev 318

where ıkk0 is the Kronecker delta.
Let F be the r � r matrix whose entries are defined in accordance with

Fkk0 WD hvk ; vk0i; 1 � k; k0 � r; (3.56)

and let G be the matrix given by Lemma 3.9. Then, formula (3.48) implies that the
functions

Qvk WD
r

X

qD1

Gqkvq; k D 1; : : : ; r; (3.57)

satisfy
h Qvk; Qvk0i D ıkk0 ; k; k0 D 1; : : : ; r: (3.58)

Furthermore, as kF � Ikmax D O.n�1/ in view of (3.55)–(3.56), formula (3.49) and
elliptic regularity imply

Qvk D vk C O.n�1/; k D 1; : : : ; r: (3.59)

Formula (3.59) and Proposition 3.1(c) give us k.A � �pCk/ QvkkL2 D O.n�1/,
k D 1; : : : ; r . In particular, we have

k.A � �pCk/ QvkkL2 � C n� Q ; k D 1; : : : ; r; (3.60)

for some C > 0 independent of k and n, and Q WD ˇd
2s

C  C 1.
In light of (3.58) and (3.60), we can apply Lemma 3.6 to obtain

#¹�k j �k 2 Œ�pC1 � C
p

rn� Q ; �pCr C C
p

rn� Q �º � r: (3.61)

As
p

r D o.n
ˇd
2s /, see Theorem B.1, we have

p
rn� Q D o.n��1/. Hence, Lemma 3.5

tells us that Œ�pC1 � C
p

rn� Q ;�pCr C C
p

rn� Q � � .�n;�nC1� for sufficiently large n,
so that (3.61) implies (3.54).

Proposition 3.12. There exists a natural number K such that for all n > K we have

zN
��n C �nC1

2
I �nC1 � �n

2

�

� N
��n C �nC1

2
I �nC1 � �n

2

�

: (3.62)

Proof. Let uk be orthonormal eigenfunctions of A corresponding to �k and, for
each j , let u

.j /

k
be orthonormal eigenfunctions of Aj corresponding to �

.j /

k
.

Let us define

En WD span.uk j �k 2 .�n; �nC1�/;

zEn WD span.u
.j /

k
j �

.j /

k
2 .�n; �nC1�; j D 1; : : : ; mC/:
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Arguing by contradiction, suppose

zN
��n C �nC1

2
I �nC1 � �n

2

�

< N
��n C �nC1

2
I �nC1 � �n

2

�

:

Then there exists a u 2 En, kukL2 D 1, such that

hu; vi D 0 for all v 2 zEn: (3.63)

Proposition 3.1(a) implies

u D
mC
X

j D1

Pj u C O.n�1/; (3.64)

whereas Proposition 3.1(b) implies

u
.j /

k
D Pj u

.j /

k
C O.n�1/ (3.65)

for j D 1; : : : ; mC and all k such that u
.j /

k
2 zEn.

We claim that
hu.j 0/

k
; Pj ui D O.n�1/ (3.66)

for all j; j 0 D 1; : : : ; mC and all k such that u
.j /

k
2 zEn. Indeed, for j ¤ j 0 (3.66)

follows from (3.65) and Theorem 1.2(a). For j D j 0, using Theorem 1.2(a), (3.65)
and (3.63), we obtain

hu.j /

k
; Pj ui D hPj u

.j /

k
; ui C O.n�1/ D hu.j /

k
; ui C O.n�1/ D O.n�1/:

By the Spectral Theorem, we have






�

A � �nC1 C �n

2

�

u






L2
� �nC1 � �n

2
: (3.67)

Squaring (3.67), substituting (3.64) in and using Theorem 1.2(a), we get

mC
X

j D1







�

A � �nC1 C �n

2

�

Pj u






2

L2
� .�nC1 � �n/2

4
C O.n�1/: (3.68)

Put
� WD ˇ C  (3.69)

and let J WD ¹j 2 ¹1; : : : ; mCº j kPj ukL2 � n��º. As

mC
X

j D1

kPj uk2
L2 D 1 C O.n�1/; (3.70)
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the set J is nonempty.
When we restrict the summation to indices from J , formula (3.70) reads

X

j 2J

kPj uk2
L2 D 1 C O.n��/:

By suitably rescaling the function u, let us define a function Qu such that
X

j 2J

kPj Quk2
L2 D 1: (3.71)

By restricting the summation to indices from the set J only and expressing the result
in terms of Qu, formula (3.68) turns into

X

j 2J







�

A � �nC1 C �n

2

�

Pj Qu






2

L2
� .�nC1 � �n/2

4
.1 C C n��/: (3.72)

On account of (3.71) and (3.72), Lemma 3.8 implies that there exists an l 2 J such
that







�

Al � �nC1 C �n

2

�

Pl Qu






2

L2
� .�nC1 � �n/2

4
.1 C C n��/kPl Quk2

L2
: (3.73)

In (3.73) we were able to replace A with Al by resorting to formula (2.2), which
implies

APl D AlPl mod ‰�1: (3.74)

Formula (3.66) tells us that

hu.l/

k
; Pl Qui D O.n�1/ (3.75)

for all k such that u
.l/

k
2 zEn. Put

Oul WD Pl Qu �
X

kW�.l/

k
2.�n;�nC1�

hu.l/

k
; Pl Quiu.l/

k
; (3.76)

so that
hu.l/

k
; Ouli D 0 for all u

.l/

k
2 zEn: (3.77)

Formulae (3.76) and (3.75) give us Oul D Pl Qu C O.n�1/, so (3.73) implies






�

Al � �nC1 C �n

2

�

Oul







L2
� �nC1 � �n

2
.1 C C n��/k OulkL2

: (3.78)

Formula (3.69) and Lemma 3.4 imply .�nC1 � �n/n�� D O.n��1/. Therefore,
in view of Lemma 3.5, for sufficiently large n we have

zN
��n C �nC1

2
I �nC1 � �n

2

�

D zN
��n C �nC1

2
I .�nC1 � �n/.1 C C n��/

2

�

: (3.79)
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But, on account of Lemma 3.10, formulae (3.78) and (3.77) imply

zN
��n C �nC1

2
I .�nC1 � �n/.1 C C n��/

2

�

> zN
��n C �nC1

2
I �nC1 � �n

2

�

;

which contradicts (3.79).

Theorem 2.3 now follows easily.

Proof of Theorem 2.3. Propositions 3.11 and 3.12 imply that there exists a natural K

such that

N
��n C �nC1

2
I �nC1 � �n

2

�

D zN
��n C �nC1

2
I �nC1 � �n

2

�

for all n > K. This means that for all n > K each interval .�n; �nC1� contains the
same number of eigenvalues �k from (2.1) and eigenvalues �k from (2.12).

Let

k0 WD min¹k j �k 2 .�KC1; �KC2�º; k00 WD min¹k j �k 2 .�KC1; �KC2�º;

and put r˛ WD k00 � k0. Then, using formula (3.31), we arrive at

�k � �kCr˛
D O.k�˛/ as k ! C1:

Remark 3.13. Observe that in the proofs of Theorems 2.1–2.3 choosing the operators
Aj precisely in accordance with formula (2.2) is not crucial. One can, for instance,
replace (2.2) with

Aj WD A �
X

lD1;:::;mC

l¤j

cj;lP
�
l APl ; j D 1; : : : ; mC;

where cj;l > 1. What we mainly relied upon is the fact that the operators Aj satisfy
the properties

P �
j Aj Pj D P �

j APj mod ‰�1;

ŒAj ; Pl � D 0 mod ‰�1 for all l;

P �
l Aj Pl � 0 mod ‰�1 for l ¤ j:

4. Invariant subspaces in hyperbolic systems

In this section we will apply our results to the study of first and second order hyper-
bolic systems.
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4.1. First order operators

Before addressing the proof of Theorem 2.4, let us recall, in an abridged manner and
for the convenience of the reader, the propagator construction from [11], which builds
upon [13, 21, 28] and is an extension to first order systems of earlier results for scalar
operators [9, 10].

Let A 2 ‰1 be an operator as in Section 1. For each j 2 ¹�m�; : : : ;�1;1; : : : ;mCº
let us denote by .x.j /.t I y; �/; �.j /.t I y; �// the Hamiltonian flow in the cotangent
bundle generated by the Hamiltonian h.j /.x; �/, namely, the solution to Hamilton’s
equations

´

Px.j / D h�.x.j /; �.j //;

P�.j / D �hx.x.j /; �.j //
(4.1)

with initial condition .x.j /.0Iy;�/; �.j /.0Iy;�// D .y;�/. Here and further on the dot
denotes differentiation with respect to t and subscripts denote partial differentiation.

For each j choose a function '.j /.t; xIy;�/ 2 C 1.R � M � T 0M IC/ positively
homogeneous in � of degree 1 satisfying

(i) '.j /jxDx.j / D 0,

(ii) '
.j /
x˛ jxDx.j / D �

.j /
˛ ,

(iii) det '
.j /
x˛�ˇ

jxDx.j / ¤ 0,

(iv) Im '.j / � 0.

Such functions are called phase functions and they always exist [21, Lemma 1.4].
Then the propagator U.t/ WD e�i tA can be written, modulo an infinitely smoothing

operator, as the sum of precisely m oscillatory integrals

U.t/ D
X

j

U .j /.t/ mod C 1.RI ‰�1/ (4.2)

where

ŒU .j /.t/u�.x/ D 1

.2�/d

Z

T 0M

ei'.j /.t;xIy;�/
a

.j /.t I y; �/

�.j /.t; xI y; �/w.j /.t; xI y; �/u.y/ dy d� (4.3)

and

• the function �.j / 2 C 1.R � M � T 0M/ is a cut-off satisfying

(a) �.j /.t; xI y; �/ D 0 on ¹.t; xI y; �/ j jh.j /.y; �/j � 1=2º,

(b) �.j /.t; xIy;�/ D 1 on the intersection of ¹.t; xIy;�/ j jh.j /.y;�/j � 1º with
some conical neighbourhood of ¹.t; x.j /.t I y; �/I y; �/º,

(c) �.j /.t;xIy;˛�/ D �.j /.t;xIy;�/ for ˛ � 1 on ¹.t;xIy;�/ j jh.j /.y;�/j � 1º;
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• the weight w.j / is defined by the phase function '.j / in accordance with

w.j /.t; xI y; �/ WD Œdet2.'
.j /
x˛�ˇ

/�
1
4 ;

with the smooth branch of the complex root chosen in such a way that

w.j /.0; yI y; �/ D 1:

The smooth matrix-function a
.j / 2 S0

ph.R � T 0M I Mat.mI C// appearing in (4.3)

is the unknown in the algorithm for the construction of U .j /.t/. It is an element in
the class of polyhomogeneous symbols of order zero with values in m � m complex
matrices, which means that a

.j / admits an asymptotic expansion in components pos-
itively homogeneous in momentum,

a
.j /.t I y; �/ �

C1
X

kD0

a
.j /

�k
.t I y; �/; a

.j /

�k
.t I y; ˛�/ D ˛�k

a
.j /

�k
.t I y; �/ for all ˛ > 0:

The symbol a
.j / is determined by the requirement that U .j /.t/ satisfies, in a distribu-

tional sense, the hyperbolic equation

.�i@t C A/U .j /.t/ D 0 mod C 1.RI ‰�1/: (4.4)

Note that a
.j / does not depend on x: this is achieved by means of a procedure called

reduction of the amplitude, which turns the partial differential equations brought about
by (4.4) into a hierarchy of transport equations for the homogeneous components of
a

.j / – ordinary differential equations in the variable t – which can be solved iterat-
ively. We refer the reader to [11, Section 3] for further details.

The initial conditions for the transport equations are obtained from the initial con-
dition for the propagator itself:

X

j

U .j /.0/ D Id mod ‰�1: (4.5)

Clearly, the oscillatory integrals U .j /.0/ define pseudodifferential operators in ‰0.
Furthermore, formula (4.5) tells us that the oscillatory integrals U .j /.t/ for different
j ’s are not independent, but they are related to one another via the initial condition.

By examining formulae (4.3)–(4.5) it is not difficult to see that

.U .j /.0//prin D P .j /:

This turns out not to be a coincidence: the following theorem will allow us to establish
a relation between the pseudodifferential operators U .j /.0/ and our pseudodifferential
projections Pj .
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Theorem 4.1. Put

Vlj .t/ WD PlU
.j /.t/: (4.6)

Then for all j; l 2 ¹�m�; : : : ; �1; 1; : : : ; mCº, j ¤ l , we have

Vlj .t/ D 0 mod C 1.RI ‰�1/: (4.7)

Proof. By the definition of U .j /.t/ and the fact that ŒA;Pl � 2 ‰�1, the operator (4.6)
satisfies

.�i@t C A/Vlj .t/ D 0 mod C 1.RI ‰�1/: (4.8)

Arguing by contradiction, suppose that (4.7) is false. Then there exists an integer k � 0

such that
Vlj .t/ 2 C 1.RI ‰�k/; Vlj .t/ 62 C 1.RI ‰�k�1/: (4.9)

Let .Vlj /prin;k.t Iy;�/ be the principal symbol of Vlj .t/ as an operator in C 1.RI‰�k/,
cf. [11, Definition 3.7].

A simple analysis of the leading transport equation for the homogeneous compon-
ents of the symbol of Vlj .t/ arising from (4.8) – see, e.g., [25, Section 3.3.4] – tells
us that (4.8) can be satisfied only if

ŒP .j /.x.j /.t I y; �/; �.j /.t I y; �//�Œ.Vlj /prin;k.t I y; �/� D Œ.Vlj /prin;k.t I y; �/�: (4.10)

Now, formula (4.6) and the idempotency property of pseudodifferential projec-
tions imply

PlVlj .t/ D Vlj .t/ mod C 1.RI ‰�1/: (4.11)

Computing the principal symbol of the left-hand side of (4.11), we conclude that (4.11)
can only be satisfied if

ŒP .l/.x.j /.t I y; �/; �.j /.t I y; �//�Œ.Vlj /prin;k.t I y; �/� D Œ.Vlj /prin;k.t I y; �/�: (4.12)

In writing (4.12), we used the standard formula for the action of a pseudodifferential
operator on an exponent [32, Section 18] and the fact that Vlj .t/ is an oscillatory
integral with phase function '.j /.

As P .j /P .l/ D 0 pointwise in T �M n ¹0º, formulae (4.10) and (4.12) imply

.Vlj /prin;k.t I y; �/ D 0 for all t 2 R; .y; �/ 2 T 0M n ¹0º;

which contradicts (4.9).

Corollary 4.2. For every j 2 ¹�m�; : : : ; �1; 1; : : : ; mCº we have

U .j /.0/ D Pj mod ‰�1: (4.13)
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Proof. Theorem 1.2(a)(iv) and formula (4.5) imply
X

j

U .j /.0/ D
X

j

Pj mod ‰�1; (4.14)

whereas Theorem 1.2(a)(iv) and Theorem 4.1 imply

U .j /.0/ D Pj U .j /.0/ mod ‰�1: (4.15)

Acting with Pl on the left in (4.14) and using, once again, Theorem 4.1, we obtain

PlU
.l/.0/ D Pl mod ‰�1: (4.16)

Combining (4.15) and (4.16) we arrive at (4.13).

We are now in a position to prove Theorem 2.4.

Proof of Theorem 2.4. The first equality, namely

U .j /.t/ D Pj U.t/ mod C 1.RI ‰�1/;

follows immediately from (4.2) and Theorem 4.1.
Let us prove the second equality, namely

Pj U.t/ D U.t/Pj mod C 1.RI ‰�1/: (4.17)

Put R.t/ WD U.�t/Pj U.t/ � Pj . Then, in view of (2.15), R.t/ satisfies

@t R.t/ D �i
�

�AU.�t/Pj U.t/ C U.�t/Pj AU.t/
�

; (4.18)

R.0/ D 0: (4.19)

As A commutes with U.�t/ and, modulo ‰�1, with Pj , formula (4.18) implies

@t R.t/ D iU.�t/ŒA; Pj �U.t/ D 0 mod C 1.RI ‰�1/: (4.20)

Combining (4.20) and (4.19) we obtain

R.t/ D 0 mod C 1.RI ‰�1/;

which gives us (4.17).

In fact, Theorem 4.1 and Theorem 2.4 imply the following stronger result.

Corollary 4.3. We have

Pj U .j /.t/ D U .j /.t/Pj D U .j /.t/ mod C 1.RI ‰�1/ for all j (4.21)

and

PlU
.j /.t/ D U .j /.t/Pl D 0 mod C 1.RI ‰�1/ for l ¤ j: (4.22)
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Proof. Theorem 4.1 implies

U .j /.t/ D Pj U .j /.t/ mod C 1.RI ‰�1/: (4.23)

Substituting (4.2) into (4.17) and using (4.23) we obtain

U .j /.t/ D
X

l

PlU
.l/.t/Pj mod C 1.RI ‰�1/: (4.24)

Multiplying (4.24) by Pj on the left and using (4.23) once again we get

Pj U .j /.t/ D U .j /.t/Pj mod C 1.RI ‰�1/: (4.25)

Formulae (4.23) and (4.25) give us (4.21).
Now, formula (4.21) implies that for l ¤ j we have

U .j /.t/Pl D U .j /.t/Pj Pl D 0 mod C 1.RI ‰�1/: (4.26)

Formula (4.26) and Theorem 4.1 give us (4.22).

Remark 4.4. Note that a weaker version of Theorem 2.4 was, effectively, obtained
in [11, Section 3]. More precisely, it was shown that

mC
X

j D1

U .j /.t/ D
mC
X

j D1

Pj U.t/ mod C 1.RI ‰�1/;

�1
X

j D�m�

U .j /.t/ D
�1
X

j D�m�

Pj U.t/ mod C 1.RI ‰�1/:

To see that this is the case, one needs to combine [11, Theorem 3.3] with [12, The-
orem 2.7].

Note also that in [5, Section 5] the authors analysed, in a similar spirit, the loc-
alisation of the propagator in a given spectral window of the operator A, albeit in a
somewhat different setting. The use of pseudodifferential projections in the study of
the unitary evolution for matrix operators was employed in [6] as well, in the semi-
classical setting and under additional assumptions on A, in the context of Egorov-type
theorems. See also [14].

Theorem 2.4 tells us that pseudodifferential projections decompose L2.M/ into
almost-orthogonal almost-invariant subspaces under the unitary time evolution. That
is, if v 2 Pj L2.M/ then

U.t/v D U .j /.t/v mod C 1.R � M/;

U .l/.t/v D 0 mod C 1.R � M/ for l ¤ j:
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4.2. Nonnegative second order operators

In this section we will show that one can obtain results analogous to those from Sec-
tion 4.1 for nonnegative second order operators.

Let A 2 ‰2 be a nonnegative self-adjoint elliptic operator and suppose that its
principal symbol has simple eigenvalues. As explained in Section 2, we define its
propagator to be

U.t/ WD e�i t
p

A: (4.27)

The fact that
p

A is a well-defined pseudodifferential operator follows, for example,
from [31]. The unitary operator (4.27) is the solution operator of the first order hyper-
bolic pseudodifferential system .�i@t C

p
A/f D 0, subject to the initial condition

f jtD0 D f0. Of course, the knowledge of U.t/ is sufficient for the construction of
the general solution of the second order hyperbolic system .@2

t � A/f D 0, subject to
initial conditions f jtD0 D f0, .@t f /jtD0 D f1. Indeed, we have

f D cos.t
p

A/f0 C A�1=2 sin.t
p

A/f1 C t
X

kW�kD0

huk; f1i;

where A�1=2 is the pseudoinverse of
p

A (see [27, Chapter 2, Section 2]),

2 cos.t
p

A/ D U.t/ C U.t/� and 2i sin.t
p

A/ D U.t/� � U.t/:

Let h.j /.x; �/, j D 1; : : : ; m, be the eigenvalues of .
p

A/prin D
p

Aprin. Clearly,
the h.j /’s are positively homogeneous in momentum � of degree 1, strictly posit-
ive and distinct. This follows from the fact that A is nonnegative, elliptic and Aprin

has simple eigenvalues. Let '.j /, j D 1; : : : ; mC; be phase functions satisfying con-
ditions (i)–(iv) from Section 4.1. The operator U.t/ can be constructed explicitly,
modulo C 1.RI‰�1/, as the sum of m oscillatory integrals U .j /.t/ of the form (4.3).
Remarkably, the amplitude of the U .j /.t/ can be determined without the need of
extracting the square root of A. Indeed, one can retrace the construction algorithm
outlined in Section 4.1 replacing (4.4) with

.@2
t � A/U .j /.t/ D 0 mod C 1.RI ‰�1/: (4.28)

The use in (4.28) of the second order operator @2
t � A as opposed to its “half-wave”

version �i@t C
p

A is justified by [28, Theorem 3.2.1].

Proposition 4.5. Let Pj and zPj , j D 1; : : : ; m, be the pseudodifferential projections

uniquely determined, modulo ‰�1, by A and
p

A respectively, in accordance with

Theorem 1.2 (a). Then,

Pj D zPj mod ‰�1 (4.29)

for all j .
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Proof. We have

Aprin D
m

X

lD1

h.l/P .l/ (4.30)

and

.
p

A/prin D
m

X

lD1

p

h.l/P .l/;

therefore .Pj /prin D . zPj /prin D P .j /. As Œ zPj ;
p

A� D 0 mod ‰�1, clearly Œ zPj ;A� D 0

mod ‰�1. Then the identity (4.29) follows from [12, Theorem 4.1] and the unique-
ness of pseudodifferential projections.

It is worth remarking that the claim of Proposition 4.5 is a nontrivial property of
our pseudodifferential projections which cannot be obtained by simply looking at the
functional calculus of A and

p
A.

Proof of Theorem 2.5. Equation (2.18) follows immediately by applying Theorem 2.4
to

p
A and using Proposition 4.5.

5. Refined spectral asymptotics

Theorems 2.1–2.3 open the way to computing spectral asymptotics for each of the
m families which the spectrum of A partitions into. We will provide here a brief
description of how the results of this paper can be used to refine our understanding
of results available in the literature, focussing on first order operators. Further on we
assume that A 2 ‰1.

Remark 5.1. One could, in principle, perform the forthcoming argument for nonneg-
ative operators of even order, but this would require a lengthy discussion and would
substantially increase the size of the paper. For this reason we decided to refrain from
discussing refined spectral asymptotics in greater generality in the current paper.

Let N C.�/ be the positive counting function of A and let N C
j .�/ be the positive

counting function of Aj , j D 1; : : : ; mC, defined in accordance with (B.1). Establish-
ing a precise relation between N C.�/ and the N C

j .�/, j D 1; : : : ;mC, is a challenging
task, and it is not a priori clear whether a simple quantitative relation can be estab-
lished in the general case. The issue at hand is that we are dealing with discontinuous
functions which can experience massive jumps in the presence of spectral clusters.

What one can do is to establish a relation between the Weyl coefficients of N C.�/

and those of the N C
j .�/.



Invariant subspaces of elliptic systems II: Spectral theory 329

Let

N C.xI �/ WD
´

0 for � � 0;
P

kW0<�k<�Œvk.x/��vk.x/ for � > 0;

be the positive local counting function of A. In an analogous manner, we define pos-
itive local counting functions N C

j .xI �/ for each of the Aj , j D 1; : : : ; mC.
Let O�W R ! C be a smooth function such that O� D 1 in some neighbourhood

of the origin and supp O� � .�T0; T0/, where T0 is the infimum of lengths of all the
Hamiltonian loops (see (4.1)) originating from all the points of the manifold. Let �

be the inverse Fourier transform of O�, where we adopt the convention

F Œ��.t/ D O�.t/ D
C1
Z

�1

e�i t��.�/ d�;

F
�1Œ O��.�/ D �.�/ D 1

2�

C1
Z

�1

ei t� O�.t/ dt;

for the Fourier transform and inverse Fourier transform, respectively.
It is known [16,18–20,28] that the mollified derivative of the positive local count-

ing function admits a complete asymptotic expansion in integer powers of �:

..N C/0 � �/.x; �/ D ad�1.x/�d�1 C ad�2.x/�d�2 C � � � as � ! C1; (5.1)

..N C
j /0 � �/.x; �/ D a

.j /

d�1
.x/�d�1 C a

.j /

d�2
.x/�d�2 C � � � as � ! C1: (5.2)

Here � stands for the convolution in the variable � and the prime stands for differen-
tiation with respect to �. The functions appearing as coefficients of powers of � in the
asymptotic expansions (5.1) and (5.2) are called Weyl coefficients.

Proposition 5.2. For j 2 ¹1; : : : ; mCº we have

U C
Aj

.t/ D U .j /.t/ mod C 1.RI ‰�1/; (5.3)

where U C
Aj

.t/ WD �.Aj /e�i tAj is the positive propagator of the operator Aj .

Proof. Let Pl and zPl be the pseudodifferential projections associated with A and Aj

respectively, in accordance with Theorem 1.2(a). Recalling (2.2) and arguing as in the
proof of Proposition 4.5, it is easy to see that the zPl are just a reshuffling of the Pl . In
particular, we have

Pj D zP1 mod ‰�1: (5.4)

Indeed, .Aj /prin has only one positive eigenvalue, h.j /, see (2.3).
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Then, formula (5.4) and Corollary 4.2 imply

U C
Aj

.0/ D U .j /.0/ D Pj mod ‰�1: (5.5)

Substituting (4.21) into (4.4) we obtain

.�i@t C APj /U .j /.t/ D 0 mod C 1.RI ‰�1/:

In view of formula (3.74), the above equation can be recast as

.�i@t C Aj /U .j /.t/ D 0 mod C 1.RI ‰�1/: (5.6)

Now, U C
Aj

.t/ also satisfies (5.6) by definition. Thus, U .j /.t/ and U C
Aj

.t/ satisfy
the same first order hyperbolic equation (5.6) with the same initial condition (5.5).
This gives us (5.3).

Theorem 5.3. (a) We have

..N C
j /0 � �/.x; �/ D F

�1Œtr u.j /.t; x; x/ O�.t/� C O.��1/ as � ! C1; (5.7)

where u.t; x; y/ is the Schwartz kernel of U .j /.t/ and tr stands for the matrix trace.

(b) The Weyl coefficients of A and Aj , j D 1; : : : ; mC, are related as

ak.x/ D
mC
X

j D1

a
.j /

k
.x/; k D d � 1; d � 2; : : : (5.8)

(c) The first two Weyl coefficients of Aj read

a
.j /

d�1
.x/ D d

.2�/d

Z

h.j /.x;�/<1

d�; (5.9)

a
.j /

d�2
.x/ D �d.d � 1/

.2�/d

Z

h.j /.x;�/<1

tr
�

P .j /Asub C i

2
¹P .j /; P .j /ºAprin

� 1

d � 1
h.j /.Pj /sub

�

.x; �/d�; (5.10)

where curly brackets denote the Poisson bracket

¹B; C º WD
d

X

˛D1

.Bx˛ C�˛
� B�˛

Cx˛ /

on matrix-functions on the cotangent bundle.
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Proof. (a) Formula (5.7) follows immediately from Proposition 5.2 and [11, (8.2)].
(b) Formula (5.8) is an immediate consequence of [11, (8.2)], (4.2), and (5.7).
(c) Parts (a) and (b) imply that formulae (5.9) and (5.10) can be obtained from [13,

(1.23)] and [13, (1.24)], respectively, by dropping the summation over j . There is an
additional factor d in the right-hand side of (5.9) and an additional factor .d � 1/ in
the right-hand side (5.10): this accounts for the somewhat nonstandard definition of
Weyl coefficients adopted in this paper, compare (5.1) and [13, (1.6)].

Finally, in recasting [13, (1.24)] as (5.10) we used the identities

¹Œv.j /��; v.j /º D i tr..Pj /sub/ (5.11)

and

¹Œv.j /��; Aprin; v.j /º D � tr.¹P .j /; P .j /ºAprin/ C h.j /¹Œv.j /��; v.j /º; (5.12)

where v.j /.x; �/ denotes the normalised eigenvector of Aprin corresponding to the
eigenvalue h.j / and ¹B; C; Dº WD

Pd
˛D1.Bx˛ CD�˛

� B�˛
CDx˛ / is the generalised

Poisson bracket. Formula (5.11) follows from [13, formula (1.20)] and Corollary 4.2
(see also [12, Theorem 2.3]), whereas formula (5.12) is obtained via a lengthy but
straightforward calculation involving (4.30) and properties of pseudodifferential pro-
jections.

In plain English, Theorem 5.3 tells us that, when applying Levitan’s wave method
[22] to the computation of spectral asymptotics for first order systems, the oscillatory
integral U .j /.t/ accounts for precisely the j -th of the m sequences of eigenvalues
into which the spectrum of A was partitioned in Section 3.

A. Simultaneous diagonalization of unbounded operators

In this appendix we present some results from functional analysis. The purpose is to
provide motivation for Theorems 2.1–2.3 in the main text of the paper. All operators
in this appendix are assumed to be linear.

For the sake of clarity, let us start with the finite-dimensional setting. Let H be an
n-dimensional complex inner product space. Given a self-adjoint operator AW H !
H and a number � 2 R we denote by …C.AI �/ the orthogonal projection onto the
eigenspaces of A corresponding to eigenvalues greater than zero and less than �. We
also employ the notation (2.5).
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Theorem A.1. Let A and Aj , j D 1; : : : ; p, be self-adjoint operators. Suppose that

AC D
p

X

j D1

AC
j ; (A.1)

AC
j AC

l
D 0; j; l D 1; : : : ; p; j ¤ l: (A.2)

Then

…C.AI �/ D
p

X

j D1

…C.Aj I �/: (A.3)

Proof. The self-adjoint operators AC
j , j D 1; : : : ; p, commute, hence one can choose

a basis which simultaneously diagonalizes them [17, Theorem 2.3.3]. The diagonal
entries in the matrix representations of the AC

j s are either zeros or positive numbers,
and formula (A.2) tells us that for different j the positive elements in the matrix
representations of the AC

j s are in different positions. This immediately implies (A.3).

Let us now proceed to the infinite-dimensional setting. In what follows H is a sep-
arable complex Hilbert space. We will be dealing with self-adjoint operators which
are not necessarily bounded and this leads to a number of difficulties. Indeed, gener-
alising Theorem A.1 to infinite-dimensional spaces turns out to be a delicate matter.

Let us introduce the following definitions.

Definition A.2. Let AW D ! H be a self-adjoint operator and V � D be a vector
subspace. We say that V is an invariant subspace of the operator A if A.V / � V .

Definition A.3. We say that an invariant subspace V of the self-adjoint operator A is
proper if, for some � in the resolvent set �.A/, the map A � � IdW V ! V is surjective,
and, hence, bijective.

The above definition can be equivalently recast as follows.

Definition A.4. We say that an invariant subspace V of the self-adjoint operator A is
proper if, for some � 2 �.A/, V is an invariant subspace of the resolvent .A � � Id/�1.

Example A.5. (a) Any finite-dimensional invariant subspace is proper.
(b) Let H D L2.M/ and let A 2 ‰s , s 2 R, s > 0, be an elliptic self-adjoint

operator (see Section 1 for notation). Then C 1.M/ is a proper invariant subspace.
(c) Let H D l2, the Hilbert space of square summable sequences x D .x1;x2; : : : /.

Let S W .x1; x2; : : : / 7! .0; x1; x2; : : : / be the right shift operator. Put A WD S C S�

and let V D c00, the vector subspace of sequences that are eventually zero. Then
V is an invariant subspace of the operator A but it is not proper. Indeed, take y D
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.1; 0; 0; : : : / 2 V . It is easy to see that for any � 2 C there does not exist an x 2 V

satisfying .A � � Id/x D y.

The following theorem gives sufficient conditions for the simultaneous diagonal-
izability of a family of unbounded commuting self-adjoint operators.

Theorem A.6. Let H be an infinite-dimensional separable complex Hilbert space

and let Aj , j D 1; : : : ; p, be self-adjoint operators with discrete spectra, which admit

a common proper invariant subspace V dense in H . If

ŒAj ; Al � D 0 on V; j; l D 1; : : : ; p; (A.4)

then there exists an orthonormal basis ¹ukº such that each basis element uk is an

eigenvector of Aj for every j D 1; : : : ; p.

Proof. Consider the pair of operators Aj and Al for some j ¤ l . Definitions A.2, A.3,
and formula (A.4) imply that there exist � 2 �.Aj / and � 2 �.Al/ such that the
resolvents .Aj � � Id/�1 and .Al � � Id/�1 commute on V . Resolvents are bounded
operators and V is dense in H , hence Œ.Aj � � Id/�1; .Al � � Id/�1� D 0 on H .
This, in turn, implies that the operators Aj and Al strongly commute in the sense
of [30, Definition 5.2] in view of [30, Proposition 5.27]. The result now follows
from [30, Theorem 5.21].

Arguing along the lines of the proof of Theorem A.1, we see that Theorem A.6
immediately implies the following.

Theorem A.7. Let H be an infinite-dimensional separable complex Hilbert space

and let A and Aj , j D 1; : : : ; p, be self-adjoint operators with the same domain

D. Suppose that the operators Aj , j D 1; : : : ; p, have discrete spectra and admit a

common proper invariant subspace V dense in H . Furthermore, suppose that condi-

tions (A.1) and (A.4) are fulfilled as well as

hAC
j . � /; AC

l
. � /i D 0 on D � D; j; l D 1; : : : ; p; j ¤ l: (A.5)

Then we have (A.3).

Of course, taking the trace in (A.3) one obtains an analogous result for the count-
ing functions: N C.AI �/ D

Pp
j D1 N C.Aj I �/. Here by N C. � I �/ we denote the

number of eigenvalues, with account of multiplicity, greater than zero and less than �.
Examination of Theorem A.7 and Example A.5 (b) leads to the following corol-

lary.

Corollary A.8. Let A and Aj , j D 1; : : : ; p, be elliptic self-adjoint operators from

the class ‰s , s 2 R, s > 0. Suppose that conditions (A.1) and (A.2) are fulfilled and

that the Aj , j D 1; : : : ; p, commute. Then we have (A.3).
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For the sake of clarity, let us point out that the proper invariant subspace under-
pinning the above corollary is C 1.M/, because

• elliptic self-adjoint pseudodifferential operators and their resolvents map C 1.M/

to C 1.M/ and

• pseudodifferential operators form an algebra.

Remark A.9. Corollary A.8 connects with the arguments presented in Section 2
in that it provided strong motivation for our original conjecture on the structure of
the spectrum of the operator A, compare formulae (A.1), (A.2), and ŒAj ; Al � D 0

with (2.6), (2.7), and (2.4). Note, however, that in the main text the three conditions
are not satisfied precisely but only modulo ‰�1. This calls for a more delicate spec-
tral theoretic analysis than that given in this appendix and is ultimately responsible
for the appearance of remainders in our main results, Theorems 2.1–2.3.

B. Weyl asymptotics for elliptic systems

In this appendix we provide, for the sake of completeness, a short proof of the Weyl
law (one-term asymptotics with rough remainder estimate) for elliptic systems of
arbitrary positive order. Though obtaining this result does not pose significant chal-
lenges, we were unable to find a rigorous proof for it in the literature.

Note that

(a) we are dealing with a system as opposed to a scalar operator,
(b) we allow the order of the operator to be any positive real number and
(c) the operator is not necessarily semi-bounded.

Spectral theory for elliptic systems has a long and troubled history, see [13, Sec-
tion 11] for a review. Two-term asymptotic formulae for the counting function of a first
order system (s D 1) were recently obtained by Chervova, Downes, and Vassiliev [13],
see also [1, 2]. Some results are available for particular special cases, e.g. two-term
asymptotics for nonnegative (pseudo)differential operators of even order are given
in [29, 34], but we are unaware of general results.

Let A 2 ‰s , s > 0, be an operator as in Section 1 and let

N C.�/ WD
´

0 for � � 0;
P

kW0<�k<� 1 for � > 0
(B.1)

be its positive counting function.

Theorem B.1. We have

N C.�/ D b�d=s C o.�d=s/ as � ! C1; (B.2)
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where

b D 1

.2�/d

mC
X

j D1

Z

h.j /.x;�/<1

dVolT �M : (B.3)

Proof. Consider the function

f W .0; C1/ ! Œ0; C1/; f .t/ WD Tr.�.A/e�t jAj/ D
C1
Z

�1

e�t� dN C.�/:

The operators jAj and �.A/ are pseudodifferential operators and this allows us to
apply to the operator �.A/e�t jAj the standard technique from [31], giving us the
asymptotic formula

f .t/ D b�
�d

s
C 1

�

t�d=s C o.t�d=s/ as t ! 0C; (B.4)

where � is the Gamma function. Karamata’s Tauberian theorem [32, Problem 14.2]
tells us that (B.4) implies (B.2).

Remark B.2. Of course, for s D 1 the coefficient b appearing in Theorem B.1 is
related to the coefficient ad�1.x/ appearing in formula (5.1) as

b D 1

d

Z

M

ad�1.x/ dx:
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