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Propagation of polyhomogeneity,

diffraction, and scattering on product cones

Mengxuan Yang

Abstract. We consider diffraction of waves on a product cone. We first show that diffractive

waves enjoy a one-step polyhomogeneous asymptotic expansion, which is an improvement of

Cheeger and Taylor’s classical result of half-step polyhomogeneity of diffractive waves [Comm.

Pure Appl. Math. 35 (1982), 275–331 and 487–529]. We also conclude that on product cones,

the scattering matrix is the diffraction coefficient, which is the principal symbol of the diffractive

half wave kernel, for strictly diffractively related points on the cross section. This generalize

the result of Ford, Hassell and Hillairet in 2-dimensional flat cone settings (Ford, Hassell, and

Hillairet, 2018). In the last section, we also give a radiation field interpretation of the relationship

between the scattering matrix and the diffraction coefficient.

1. Introduction

In this paper, we study the diffraction coefficient of the wave equation

�u D 0

and the scattering matrix corresponding to the Helmholtz equation

.� � �2/u D 0

on a cone C.N /. The diffraction refers to the effect that when a propagating wave

encounters a corner of an obstacle or a slit, its wave front bends around the corner

of the obstacle and propagates into the geometrical shadow region. When studying

the wave equation on cones, we see that its singularities likewise split into two types

after they encounter the cone point. One propagates along the natural geometric exten-

sions of the incoming ray, while other singularities emerge at the cone point and start

propagating along all outgoing directions as a spherical wave. The outgoing singu-

larities are described to leading order by a diffraction coefficient, which is one of the

central objects we study in this paper.
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The (stationary) scattering theory of the wave equation gives an approach to study-

ing the continuous spectrum of the Laplacian on non-compact manifolds. The scatter-

ing matrix, which, intuitively speaking, maps the incoming solution at the infinity of

the (stationary) wave equation to the outgoing solution, is a central object of study.

In this paper, we focus on the diffraction and the scattering of the wave equation on

cones. For notational purposes, we denote our n-dimensional cone by C.N /, which is

RC � N n�1 with metric dr2 C r2h.�;d�/ where h.�;d�/ is the metric on the smooth

manifold N n�1. We consider the fundamental solution to the wave equation on C.N /

corresponding to the Friedrichs extension of the Laplacian. For t large enough, the

singularities of the fundamental solutions consist of two parts by [4, 5]. One lies on a

sphere (up to reflection by the boundary of N ) of radius t to the initial point .r 0; � 0/,

while the other part lies on a sphere of radius t � r 0 around the cone point and is

conormal to ¹r D t � r 0º. We refer the latter to the diffractive wave front, and it is

the main object of our interest in this paper. The former notion will be called the

geometric wave front. See Figure 2 in Section 2 for an example of the geometric

and diffractive waves. The diffraction coefficient is therefore defined by comparing

the principal symbol of the incoming wave to the principal symbol of the diffractive

wave, or equivalently, reading off the principal symbol of the diffractive half wave

kernel. On the other hand, the scattering matrix is defined by considering the leading

order behavior to the stationary wave equation

.� � �2/u D 0

under certain boundary/asymptotic conditions; the solution u then has the leading

order behavior

u � aC.�/r� n�1
2 ei�r C a�.�/r� n�1

2 e�i�r C O.r� nC1
2 / as r ! 1

where aC.�/ is uniquely determined by a�.�/; the scattering matrix S.�/ is then

defined by the unitary map from aC.�/ to a�.�/ for � 2 Rn¹0º.

The following theorem thus relates two central concepts of the theories of diffrac-

tion and scattering:

Theorem 1.1. Away from the intersection of the geometric wave front and diffractive

wave front, the kernel of the diffractive half wave propagator is a conormal distribu-

tion of the form:

UD.t/ D .2�/� nC1
2

Z

ei.rCr 0�t/��K.r; � I r 0; � 0I �/d�jrn�1drd� r 0n�1dr 0d� 0j 1
2 :

The principal symbol K0.r; r 0; �; � 0/ of the diffractive half wave kernel UD.t; r; r 0;
�; � 0/ is related to the kernel of the scattering matrix S.�; �; � 0/ by

K0.r; �; r 0; � 0/ D .2�/�1.rr 0/� n�1
2 S.�; �; � 0/: (1)
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It is worthwhile to point out here that we are actually showing that the smooth part

of the scattering matrix corresponds to the diffraction coefficient, while the singular

part of the scattering matrix corresponds to the geometric wave. This was proved in a

special case of 2-dimensional flat cones by Ford, Hassell and Hillairet [6].

We also give a finer description of the structure of the diffractive wave by show-

ing that it is one-step polyhomogeneous thus improving the result of half-step poly-

homogeneity of diffractive waves that appears in Cheeger and Taylor [4] and [5,

Theorems 5.1 and 5.3]. Consequently, one half of the coefficients that appear in

Cheeger–Taylor’s expansion must vanish. The proof of the following theorem is given

in Section 3.

Theorem 1.2. The symbol K.r; r 0; �; � 0I �/ of the diffractive half wave kernel UD.t/

is one-step polyhomogeneous in � for � > 0, i.e., it admits the following asymptotic

symbol expansion

K.r; r 0; �; � 0I �/ �
�1
X

iD0

Ki .r; r 0; �; � 0/�i : (2)

Finally, we give an interpretation of the relation in Theorem 1.1 in terms of the

radiation field. The radiation field was introduced by Friedlander [9] for smooth

asymptotically Euclidean manifolds. Intuitively, it can be regarded as measuring the

waves of different time delay that arrive at infinity. We define the forward radiation

field RC as the limit, as time goes to infinity, of the derivative of the forward funda-

mental solution of the wave equation along certain light rays. By reversing time, one

can define the backward radiation field R�. The forward/backward radiation field R˙
is related to the scattering matrix S.�/ in the following formula:

S.�/ D F ı RC ı R
�1
� ı F

�1: (3)

This was first introduced by Friedlander [8] in R
n, and was proved later by Sá Bar-

reto [18] for smooth asymptotically Euclidean manifolds. The intuition and motiva-

tion of Theorem 1.1 also come from the following facts. In principle, the scattering

operator

� WD RC ı R
�1
�

is given by the Fourier conjugation of the leading symbol to the forward fundamental

solutions [9]; the scattering matrix is the Fourier conjugation of the scattering oper-

ator [18]. This suggests that the scattering matrix and the diffraction coefficient should

be the same up to some constant or scaling in radial variables.

We combine Cheeger–Taylor’s functional calculus on cones and Melrose–Wun-

sch’s propagation of conormality to give a simpler calculation of the diffractive coef-

ficient and the one-step polyhomogeneity. As for determining the scattering matrix,

we consider it mode-by-mode to reduce the original equation to a Bessel equation.
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The outline of this paper is as follows. In Section 2, we prove a characteriza-

tion of the one-step polyhomogeneous solutions to wave equations on cones and the

propagation of one-step polyhomogeneity for the diffractive wave. These will be used

in Section 3 to determine the diffraction coefficient. Then in Section 3, we compute

the diffraction coefficient using the functional calculus on cones and the propagation

of conormality. In Section 4, we focus on computing the scattering matrix and give

the diffraction-scattering relation, Theorem 1.1, in the end. Finally, in Section 5, we

give an interpretation of this result using the radiation field.

2. Conic diffraction geometry

In this section we recall some basic notions on the geometry of product cones together

with the geometric and diffractive wave on it.

Again, we denote the product cone with total dimension n by C.N / Š RC �
N n�1 with metric dr2 C r2h.�; d�/, where N is a smooth manifold and h is the

metric restricted to N . This is a particular case of general cones .C.Y /; Qg/ with metric

Qg D dr2 C r2 Qh.r; dr; �; d�/, where in our case the metric h does not have r and dr

dependence. Sometimes we also use X to denote the product cone with boundary for

simplicity when the cross section N is not involved explicitly in the discussion, then

@X is its boundary and X o D Xn@X denotes the interior. Without loss of generality,

we assume N has one connected component since otherwise we can restrict to a single

component.

The Laplacian1 on C.N / is defined as

� D D2
r � i

n � 1

r
Dr C ��

r2
;

where Dr WD 1
i

@
@r

is the Fourier normalization of r-derivative and �� is the Laplacian

on N . Following Friedrichs, we define the form domain

D WD Dom.�
1
2 /

D cl¹u 2 C
1
c .X o/ with respect to the norm kdukL2

g.X/ C kukL2
g.X/º;

where “cl” denotes the closure of the set. Hence, the Friedrichs domain is defined as

Dom.�Fr/ D ¹u 2 Dom.�
1
2 /I �u 2 L2

g.X/º

and Ds denotes the corresponding domain of �s=2. Later in this paper, we will use

L2.Rt I Ds/ to denote the regularity on spacetime R � X . The following proposition

from [14, Proposition 3.1] gives a characterization of domains of Friedrichs extension:

1We use the positive Laplacian throughout this paper.
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Proposition 2.1 (domains of the Friedrichs extension). For n > 4,

Dom.�/ D ¹u 2 rwL2
b.X/I �u 2 L2

g.X/º

is independent of w in the range w 2 .�n C 2;�n=2 C 2/, where L2
b
.X/ is the bound-

ary weighted L2-space with r� n
2 L2

b
.X/ D L2

g .X/. For n D 3, the same is true for

w 2 .�1; 0/. For n D 2,

Dom.�/ D ¹u 2 L2
g.X/I u D c C u0; c 2 C; u0 2 rwL2

b.X/; �u 2 L2
g.X/º

is independent of w for w > 0 sufficiently small. In all cases, � is an unbounded

operator:

�W Dom.�/ ! L2
g.X/

and Dom.�/ coincides with the domain of the Friedrichs extension Dom.�Fr/.

Henceforth, we use � to denote the Friedrichs extension of the Laplacian from

the domain C
1
c .X o/. For a more detailed discussion we refer to [13, 14], though it is

worth pointing out the following observation from the proposition:

Corollary 2.2. If u 2 E 0.X o/, i.e., a compactly supported distribution in the interior

of the cone X , then u 2 Ds is equivalent to u 2 H s.X o/.

The d’Alembertian acting on the spacetime R � X is

� D D2
t � �

and we also define the half-wave propagator U.t/ as

U.t/ WD e�i t
p

�:

We now consider the diffraction of waves with respect to the cone point, which has

been studied in detail by Cheeger and Taylor in [4] and [5] for product cones. There

are two different notions of geodesics on cones, one more restrictive than the other.

We can see that these notions on product cones are special cases of [14] on general

cones with metric dr2 C r2h.r; �;d�/ within a small neighborhood of the cone point.

Definition 2.3. Suppose  W .�"; C"/ ! C.N / is a piecewise geodesic on the cone

C.N / hitting the cone point only at time t D 0, then

• the curve  is a diffractive geodesic if the intermediate terminal point .0�/ and

the initial point .0C/ lie on the boundary ¹0º � N ;

• the curve  is a geometric geodesic if it is a diffractive geodesic such that the

intermediate terminal point .0�/ and the initial point .0C/ are connected by

a geodesic of length � on the boundary ¹0º � N (with respect to the boundary

metric h);
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• the curve  is a strictly diffractive geodesic if it is a diffractive geodesic but not

geometric geodesic.

As pointed out in [14], the geometric geodesics are those that are locally realizable

as limits of families of ordinary geodesics in the interior X o. Figure 1 gives geometric

and diffractive geodesics at the cone point.

geometric geodesics diffractive geodesics

ŒC.N /IN N

Figure 1. Diffractive and geometric geodesics. The blow up pictures of cone C.N / at cone point

¹0º � N : ŒC.N /I N �. On the right are the diffractive geodesics, while on the left are geometric

geodesics and they are connected by geodesics in the boundary with length � .

In this paper, we focus on the diffraction coefficient and the scattering matrix

away from the points that are related by the geometric geodesics, i.e., we consider the

pair .r; �/ and .r 0; � 0/ with dh.�; � 0/ ¤ � for the study of the diffraction coefficient

and the smooth part of scattering matrix. At the intersection of the geometric and

diffractive fronts, the structure of the singularities is more complicated. This can be

seen intuitively from the following picture of diffraction by a slit in Figure 2, which is

equivalent to a product cone of angle 4� . In the case of 2-dimensional flat cone, the

wave kernel close to the intersection is then a singular Fourier integral operator in a

calculus associated to two intersecting Lagrangian submanifolds. We refer to [6] for

a detailed discussion.

3. Propagation of polyhomogeneity

In this section, we briefly discuss the propagation of one-step polyhomogeneity on

product cones in order to prove our diffractive symbol estimates. This also gives a

one-step polyhomogeneity of the diffractive wave. Prior to these, we give a character-

ization of one-step polyhomogeneous solution to the wave equation on cones. Without

loss of generality, we assume that u is the spherical wave hitting the cone point at time

t D 0.
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G \ D

diffractive front D

geometric front G

I

II

III

source

Figure 2. Geometric and diffractive front. Diffraction by a slit in R
2 which is a cone with cross

section N D .0; 2�/. The wave source is marked on the picture. The diffractive front D is the

boundary of region III (the red circle), while the geometric front G is part of the boundary of

region II (the blue arcs). In this picture, the intersection of these two wave fronts G \ D consists

of two points.

We first introduce the polyhomogeneous symbols:

Definition 3.1 (polyhomogeneous symbols). A symbol a.xI �/2C 1.X o � R
l / is

called (one-step) polyhomogeneous of order m if it admits an asymptotic symbol

expansion:

a �
1

X

kD0

ak.x; �/;

where ak are homogeneous symbols of order m � k, i.e., ak.x; �/ 2 Sm�k.X I R
l/

and ak.x; c�/ D cm�kak.x; �/ for c 2 RC. We denote the polyhomogeneous symbol

class of order m by Sm
phg.X I R

l/.

We introduce the radial and tangential operators for later reference. Let

R D tDt C rDr (4)

denote the radial vector field on R � X . And we also define tangential operators on N :

Ys D .I C �� /s=2: (5)
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Note that for the above operators and the d’Alembertian �, we have a group of com-

mutator relations acting on C�1.R � X/:

Œ�; R� D �2i� and Œ�; Ys� D 0 (6)

which will be useful to prove the propagation of polyhomogeneity. Here C
�1.R � X/

denotes the dual space of PC1.R � X/ which are functions vanishing to infinite order

at the cone point. In particular, the space C
�1.R � X/ contains the power domains

Ds for all s. These commutator relations are motivated by Melrose and Wunsch’s

argument on propagation of conormality: from [14, Theorem 4.8], these commutator

relations imply that if �u D 0 and u is conormal to ¹t C r D 0º with respect to Ds for

t < 0 then u is conormal to ¹t � r D 0º with respect to Ds for t > 0. The conormality

here is characterized by the operators Ys , R and � through the following definition:

Definition 3.2 (conormality on cones). (1) We define u 2 C�1.R � X/ to be conor-

mal with respect to ¹t C r D 0º of regularity Ds for t < 0 if u has the iterative

regularity:

Yi R
j �ku 2 L2

loc.R�I Ds/

for all i; j; k 2 N, where R� D .�1; 0/t .

(2) On the other hand, we define u 2 C
�1.R � X/ to be conormal with respect

to ¹t � r D 0º of regularity Ds for t > 0 if u has the iterative regularity:

YiR
j �ku 2 L2

loc.RCI Ds/

for all i; j; k 2 N, where RC D .0; C1/t . We use IDs to denote both conormalities,

where I stands for iterative regularity, and specify t 7 0 when necessary.

For a more detailed discussion on the conormal distribution, we refer to [11].

By the Hörmander–Melrose theory, on the product cone X of total dimension n, the

iterative regularity ID�m�1=2�" for any " > 0, with order that we will discuss later, is

equivalent to the oscillatory integral definition of conormality of order m � .n � 1/=4

which is defined in the following sense:

Definition 3.3 (oscillatory integral definition of conormality). (1) We define u 2
C

�1.R � X/ to be conormal with respect to ¹t C r D 0º for t < 0 of order k if it

locally admits an oscillatory integral representation for t < 0:2

u D
Z

ei.tCr/�a.r; � I �/d� mod D1

with Kohn–Nirenberg symbol a.r; � I �/ 2 SkC.n�1/=4.X I R�/.

2Since away from the cone point the power domain Ds agrees with the usual Sobolev space

H s , it is equivalent to use mod C
1 here.
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(2) On the other hand, we define u 2 C
�1.R � X/ to be conormal with respect to

¹t � r D 0º for t > 0 of order k if it locally admits an oscillatory integral representation

for t > 0:

u D
Z

ei.t�r/�a.r; � I �/ d� mod D1

with Kohn–Nirenberg symbol a.r; � I �/ 2 SkC.n�1/=4.X I R�/. Let

I k.R � X I N �¹t ˙ r D 0º/

denote the space of all distributions on R � X that are conormal with respect to ¹t ˙
r D 0º of order k, where N �¹t ˙ r D 0º is the conormal bundle of ¹t ˙ r D 0º.

Remark 3.4. We use Sm.X I R�/ to denote the Kohn–Nirenberg symbol class on the

cone X of order m hereafter.

Following [11], we have the following equivalent relation between the previous

two definitions of conormality.

Theorem 3.5. The iterative regularity definition of conormality is equivalent to the

oscillatory integral definition in the sense that for t 7 0 we have the following inclu-

sions of conormal distributions on R � X :

ID�m�1=2 � I m�.n�1/=4.R � X I N �¹t ˙ r D 0º/ � ID�m�1=2�"

for any " > 0.

We also need the following interpolation lemma to raise the iterative conormal

regularity from the Sobolev regularity and the lower iterative regularity. We refer the

readers to [13, Lemma 12.2] for a detailed proof of the lemma. It is presented in the

form of coisotropic regularity there but the essence is the same.

Lemma 3.6 (interpolation). Suppose u 2 L2
loc.R�I Ds/ \ IDm for s > m, then u 2

IDs�" for any " > 0.

Suppose now that �u D 0; and for t 7 0;

u 2 I m�.n�1/=4.R � X I N �¹t ˙ r D 0º/:

We can thus write, for t 7 0;

u D
Z

ei.t˙r/�a.r; �; �/ d� mod D1 (7)

for some a 2 Sm.X I R�/. From this, recall also that u 2 L2
loc.R�I Ds/ for all s <

�m � 1=2: We employ the notation u 2 L2
loc.R�I D�m�1=2�0/ to denote this type of

space hereafter. For the propagation of conormality, note that the symbols of Y1; �
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and R consist of the defining functions of N �¹t ˙ r D 0º; by showing the iterative

regularity:

YiR
j �ku 2 L2

loc.R�I Ds/

for any i; j; k 2 N and for some order s, we can show that the conormality is therefore

preserved. For the propagation of polyhomogeneity, we need stronger conditions. In

fact, in addition to the above preservation of iterative tangential regularity, we need

that applying the radial vector field with particular shifts improves the regularity by

one-step at each time. We show later that this actually leads to a complete charac-

terization of polyhomogeneous distributions. Before proceeding to the proof of the

complete characterization, we start by showing a characterization of the leading order

polyhomogeneity. This characterization is due to Baskin and Wunsch [2]. From now

on, we employ the notation IDs�0 to denote that u lies in the iterative regularity class

IDs�" for any " > 0.

Lemma 3.7 (characterization of leading polyhomogeneity [2]). Assume �u 2 C
1,

u is conormal to ¹t ˙ r D 0º and takes the oscillatory integral form (7) for t 7 0

(away from the cone point) with a 2 Sm.X I R�/. Then

u 2 ID�m�1=2�0:

Set

˛ D m C n C 1

2
:

Then

1. If a is polyhomogeneous of order m, then

.R � i˛/u 2 ID�mC1=2�0:

2. Conversely, suppose that

.R � i˛/u 2 L2
loc.R�I D�mC1=2�0/I

then for t 7 0

a D am C rm�1

where am is homogeneous of degree m and rm�1 2 Sm�1C0.X I R�/; where

Sm�1C0.X I R�/ WD
\

r>m�1

S r.X I R�/:

Proof. Applying the operator R � i˛ to (7) and integrating by parts, we obtain

.R � i˛/u �
Z

ei.t˙r/� ..t ˙ r/� C rDr � i˛/a.r; �; �/ d�

�
Z

ei.t˙r/� .�D�� C rDr � i˛/ a.r; �; �/ d�
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�
Z

ei.t˙r/� .��D� C rDr � i.˛ � 1// a.r; �; �/ d�: (8)

Here we use � to denote the equivalence modulo C
1-errors. Now, we make use of

the crucial fact that �u 2 C1: Since

� D D2
t � D2

r C i
n � 1

r
Dr � ��

r2
;

applying � to (7) yields

Z

ei.t˙r/�.˙2i�@r ˙ i�.n � 1/=r C �/a d� � 0 mod C
1I

thus a must satisfy the transport equation

�

r@r C n � 1

2
� ir

2�
�

�

a 2 S�1.X I R�/; (9)

where � is the Laplacian on cones; in particular, since ir
2�

�a 2 Sm�1.X I R�/, this

forces
�

r@r C n � 1

2

�

a 2 Sm�1.X I R�/:

Plug this into the right side of (8) yields

.R � i˛/u D
Z

ei.t˙r/�
��

��D� C i
n � 1

2
� i.˛ � 1/

�

a.r; �; �/ C e
�

d�

D
Z

ei.t˙r/�..��D� � im/a.r; �; �/ C e/ d�;

where e 2 Sm�1.X I R�/ is the remainder term.

Thus, if a 2 Sm.X IR�/ is a polyhomogeneous symbol, then so is .�D� C im/a 2
Sm�1.X I R�/ and we find that

.R � i˛/u 2 I m�1�.n�1/=4.R � X I N �¹t ˙ r D 0º/ � ID�mC1=2�0

by the equivalence of two definitions of conormality. This proves the first part of the

lemma.

Conversely, if .R � i˛/u 2 L2.R�ID�mC1=2�0/; by the commutator relations (6)

and the fact that the symbol of R is one of the defining functions of ¹t ˙ r D 0º,

we have .R � i˛/u 2 ID�m�1=2�0 by conormality of u. Thus, by Lemma 3.6 (cf.

[13, Lemma 12.2]), we know .R � i˛/u is also conormal with iterative regularity

ID�mC1=2�0. Equivalently,

.R � i˛/u 2 I m�1�.n�1/=4�0.R � X I N �¹t ˙ r D 0º/:
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This forces the symbol of .R � i˛/u to be in the class Sm�1C0.X I R�/. By the proof

of the first part, consider the order of the symbol of .R � i˛/u gives

.��D� � im/a 2 Sm�1C0.X I R�/:

Equivalently,

D�.��ma/ 2 O.��2C0/:

Integrating it to infinity yields

lim
�!1

��ma D am and ��ma � am D O.��1C0/:

This implies that we must have the leading asymptotic decomposition as in the state-

ment of lemma.

For later reference, we record a sharpening of the symbol computation above.

In particular, note that if �u 2 C
1 then we can compute the symbol of .R � i˛/u

explicitly by substituting the full transport equation (9) into (8) to obtain

.R � i˛/u D
Z

ei.t˙r/�b.r; �; �/ d�

where

b D
�

��D� � im C r

2�
�

�

a: (10)

Therefore, .R � i˛/ acting on u can be characterized by .��D� � im C r
2�

�/ act-

ing on its symbol a. We now generalize Lemma 3.7 to get a characterization of full

polyhomogeneity by induction. The result given in the following lemma is similar to

the characterization given by Joshi [12] for polyhomogeneous Lagrangian distribu-

tions on smooth manifolds, though the Hamilton vector field of our operator R is not

a multiple of the radial vector field of fiber variables as in [12].

Lemma 3.8 (characterization of the complete polyhomogeneity). Assume that �u 2
C

1.R � X o/, u is conormal to ¹t ˙ r D 0º and takes the oscillatory integral form

(7) for t 7 0 with a 2 Sm.X I R�/. Set

j̨ D m C n C 1

2
� j C 1:

Then

1. if a is polyhomogeneous of order m, then

k
Y

j D1

.R � i j̨ /u 2 ID�m�1=2Ck�0

is conormal to ¹t ˙ r D 0º for t 7 0;
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2. conversely, suppose that for the above ˛1; : : : ; ˛k ,

j
Y

lD1

.R � i˛l/ u 2 L2
loc.R�I D�m�1=2Cj �0/I

for 1 � j � k. Then in the oscillatory integral expression (7)

a D am C am�1 C � � � C am�kC1 C rm�k

where am;am�1; : : : ;am�kC1 are homogeneous symbols with the degrees same

as their indices and rm�k 2 Sm�kC0.X I R�/:

Proof. First assume a 2 Sm.X I R�/ is polyhomogeneous. By an integration by parts

argument and the fact that �u 2 C
1, we see that

k
Y

j D1

.R � i j̨ /u 2 ID�m�1=2Ck�0

is implied by

k
Y

j D1

�

��D� C i
n C 1

2
� i j̨ C r

2�
�

�

a 2 Sm�k.X I R�/ (11)

in the Kohn–Nirenberg class. This is aided by the commutator relation (6) which

makes
Qk

j D1.R � i j̨ /u for all k 2 N again a solution to the wave equation modulo

smooth terms, so we can apply the transport equation substitution iteratively as we

did in Lemma 3.7. At each step, .��D� C i nC1
2

� i j̨ C r
2�

�/ acting on polyhomo-

genous symbols still gives polyhomogeneous ones. Also note that r
2�

� always lowers

the symbol order by one, and the coefficient j̨ , when combining with R to annihilate

the principal part of each step, only depends on the order of the symbol it acts on.

By Lemma 3.7, we know for ˛1 D nC1
2

C m,

�

��D� C i
n C 1

2
� i˛1 C r

2�
�

�

a 2 Sm�1.X I R�/ polyhomogeneous.

Taking this as the new symbol b of the conormal distribution, then applying .R � i˛2/

to the new distribution gives

�

��D� C i
n C 1

2
� i˛2 C r

2�
�

�

b 2 Sm�2.X I R�/ polyhomogeneous.

Applying this argument repeatedly with

j̨ D n C 1

2
C .m � j C 1/ up to j D k;

we proved that the first statement is true.
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For the second part, we can work by induction. In the previous lemma, we have

showed that .R � i˛1/ raises regularity almost by one implies the leading one-step

polyhomogeneity. Assume the conclusion in the second part of this lemma is true for

up to k-terms one-step polyhomogeneity, i.e., assume

j
Y

lD1

.R � i˛l/u 2 L2
loc.R�I D�m�1=2Cj �0/

for 1 � j � k imply

a D am C am�1 C � � � C am�kC1 C rm�k (12)

with am; am�1; : : : ; am�kC1 homogeneous symbols and rm�k 2 Sm�kC0.X I R�/:

Thus

bk WD
k

Y

j D1

�

��D� C i
n C 1

2
� i j̨ C r

2�
�

�

a 2 Sm�kC0.X I R�/

as in the proof of the first part. We consider

kC1
Y

j D1

.R � i j̨ /u 2 L2
loc.R�I D�m�1=2CkC1�0/

This has the oscillatory integral form

.R � i˛kC1/

Z

ei.t˙r/�bk.r; �; �/ d�:

Now, we apply Lemma 3.6, since by the assumption

kC1
Y

j D1

.R � i j̨ /u 2 L2
loc.R�I D�m�1=2CkC1�0/

and
k

Y

j D1

.R � i j̨ /u 2 ID�m�1=2Ck�0

conormal to ¹t ˙ r D 0º. Therefore, by Lemma 3.6,

kC1
Y

j D1

.R � i j̨ /u 2 ID�m�1=2CkC1�0

conormal to ¹t ˙ r D 0º and thus

�

��D� C i
n C 1

2
� i˛kC1 C r

2�
�

�

bk 2 Sm�k�1C0.X I R�/:
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Since r
2�

� lowers the symbol order by one, we have

�

��D� C i
n C 1

2
� i˛kC1

�

bk 2 Sm�k�1C0.X I R�/:

Plugging in ˛kC1 defined above, and using the same argument as in the proof of

Lemma 3.7, this forces bk to take the form bk D Qbm�k C Qrm�k�1, where Qbm�k is

homogeneous of order m � k and Qrm�k�1 2 Sm�k�1C0.X I R�/. Considering that the

action of .��D� C i nC1
2

� i j̨ C r
2�

�/ for 1 � j � k on the symbol a gives bk ,

together with a being k-term one-step polyhomogeneous (12), a must take the form

a D am C am�1 C � � � C am�k C rm�k�1

where am; am�1; : : : ; am�k are homogeneous with degrees given by their indices and

rm�k�1 2 Sm�k�1C0.X I R�/ (cf. [12, Proposition 2.1]). We thus finished our induc-

tion.

Remark 3.9. It is worth to point out that this lemma cannot be generalized directly to

give a similar characterization of one-step polyhomogeneity on general non-product

cones .R � Y; dr2 C r2h.r; �; d�//. This is due to the fact that the commutator equa-

tion is now Œ�; R� D �2i� C E with E an error term. The existence of this error

term makes even .R � i˛1/u no longer a solution to the wave equation, for which

being a solution is an essential property for us to build our characterization.

Recall that our ultimate goal in this section is to develop the propagation of poly-

homogeneity. Prior to this, we use the foregoing results to obtain a propagation of

leading order polyhomogeneity which will be used later to give a diffraction symbol

estimate. Then we can show the propogation of full polyhomogeneity as a corollary.

First, we recall from [14, Theorem 4.8] the more basic results on propagation of

conormality. These follow easily in the situation at hand by commutation of Rk and Ys

through the equation, together with the observation that the symbols of R; Y1; and �

form a set of defining functions to the conormal bundle of ¹t ˙ x D 0º: The continuity

of the evolution map asserted in the following proposition follows from the proof of

[14, Theorem 4.8] or, as usual, from the inverse mapping theorem; the essence of

the direct proof is that norms of powers of the test operators are conserved relative

to domains of powers of the Laplacian which agree with Sobolev spaces away from

r D 0; converting these estimates to estimates in symbol spaces requires a Sobolev

embedding step, which loses at most a fixed number of derivatives (which can then

be interpolated away up to an "). For brevity, we abbreviate the restriction to a time

interval by

a.c;d/ � ajt2.c;d/:
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Proposition 3.10 (continuity of symbol evolution [2]). Suppose that �u D 0 and that

for t < 0; u 2 I m�.n�1/=4.R � X I N �¹t C r D 0º/:
1. For t > 0; u 2 I m�.n�1/=4C0.R � X I N �¹t � r D 0º/; thus the conormality is

conserved.

2. The map from negative time data to positive-time data is continuous in the

following sense: for any a < b < 0 < c < d; any " > 0; and any M; there exist

M 0 and C such that if we write u in the form (7) with symbol a then

ka.c;d/kS
mC"
M

� C ka.a;b/kSm
M 0

:

Here the symbol norm Sm
M is given by

X

j˛jCjˇ j�M

sup jh�i�m.@r;�/˛.�@�/ˇ /aj:

Remark 3.11. We will abbreviate the existence of symbol estimates of this type as “a

satisfies effective estimates” in what follows. The effective estimates here is crucial to

prove the propagation of polyhomogeneity and to compute the diffraction coefficient

using the mode-by-mode solutions.

Proposition 3.12 (propagation of leading order polyhomogeneity). Suppose that

�u D 0 and that for t < 0; u 2 I
m�.n�1/=4
phg .R � X I N �¹t C r D 0º/; i.e., conor-

mal distributions with polyhomogeneous symbols, Then

1. for t > 0; u 2 I m�.n�1/=4.R � X I N �¹t � r D 0º/ and has an oscillatory

integral representation of the form (7) where its symbol a is of the form am C
rm�1 with rm�1 2 Sm�1C0.X I R�/;

2. for any fixed " > 0, each symbol seminorm of rm�1 in Sm�1C".X I R�/ is

bounded in terms of finitely many seminorms of the symbol of u for t < 0:

Proof. Take ˛ as above. Then for t < 0;

.R � i˛/u 2 I
m�.n�1/=4�1
phg .R � X I N �¹t C r D 0º/:

We let b 2 Sm�1.X I R�/ denote the total symbol of .R � i˛/u;, i.e.,

.R � i˛/u D
Z

ei.tCr/�b.r; �; �/d� for t < 0;

while

u D
Z

ei.tCr/�a.r; �; �/d�

for a 2 Sm
phg.X I R�/:
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Then for t > 0; since by commutator relations (6) in the beginning of this section

�.R � i˛/u D 0; Proposition 3.10 implies that for t > 0 and for all " > 0;

.R � i˛/u 2 I m�.n�1/=4�1C".R � X I N �¹t � r D 0º/;

with symbol seminorms depending on those of b: By definition of conormal distribu-

tion, this implies

.R � i˛/u 2 L2
loc.RCI D�mC1=2�0/

for t > 0, Thus, by Lemma 3.7 we have the corresponding symbol decomposition of

a and we therefore proved the first part of our proposition.

To prove the quantitative estimates of the second part, we note that by (10) and

the quantitative propagation of conormality from Proposition 3.10 we have for t > 0

b �
�

��D� � im C r

2�
�

�

a 2 Sm�1C".X I R�/

for all " > 0; together with symbol estimates: whenever ˛� < ˇ� < 0 < ˛C < ˇC;

for all M;

kb.˛C;ˇC/kS
m�1C"
M

� C kb.˛�;ˇ�/kSm�1
M 0

D C k.��D� � im C r

2�
�/a.˛�;ˇ�/kSm�1

M 0

� C ka.˛�;ˇ�/kSm
M 0 (13)

for M 0:
Now, without loss of generality we can assume m D 0, otherwise we use

Qa D ��ma; Qb D ��mb

to make the order of a zero. This yields

b D
�

��D� C r

2�
�

�

a 2 S�1C".X I R�/ for t 2 .˛C; ˇC/

again enjoying the same type of effective estimates as b: Thus

D�a D ���1b C r

2�2
�a 2 S�2�".X I R�/ for t 2 .˛C; ˇC/; (14)

again the right hand side enjoys effective estimates since r=.2�2/� is a continuous

map from symbols of order s to symbols of order s � 2; and multiplication by powers

of � is a continuous symbol map. In particular, then

k��1b.˛C;ˇC/kS
m�2C"
M

� C k��1a.˛�;ˇ�/kSm�1
M

(15)
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and

k r

2�2
a.˛C;ˇC/kS

m�2C"
M

� C k��2a.˛�;ˇ�/kSm�2
M

(16)

Integrating (14) from � D ˙1 with C.r; �; sgn �/ as constant of integration (cf.

[12, Propasition 2.1] for this strategy) yields

a DC.r; �; sgn.�// C
Z

���1b C r

2�2
� Qa d�

�C.r; �; sgn.�// C e.r; �; sgn �/:

Here the term C.r; �; sgn.�// corresponds to the homogeneous term in a; while the

integral term e.r; �; �/ is a remainder that lies in S�1C", which corresponds to rm�1,

and satisfies effective estimates directly following from the above two estimates (15)

and (16).

We finally state the propagation of one-step polyhomogeneity as a corollary of our

previous results, which we summarized as Theorem 1.2 in the introduction:

Corollary 3.13 (propagation of one-step polyhomogeneity). Suppose that �u D 0

and that for t < 0; u 2 I
m�.n�1/=4
phg .R � X I N �¹t C r D 0º/: Then for t > 0; u 2

I
m�.n�1/=4
phg .R � X I N �¹t � r D 0º/ and has an oscillatory integral representation of

the form (7) where the symbol a is polyhomogeneous.

Proof. We know

k
Y

j D1

.R � i j̨ /u 2 I m�k�.n�1/=4.R � X I N �¹t C r D 0º/

with j̨ D nC1
2

C .m � j C 1/ as in Lemma 3.8 for t < 0 and all k 2 N. By Propos-

ition 3.10 and the commutator relations (6),

k
Y

j D1

.R � i j̨ /u 2 I m�k�.n�1/=4C0.R � X I N �¹t � r D 0º/

for t > 0 and all k 2 N. Thus, by Lemma 3.8 and the fact that conormal distri-

bution I m�k�.n�1/=4C0.R � X I N �¹t � r D 0º/ corresponds to iterative regularity

ID�m�1=2Ck�0, we conclude that u is a polyhomogeneous distribution.

This corollary in particular shows that the diffractive singularities enjoy a one-step

polyhomegeneity (cf. Theorem 1.2), which improves the result of half-step polyho-

mogeneity given implicitly in Cheeger and Taylor [4] and [5, Theorem 5.1, 5.3]. This

half-step polyhomogeneity is later explicitly pointed out by Ford and Wunsch in [7,

Proof of Proposition 2.1]. Now, we prove Theorem 1.2 given in Section 1:



Polyhomogeneity, diffraction, and scattering 399

Proof of Theorem 1.2. By Corollary 3.13, for any ' 2 C
1
c .N /, if �u' D 0 near

¹r C r 0 D tº satisfies

u' D
Z

ei�.rCr 0�t/K.r; r 0; �; � 0I �/ � '.� 0/d� 0d�;

u' jtD0 D '.� 0/ı.r � r 0/;

then hK; 'i 2 S0
phg.X I R/. We need to show K is also a polyhomogeneous symbol

of the same order near the diffractive front and away from the geometric front, i.e.,

polyhomogeneity in the weak sense implies polyhomogeneity in the strong sense for

dN .�; � 0/ ¤ � . This can be done by interpolation.

First for any � 2 N we take � 0
0 2 N such that dh.�; � 0

0/ ¤ � . Then we take a

compact neighborhood S of � 0
0 such that dh.�; � 0/ ¤ � for any � 0 2 S .

By the characterization of polyhomogeneous symbols, for any n 2 N,

Z

h

n
Y

kD1

.�D� � ik/K
i

� 'd� 0 2 S�n.X I R/:

We define cn WD
Qn

kD1 .�D� � ik/ K, so that hcn; 'i 2 S�n.X I R/ for any ' 2
C1

c .S/. Note that in particular cn 2 S0.X I R/ for dh.�; � 0/ ¤ � . It remains to show

that for dh.�; � 0/ ¤ � we can obtain cn 2 S�n.X I R/ indeed, i.e., it satisfies classical

symbol estimates of the order �n.

We only show the sup-norm of the 0-th order derivative of the symbol satisfies the

estimates here; the estimates for higher derivatives of the symbol hold similarly. Note

that hcn; 'i 2 S�n.X I R/ for any ' 2 C
1
c .S/ implies that �ncn is weakly bounded

in � 0-variable as � ! 1, i.e.,

j�nhcn; 'ij � C'

uniformly in � for all ' 2 C
1
c .S/. By the principle of uniform boundedness, there

exist k 2 N and C > 0 independent of � such that

sup j�nhcn; 'ij � C k'kk

where k � kk denotes the semi-norm in C1
c .S/. Therefore, there exists some k0 >0

such that �ncn is bounded in H �k0

by the Closed Graph Theorem and Sobolev embed-

ding. Moreover, for dh.�; � 0/ ¤ � , we note that cn is bounded in H s uniformly in �

for any s > 0 since cn 2 S0.X IR/3. Therefore, by interpolation, for any " > 0, �n�"cn

3We know a priori cn 2 S0 for dN .�; � 0/ ¤ � . This would not be true at the intersection

of the geometric and diffractive front so we are only able to obtain the desired symbol estimates

for purely diffractive singularities.
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is bounded in H s0

for any s0 > 0, which yields the desired estimate for the sup-norm

of the 0-th order derivative of the symbol:

cn D OH s0 .�n�"/

for any " > 0 with dh.�; � 0/ ¤ � .

4. Diffraction coefficient on product cones

Assume t > r 0. Away from the intersection of the geometric and diffractive front, i.e.,

for dh.�; � 0/ ¤ � , the half wave propagator can be decomposed as

U.t/ � UD.t/ C UG.t/

modulo smooth terms. In the right hand side of the above equation, the first part is the

diffractive wave propagator with

WF UD.t/ � N �¹t D r C r 0º

and the second part is the geometric wave propagator with

WF U.t/nWF UD.t/ � N �¹t D dg.z; z0/º

where z D .r; �/; z0 D .r 0; � 0/. The wavefront set WF is used to denote the singu-

larities of the distribution in the cotangent bundle T �.R � X o � X o/. We refer to

[19, Appendix 1] for a detailed discussion on this topic. On the diffractive front D

and away from the geometric front G (see Figure 2), we can write the kernel of the

diffractive half wave propagator as

UD.t/ D .2�/� nC1
2

Z

ei.rCr 0�t/��K.r; � I r 0; � 0I �/d�jrn�1drd� r 0n�1dr 0d� 0j 1
2

(17)

where K.r;� Ir 0;� 0I�/ is a polyhomogeneous symbol of order 0, and UD.t/ is a conor-

mal distribution to ¹r C r 0 D tº. Here we confuse the propagator with its Schwartz

kernel and the assumption t > r 0 is to ensure the existence of the diffractive front.

This expression is due to Cheeger and Taylor [4, 5] and Melrose and Wunsch [14],

and it can be seen as a consequence of conormality of the diffractive wave away from

the intersection region. We show later in this section that the symbol of the diffractive

half wave kernel has the form

K.r; � I r 0; � 0I �/ �
X

j

�T
j .t; r; r 0I �/'j .�/'j .� 0/ mod S�1 (18)
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where 'j is the j -th Fourier mode of �� on N and �T
j .t; r; r 0I �/ is the total symbol

of j -th mode of diffractive fundamental solution Ej .t; r; r 0/. We define �P
j .t; r; r 0I �/

to be the principal symbol of �T
j . And the diffraction coefficient is defined to be

K0.r; � I r 0; � 0/ WD
X

j

�P
j .t; r; r 0I �/'j .�/'j .� 0/:

The idea of this section is the following. We first consider diffractions of spher-

ical waves. By [14, Theorem 4.8], the spherical diffractive wave is cornormal to

¹r C r 0 D tº for t > r 0. Then we consider a mode-by-mode decomposition of the

diffractive fundamental solution, and shows that the principal symbol of the diffract-

ive half wave kernel is given by the sum of the principal symbol of the diffractive wave

of each Fourier mode. This reduces the computation of the diffraction coefficient to

each mode.

The construction is based on the functional calculus [20] on product cones. We

first consider the exact solution of a single eigenmode to the half wave equation.

Recall the Laplacian on a product cone is

� D D2
r � i

n � 1

r
Dr C 1

r2
��

and we define �j WD
q

�2
j C ˛2 with ˛ D �n�2

2
, where �2

j ; 'j denote eigenvalues

and eigenfunctions of �� . If we take

gj .r/ D r� n�2
2 J�j

.�r/;

then

�.gj 'j / D �2.gj 'j /:

This can be seen by reducing .� � �2/.gj 'j / D 0 to a Bessel equation by change of

variables. For a detailed treatment on this solution on a single Fourier mode, we refer

to [3]. By the functional calculus on product cones,

f .�/g.r; �/ D r˛
X

j

�

1
Z

0

f .�2/J�j
.�r/�

�

1
Z

0

s1�˛J�j
.�s/gj .s/ds

�

d�

�

'j .�/

(19)

for g.r; �/ D
P

j gj .r/'j .�/ 2 L2.C.N /I C/. We define the operator � on N by

� D .�� C ˛2/
1
2 I

the kernel of f .�/ is thus a function on RC � RC taking values in operators on N ,

by the formula

f .�/ D .rr 0/˛

1
Z

0

f .�2/J�.�r/J�.�r 0/�d�: (20)
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Using (19), we take g.r; x/ to be one single mode of spherical wave ı.r � r 0/'j .�/

and the operator as half wave operator U.t/ D e�i t
p

�. Then

U.t/
�

ı.r � r 0/'j

�

D r˛

�Z

e�i t�J�j
.�r/H.�/�

�

H.r 0/r 01�˛
J�j

.�r 0/
�

d�

�

'j .�/

for fixed r 0 > 0, where H is the Heaviside function.

We define Q��j
.�/ WD �.�/�. Q�.r 0/r 01�˛

J�j
.�r 0// with �.�/ and Q�.�/ being smooth

cutoffs away from 0 and equal to 1 for � > 1. Thus, the solution should have the form

u�j
.t; r; r 0; �/ � r˛

�Z

e�i t�J�j
.�r/ Q��j

.�/d�

�

'j .�/ mod C
1

for fixed r 0 > 0. Note that the solution also has singularities at ¹r D r 0 C tº apart from

the diffractive singularities.

From the previous discussion, we have

U.t/
�

ı.r � r 0/'j .�/
�

�
Z

ED.t; r; r 0; �; � 0/'j .� 0/d� 0 D Ej .t; r; r 0/'j .�/;

modulo the singularities at ¹r D r 0 C tº for the first equation, which correspond

to geometric singularities. Now, we compute the diffractive fundamental solution

ED.t; r; r 0; �; � 0/. We first regularize it by averaging it angularly to instead study

u'.t; r; r 0; �/ D
Z

ED.t; r; �; r 0; � 0/'.� 0/ d� 0

for an arbitrary ' 2 C
1
c .N / supported close to a single point �0 2 N: Using the

Plancherel theorem, Fourier expanding ' in N , i.e., taking the eigenfunction expan-

sion gives

u' D
X

j

c�j
Ej .t; r; r 0/'j .�/

with c�j
D h'; 'j iL2 the corresponding Fourier coefficient.

Now, what we can compute by the asymptotic expansion of Bessel functions

is the principal symbol of the conormal solution u�j
at N �¹r C r 0 D tº (as we

will do in the later part of this section); for now we write these principal symbols

�P
j .t; r; r 0; �/'j .�/: Formally, the principal symbol of u' is the sum of the principal

symbols of u�j
, though we have to be careful to show that the subprincipal symbols

of u�j
will not add up and contribute to the principal symbol of u' . This leads to the

following theorem due to Baskin and Wunsch [2]:

Theorem 4.1 (principal symbols of diffraction [2]). The principal symbol �P of u'

is equal to the sum of principal symbols of mode-by-mode solutions:

�P .u'/ D
X

j

c�j
�P

j .t; r; r 0; �/'j .�/; (21)
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i.e., the subprincipal symbols of u�j
will not add up and contribute to principal symbol

of u' .

Proof. The convergence of this sum is due to the fact that c�j
are rapidly decay-

ing with respect to �j as j ! 1, which comes from the fact that ' is C1 so the

Fourier coefficient rapidly decays; we can check that the series of principal sym-

bols converges. However, we need information about the growth rate of the symbol

remainders: the equality of conormal distributions tells us that really

�T .u'/ D
X

j

c�j
�T

j .t; r; r 0; �/'j .�/;

where we use �T to denote the total symbol, i.e., the full amplitude of the conormal

distribution with the canonical choice of phase function �.t; r; �/ D .t ˙ r/�: Thus,

it remains to check that the sum of remainder terms

X

j

c�j
.�T

j � �P
j /'j .�/ (22)

converges in the topology of symbols of order m � 1 C ": By Proposition 3.12 we

find that any desired symbol semi-norm of �T
j � �m;j is bounded by some symbol

semi-norm of the symbol of solution u�j
for t � 0: Examination of the initial data

shows that each of these norms grows at most polynomially in �j (with the growth

arising from � derivatives). Thus, since c�j
decays rapidly, the series (22) does indeed

converge in every symbol semi-norm with respect to the Sm�1C" topology, and the

subprincipal terms cannot affect the principal symbol of the sum.4

Following Theorem 4.1, we now construct the principal symbol of the diffractive

fundamental solution. We fix � 2 C
1.N / equal to 1 near �0 and use the above results

for all ' supported on ¹� D 1º: We have established that

�P .u'/ D
X

j

c�j
�P

j .t; r; r 0; �/'j .�/:

Now, let ' approach ı.� 0/ in the sense of distribution (with � 0 not geometrically

related5 to � ), so that its Fourier coefficients c�j
approach 'j .� 0/: We then obtain

4It certainly can happen that lower-order terms in a sum affect the principal symbol of the

result: consider ı D
P

k eik� on the circle, and regard the right hand side as a sum of conormal

distributions with symbols of order 0, which happen to have vanishing principal symbol. Of

course, the problem is that the symbol remainder terms grow nastily in k.
5We know, a priori, for dh.�; � 0/ ¤ � the diffractive singularities are conormal from [4, 5,

14].
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in the limit, in a neighborhood of any pair � and � 0 that are related by strictly diffract-

ively geodesics, i.e., for �; � 0 with dh.�; � 0/ ¤ � ,

�P .ED.t; r; r 0; �; � 0// D
X

�P
j .t; r; r 0; �/'j .�/'j .� 0/;

as desired.

In order to get the diffraction coefficient, now it remains to compute the principal

symbol of the diffractive fundamental solution for each mode: �P
j .t; r; r 0; �/. We

employ the functional calculus on product cones and the conormality of diffractive

waves.

We consider the kernel of the half wave propagator given by (20). Again, here we

use the Hankel asymptotics to get the diffractive coefficient. Consider (20) acting on

a single mode 'j .�/:

Ej .t; r; r 0/'j .�/ � .rr 0/˛

�

1
Z

0

e�i t�J�j
.�r/J�j

.�r 0/�d�

�

'j .�/ (23)

modulo the singularities of the right-hand side at N �¹r D r 0 C tº.

Note that for positive � and z, the Bessel function J�.z/ is the real part of Hankel

function H
.1/
� .z/. Thus, using the asymptotic formulas of Hankel functions from [17,

10.17.5], we can extract the leading part of J�j
.�r/ as the principal symbol with

phase variable �:

J�j
.�r/ �

� 1

2��r

�
1
2

.ei.�r� �j �

2 � �
4 / C e�i.�r� �j �

2 � �
4 // mod S� 3

2 C0: (24)

Note that here we are not requiring the uniformity in � in the asymptotic expansion,

since the remainder terms have been taken care of by Theorem 4.1. We now combine

this Bessel asymptotics together with (23) to get the diffractive principal symbol.

Thus,

Ej .t; r; r 0/'j .�/ � .rr 0/˛

�Z

�.�/e�i t�J�j
.�r/J�j

.�r 0/�d�

�

'j .�/ mod C
1

� 1

2�
.rr 0/˛� 1

2

�Z

ei�.rCr 0�t/e�i.�j �C �
2

/d�

�

'j .�/

modulo singularities at the conormal bundle N �¹r D r 0 C tº and the lower order

singularities at the conormal bundle N �¹r C r 0 D tº. The second equality is due to

the fact that diffractive wave is conormal to ¹r C r 0 D tº [14, Theorem 4.8], so the

only part in J�j
.�r/ and J�j

.�r 0/ that contributes to the diffractive principal symbol is

each of their first terms in the asymptotic expansion (24), and the remaining terms are

smooth near N �¹r C r 0 D tº, hence will not contribute to the diffractive singularities.
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Now, comparing the above equation with the general formula for the diffractive half

wave kernel (17), we have the diffraction coefficient:

K0.r; � I r 0; � 0/ D � i

2�
.rr 0/� n�1

2 e�i�� (25)

where � D
q

�� C
�

n�2
2

�2
.

5. Scattering matrix on product cones

Consider the leading order behaviors of the solutions of

�

� � �2
�

u D 0

under the asymptotic condition:

u � aC.�/r� n�1
2 ei�r C a�.�/r� n�1

2 e�i�r C O.r� nC1
2 / as r ! 1; (26)

where a�=aC is called the incoming/outgoing coefficient. Then aC.�/ is uniquely

determined by a�.�/ and the scattering matrix S.�/ is the unitary map from a�.�/ to

aC.�/ for � 2 Rn¹0º. This property is known for smooth asymptotically Euclidean

manifolds [16], and we show below in Proposition 5.1 it is also true on product cones.

Meanwhile, we show that the scattering matrix on a product cone is

S.�/ D �ie�i��

where � D
q

�� C . n�2
2

/2, which is related to the diffraction coefficient (25) as

S.�/ D 2�.rr 0/
n�1

2 K0.r; � I r 0; � 0/:

Here we should note that we only consider the smooth part of the scattering mat-

rix. By [15], on smooth asymptotically Euclidean manifolds (smooth manifolds with

large conical ends), the scattering matrix is a Fourier integral operator with the canon-

ical relation given by geodesic flow at time � . In the previous section, we found the

diffraction coefficient of the points on product cones which are strictly diffractively

related. This corresponds to the smooth part of the scattering matrix, i.e., S.�; �; � 0/

for dh.�; � 0/ ¤ � , where S.�; �; � 0/ is the kernel of the scattering matrix. From now

on, we use the name scattering matrix without saying that it means the smooth part.

We define the scattering matrix through the following proposition:
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Proposition 5.1 (the scattering matrix on product cones). The scattering matrix S.�/

on the product cone C.N / for � 2 Rn¹0º is a unitary operator:

S.�/W C
1.N / ! C

1.N /; a�.�/ 7! aC.�/; (27)

where aC.�/ is the outgoing coefficient in the asymptotic expansion (26) and it is

uniquely determined by the incoming coefficient a�.�/. Moreover, the scattering mat-

rix on a product cone takes the form

S.�/ D �ie�i��

where � D
q

�� C . n�2
2

/2.

Proof. Consider the homogeneous equation on C.N /

.� � �2/u D 0: (28)

By Section 2, this is

�

@2
r C n � 1

r
@r � 1

r2
�� C �2

�

u D 0:

Now, we consider an eigenfunction decomposition of u 2 L2.C.N // by eigenfunc-

tions on N of �� . i.e.,

L2.C.N /I C/ D
1

M

j D0

L2.RCI Ej /; u.r; �/ D
1

X

j D0

vj .r/'j .�/;

where the first space is defined via the volume form induced by the conic metric, and

the latter spaces can be identified with the space L2.RCI rn�1dr/. Ej denotes the

j -th eigenspace.

The equation (28) thus becomes

X

j

'j .�/ �
�

@2
r C n � 1

r
@r C �2 �

�2
j

r2

�

vj .r/ D 0;

where �2
j is the eigenvalue to �� with the eigenfunction 'j . We thus reduce the

equation (28) to
�

@2
r C n � 1

r
@r C

�

�2 �
�2

j

r2

��

vj .r/ D 0 (29)

for all j . By changing variable � with � D �r , we have

�

@2
� C n � 1

�
@� C

�

1 �
�2

j

�2

��

vj .r/ D 0:
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Writing vj .r/ D ��!j .�/, we can replace the previous equation by

�.� � 1/���2!j C 2����1@�!j C ��@2
�!j

C n � 1

�
.����1!j C ��@�!j / C

�

1 �
�2

j

�2

�

�� !j D 0:

Rewrite it into the following form

�

@2
� C 2� C .n � 1/

�
@� C �.� � 1/ C .n � 1/�

�2
C

�

1 �
�2

j

�2

��

!j D 0:

Setting 2� C .n � 1/ D 1, i.e., � D 1 � n
2

, the equation above then becomes

�

@2
� C 1

�
@� C

�

1 �
�2

j C .1 � n=2/2

�2

��

!j D 0:

This is a homogeneous Bessel equation

!00
j C 1

�
!0

j C
�

1 �
�2

j

�2

�

!j D 0 (30)

with �j D
q

�2
j C .1 � n

2
/2. Its general solutions in terms of Bessel/Hankel functions

are the linear combinations of H
.1/
� .z/ and H

.2/
� .z/. We can then construct solutions

to (28) with the prescribed boundary condition using Bessel functions asymptotics as

following. Consider the general solutions to (30)

!j D C1H .1/
�j

.�/ C C2H .2/
�j

.�/:

Noticing that from the above change of variables, vj D �1� n
2 !j .�/ and � D �r , we

can obtain general solutions to (29):

vj D C1 � .�r/1�n=2H .1/
�j

.�r/ C C2 � .�r/1�n=2H .2/
�j

.�r/

and thus they have general solutions to (28):

u D
X

j

.C1;j � .�r/1�n=2H .1/
�j

.�r/ C C2;j � .�r/1�n=2H .2/
�j

.�r//'j .�/: (31)

By the asymptotic behaviors of Hankel functions, we notice that the solutions thus

have the asymptotic expansion

u � aC.�/r� n�1
2 ei�r C a�.�/r� n�1

2 e�i�r C O.r� nC1
2 / as r ! 1; (32)

where the first term is called outgoing and the second incoming.
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As in the construction of the resolvent on the product cone [3, Theorem 2.1], we

consider the boundary behaviors of Bessel functions. The choice of the Friedrichs

extension requires that both vj and v0
j lie in the weighted L2 space near 0. By the

asymptotic formula of Bessel functions J�.z/ and Y�.z/ from [17, 10.7.3 and 10.7.4],

the existence of Y�.z/ fails the Friedrichs extension condition. And since

H .1/
� .z/ D J�.z/ C iY�.z/ and H .2/

� .z/ D J�.z/ � iY�.z/

for � > 0, the facts above and in particular the Friedrichs extension imply that in (31)

the coefficients C1;j D C2;j D Cj . Thus, vj must be a multiple of r�.n�2/=2J�j
.�r/

near r D 0. And the solution then becomes

u D
X

j

2Cj � .�r/1�n=2J�j
.�r/'j .�/: (33)

Again, from [17, 10.17.3], by asymptotics of J�.z/,

J�.z/ �
� 2

�z

�
1
2
�

cos !

1
X

kD0

.�1/k a2k.�/

z2k
� sin !

1
X

kD0

.�1/k a2kC1.�/

z2kC1

�

; as z ! 0

where ! D z � 1
2
�� � 1

4
� and ak.�/ constants of �, we can extract the leading part

of u as

u �
X

j

2Cj � .�r/1�n=2
� 1

2��r

�
1
2

.e� i�
4 � i

2 ��j ei�r C e
i�
4 C i

2 ��j e�i�r /'j .�/:

Note that no uniformity in � is needed here since we only focus on the structure of the

scattering matrix based on the functional calculus; the existence is known a priori.

For each mode 'j .�/, the scattering matrix S.�/ acts like

a�;j .�/ WD e
i�
4

C i
2

��j 'j 7! aC;j .�/ WD e� i�
4

� i
2

��j 'j :

Thus, the scattering matrix acts diagonally on modes and takes the form

S.�/ D �ie�i�� ;

where � D
q

�� C . n�2
2

/2 is defined by the functional calculus for the self-adjoint

operator �� on N . The unitarity follows directly from this expression.

Now, we show the uniqueness of the scattering matrix. It suffices to show the

uniqueness for each mode. For any g.�/ 2 C1.N /, if there are two solutions u1 and

u2 to

.� � �2/u D 0 (34)
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with g.�/ the incoming boundary condition, then u D u1 � u2 is an outgoing solution

to the homogeneous stationary wave equation (34). Thus, each mode component of u

needs to satisfy the outgoing condition and it takes the form

H .1/
�j

.�r/ D J�j
.�r/ C iY�j

.�r/;

since H
.1/
�j

.�r/ gives the outgoing part in the asymptotic expansions (26). Then each

mode component of u has to be zero since Y�j
.�r/ does not lie in L2 at r D 0,

otherwise it contradicts to the requirement of the Friedrichs extension. Hence, aC.�/

must be uniquely determined by g D a�.�/.

Combining the expression of the scattering matrix with the conclusion of the dif-

fraction coefficient in the previous section, we have proved Theorem 1.1 which we

restate more precisely as follows:

Theorem. Away from the intersection of geometric wave front and diffractive front,

i.e., for dh.�; � 0/ ¤ � , the diffraction coefficient, which is the principal symbol of the

diffractive half wave kernel, K0.r; � I r 0; � 0/ and the kernel of the scattering matrix

S.�/ satisfy the following relation:

K0.r; �; r 0; � 0/ D .2�/�1.rr 0/� n�1
2 S.�; �; � 0/;

where S.�; �; � 0/ is the kernel of the scattering matrix.

6. From the radiation field to the scattering matrix

We now proceed to study the diffraction part of the radiation field of the wave equation

on product cones. By using the notion of the radiation field, we can give an alternative

proof of the Theorem 1.1.

We use some ideas developed by Friedlander [9] and Sá Barreto [18] on the radi-

ation field of asymptotically Euclidean manifolds. The radiation field on product

cones is also studied by Baskin and Marzuola [1].6 We define the radiation field

through a theorem proved by Friedlander in [9] for smooth manifolds, and in the

setting of product cones X D C.N / by Baskin and Marzuola [1]:

6In [1], they studied the radiation field of the solution to the wave equation away from the

cone point, while we only use the radiation field corresponding to the diffractive fundamental

solution.
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Theorem 6.1 (radiation field). Let f0; f1 2 C
1
0 .X/ be smooth functions with com-

pact support in X. If u.t; r; �/ 2 C1.RC � X/ solves the wave equation with Cauchy

data:
´

�u.t; r; �/ D 0 on R � X;

u.0; r; �/ D f0; Dtu.0; r; �/ D f1;

where .r; �/ 2 RC � N , then there exist wk 2 C
1.R � N /, such that

r
n�1

2 .Hu/.s C r; r; �/ �
1

X

kD0

r�kwk.s; �/; as r ! 1

where H.t/ denotes the Heaviside function. In particular,

r
n�1

2 .Hu/.s C r; r; �/jr!1 D w0.s; �/

is well defined, and it is called the radiation field of u as in [9, Proposition 2].

Remark 6.2. Friedlander showed the existence of the radiation field in the context

of the smooth scattering manifold. In our case there is a singularity at the cone point.

This is not an issue here, since we are considering the radiation field away from the

cone point.

For solutions to the wave equation, we have the energy norm k � kE :

kukE D 1

2

Z

X

.jduj2g C jut j2/dg

and define the wave group

W.t/W C
1
0 .X o/ � C

1
0 .X o/ ! C

1
0 .X o/ � C

1
0 .X o/;

by

W.t/.f0; f1/ D .u; ut /; t 2 R:

We know by conservation of energy that W.t/ is a strongly continuous group of unit-

ary operators.

We now define a map

RCW C
1
0 .X o/ � C

1
0 .X o/ �! C

1.R � N /

by

RC.f0; f1/.s; �/ D r
n�1

2 .DtHu/.s C r; r; �/jr!1

DW DswC
0 .s; �/ .D Dsw0.s; �//;
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which is called the forward radiation field. Its existence follows from Theorem 6.1.

Similarly, we can define the backward radiation field

R�W C
1
0 .X o/ � C

1
0 .X o/ ! C

1.R � N /

as

R�.f0; f1/.s; �/ D r
n�1

2 .DtH�u/.s � r; r; �/jr!1 D Dsw�
0 .s; �/;

where H�.t/ D H.�t/.

Sá Barreto also proved in [18] that the forward and backward radiation fields

are in fact unitary on smooth asymptotically Euclidean manifolds under the energy

norm of the Cauchy data. It leads to the definition of the scattering operator which is

essentially the Fourier conjugation of the scattering matrix.

Theorem 6.3. The maps R˙ extend to isometries

R˙W HE .X/ ! L2.R � N /:

The scattering operator defined by

� D RC ı R
�1
� (35)

is unitary on L2.R � N /; the scattering matrix S is given by conjugating the scatter-

ing operator with the partial Fourier transform in the s-variable:

S D F �F
�1: (36)

Here we note that the proof of this theorem in [18] can be extended to product

cones from smooth asymptotically Euclidean manifolds. This is because the proof

relies on the fact that the Laplacian on product cones has purely absolute continu-

ous spectrum so that we could apply the proposition that the Poisson operators give

isometries from the absolute continuous spectral subspace of � to L2.R � N / [10,

Proposition 9.1] to give an isometry between the energy norm of the initial data

.f0; f1/ and the Fourier transform of the forward/backward radiation field as in [18].

Otherwise, although there are still isometries between the absolute continuous spectral

subspace of � and L2.R � N /, the energy norm would need to include the contribu-

tion from the discrete eigenmodes.

In the rest of this section, we construct the scattering matrix from the diffractive

coefficient using the radiation field, and we shall see that the scattering matrix agrees

with the diffraction coefficient up to scaling. In other words, using the radiation field,

we give a second proof to Theorem 1.1.

Assume z D .r;�/ and z0 D .r 0; � 0/ are points on the cone C.N /. We first consider

the forward fundamental solution E.z; z0; t / solving

�.r;�;t/E D ı.z � z0/ı.t/; supp E � ¹t � dC.N /.z; z0/º:
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For fixed z0 2 C.N /, the fundamental solution has a radiation field

E1.s; �; z0/ D lim
r!1

r
n�1

2 E.s C r; r; �; z0/:

Friedlander in [9] also points out that we can get the inverse of the radiation field

through the following formula:

u.r; �; t/ D �2

Z

E1.s0 � t; � 0; r; �/@sw.s0; � 0/jh.0; � 0/j1=2jds0 d� 0j:

Then from (35), we get the kernel of the scattering operator � in terms of the funda-

mental solution:

K� D lim
r!1

r
n�1

2 @t E1.s C s0 C r; � 0; r; �/

D lim
r!1
r 0!1

2.rr 0/
n�1

2 @tE.s � s0 C r C r 0; r; �; r 0; � 0/: (37)

In terms of the wave propagator, we know the fundamental solution is given by

E.z; z0; t / D sin t
p

�p
�

ı.z � z0/:

Now, we compute the scattering operator using (37) and the kernel of the diffract-

ive wave propagator. Since we showed the diffractive wave enjoys one-step polyho-

mogeneity in Section 3, by the formula of the kernel of the diffractive wave propag-

ator, we can make a WKB style ansatz for the diffractive part of E.z; z0; t / as the

following:

E.z; z0; t / � .rr 0/� n�1
2

Z

ei.rCr 0�t/�a.r; r 0; �; � 0; �/ d�

modulo singularities other than N �¹r C r 0 D tº with symbol

a D
1

X

kD0

Nak.r/��k;

where Na0 is the diffraction coefficient. Here the symbol a and each term Nak in its

expansion depend on .r; r 0; �; � 0/, though we only emphasis the r dependence for our

purpose. Consider the equation

�u 2 C
1

near ¹r C r 0 D tº. In terms of the symbol of u, a straightforward computation yields

that
�

2i�@r C @2
r C i�

n � 1

r
C n � 1

r
@r � ��

r2

�

.r� n�1
2 a/ 2 O.��1/:
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A further computation (cf. Proof of Lemma 3.7) yields a series of transport equations

for the symbol asymptotic expansion coefficients Nak:

r@r Na0 D 0 and r@r Nak D 1

r

�n2 � 1

4
� ��

�

Nak�1:

Therefore, solving the transport equations on coefficients Nak’s leads to the result that

the symbol of diffractive singularities enjoys polyhomogeneity in �r :

.rr 0/� n�1
2

Z

ei.rCr 0�t/�
�

1
X

kD0

ak � .�r/�k
�

d�

where ak does not depend on r or �. Now, the kernel of the scattering operator of the

diffractive wave can be computed as the following using equation (37):

K� D lim
r!1
r 0!1

2.rr 0/
n�1

2

Z

R�

ei.s0�s/�.�i /
�

2j�j�.�/
.rr 0/� n�1

2

2�

�
�

H.�/e�i�� C H.��/ei��
�

d�

as the Schwartz kernel, where �.�/ 2 C
1.R/ satisfies � � 1 for j�j > 2 and � � 0

for j�j < 1. The equation holds with only the leading part on r; r 0 left, because the

remainder terms have lower order in r; r 0, and they become zero in the limit. In other

words, the diffraction coefficient is the only part that contributes to this piece of the

scattering operator.

Taking the Fourier conjugation of the scattering operator computed above, by (36)

the scattering matrix is

S.�/ D �i
�

j�j�.�/
�

H.�/e�i�� C H.��/ei��
�

D �iH.�/e�i�� C iH.��/ei�� :

For � ¤ 0, the scattering matrix takes the form

S.�/ D �ie�i��

where � D
q

�� C . n�2
2

/2, which agrees with what we obtained from the direct com-

putation in Section 5.
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