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A semiclassical Birkhoff normal form

for symplectic magnetic wells

Léo Morin

Abstract. In this paper we construct a Birkhoff normal form for a semiclassical magnetic

Schrödinger operator with non-degenerate magnetic field, and discrete magnetic well, defined

on an even-dimensional Riemannian manifoldM . We use this normal form to get an expansion

of the first eigenvalues in powers of „1=2, and semiclassical Weyl asymptotics for this operator.

1. Introduction

The analysis of the magnetic Schrödinger operator, or magnetic Laplacian, on a

Riemannian manifold

L„ D .i„ d CA/�.i„ d CA/

in the semiclassical limit „ ! 0 has given rise to many investigations in the last twenty

years. Asymptotic expansions of the lowest eigenvalues have been studied in many

cases involving the geometry of the possible boundary of M and the variations of the

magnetic field. For discussions about the subject, the reader is referred to the books

and review [9, 14, 25]. The classical picture associated with the Hamiltonian

jp � A.q/j2

has started being investigated to describe the semiclassical bound states (the eigen-

functions of low energy) of L„, in [26] (on R
2) and [12] (on R

3). In these two

papers, semiclassical Birkhoff normal forms were used to describe the first eigen-

values. In [27], Sjöstrand introduced the semiclassical Birkhoff normal form to study

the spectrum of an electric Schrödinger operator, and some resonance phenomen-

ons appeared. In [5], the resonant case for the same electric Schrödinger operator
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was tackled (see also [28, 29]). In this paper, we adapt this method to L„, gener-

alizing the results of [26] to higher dimensions and manifolds. Our normal forms

give a great geometric interpretation of the semiclassical spectral asymptotics of L„.

Indeed, it enlightens the contributions of the cyclotron motion (the first oscillator) and

the variations of the magnetic field near its well (the second oscillator) in the Weyl

asymptotics and the eigenvalue asymptotics. In [18], there is a discussion on how nor-

mal forms can yield Weyl laws for an electro-magnetic Schrödinger operator, and our

approach clearly follows the same kind of ideas (See Remark 3).

In this paper, we get an expansion of the first eigenvalues of L„ in powers of „1=2,

and semiclassical Weyl asymptotics. It would be interesting to have a precise descrip-

tion of the eigenfunctions too, as was done in the 2D case by Bonthonneau and Ray-

mond [3] (Euclidian case) and Nguyen Duc Tho [11] (general Riemannian metric).

Moreover, we only have investigated the spectral theory of the stationary Schrödinger

equation with a pure magnetic field; it would be interesting to describe the long-time

dynamics of the full Schrödinger evolution, as was done in the Euclidian 2D case by

Boil and Vũ Ngo.c [2]. Finally, on a Riemannian manifoldM , the magnetic Laplacian

is related to the Bochner Laplacian (see the recent papers [20–22], where bounds and

asymptotic expansions of the first eigenvalues of Bochner Laplacians are given). We

explain in [24] how the results of this paper apply to the Bochner Laplacian.

1.1. Definition of the magnetic Schrödinger operator

Let .M; g/ be a smooth d -dimensional oriented Riemannian manifold. We assume

that M is compact with boundary, or that M D Rd with the Euclidean metric. For

q 2 M , gq is a scalar product on TqM . Since M is oriented, there is a canonical

volume form, denoted either by d xg or by d qg . If f 2 L2.M/, we denote its norm

by

kf k D

� Z

M

jf .q/j2 d qg

�1=2

:

If p 2 TqM
�, we denote by jpjg?

q
or jpj the norm of p, defined by

jQj2gq
D jgq.Q; �/j

2
g�

q
; for all Q 2 TqM:

We denote by g�
q the associated scalar product. The norm of a 1-form ˛ on M is

k˛k D

� Z

M

j˛.q/j2 d qg

�1=2

:

It is associated with a scalar product, denoted by brackets h�; �i.
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We denote by d the exterior derivative, associating to any p-form ˛ a .pC 1/-form

d ˛. Using the scalar products induced by the metric, we can define its adjoint d�,

associating to any p-form ˛ a .p � 1/-form d� ˛.

We take a 1-form A on M called the magnetic potential, and we denote by B D

dA its exterior derivative. B is called the magnetic 2-form. The associated classical

Hamiltonian is defined on T �M by

H.q; p/ D jp �A.q/j2
g�

q
; p 2 TqM

�:

Using the isomorphism TqM ' TqM
� given by the metric, we define the mag-

netic operator B.q/W TqM ! TqM by

Bq.Q1;Q2/ D gq

�

B.q/Q1;Q2

�

; for all Q1;Q2 2 TqM: (1.1)

The norm of B.q/ is

jB.q/j D ŒTr.B�.q/B.q//�1=2:

On the quantum side, for „ > 0, we define the magnetic quadratic form q„ on

D.q„/ D ¹u 2 L2.M/; .i„d C A/u 2 L2�1.M/; u@M D 0º;

by

q„.u/ D

Z

M

j.i„d C A/uj2 d qg ;

where L2�1.M/ denotes the space of square-integrable 1-forms on M . By the Lax–

Milgram theorem, this quadratic form defines a self-adjoint operator L„ on

D.L„/ D ¹u 2 L2.M/; .i„ d CA/�.i„ d CA/u 2 L2.M/; u@M D 0º;

by the formula

hL„u; vi D q„Œu; v�; for all u; v 2 C
1
0 .M/;

where q„Œ�; �� is the inner product associated with the quadratic form q„.:/. L„ is the

magnetic Schrödinger operator with Dirichlet boundary conditions.

1.2. Local coordinates

If we choose local coordinates q D .q1; : : : ; qd / on M , we get the corresponding

vector fields basis .@q1
; : : : ; @qd

/ on TqM , and the dual basis .d q1; : : : ; d qd / on

TqM
�. In these basis, gq can be identified with a symmetric matrix .gij .q// with
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determinant jgj, and g�
q is associated with the inverse matrix .gij .q//. We can write

the 1-form A in the coordinates:

A � A1 d q1 C � � � C Ad d qd ;

with A D .Aj /1�j �d 2 C
1.Rd ;Rd /. We denote by

TqAW TqM ! TqM
�

the linear operator whose matrix is the Jacobian of A:

.rA.q//ij D @jAi .q/:

In the coordinates, the 2-form B is

B D
X

i<j

Bij d qi ^ d qj ;

with

Bij D @iAj � @jAi D . trA � rA/ij :

Let us denote by .Bij .q//1�i;j �d the matrix of the operator B.q/W TqM ! TqM in

the basis .@q1; : : : ; @qd /. With this notation, equation (1.1) relating B to B can be

rewritten
X

ijk

gkj BkiQi
zQj D

X

ij

BijQi
zQj for all Q; zQ 2 R

d ;

which means that

Bij D
X

k

gkj Bki for all i; j: (1.2)

Also note for later use that

�QB D
X

i<j

Bij .Qi d qj �Qj d qi/ D
X

j

�

X

i

BijQi

�

d qj

D
X

j

Œ. trA � rA/Q�j d qj D . tTqA � TqA/Q; (1.3)

Finally, in the coordinatesH is given by

H.q; p/ D
X

i;j

gij .q/.pi � Ai .q//.pj � Aj .q//; (1.4)

and L„ acts as the differential operator

L
coord
„ D

d
X

k;lD1

jgj�1=2.i„@k C Ak/g
kl jgj1=2.i„@l C Al/: (1.5)
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1.3. Pseudodifferential operators

We refer to [23,31] for the general theory of „-pseudodifferential operators. Ifm 2 Z,

we denote by

Sm.R2n/ D ¹a 2 C
1.R2n/; j@˛

x@
ˇ

�
aj � C˛ˇ h�im�jˇ j for all ˛; ˇ 2 N

d º

the class of Kohn–Nirenberg symbols. If a depends on the semiclassical parameter „,

we require that the coefficients C˛ˇ are uniform with respect to „ 2 .0; „0�. For

a„ 2 Sm.R2n/, we define its associated Weyl quantization Opw
„ .a„/ by the oscillatory

integral

A„u.x/ D Opw
„ .a„/u.x/ D

1

.2�„/n

Z

R2n

e
i
„

hx�y;�ia„

�x C y

2
; �

�

u.y/ dy d �;

and we denote

a„ D �„.A„/:

A pseudodifferential operator A„ on L2.M/ is an operator acting as a pseudodiffer-

ential operator in coordinates. Then the principal symbol of A„ does not depend on

the coordinates, and we denote it by �0.A„/: The subprincipal symbol �1.A„/ is also

well defined, up to imposing the charts to be volume-preserving (in other words, if we

see A„ as acting on half-densities, its subprincipal symbol is well defined).

If M is compact, in any local coordinates, the coefficients Aj of A (as a function

of q 2 R
d ) are in S0.R2d

.q;p/
/. Hence, we see from (1.5) that L„ is a pseudodifferential

operator on L2.M/. Its principal and subprincipal Weyl symbols are

�0.L„/ D H; �1.L„/ D 0:

This is well known, but we detail the computation of the subprincipal symbol in

Appendix A (Lemma A.1).

IfM D Rd , we assume that Aj 2 S0.R2d / for 1 � j � d . We could also assume

that Aj belongs to some standard class of symbol defined by a general order function

on R
2d .

1.4. Assumptions

Since B.q/, defined in (1.1), is a skew-symmetric operator for the scalar product gq ,

its eigenvalues are in iR. We define the magnetic intensity, which is equivalent to the

trace-norm, by

b.q/ D TrC
B.q/ D

1

2
Tr.ŒB�.q/B.q/�1=2/ D

X

i ǰ 2sp.B.q//

ǰ >0

ǰ :
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It is a continuous function of q, but not smooth in general. We also denote

b0 D inf
q2M

b.q/;

and in the non-compact case M D Rd ,

b1 D lim inf jqj!C1b.q/:

We first assume that the magnetic field satisfies the following inequality.

Assumption 1. We assume that there exist „0 > 0 and C0 > 0 such that, for „ 2

.0; „0�,

.1C „1=4C0/q„.u/ �

Z

M

„.b.q/� „1=4C0/ju.q/j
2 d qg for all u 2 D.q„/:

In [15], Helffer and Morame proved such an inequality in the caseM compact. If

M D Rd , they prove that it is sufficient to assume

krBij .q/k � C.1C jB.q/j/; 1 � i; j � d

for some C > 0 to deduce the inequality.

We consider the case of a unique discrete magnetic well:

Assumption 2. We assume that the magnetic intensity b admits a unique and non-

degenerate minimum b0 at q0 2 M n @M , such that 0 < b0 < b1.

Finally, we make a non-degeneracy assumption.

Assumption 3. We assume that d is even and B.q0/ is invertible.

In particular, B.q/ is invertible for q in a neighborhood of q0, which means that

the 2-form B is symplectic near q0. Under this Assumption, the eigenvalues of B.q0/

can be written

˙iˇ1.q0/; : : : ; ˙iˇd=2.q0/;

with ǰ .q0/ > 0. We define the resonance order r0 2 N� [ ¹1º of the eigenvalues by

r0 WD min¹j˛jW ˛ 2 Z
d=2; ˛ ¤ 0; h˛; ˇ.q0/i D 0º; (1.6)

with the notations

j˛j D

d=2
X

j D1

j j̨ j; h˛; ˇ.q0/i WD

d=2
X

j D1

j̨ ǰ .q0/:

We make a non-resonance assumption.
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Assumption 4. We assume that the eigenvalues of B.q0/ are simple (which is equi-

valent to assuming that r0 � 3).

In particular, there is a neighborhood � �� M n @M of q0 on which the eigen-

values of B.q/ are simple, and defined by smooth positive functions

ǰ W� ! R
�
C:

We can choose � such that every ǰ is bounded from below by a positive constant

on �. We can also find smooth orthonormal vectors on �,

u1.q/; v1.q/; : : : ; ud=2.q/; vd=2.q/ 2 TqM;

such that

B.q/uj .q/ D � ǰ .q/vj .q/; B.q/vj .q/ D ǰ .q/uj .q/: (1.7)

If r0 is finite, we take r D r0. Otherwise, we take any integer r � 3 as large as we

want. Then, up to reducing � (depending on r), we also have (since r is finite), for

0 < j˛j < r ,

h˛; ˇ.q/i ¤ 0; for all q 2 �: (1.8)

Under Assumption 2, we can find b0 < Qb1 < b1 such that

K WD ¹b.q/ � Qb1º � �: (1.9)

Note that the larger is r , the smaller are K and Qb1. In the case M D Rd , using the

inequality in Assumption 1, it is proved in [15] that there exist „0 and c > 0 such that,

for „ 2 .0; „0�,

spess.L„/ � Œ„. Qb1 � c„1=4/;C1/;

and so, for „ small enough, the spectrum of L„ below „b1 (for a given b1 < Qb1) is

discrete. When M is compact, L„ has compact resolvent, and its full spectrum is

discrete.

1.5. Main results

On the classical part, we first prove the following reduction of the Hamiltonian. For

z D .x; �/ 2 R
d and w D .y; �/ 2 R

d , we denote zj D .xj ; �j /, wj D .yj ; �j /, and

Bz."/ D ¹jzj � "º: We use the notation Rd
z (or Rd

w ) to emphasize that an element of

R
d is denoted by z (or w).
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Theorem 1.1. Under Assumptions 1–4, for � and " > 0 small enough, there exist a

neighborhood V of 0 2 Rd
w , a neighborhood U of .q0; Aq0

/ 2 T �M , and symplecto-

morphisms

'W .�;B/ ! .V; d� ^ dy/;

and

ˆW .V � Bz."/; d � ^ dy C d � ^ d x/ ! .U � T �M;!/;

with ˆ.'.q/; 0/ D .q; A.q//, under which the HamiltonianH becomes

yH.w; z/ D H ıˆ.w; z/ D

d=2
X

j D1

Ǒ
j .w/jzj j2 C O.jzj3/;

locally uniformly in w, with the notation Ǒ
j .w/ D ǰ ı '�1.w/.

Our next aim is to construct a semiclassical Birkhoff normal form for L„, that is to

say a pseudodifferential operator N„ on L2.Rd/, commuting with suitable harmonic

oscillators such that

U„L„U
�
„ D N„ CR„;

with U„W L2.M/ ! L2.Rd / a microlocally unitary Fourier integral operator andR„ a

remainder. We will construct the remainder so that the first eigenvalues of L„ coincide

with the first eigenvalues of N„, up to a small error of order O.„r=2�"/, where r is

defined in (1.6). More precisely, we prove the following theorem.

Theorem 1.2 (semiclassical Birkhoff normal form). We denote by zD.x;�/2T �R
d=2
x

and w D .y; �/ 2 T �
R

d=2
y the canonical variables. For � > 0 and „ 2 .0; „0� small

enough, there exist a Fourier integral operator

U„W L2.Rd
.x;y// ! L2.M/;

a pseudodifferential operatorR„ on R
d , and a smooth function f ?.w;I1; : : : ;Id=2;„/,

such that

i. U �
„

L„U„ D N„ C R„;

ii. N„ D Opw
„ .H0 C f ?.w;	

.1/

„
; : : : ;	

.d=2/

„
; „//;

iii. jf ?.w; I; „/j � C.„ C jI j/2;

iv. �w
„
.R„/ 2 O..jzj C „1=2/r/ on a neighborhood of w D 0;

v. U �
„
U„ D I microlocally near .z; w/ D 0;

vi. U„U
�
„

D I microlocally near .q; p/ D .q0; Aq0
/;

vii. .1 � �/hOpw
„ H0 ;  i � hN„ ;  i � .1 C �/hOpw

„ H0 ;  i; for all  2

�.Rd /;
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with

	
.j /

„
D Opw

„ .jzj j2/ D �„2 @
2

@x2
j

C x2
j ; H0 D

d=2
X

j D1

Ǒ
j .w/jzj j2: (1.10)

We call N„ the normal form, and R„ the remainder.

Remark 1. The notation Opw
„ f

?.w; 	
.1/

„
; : : : ; 	

.d=2/

„
; „/ should be understood as

the quantization of an operator-valued symbol. The operator-symbol is

f ?.w;	
.1/

„
; : : : ;	

.d=2/

„
; „/

and we consider its quantization with respect to w D .y; �/. We could also construct

a normal form such that

zN„ D Opw
„

�

H0 C f .w; jz1j2; : : : ; jzd=2j2; „/
�

;

with f having the same general properties as f ?. Such a normal form is a function

of the classical harmonic oscillators jzj j2, while our N„ is a function of the quantized

oscillators. The advantage of this version is that, being a function of 	
.j /

„
, we can

easily describe the spectrum of N„.

Theorem 1.3. For k � 0, let us denote by hk the Hermite function, satisfying

	
.j /

„
hk.xj / D „.2k C 1/hk.xj /:

For nD .n1; : : : ;nd=2/ 2 Nd=2, there exists a pseudodifferential operator N
.n/

„
acting

on L2.R
d=2
y / such that

N„.u˝ hn1
˝ � � � ˝ hnd=2

/ D N
.n/

„
.u/˝ hn1

˝ � � � ˝ hnd=2
; u 2 �.Rd=2

y /:

Its symbol is

F .n/.w/ D „

d=2
X

j D1

Ǒ
j .w/.2nj C 1/C f ?.w; „.2nC 1/; „/;

and we have

sp.N„/ D
[

n

sp.N
.n/

„
/:

Moreover, the multiplicity of � as eigenvalue of N„ is the sum over n of the multipli-

cities of � as eigenvalue of N
.n/

„
.

Using microlocalization properties of the eigenfunctions of L„ and N„, we prove

that they have the same spectra in the following sense. We recall that Qb1, defined

in (1.9), is chosen such that

¹b.q/ � Qb1º � �:
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Theorem 1.4. Let " > 0 and b1 2 .0; Qb1/. We denote by

�1.„/ � �2.„/ � � � � and �1.„/ � �2.„/ � � � �

the first eigenvalues of L„ and N„, respectively. Then

�n.„/ D �n.„/C O.„r=2�"/;

uniformly in n such that �n.„/ � „b1 and �n.„/ � „b1.

Finally, we deduce an expansion of the N > 0 first eigenvalues of L„ in powers

of „1=2.

Theorem 1.5 (expansion of the first eigenvalues). Let " > 0 and N � 1. There exist

„0 > 0 and c0 2 R such that, for „ 2 .0; „0�, the N first eigenvalues of L„, denoted

.�j .„//1�j �N , admit an expansion in powers of „1=2 of the form

�j .„/ D „b0 C „2.Ej C c0/C „5=2cj;5 C � � � C „.r�1/=2cj;r�1 C O.„r=2�"/;

where „Ej is the j -th eigenvalue of the d=2-dimensional harmonic oscillator

Opw
„ .Hess0.b ı '�1//:

Remarks 2. 1. In dimension d D 2, the two-term asymptotics for �1.„/ were first

proved by Helffer and Morame in [16]. They have an explicit formula for c0, depend-

ing on the Hessian of b at q0. A full expansion of �j .„/ in powers of „1=2 was proved

in [13], always in dimension d D 2. The result of [26] proved that no odd powers of

„1=2 could appear in the expansion. Theorem 1.5 extends this result to higher dimen-

sions: our proof shows that the odd powers of „1=2 may only appear if they do appear

in the corresponding eigenvalue asymptotics of a d=2-dimensional operator with sym-

bol

Hess0.b ı '�1/C O.„/:

If d D 2, this never happens, as proved in [27] for instance, using a Birkhoff normal

form.

2. Unfortunately, our method is too implicit to be able to compute c0. Indeed, the

perceptive reader will notice that c0 comes from the „2 order term of f ?.w;„; : : : ;„/.

This term is computed from the „2 term of the symbol �„ in .4:4/ via a Birkhoff

algorithm. However, the „2 term of �„ is not computable since it comes from the con-

jugation by a Fourier integral operator associated to the canonical transformation ˆ,

which is itself implicitly defined.

3. WhenM is compact but the 2-form B is not exact, one can not define the mag-

netic Laplacian L„, but one can consider the Bochner Laplacian on a complex line
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bundle L endowed with a connection of curvature iB . Then, the semiclassical limit

corresponds to the high tensor product limit ofL. Using quasimodes, Kordyukov [21]

proved asymptotic expansions of the first eigenvalues of the Bochner Laplacian, in

the case of non-degenerate magnetic wells. Thus, his result is closely related to The-

orem 1.5. When M is compact, our case corresponds to the Bochner Laplacian of a

trivial line bundle. However, our normal form gives a geometrical interpretation of the

coefficients, and also describes higher eigenvalues (semi-excited states).

Note that, from Theorems 1.4 and 1.3, we deduce Weyl estimates for L„. Here

N.L„; b1„/ denotes the number of eigenvalues � of L„ such that � � b1„, counted

with multiplicities.

Corollary 1.1 (Weyl estimates). For any b1 2 .b0; Qb1/,

N.L„; b1„/ D
1

.2�„/d=2

X

n2Nd=2

Z

bŒn�.q/�b1

Bd=2

.d=2/Š
C o.„�d=2/

in the limit „ ! 0, where

bŒn�.q/ D

d=2
X

j D1

.2nj C 1/ ǰ .q/:

The sum is finite because the ǰ are bounded from below by a positive constant on�.

In particular, if M D R
d , we get

N.L„; b1„/ D
1

.2�„/d=2

X

n2Nd=2

Z

bŒn�.q/�b1

ˇ1.q/ : : : ˇd=2.q/ d q C o.„�d=2/:

Remark 3. In their works, Demailly [6, 7] and Bouche [4] proved similar Weyl

asymptotics for Bochner Laplacians on a compact complex manifold. They used an

expansion of the associated heat kernel and an local approximation of the magnetic

field by a constant. In Ivrii’s book ([18, Chapter 19, p. 1988]) there is a discussion on

how normal forms can yield Weyl asymptotics for an electro-magnetic Schrödinger

operator. In this book, Weyl laws are stated in various regimes according to „ and

the intensity of the magnetic field. Our Corollary 1.1 is in the setting of [18, The-

orem 19.6.25] (with � D 1=h and h D „1=2) giving a remainder O.„1�d=2/ for this

Weyl law, but it seems not clear that the mentioned microhyperbolicity assumption

corresponds to our localization assumptions on b. The approach is very close to ours,

since it relies on microlocal normal forms.
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1.6. Organization and strategy

In Section 2, we construct a symplectomorphism which simplify H near its zero set

† D H�1.0/ (Theorem 1.1). In the new coordinates,H becomes

yH.q; z/ D

d=2
X

j D1

ǰ .q/jzj j2 C O.jzj3/:

In Section 3, we construct a formal Birkhoff normal form: in the space of formal series

in variables .x; �; „/, we change yH into H 0 C � C �, with H 0 D
Pd=2

j D1 ǰ jzj j2,

� a series in jzj j2 (1 � j � d=2), and � a remainder of order r (Theorem 3.1). In

Section 4, we quantize the changes of coordinates constructed in Sections 2 and 3, and

we get the semiclassical Birkhoff normal form (Theorem 1.2). In Section 5, we reduce

N„ (Theorem 1.3) and we deduce an expansion of its first eigenvalues. It remains to

prove that the spectra of L„ and N„ below b1„ coincide. Before doing it, we need

microlocalization results stated in Section 6 (the same as in the 2D case [26]). We

show that the eigenfunctions of L„ and N„ are microlocalized near the zero set ofH ,

where our formal construction is valid. In Section 7, we use the results of Section 6,

to prove that L„ and N„ have the same spectrum below b1„ (Theorem 1.4). This

theorem, together with the results of Section 5, finishes the proof of Theorem 1.5. We

also prove the Weyl estimates (Corollary 1.1) here.

2. Reduction of the classical Hamiltonian

2.1. A symplectic reduction of T
�
M

The zero set of H :

† D H�1.0/ D ¹.q; A.q// 2 T �M W q 2 �º;

is a d -dimensional smooth submanifold of the cotangent bundle T �M . We denote by

j W� ! T �M the embedding

j.q/ D .q; A.q//:

The symplectic structure on T �M is defined by the form

! D dp ^ d q D d˛; ˛ D p d q:

In other words, for p 2 TqM
� and V 2 T.q;p/.T

�M/;

˛.q;p/.V/ D p.��V/; (2.1)
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Where the map ��W T.q;p/.T
�M/ ! TqM is the differential of the canonical projec-

tion

�W T �M ! M; �.q; p/ D q:

Using local coordinates with the notations of Section 1.2, at any point .q; p/ 2 T �M

with

p D p1 d q1 C � � � C pd d qd ;

the tangent vectors V 2 T.q;p/.T
�M/ are identified with .Q; P / 2 TqM � TqM

�,

with

Q D Q1@q1 C � � � CQd@qd ; P D P1 d q1 C � � � C Pd d qd :

With this notation,

��.Q;P / D Q;

˛.q;p/.Q;P / D p.Q/;

!.q;p/..Q;P /; .Q
0; P 0// D hP 0;Qi � hP;Q0i;

where h�; �i denotes the duality bracket between TqM and TqM
�.

Lemma 2.1. † is a symplectic submanifold of .T �M;!/, and

j �! D B:

In particular, at each point j.q/ 2 †,

Tj.q/.T
�M/ D Tj.q/†˚ Tj.q/†

?; (2.2)

where ? denotes the symplectic orthogonal for !.

Proof. To say that † is a symplectic submanifold of T �M means that the restriction

of ! to † is non-degenerate. Written with the embedding j , this restriction is j �!.

Actually, using the definition (2.1) of ˛ with p D Aq and V D dqj.Q/, we get

.j �˛/q.Q/ D Aq.��dqj.Q// D Aq.Q/ for all Q 2 TqM:

Hence,

j �˛ D A;

so

j �.d˛/ D dA D B:

Since any j.q/ is a critical point ofH , the Hessian ofH at j.q/ is well defined and

independent of any choice of coordinates. We now compute this Hessian according to

the decomposition (2.2):
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Lemma 2.2. The Hessian T 2
j.q/

H , as a bilinear form on Tj.q/.T
�M/, satisfies

T 2
j.q/H.V ;V/D 0 if V 2 Tj.q/†;

T 2
j.q/H.V ;V/D 2jB.q/��V j2gq

if V 2 Tj.q/†
?:

Proof. Using local coordinates on M , we will denote every V 2 T.q;p/.T
�M/, as

.Q;P / 2 TqM � TqM
�. In these coordinates, with the notations introduced in Sec-

tion 1.2,

† � ¹.q;A.q//; q 2 R
d º

so that

Tj.q/† D ¹.Q;P / 2 TqM � TqM
�; P D TqA �Qº: (2.3)

We can also describe Tj.q/†
? using these coordinates. Indeed,

.Q;P / 2 Tj.q/†
? () !..Q;P /; .Q0; TqA �Q0// D 0 for all Q0 2 TqM

() hP;Q0i D hTqA �Q0;Qi for all Q0 2 TqM

() P D tTqA �Q:

Hence

Tj.q/†
? D ¹.Q;P /; P D tTqA �Qº: (2.4)

From the expression (1.4) of H in coordinates, we deduce that

T.q;p/H.Q;P / D 2
X

ij

gij .q/.pi �Ai .q//.Pj � rqAj �Q/

C
X

ijk

@kg
ij .q/Qk.pi � Ai.q//.pj �Aj .q//;

so that the Hessian of H in coordinates is

T 2
j.q/H..Q;P /; .Q;P // D 2

X

ij

gij .q/.Pi � rqAi �Q/.Pj � rqAj �Q/

D 2jP � TqA �Qj2
g�

q
:

It follows from (2.3) that

T 2
j.q/H..Q;P /; .Q;P // D 0 for all .Q;P / 2 Tj.q/†;

and from (2.4) and (1.3) that

T 2
j.q/H..Q;P /; .Q;P // D 2j. tTqA � TqA/Qj2

g�
q

D j�QBj2
g�

q
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for all .Q;P / 2 Tj.q/†
?. Let us rewrite this using B. Note that

j�QBj2
g�

q
D

X

ij

gij .q/
�

X

ki

BkiQk

��

X

j̀

B j̀Q`

�

D
X

k`

�

X

ij

gijBkiB j̀

�

QkQ`;

and keeping in mind that .gij / is the inverse matrix of .gij / together with the rela-

tion (1.2) between B and B, we have

X

ij

gijBkiB j̀ D
X

ijk0`0

gijgk0ig`0j Bk0kB`0` D
X

k0`0

gk0`0Bk0kB`0`;

and so

j�QBj2
g�

q
D

X

k0`0

gk0`0

�

X

k

Bk0kQk

��

X

`

B`0`Q`

�

D jB.q/Qj2gq
:

We endow� � Rd
z with the symplectic form

!0.q; z/ D B ˚

d=2
X

j D1

d �j ^ d xj ;

with the notation z D .x; �/. .†; B/ is a d -dimensional symplectic submanifold of

.T �M; !/. The following Darboux–Weinstein lemma claims that this situation is

modelled on the submanifold†0 D � � ¹0º of .� � R
d
z ; !0/.

Lemma 2.3. There exists a local diffeomorphism

ˆ0W�� R
d
z ! T �M

such that

ˆ�
0! D !0; and ˆ0.†0/ D †:

In order to keep track on the construction of ˆ0, we will give the proof of this

result.

Proof. Again, we use local coordinates on M to denote every V 2 T.q;p/.T
�M/ as

.Q; P / 2 TqM � T �
q M . For q 2 �, using the vectors uj .q/; vj .q/ 2 TqM defined

in (1.7), we define the vectors

ej .q/ D
1

p

ǰ .q/

�

uj .q/;
tTqAuj .q/

�

; fj .q/ D
1

p

ǰ .q/

�

vj .q/;
tTqAvj .q/

�

;
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which are in Tj.q/†
? by (2.4). These vectors satisfy

!j.q/.ei .q/; fj .q// D ıij ; (2.5a)

!j.q/.ei .q/; ej .q// D 0; (2.5b)

!j.q/.fi .q/; fj .q// D 0: (2.5c)

Indeed, the first equality follows from

!j.q/.ei ; fj / D �
1

p

ˇi ǰ

h. tTqA � TqA/uj ; vj i

D �
1

p

ˇi ǰ

B.ui ; vj /

D �
1

p

ˇi ǰ

gq.B.q/ui ; vj /

D
ˇi

p

ˇi ǰ

gq.vi ; vj /

D ıij ;

and the two others from similar calculations.

Let us construct a ẑ
0W� � R

d
z ! T �M such that

ẑ
0.q; 0/ D j.q/; (2.6)

@z
ẑ

0.q; 0/ D Lq; (2.7)

where LqW Rd ! Tj.q/†
? is the linear map sending the canonical basis onto

.e1.q/; f1.q/; : : : ; ed=2.q/; fd=2.q//:

For this, we take local vector fields Oej .q; p/; Ofj .q; p/ 2 T.q;p/.T
�M/ defined in a

neighborhood of †, such that

Oej .j.q// D ej .q/; Ofj .j.q// D fj .q/:

In other words, if we see ej and fj as vector fields on † using j.q/, we extend

them to a neighborhood of †. Then we consider the associated flows, defined on a

neighborhood of † by

@�
xj

j

@xj

.q; p/ D Oej .�
xj

j .q; p//; xj 2 R;

@ 
�j

j

@�j
.q; p/ D Ofj . 

�j

j .q; p//; �j 2 R;

�0
j .q; p/ D  0

j .q; p/ D .q; p/:
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Then
ẑ

0.q; z/ WD �
x1

1 ı  
�1

1 ı � � � ı �
xd=2

d=2
ı  

�d=2

d=2
.j.q//

satisfies (2.6) and (2.7). Hence, if q 2 �; the linear tangent map

T.q;0/
ẑ

0W TqM ˚ R
d ! Tj.q/†˚ Tj.q/†

?

acts as
�

Tqj 0

0 Lq

�

:

In particular, ẑ �
0! D !0 on ¹z D 0º by (2.5) and lemma 2.1. By the Weinstein lemma

(Lemma A.2), for " > 0 small enough there exists a diffeomorphism S W��Bz."/!

��Bz."/ such that S.q;z/D .q;z/C O.jzj2/ and S� ẑ �
0! D!0. Thenˆ0 D ẑ

0 ıS

is the desired symplectomorphism.

2.2. Proof of Theorem 1.1

Now we can prove the normal form for the classical Hamiltonian. Up to reducing �,

we can take symplectic coordinates w D .y; �/ 2 R
d to describe �, thanks to the

Darboux lemma:

'W� ! V � R
d
w :

We get a new symplectomorphism

ˆWV � Bz."/ ! U � T �M;

defined by

ˆ.w; z/ D ˆ0.'
�1.w/; z/:

It remains to compute a Taylor expansion ofH in these coordinates. Using the Taylor

Formula for yH D H ıˆ, we get

yH.w; z/ D yH.w; 0/C @z
yH jzD0.z/C

1

2
@2

z
yH jzD0.z; z/C O.jzj3/: (2.8)

By the chain rule, we have (with q D '�1.w/)

@z
yH jzD0.z/ D Tj.q/H.@zˆjzD0.z// D 0;

because Tj.q/H D 0, and

@2
z

yH jzD0.z; z/ D T 2
j.q/H.@zˆjzD0.z/; @zˆjzD0.z//:
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But @zˆjzD0 sends the canonical basis onto .e1.q/; f1.q/; : : : ; ed=2.q/; fd=2.q//, so

we get from Lemma 2.2:

1

2
@2

z
yH jzD0.z; z/ D

d=2
X

j D1

ǰ .q/jzj j2:

Hence, (2.8) gives

yH.w; z/ D H ıˆ.w; z/ D

d=2
X

j D1

Ǒ
j .w/jzj j2 C O.jzj3/:

3. The formal Birkhoff normal form

3.1. The Hamiltonian yH

In the new coordinates given by Theorem 1.1, we have a Hamiltonian yH.w; z/ of the

form

yH.w; z/ D H 0.w; z/C O.jzj3/; where H 0.w; z/ D

d=2
X

j D1

Ǒ
j .w/jzj j2:

H 0 is defined for w 2 V , but we extend the functions Ǒ
j to Rd

w such that

d=2
X

j D1

Ǒ
j .w/ � Qb1 for w 2 V c :

This is just technical, since we will prove microlocalization results on V in Section 6.

Then we can construct a Birkhoff normal form, in the spirit of [27] and [26], with w

as a parameter.

3.2. The space of formal series

We will work in the space of formal series

E D C
1.Rd

w/ŒŒx; �; „��:

We endow E with the Moyal product ?, compatible with the Weyl quantization (with

respect to all the variables z andw). Given a pseudodifferential operator A D Opw
„ .a/

we will denote by �
w;T
„

.A/ or by Œa� the formal Taylor series of a at zero, in the

variables x, � , „. With this notation, the compatibility of ? with the Weyl quantization

means

�
w;T

„
.AB/ D �

w;T

„
.A/ ? �

w;T

„
.B/:

The reader can find the main results on „-pseudodifferential operators in [23, 31].
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We define the degree of x˛�
„` to be j˛j C j
 j C 2`. Hence, we can define the

degree and valuation of a series �, which depends on the point w 2 Rd . We denote

by ON the space of formal series with valuation at least N on V , and DN the space

spanned by monomials of degree N on V (V � R
d
w is given by Theorem 1.1). We

denote by zj the formal series xj C i�j . Thus, every � 2 E can by written

� D
X

˛
`

c˛
`.w/z
˛ Nz
 „`;

with the notation

z˛ D z
˛1

1 : : : z
˛d=2

d=2
:

For �1, �2 2 E , we denote ad�1
�2 D Œ�1; �2� D �1 ? �2 � �2 ? �1. It is well known

that Œ�1; �2� is of order „, so for N1 CN2 � 2, we have

1

„
ŒON1

;ON2
� � ON1CN2�2: (3.1)

Explicitly,

Œ�1; �2�.z; w; „/ D 2 sinh
� „

2i
�

�

.f .z0; w0; „/g.z00; w00; „//jz0Dz00Dz;w0Dw00Dw ;

(3.2)

where Œf � D �1, Œg� D �2, and

� D

d=2
X

j D1

.@�0
j
@x00

j
� @x0

j
@�00

j
C @�0

j
@y00

j
� @y0

j
@�00

j
/:

From formula (3.2), a simple computation gives

i

„
ad jzj j2.z

˛ Nzˇ „`/ D ¹jzj j2; z˛ Nz
 „`º D . j̨ � 
j /z
˛ Nz
 „`: (3.3)

3.3. The formal normal form

In order to prove Theorem 1.2, we look for a pseudodifferential operator Q„ such that

e
i
„

Q„ Opw
„

yHe� i
„

Q„ (3.4)

commutes with the harmonic oscillators 	
.j /

„
; .1 � j � d=2/ introduced in (1.10). At

the formal level, expression (3.4) becomes

e
i
„

ad� .H 0 C 
/; (3.5)
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where H0 C 
 is the Taylor expansion of yH , and � D �
w;T

„
.Q„/: Moreover,

�
w;T

„
.	

.j /

„
/ D jzj j2;

so we want (3.5) to be equal to H 0 C �, where Œ�; jzj j2� D 0, which is equivalent to

say that � is a series in .jz1j2; : : : ; jzd=2j2;„/. This is possible modulo Or , as stated in

the following theorem. We recall that r is related to the resonance order r0 by r D r0

if r0 < 1, otherwise r is any fixed integer, as large as we want (but related to �

by (1.8)).

Theorem 3.1. If 
 2 O3, there exist �; �; � 2 O3 such that

• e
i
„

ad� .H 0 C 
/ D H 0 C � C �;

• Œ�; jzj j2� D 0 for 1 � j � d=2;

• � 2 Or :

Proof. Let 3 � N � r � 1. Assume that, for a �N 2 O3

e
i
„

ad�N .H 0 C 
/ D H 0 CK3 C � � � CKN �1 C RN C ON C1;

whereKi 2 Di commutes with jzj j2 (1� j � d=2) and whereRN 2 DN . Using (3.1),

for any � 0 2 DN ,

e
i
„

ad�N C�0 .H 0 C 
/ D e
i
„

ad�0 .H 0 CK3 C � � � CKN �1 CRN C ON C1/

D H 0 CK3 C � � � CKN �1 CRN C
i

„
ad� 0 H 0 C ON C1:

Thus, we look for � 0 and KN 2 DN such that

RN D KN C
i

„
adH 0 � 0 mod ON C1: (3.6)

To solve this equation, we need to study adH 0 . Since H 0 D
P

j
Ǒ
j .w/jzj j2,

i

„
adH 0 � 0 D

d=2
X

j D1

�

Ǒ
j .w/

i

„
ad jzj j2.�

0/C
i

„
ad Ǒ

j
.� 0/jzj j2

�

:

Since Ǒ
j only depends on w,

i

„
ad Ǒ

j
.� 0/ 2 ON �1;

(see formula (3.2)). Hence

i

„
adH 0 � 0 D

d=2
X

j D1

Ǒ
j .w/

i

„
ad jzj j2.�

0/C ON C1:
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Thus, equation (3.6) can be rewritten

RN D KN C T .� 0/C ON C1; (3.7)

with the notation

T D

d=2
X

j D1

Ǒ
j .w/

i

„
ad jzj j2 :

From formula (3.3) we see that T acts on monomials as

T .c.w/z˛ Nz
 / D h˛ � 
; Ǒ.w/ic.w/z˛ Nz
 : (3.8)

Thus, if we write

RN D
X

j˛jCj
 jC2`DN r˛
`.w/z
˛ Nz
 „`;

we choose

KN D
X

˛D


r˛
`jzj2˛„`;

which commutes with jzj j2 ( 1� j �d=2 ). The restRN �KN is a sum of monomials

of the form r˛
`z
˛ Nz
„` with ˛ ¤ 
 . As soon as 0 < j˛ � 
 j < r , we have h˛ � 
;

Ǒ.w/i ¤ 0 by (1.8) (because r � r0), so we can define the smooth coefficient

c˛
`.w/ D
r˛
`.w/

h˛ � 
; Ǒ.w/i
:

Thus, (3.8) yields

T .c˛
`z
˛ Nz
„`/ D r˛
`.w/z

˛ Nz
 „`;

so RN � KN is in the range of T modulo ON C1 because N � r � 1. Hence, we

solved equation (3.7), and thus we can iterate until N D r � 1. The series � is the Or

that remains:

ei„�1 ad�N .H 0 C 
/ D H 0 CK3 C � � � CKr�1 C �:

4. The semiclassical Birkhoff normal form

The next step is to quantize Theorems 1.1 and 3.1.
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4.1. Quantization of Theorem 1.1

Theorem 1.1 gives a symplectomorphism ˆ reducing H to yH D H ı ˆ. We can

quantize this result in the following way. The Egorov theorem ([23, Theorem 5.5.9])

implies the existence of a Fourier integral operator

V„W L2.Rd
.x;y// ! L2.M/;

associated to the symplectomorphism ˆ, and a pseudo-differential operator yL„ with

principal symbol yH on V � Bz."/ and subprincipal symbol 0, such that

V �
„ L„V„ D yL„; (4.1)

V �
„ V„ D I microlocally on V � Bz."/;

V„V
�

„ D I microlocally on U: (4.2)

4.2. Proof of Theorem 1.2

By (4.1), we are reduced to the pseudodifferential operator yL„, which has a total

symbol of the form

�„ D yH C „2 Qr„ on V � Bz."/:

In particular, �
w;T
„

. yL„/ DH0 C 
 for some 
 2 O3, with the notation of Section 3.2.

We want to construct a normal form using a bounded pseudodifferential operator Q„:

e
i
„

Q„ yL„e
� i

„
Q„ D N„ C R„: (4.3)

In Theorem 3.1, applied to 
 , we have constructed formal series � , �, and � such that

e
i
„

ad� .H 0 C 
/ D H 0 C � C �:

The idea is to choose pseudodifferential operators Q„ and N„ such that �
w;T

„
.Q„/D �

and �
w;T
„

.N„/ D H 0 C �, and to check that they satisfy (4.3). Following this idea,

we prove the following theorem.

Theorem 4.1. For „ 2 .0; „0� small enough, there exist a unitary operator

U„W L2.Rd / ! L2.Rd /;

a smooth function f ?.w; I1; : : : ; Id=2;„/, and a pseudodifferential operatorR„ such

that

i. U �
„

yL„U„ D L
0
„

C Opw
„ f

?.w;	
.1/

„
; : : : ;	

.d=2/

„
; „/C R„;

ii. f ? has an arbitrarily small compact .I1; : : : ; Id=2; „/-support (contain-

ing 0),

iii. �
w;T

„
.R„/ 2 Or and �

w;T

„
.U„R„U

�
„
/ 2 Or .
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with 	
.j /

„
D Opw

„ .jzj j2/ and L
0
„

D Opw
„ .H

0/. We call

N„ D L
0
„ C Opw

„ f
?.w;	

.1/

„
; : : : ;	

.d=2/

„
; „/ (4.4)

the normal form, and R„ the remainder.

Proof. The pseudodifferential operator yL„ defined by (4.1) has a symbol of the form

�„ D yH C „2 Qr„ on V � Bz."/;

so �„ D H 0 C r„ with 
 WD Œr„� 2 O3: We apply Theorem 3.1 with this 
 2 O3.

The formal series � 2 O3 that we get commutes with jzj j2 (1 � j � d=2), so by

formula (3.3) we can write it

� D
X

k�2

X

lCjmjDk

cl;m.w/jz1j2m1 : : : jzd=2j2md=2„l :

We take a function f .w; I1; : : : ; Id=2; „/ with Taylor series

X

k�2

X

lCjmjDk

cl;m.w/I
m1

1 : : : I
md=2

d=2
„l

and arbitrarily small compact support in .I1; : : : ; Id=2; „/ (containing 0).

Let c.w; z; „/ be a smooth function with compact support with Taylor series � ,

given by Theorem 3.1. Then, by the Taylor formula, we have

e
i
„

Opw
„

.c/ Opw
„ .H

0 C r„/e
� i

„
Opw

„
.c/

D

r�1
X

nD0

1

nŠ
adn

i„�1 Opw
„

.c/
Opw

„ .H
0 C r„/

C

1
Z

0

1

.r � 1/Š
.1� t/r�1ei t„�1 Opw

„
.c/

adr
i„�1 Opw

„
.c/

Opw
„ .H

0 C r„/e
�i t„�1 Opw

„
.c/ d t:

By the Egorov theorem and the fact that adr
i„�1 Opw

„
.c/

WE ! Or (see (3.1)), the integral

remainder has a symbol with Taylor series in Or . Moreover,

�
w;T
„

�

r�1
X

nD0

1

nŠ
adn

i„�1 Opw
„

.c/
Opw

„ .H
0 C r„/

�

D

r�1
X

nD0

1

nŠ
adn

i„�1�
.H 0 C 
/

D e
i
„

ad� .H 0 C 
/C Or

D H 0 C � C Or :
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Thus, by the definition of f , there exists s.w; z; „/ such that Œs� 2 Or and

e
i
„

Opw
„

.c/ Opw
„ .H

0 C r„/e
� i

„
Opw

„
.c/

D Opw
„ .H

0/C Opw
„ .f .w; jz1j2; : : : ; jzd=2j2; „//C Opw

„ .s/:

Finally, we want to change the function f .w; jz1j2; : : : ; jzd=2j2; „/ of classical har-

monic oscillators into a function f ?.w;	
.1/

„
; : : : ;	

.d=2/

„
;„/ of the quantized oscillat-

ors. To do so, note that the m-th power

.jzj j2/?m WD jzj j2 ? � � � ? jzj j2

is a polynomial function of .jzj j2;„/, and that we can rewrite the series � as a function

of .jzj j2/?m. We get new coefficients c?
l;m

such that

� D
X

k�2

X

lCjmjDk

c?
l;m.w/.j Oz1j2/?m1 : : : .jzd=2j2/?md=2„l :

We take a function f ? with Taylor series

X

k�2

X

lCjmjDk

c?
l;m.w/I

m1

1 : : : I
md=2

d=2
„l ;

and using the compatibility of the quantization with the Moyal product, we deduce

that

�
w;T

„
.f ?.w;	

.1/

„
; : : : ;	

.d=2/

„
; „// D Œf .w; jz1j2; : : : ; jzd=2j2; „/�;

so we get

e
i
„

Opw
„

.c/ Opw
„ .H

0 C r„/e
� i

„
Opw

„
.c/

D Opw
„ .H

0/C Opw
„ .f

?.w;	
.1/

„
; : : : ;	

.d=2/

„
; „//C Opw

„ .Qs/;

for a new symbol Qs.w; z; „/ with ŒQs� 2 Or . Hence, we get

U �
„

yL„U„ D Opw
„ .H

0/C Opw
„ .f

?.w;	
.1/

„
; : : : ;	

.d=2/

„
; „//C Opw

„ .Qs/;

with U„ D e� i
„

Opw
„

.c/. To prove (iii) with R„ D Opw
„ .Qs/; note that

�
w;T

„
.R„/ D ŒQs� 2 Or

and

�
w;T

„
.U„R„U

�
„ / D e

i
„

ad� .ŒQs�/ 2 Or :

Theorem 1.2 follows with the new operator zU„ D V„U„ given by (4.1) and The-

orem 4.1. Point Theorem 1.2 (ii) is remaining. We prove it here, using that the function

f ? can be chosen with arbitrarily small compact support.
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Proposition 4.1. For any � 2 .0; 1/, up to reducing the support of f ?, the normal

form N„ of Theorem 4.1 satisfies for „ 2 .0; „0� small enough:

.1� �/hL0
„ ; i � hN„ ; i � .1C �/hL0

„ ; i; for all  2 �.Rd /:

Proof. For a given K > 0, we can take a cutoff function � supported in ¹� 2 R
d=2W

k�k � Kº, and change f ? into �f ?. Thus, for �j 2 sp.	
.j /

„
/,

j�f ?.w; �1; : : : ; �d=2; „/j � CKk�k

� CK
X

j

1

min Ǒ
j

Ǒ
j .w/�j

� zCK
X

j

Ǒ
j .w/�j :

Hence, using functional calculus and the Gårding inequality, we deduce that

jhOpw
„ f

�.w;	
.1/

„
; : : : ;	

.d=2/

„
; „/ ;  ij � zCKhL0

„ ; i C c„k k2

� �hL0
„ ; i;

for K and „ small enough.

5. Spectral reduction of N„

In this section, we prove an expansion of the first eigenvalues of N„ in powers of „1=2.

In order to prove Theorem 1.5, it will only remain to compare the spectra of N„

and L„. This will be done in the next sections.

Let 1� j � d=2. For nj � 0, we denote by hnj
WR ! R the nj -th Hermite function

of the variable xj . In particular, for every 1 � j � d=2 we have

	
.j /

„
hnj

.xj / D „.2nj C 1/hnj
.xj /: (5.1)

Moreover, .hnj
/nj �0 is a Hilbertian basis of L2.Rxj

/:

L2.Rxj
/ D

M

nj �0

hhnj
i:

On R
d=2
x , we define the functions hn for any n D .n1; : : : ; nd=2/ 2 N

d=2 by

hn.x/ D hn1
˝ � � � ˝ hnd=2

.x/ D hn1
.x1/ : : : hnd=2

.xd=2/:

We have the following space decomposition:

L2.Rd=2
x / D

M

n2Nd=2

hhni:
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In particular,

L2.Rd
x;y/ D

M

n2Nd=2

�

L2.Rd=2
y /˝ hhni

�

: (5.2)

Since N„ commutes with the harmonic oscillators 	
.j /

„
.1 � j � d=2/, it is

reduced in the decomposition (5.2). More precisely,

Lemma 5.1. For nD .n1; : : : ; nd=2/ 2 N
d=2, there exists a classical pseudodifferen-

tial operator N
.n/

„
acting on L2.R

d=2
y / such that

N„.u˝ hn1
˝ � � � ˝ hnd=2

/ D N
.n/

„
.u/˝ hn1

˝ � � � ˝ hnd=2
for all u 2 �.Rd=2

y /:

Its symbol is

F .n/.w/ D „

d=2
X

j D1

Ǒ
j .w/.2nj C 1/C f ?.w; „.2nC 1/; „/;

and we have

sp.N„/ D
[

n

sp.N
.n/

„
/:

Moreover, the multiplicity of � as eigenvalue of N„ is the sum over n of the multipli-

cities of � as eigenvalue of N
.n/

„
.

This follows directly from (5.1) and (4.4). Moreover, we can prove the following

more precise inclusions of the spectra.

Lemma 5.2. Let b1 2 .b0; Qb1/. There exist „0; nmax; c > 0 such that, for any „ 2

.0; „0/,

sp.N„/ \ .�1; b1„� �
[

0�jnj�nmax

sp.N
.n/

„
/; (5.3)

and, for any n 2 N
d=2 with 1 � jnj � nmax,

sp.N
.n/

„
/ � Œ„.b0 C cjnj/;C1/: (5.4)

Proof. Remember that the functions Ǒ
j are bounded from below by a positive con-

stant. Thus, the Gårding inequality implies that there are „0; c > 0 such that, for every

„ 2 .0; „0/,

hOpw
„ .

Ǒ
j /u; ui � ckuk2 for all u 2 L2.Rd=2

y /: (5.5)
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For any n 2 N
d=2, we have

hN
.n/

„
u; ui D hN„.u˝ hn/; u˝ hni

� .1 � �/hL0
„.u˝ hn/; u˝ hni (by Proposition 4.1)

D .1 � �/

d=2
X

j D1

„.2nj C 1/hOpw
„ .

Ǒ
j /u; ui

because L
0
„

D
P

j Opw
„ .

Ǒ
j /	

.j /

„
. Thus, using (5.5) and the Gårding inequality,

hN
.n/

„
u; ui � „.1 � �/.2cjnjkuk2 C hOpw

„ .
Ob/u; ui/

� „.1 � �/.2cjnj C b0 � Qc„/kuk2:

This proves (5.4) for a new c > 0. Moreover, if you take any eigenpair .�;  / of N„

with � � b1„, it is an eigenpair of some N
.n/

„
, with  D u˝ hn, and

„.1 � �/.2cjnj C b0 � Qc„/kuk2 � hN
.n/

„
u; ui D hN„ ; i � b1„k k2:

Thus, there is a nmax > 0 independent of „; �;  such that

jnj � nmax:

We deduce (5.3).

Using the previous Lemma and the well-known expansion of the first eigenvalues

of Opw
„ .

Ob/, we deduce an expansion of the first eigenvalues of N„.

Theorem 5.1. Let " > 0 andN � 1. There exist „0 > 0 and c0 > 0 such that, for „ 2

.0; „0�, the N first eigenvalues of N„: .�j .„//1�j �N admit an expansion in powers

of „1=2 of the form

�j .„/ D „b0 C „2.Ej C c0/C „5=2cj;5 C „3cj;6 C � � � ;

where „Ej is the j -th eigenvalue of the d=2-dimensional harmonic oscillator associ-

ated to the Hessian of Ob at 0, counted with multiplicity.

Proof. The smallest eigenvalues of N„ are those of N
.0/

„
, which has the symbol

„ Ob.w/C f ?.w; „; : : : ; „/ D „. Ob.w/C „c0 C O.„2//:

The first eigenvalues of a semiclassical pseudodifferential operator with principal

symbol Ob (which admits a unique and non-degenerate minimum) have an expansion

of the form

�j .„/ D b0 C „Ej C „3=2
X

m�0

aj;m„m=2;
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where „Ej is the j -th eigenvalue of the d=2-dimensional harmonic oscillator asso-

ciated to the Hessian of Ob at the minimum. Let us recall the idea of the proof of this

result. Since the minimum of Ob is non-degenerate, we can write

Ob.w/ D b0 C
1

2
Hess0

Ob.w;w/C O.jwj3/:

A linear symplectic change of coordinates changes Hess0
Ob into

d=2
X

j D1

�j .y
2
j C �2

j /;

for some positive numbers .�j /1�j �d=2. In these coordinates the symbol becomes

Ob.y; �/ D b0 C

d=2
X

j D1

�j .y
2
j C �2

j /C O.jwj3/C O.„/;

and Helffer and Sjöstrand proved in [17] that the first eigenvalues of a pseudo-differ-

ential operator with such a symbol admits an expansion in powers of „1=2. Sjöstrand

[27] recovered this result using a Birkhoff normal form in the case where the coef-

ficients .�j /j are non-resonant. Charles and Vũ Ngo.c also tackled the resonant case

in [5].

6. Microlocalization results

In Section 4, we proved Theorem 1.2. We constructed a normal form, which is only

valid on a neighborhood U of † D H�1.0/ since the rest R„ can be large outside

this neighborhood. Hence, we now show that the eigenfunctions of L„ and N„ are

microlocalized on a neighborhood of †. These results, and their proofs, are the same

as in the case d D 2, so we refer the reader to [26].

6.1. Microlocalization of the eigenfunctions

Recall that

K D ¹b.q/ � Qb1º � �:

For " > 0, we denote

K" D ¹qW d.q;K/ � "º: (6.1)

For " > 0 small enough, K" � �. The following theorem states the well-known

Agmon estimates (see Agmon’s paper [1] for the electric Schrödinger case), which
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gives exponential decay of the eigenfunctions of the magnetic Laplacian L„ outside

the minimum q0 of the magnetic intensity b. In particular, these eigenfunctions are

localized in �.

Lemma 6.1 (Agmon estimates). Let ˛ 2 .0; 1=2/ and b0 < b1 < Qb1. There exist

C;„0 > 0 such that for all „ 2 .0;„0� and for all eigenpair .�; / of L„ with �� „b1,

we have
Z

M

jed.q;K/„�˛

 j2 d q � Ck k2:

In particular, if �0WM ! Œ0; 1� is a smooth function being 1 on K",

 D �0 C O.„1/ in L2.M/:

Proof. This result is now classical, and the proof in the 2-dimensional case ([26, Pro-

position 4.1]) is still valid, using Assumption 1.

Now, we state the microlocalization of the eigenfunctions of L„ near †.

Lemma 6.2. Let " > 0, ı 2 .0; 1
2
/, and 0 < b1 < Qb1. Let �0WM ! Œ0; 1� be a smooth

function being 1 on K". Let �1W R ! Œ0; 1� be a smooth compactly supported cutoff

function being 1 near 0. Then for any normalized eigenpair .�;  / of L„ such that

� � „b1 we have

 D �1.„
�2ı

L„/�0.q/ C O.„1/ in L2.M/:

Proof. Again, the same proof as in the 2-dimensional case holds (see [26, Proposi-

tion 4.3]).

The next two theorems state the microlocalization of the eigenfunctions of the

normal form. We recall that if ' is defined by Theorem 1.1, we have

'.K/ D ¹w 2 V W Ob.w/ � Qb1º;

with Ob.w/ D b ı '�1.w/: We also recall the definition (6.1) of K". This first lemma

gives a microlocalization result on the w variable.

Lemma 6.3. Let „ 2 .0; „0� and b1 2 .0; Qb1/. Let �0 be a smooth cutoff function on

R
d
w supported on V such that �0 D 1 on '.K"/. Then for any normalized eigenpair

.�;  / of N„ such that � � „b1, we have

 D Opw
„ .�0/ C O.„1/ in L2.Rd

x;y/:

Proof. This is standard symbolic calculus. See the 2-dimensional case ([26, Proposi-

tion 4.4]).
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Now, we prove the microlocalization of the eigenfunctions of N„ on a neighbor-

hood of '.†/ D ¹.z; w/W z D 0º.

Lemma 6.4. Let „ 2 .0;„0�, b1 2 .0; Qb1/, and ı 2 .0; 1=2/. Let �0 be a smooth cutoff

function on R
d=2
w supported on V such that �0 D 1 on '.K"/ and �1 a real cutoff

function being 1 near 0. Then for any normalized eigenpair .�;  / of N„ such that

� � „b1, we have

 D �1.„
�2ı

	
.1/

„
/ : : : �1.„

�2ı
	

.d=2/

„
/Opw

„ .�0.w// C O.„1/ in L2.Rd /:

Proof. This is the analogue of [26, Proposition 4.5] in the 2-dimensional case.

6.2. Rank of the spectral projections

We want the microlocalization Theorems 6.2 and 6.4 to be uniform with respect to

�2 .�1;b1„�. That is why we need the rank of the spectral projections to be bounded

by some finite power of „�1. If A is a bounded from below self-adjoint operator, and

˛ 2 R, we denote byN.A;˛/ the number of eigenvalues of A smaller than ˛, counted

with multiplicities. It is the rank of the spectral projection 1��1;˛�.A/.

The proof of the following estimate is based on the inequality of Assumption 1,

together with a magnetic Lieb–Thirring inequality, which can be found in [10] for

instance. The proof is the same as in the 2-dimensional case ([26, Lemma 4.6]).

Lemma 6.5. Let b0 < b1 < Qb1. There exists C > 0 and „0 > 0 such that for all

„ 2 .0; „0�, we have

N.L„; „b1/ � C„�d=2:

The same result holds for N„:

Lemma 6.6. Let b1 2 .0; Qb1/. There exists C > 0 and „0 > 0 such that

N.N„; „b1/ � C„�d=2 for all „ 2 .0; „0/:

Proof. By Lemma 4.1, we have

hN„ ; i � .1 � �/hL0
„ ; i � .1� �/„hB„ ; i;

with B„ D Opw
„ .

Ob/. Using the min-max principle, it follows that

N.N„; „b1/ � N.B„; .1� �/�1b1/;

and using Weyl estimates ([8, Chapter 9] or [19]), we get

N.B„; .1� �/�1b1/ D O.„�d=2/:
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7. Comparison of the spectra of L„ and N„

7.1. Proof of Theorem 1.4

We denote by

�1.„/ � �2.„/ � � � �

the smallest eigenvalues of L„ and

�1.„/ � �2.„/ � � � �

the smallest eigenvalues of N„. The goal of this section is to prove the following

theorem, using the results of Section 6.

Theorem 7.1. If b1 < Qb1 and ı 2 .0; 1=2/, then

�n.„/ D �n.„/C O.„ır/;

uniformly in n such that �n.„/ � „b1 and �n.„/ � „b1.

Together with Theorem 5.1, this theorem concludes the proofs of Theorems 1.4

and 1.5.

Proof. We will prove that �n.„/ � �n.„/C O.„ır /, the other inequality being sim-

ilar. Let 1 � n � N.L„; „b1/, and let us denote by  1;„; : : : ;  n;„ the normalized

eigenfunctions associated to the first eigenvalues of L„. We also denote

Vn;„ D span¹�1.„
�2ı

L„/�0.q/ j;„W 1 � j � nº;

where �0 and �1 are defined in Lemma 6.2. We have the normal form

U �
„ L„U„ D N„ CR„; (7.1)

and we will use the min-max principle. For  2 span1�j �n j;„; we denote

Q D �1.„
�2ı

L„/�0.q/ 2 Vn;„

Such a Q is microlocalized on �„ � U � T �M; where

�„ D ¹.q; p/ 2 T �M W jp � A.q/j2 < c„2ı ; q 2 �º:

(Indeed, the symbol of �1.„
�2ı

L„/ is O.„1/ where �1.„
�2ı jp � A.q/j2/ � 0).

Thus, since U„U
�
„

D I microlocally on U (4.2) we deduce from (7.1) that

hN„U
�
„

Q ;U �
„

Q i D hL„
Q ; Q i � hU„R„U

�
„

Q ; Q i C O.„1/k Q k2; (7.2)
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On the first hand, by Theorem 6.2, we can change Q into  up to an error of order „1.

Indeed, by Lemma 6.5, the estimates of Theorem 6.2 remain true for  . We get

hL„
Q ; Q i D hL„ ; i C O.„1/k k2 � .�n.„/C O.„1//k k2:

On the other hand, the remainder is hU„R„U
�
„

Q ; Q i, where the function U �
„

Q is

microlocalized in

V„ D ¹.w; z/Ww 2 V; jzj2 � c„2ıº;

because U„ is a Fourier integral operator with phase function associated to the canon-

ical transformation ˆ, which is sending �„ (where Q is microlocalized) on V„.

Moreover, the symbol of the pseudo-differential operatorR„ on V is O..„ C jzj2/r=2/

(Theorem 4.1), so we get

U„R„U
�
„

Q D O.„ır/:

Thus, equation (7.2) yields

hN„U
�
„

Q ;U �
„

Q i � .�n.„/C O.„ır//kU �
„

Q k2;

for all Q 2 Vn;„. Since Vn;„ is n-dimensional, the min-max principle gives

�n.„/ � �n.„/C O.„ır/:

The same arguments give the opposite inequality, replacing Lemma 6.2 and 6.5 by

Lemma 6.4 and 6.6.

7.2. Proof of Corollary 1.1

Let us prove the Weyl estimates stated in Corollary 1.1. The proof relies on the clas-

sical Weyl asymptotics for pseudo-differential operators with elliptic principal symbol

([8, Chapter 9], [19, Appendix]). Let us first prove the Weyl estimates for the normal

form. For any n 2 N
d=2, N

.n/

„
is a pseudo-differential operator with principal symbol

„ ObŒn�.w/ D „

d=2
X

j D1

.2nj C 1/ Ǒ
j .w/:

Note that

Vn WD ¹ ObŒn�.w/ � b1º

is empty for all but finitely many n. For these n, the Gårding inequality gives

hN
.n/

„
 ; i � „.b1 � c„/k k; for all  2 �.Rd=2/;

so that

N.N
.n/

„
; b1„/ D N

�1

„
N

.n/

„
; Œb1 � c„; b1�

�
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which is o.„�d=2/ by the classical Weyl asymptotics. For the other finitely many n,

Vn � ¹ Ob.w/ � b1º

is a compact set with positive volume and thus the classical Weyl asymptotics gives

N.N
.n/

„
; b1„/ D N

�1

„
N

.n/

„
; b1

�

�
1

.2�„/d=2
Vol.Vn/:

Using

sp.N„/ D
[

n

sp.N
.n/

„
/;

we deduce that

N.N„; b1„/ D
1

.2�„/d=2

X

n

Vol.Vn/C o.„�d=2/:

Moreover,

Vol.Vn/ D

Z

Vn

dy d � D

Z

'�1.Vn/

'�.dy d �/;

where ' is defined in Theorem 1.1. Since ' is a symplectomorphism, we have

B D '�.d� ^ d y/

and thus
Bd=2

.d=2/Š
D

1

.d=2/Š
'�..d � ^ dy/d=2/ D '�.dy d �/:

Hence

Vol.Vn/ D

Z

bŒn�.q/�b1

Bd=2

.d=2/Š
;

so that

N.N„; b1„/ D
1

.2�„/d=2

X

n2Nd=2

Z

bŒn�.q/�b1

Bd=2

.d=2/Š
C o.„�d=2/;

where the sum is finite. It remains to compare

N1 WD N.N„; b1„/ and N2 WD N.L„; b1„/:

If we apply Theorem 1.4 with some b1 C ı > b1, we get a c > 0 such that for „ small

enough,

N.N„; „b1 � c„r=2�"/ � N2 � N.N„; „b1 C c„r=2�"/;
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so

jN1 �N2j � N.N„; Œ„b1 � c„r=2�"; „b1 C c„r=2�"�/:

Classical Weyl asymptotics gives

N.N
.n/

„
; Œ„b1 � c„r=2�"; „b1 C c„r=2�"�/ D o.„�d=2/;

for any n 2 Nd=2, so jN1 �N2j D o.„�d=2/, and the proof is complete.

A. Appendix

Lemma A.1. The principal and subprincipal symbols of the operator

L„ D .i„ d CA/�.i„ d CA/

are

�0.L„/ D jp �A.q/j2g�.q/; and �1.L„/ D 0:

Proof. We will compute these symbols in coordinates, in which L„ acts as

L
coord
„ D

X

k`

jgj�1=2.i„@k C Ak/g
k`jgj1=2.i„@` C A`/:

The principal symbol is always well defined. The subprincipal symbol is well defined

if we restrict the changes of coordinates to be volume-preserving. This amounts to

conjugating L
coord
„

by jgj1=4. Thus, the subprincipal symbol is defined in coordinates

by

�1.L„/ D �1.jgj1=4
L

coord
„ jgj�1=4/:

The total symbol of �i„@k �Ak is

�.�i„@k �Ak/ D pk � Ak;

so we can use the star product ? on symbols to compute the symbol of L„:

�.jgj1=4
L

coord
„ jgj�1=4/ D

X

k`

jgj1=4 ? jgj�1=2 ? .pk � Ak/

? gk`jgj1=2 ? .p` � A`/ ? jgj�1=4:

Now, we will use the formula

�.f ? g/ D fg C
„

2i
¹f; gº C O.„2/
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several times to compute the symbol, where ¹f; gº denotes the Poisson brackets. Of

course, we directly deduce the principal symbol

�0.jgj1=4
L

coord
„ jgj�1=4/ D

X

k`

gk`.pk � Ak/.p` � A`/

so that

�0.L„/ D jp � A.q/j2g�.q/:

To compute the subprincipal symbol, we will use

�.jgj1=4
L

coord
„ jgj�1=4/ D

X

k`

Œjgj�1=4 ? .pk �Ak/ ? jgj1=4� ? gk`

? Œjgj1=4 ? .p` �A`/ ? jgj�1=4�:

Let us compute ak D jgj�1=4 ? .pk �Ak/ ? jgj1=4:

ak D .pk � Ak/C
„

2i
Œ¹jgj�1=4.pk � Ak/; jgj1=4º C ¹jgj�1=4; pk � Akºjgj1=4�

C O.„2/

D .pk � Ak/C
„

2i

h

jgj�1=4 @jgj1=4

@qk

�
@jgj�1=4

@qk

jgj1=4
i

C O.„2/

D .pk � Ak/C
„

i
jgj�1=4 @jgj1=4

@qk

C O.„2/:

We also get the similar result for b` D jgj1=4 ? .p` �A`/ ? jgj�1=4:

b` D .p` �A`/ �
„

i
jgj�1=4 @jgj1=4

@q`

C O.„2/

Thus, we can compute

ak ? g
k` D gk`.pk �Ak/C

„

2i
¹pk �Ak; g

k`º C
„

i
jgj�1=4 @jgj1=4

@qk

gk` C O.„2/

D gk`.pk �Ak/C
„

2i

@gk`

@qk

C
„

i
jgj�1=4 @jgj1=4

@qk

gk` C O.„2/;

and

ak ? g
k` ? b` D gk`.pk �Ak/.pl �Al /C

„

2i
¹gk`.pk � Ak/; p` �A`º

�
„

i
gk`.pk �Ak/jgj�1=4 @jgj1=4

@q`

C
„

2i

@gk`

@qk

.p` �A`/

C
„

i
jgj�1=4 @jgj1=4

@qk

.p` � A`/C O.„2/:



L. Morin 494

Summing over k; `, we get

X

k`

ak ? g
k` ? b` D

X

k`

gk`.pk �Ak/.pl �Al /C
„

2i
¹gk`.pk � Ak/; p` � A`º

C
„

2i

@gk`

@qk

.p` �A`/C O.„2/

D
X

k`

gk`.pk �Ak/.p` � A`/

C
„

2i
gk` @.p` �A`/

@qk

�
„

2i

@gk`.pk �Ak/

@q`

C
„

2i

@gk`

@qk

.p` �A`/C O.„2/

D
X

k`

gk`.pk �Ak/.p` � A`/C O.„2/:

Since

�.jgj1=4
L

coord
„ jgj�1=4/ D

X

k`

ak ? g
k` ? b`;

we deduce that:

�1.jgj1=4
L

coord
„ jgj�1=4/ D 0;

and

�1.L„/ D 0:

The following Lemma due to Weinstein [30] tells that, if two 2-forms coincide on

a submanifold, they are equal up to a transformation tangent to the identity. The proof

can be found in [26, Lemma 2.4] as well.

Lemma A.2 (relative Darboux lemma). Let !0 and !1 be two 2-forms on � � R
d
z

which are closed and non-degenerate. Assume that!0jzD0 D!1jzD0. Then there exists

a change of coordinates S on a neighborhood of � � ¹0º such that

S�!1 D !0 and S D I C O.jzj2/:
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