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A proof of the triangular

Ashbaugh–Benguria–Payne–Pólya–Weinberger inequality

Ryan Arbon, Mohammed Mannan, Michael Psenka, and Seyoon Ragavan

Abstract. In this paper, we show that for all triangles in the plane, the equilateral triangle max-
imizes the ratio of the first two Dirichlet–Laplacian eigenvalues. This is an extension of work
by Siudeja (2010), who proved the inequality in the case of acute triangles. The proof utilizes
inequalities due to Siudeja and Freitas (2010), together with improved variational bounds.

1. Introduction

For triangles in the Euclidean plane, the explicit values for the eigenvalues of the
Dirichlet–Laplacian problem are only known in the case of the equilateral, 30-60-90,
and 45-45-90 triangles. However, it is known that for a given domain D in the plane,
the Dirichlet–Laplacian eigenvalues form a non-decreasing sequence, which we order
as ¹�i ºi2N . From now on, given a domain D in the plane, we will use the phrase “the
eigenvalues of D” to refer to the Dirichlet–Laplacian eigenvalues of D.

The Payne–Pólya–Weinberger (PPW) inequality dates back to the year 1955, when
L. Payne, G. Pólya, and H. Weinberger published a paper [11] proving a bound on the
ratio of the first two eigenvalues �2=�1 of a bounded domain D in the plane, namely
that �2=�1 � 3. Payne, Pólya, and Weinberger conjectured that this ratio is maximized
when D is the disc, that is,
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The original PPW inequality was generalized to dimension n by Thompson in [14],
who showed that
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where jm is the first positive zero of the Bessel function of order m. The original PPW
conjecture, along with its n-dimensional generalization by Thompson, was proven in
1992 by Ashbaugh and Benguria in [2, 3], which led to a natural question: loosely
stated, do more regular shapes maximize the ratio �2=�1? In particular, as stated
in [1], the polygonal Ashbaugh–Benguria–PPW Conjecture states that the regular
n-gon in the plane maximizes �2=�1 in the class of n-gons. More background on
the PPW inequality can be found in [7].

The purpose of this paper is to show that the ratio �2=�1 of eigenvalues of the
equilateral triangle is maximized among triangles, as stated below.

Theorem 1.1. For an arbitrary triangle, the following inequality holds:
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: (1.4)

This corresponds to the case k D 3 of [8, Conjecture 6.31] and [1, Conjecture 13],
that is, the triangular case of the polygonal Ashbaugh–Benguria–PPW inequality.

2. Proof outline

In our paper, we prove Theorem 1.1 by splitting the problem into several cases. Our
proof of Theorem 1.1 relies heavily on work done by Siudeja, who proved in [13] that
Theorem 1.1 holds when restricted to acute triangles. Since the acute case is proven
in [13], we restrict our attention to obtuse and right triangles. We additionally utilize
bounds proved by Siudeja and Freitas in [6]. Once we restrict ourselves to the obtuse
case and introduce new bounds for the eigenvalues, we are able to finish the proof
of Theorem 1.1 with only four cases, illustrated in Figure 1, using mostly simple
univariate optimization problems and other elementary techniques.

In addition for our proof, we build new variational bounds on �2 from those pro-
vided in [13] that are tighter for moderately obtuse triangles, and we apply a simple
monotonicity argument to obtain a bound that is effective for very obtuse triangles.
We describe this in detail in Section 3.

We will use d to denote the diameter of the triangle, which we normalize to 1.
We consider triangles in the Euclidean plane with vertices at .0; 0/, .1; 0/, and .p; q/

without loss of generality. To be right-angled or obtuse at .p; q/, the third vertex
.p; q/ must belong on the boundary of or inside the circle .p � 1=2/2 C q2 D 1=4.
By symmetry, we can focus without loss of generality on the top right quadrant of this
circle, i.e., when p � 1=2 and q � 0. This region is shown in Figure 1.

Hence, our triangles have shortest height h equal to q and area A equal to q
2

.
Moreover, we use � to denote the smallest angle of the triangle which will be at
.0; 0/. Thus, � D tan�1.q=p/.
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Figure 1. Illustration for single vertex .p; q/ of obtuse triangles in cases I, II, III, and IV. The
other two vertices are always .0; 0/ and .1; 0/. Note that as �2=�1 is invariant under scaling and
rigid motions, we can restrict to this quarter semi-circle without loss of generality.

Our primary strategy is to combine the following estimates for �1 taken from [6]
and [13]:

�1 � �2.1=d C 1=h/2 (2.1)

and

�1 �
�j 2

�=�

2A
; (2.2)

in combination with new bounds on �2.
We obtain new bounds on �2 using a variational approach with test functions

based on known eigenfunctions for the 45-45-90 and 30-60-90 triangles. For very flat
triangles, we enclose a rectangle within the triangle. We will refer to these bounds as
“45-45-90 �2 bound,” “30-60-90 �2 bound,” and “rectangle �2 bound.”

As seen in Figure 1, we divide this region into four areas which we address
individually. Area I employs the 45-45-90 bound and bound (2.1), Area II uses the
30-60-90 bound and bound (2.1), Area III uses the rectangle bound and bound (2.2),
and finally Area IV employs the rectangle bound and bound (2.1).

We now make these �2 estimates precise before going into casework.



R. Arbon, M. Mannan, M. Psenka, and S. Ragavan 518

3. Upper bounds on �2

Mathematica code reproducing all computations for this section and Section 4 is avail-
able on GitHub.1

3.1. Variational bounds

For these bounds on �2 we use the variational characterization

�2jT D inf
f1;f2

sup
˛

R

T jr. f̨1 C f2/j2
R

T . f̨1 C f2/2

D inf
f1;f2

sup
˛

A˛2 C 2B˛ C C

D˛2 C 2E˛ C F
;

where

A D
Z

T

jrf1j2; B D
Z

T

rf1 � rf2; C D
Z

T

jrf2j2;

D D
Z

T

f 2
1 ; E D

Z

T

f1f2; F D
Z

T

f 2
2 :

(3.1)

As usual, f1; f2 must be linearly independent and vanish at the boundary of T . To
choose test functions f1; f2, we use the idea of “transplanting eigenfunctions” used
in [6,9,12,13]. We take the first two eigenfunctions of a 45-45-90 or 30-60-90 triangle
and transplant them onto T with a suitable affine transformation. These bounds can
also be found in [13], but the affine transformations used there significantly distort
the triangle when it is right or obtuse. We thus obtain better bounds for the obtuse and
right cases by choosing different affine transformations that have smaller distortion
for right/obtuse triangles; we will point out these differences.

3.1.1. 30-60-90 bound. We take our 30-60-90 triangle to have vertices at .0; 0/,
.1=2; 0/, and .1=2;

p
3=2/. On this triangle the first two eigenfunctions are as fol-

lows [10], where for convenience we let z D �
3

.2x � 1/ and t D �.1 � 2yp
3
/:

�30;1.x; y/ D sin.4z/ sin.2t/ � sin.5z/ sin.t/ � sin.z/ sin.3t/;

�30;2.x; y/ D sin.5z/ sin.3t/ � sin.2z/ sin.4t/ � sin.7z/ sin.t/:

Let L30 be the affine mapping sending .0; 0/ to .1=2;
p

3=2/, .p; q/ to .1=2; 0/, and
.1; 0/ to .0; 0/. This transformation sends the right/obtuse angle of our triangle to the

1https://github.com/sragavan99/triangle-ppw-inequality

https://github.com/sragavan99/triangle-ppw-inequality
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right angle of the 30-60-90 triangle, and it sends the shortest side of the right/obtuse
triangle to the shortest side of the 30-60-90 triangle. Thus, this preserves the geometry
of the triangle reasonably well.

On the other hand, the argument in [13] starts with the 30-60-90 triangle with
vertices at .0; 0/; .1; 0/; .0;

p
3/ and considers an affine mapping preserving .0; 0/ and

.1; 0/ and sending .p; q/ to .0;
p

3/. For right/obtuse triangles, this is very distortive
since the right/obtuse angle at .p; q/ is mapped into the 30ı angle at .0;

p
3/. Hence,

we expect our chosen affine mapping to be more effective for the triangles in question.
We take our test functions to be �30;1 ı L30 and �30;2 ı L30. We can then evaluate

coefficients given by (3.1) using these test functions:

A30.p; q/ D �1594323 C 604800�2

345600q

C 4p.1245184 � 713743p C 100800.�3 C 2p/�2/

345600q

C �2854972q2 C 806400�2q2

345600q
;

B30.p; q/ D �2657205 C 4p.�1507328 C 621593p/ C 2486372q2

354816q
;

C30.p; q/ D �1594323 C p.6209536 � 6879600�2/

1058400q

C 28p2.�145849 C 163800�2/

1058400q

C �4083772q2 C 1146600�2.3 C 4q2/

1058400q
;

D30.p; q/ D 3q

8
; E30.p; q/ D 0; F30.p; q/ D 3q

8
:

(3.2)

As expected, E30.p; q/ D 0 since �30;1 and �30;2 are orthogonal on the original
30-60-90 triangle and this will be preserved by an affine transformation. Thus, our
final bound for �2 is

�2 � sup
˛

A30.p; q/˛2 C 2B30.p; q/˛ C C30.p; q/

D30.p; q/˛2 C F30.p; q/
: (3.3)

3.1.2. 45-45-90 bound. We take our 45-45-90 triangle to be that with vertices at
.0; 0/; .1; 0/; .0; 1/, for which the first two eigenfunctions are given by

�45;1.x; y/ D sin.2�x/ sin.�y/ C sin.�x/ sin.2�y/;

�45;2.x; y/ D sin.3�x/ sin.�y/ � sin.�x/ sin.3�y/:
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These can be derived by noting that eigenfunctions of this triangle can be reflected
over the line y D 1 � x to obtain an eigenfunction of the unit square that vanishes
along this diagonal. We define L45 to be the affine mapping sending .p; q/ to .0; 0/,
.0; 0/ to .1; 0/, and .1; 0/ to .0; 1/. Note once again that our affine mapping sends the
right/obtuse angle at .p; q/ to the right angle at .0; 0/. In contrast, the work in [13]
(considering the same triangle) works with the affine mapping preserving .0; 0/ and
.1; 0/ and sending .p; q/ to .0; 1/. Once again, this is very distortive for right/obtuse
angles, since the right/obtuse angle at .p; q/ is sent to the 45ı angle at .0; 1/. Thus,
we can expect our affine mapping to yield tighter bounds here as well.

We take our test functions to be �45;1 ı L45 and �45;2 ı L45. From these test
functions, we obtain the following coefficients:

A45.p; q/ D p.256 � 90�2/ C p2.�256 C 90�2/ � 256q2 C 45�2.1 C 2q2/

72q
;

B45.p; q/ D 512.1 � 2p/

175q
;

C45.p; q/ D 5�2.1 � 2p C 2p2 C 2q2/

4q
;

D45.p; q/ D q

4
; E45.p; q/ D 0; F45.p; q/ D q

4
:

(3.4)

Once again, it can be seen without doing any integration that E45.p; q/ D 0. This
gives us the following bound:

�2 � sup
˛

A45.p; q/˛2 C 2B45.p; q/˛ C C45.p; q/

D45.p; q/˛2 C F45.p; q/
: (3.5)

3.2. Rectangle bound

When our triangle is very obtuse (i.e., q is very small), the bounds on �2 described so
far are insufficient. This is not surprising, since in this region our affine transforma-
tions are still quite distorted. Thus, we address this case with a different approach. As
stated in Section 2, this bound is obtained by enclosing a rectangle inside the triangle,
with one side aligned with the triangle’s diameter. A visualization is given in Figure 2.
As the triangle becomes more obtuse, it becomes closer to the enclosed rectangle in
shape, so we expect this estimate to be more effective. It is straightforward to see that
if such a rectangle R has height qt for t 2 .0; 1/, then it will have width 1 � t .
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.0; 0/ .1; 0/

.p; q/

1 t

qt

Figure 2. For very obtuse triangles, we bound �2 by enclosing a rectangle within the triangle
and using monotonicity.

Let us take t D 1

1C 3
p

4q2
. This clearly is in .0;1/. Moreover, the following inequal-

ity holds:

q < 4 () q <
3
p

4q2 () 1

1 C q
>

1

1 C 3
p

4q2

() 1 > .1 C q/t () 1 � t > qt: (3.6)

Then by monotonicity of Dirichlet eigenvalues, we obtain the following inequality:

�2 � �2.R/ D �2
� 4

.1 � t/2
C 1

.qt/2

�

D �2 .1 C 3
p

4q2/3

q2
:

This then yields the rectangle bound

�2 � �2 .1 C 3
p

4q2/3

q2
: (3.7)

Note that a similar bound via rectangle inscription can also be found in [5].

4. Proofs in each area

We will now begin to prove Theorem 1.1 by splitting into the four cases indicated by
Figure 1.

4.1. Area I

In this region, we have q � 0:156 and p � 0:65, and we employ bounds (3.5) and (2.1).
We wish to show that

A45.p; q/˛2 C 2B45.p; q/˛ C C45.p; q/

D45.p; q/˛2 C F45.p; q/
� 7

3
�2

�

1 C 1

q

�2

(4.1)
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for all real ˛ (hence the bound holds for sup˛). Clearing denominators and rearrang-
ing, we can equivalently show that the following inequality holds:

256˛.288 � 576p � 175..�1 C p/p C q2/˛/ � 7350�2.1 C q/2.1 C ˛2/

C 7875�2.1 C 2.�1 C p/p C 2q2/.2 C ˛2/ � 0: (4.2)

For fixed q and ˛, this is a quadratic in p with leading coefficient given by
31500�2 � 44800˛2 C 15750�2˛2. We know that

31500�2 � 44800˛2 C 15750�2˛2 > 0

since 15750�2 > 44800. For fixed p and ˛, this is a quadratic in q with leading
coefficient 350.69�2 � 128˛2 C 24�2˛2/. We also know that

350.69�2 � 128˛2 C 24�2˛2/ > 0

since 24�2 > 128. Since we wish to prove an upper bound on the left hand side
of (4.2), it suffices to show this upper bound at points where both p and q are extremal
assuming the other one is fixed. Thus, we only need to check at the points .0:5;0:156/;

.0:65; 0:156/, and the points .p;
p

1=4 � .p � 1=2/2/ where p 2 Œ0:5; 0:65�.
First, when .p; q/ D .0:5; 0:156/ we need to show that the following inequality

holds:
7.1805312˛2 � 3�2.70267 C 327457˛2//

1250
� 0:

This clearly holds since 1805312 < 3�2327457. Second, when .p;q/ D .0:65;0:156/,
we need to show that

128˛.�864000 C 355537˛/ � 21�2.112318 C 1225453˛2/

5000
� 0:

The left hand side is a quadratic in ˛ that attains a maximum of approximately
�1722:58 < 0 at ˛ � �0:265233, so this inequality holds.

Finally, we deal with the arc at the top of Area I. For convenience, we parametrize
the arc as .1=2 C

p

1=4 � q2; q/ for q 2 Œ
p

91=20; 1=2�. We wish to show that

�73728
p

1 � 4q2˛ � 525�2.�16 � ˛2 C 14q.2 C q/.1 C ˛2// � 0: (4.3)

For fixed q this is a quadratic in ˛, so it suffices to show that the leading coefficient
and the discriminant are both negative. The leading coefficient of (4.3) is given by

�525�2.�1 C 28q C 14q2/;

which on the interval Œ
p

91
20

; 0:5� achieves a maximum of � �80521:9 < 0 at q D
p

91
20

.
Hence, the leading coefficient is negative. The discriminant of (4.3) is given by

72.�75497472.�1C 4q2/ � 30625�4.�8 C 7q.2 C q//.�1 C 14q.2 C q///: (4.4)
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This is a quartic in q, so it may be maximized explicitly; however, we provide a
simpler argument here. We claim that it is decreasing in q over the interval Œ

p
91=20;

1=2�. Indeed its derivative with respect to q is given by

� 864360000�4q3 � 2593080000�4q2

� 72.603979776 C 16721250�4/q C 524790000�4:

This is clearly decreasing for q > 0, and is hence at most its value at q D
p

91=20

which is � �9:21588 � 1010 < 0.
The discriminant (4.4) is indeed decreasing, and it attains its maximum over this

interval at q D
p

91=20 with value � �4:12237 � 108 < 0. This implies that (4.3)
holds, completing our proof for Area I.

4.2. Area II

In this area, we have q � max.0:156; 1:7p � 1:38/ and we utilize equations (3.3)
and (2.1). That is, we wish to show that

A30.p; q/˛2 C 2B30.p; q/˛ C C30.p; q/

D30.p; q/˛2 C F30.p; q/
� 7

3
�2

�

1 C 1

q

�2

(4.5)

for all real ˛. Upon clearing denominators and rearranging, the problem is to show
that the following inequality holds:

3..�256p.�10486784 C 2546775�2/ C 28p2.�54958211 C 15523200�2/

� 539.1594323 C 2854972q2/ C 54331200�2.3 C q.�6 C 5q///˛2

C .�2790065250 C 6330777600p � 2610690600p2 � 2610690600q2/˛

� 280600848 � 256p.�4269056 C 4729725�2/

C 28p2.�25669424 C 28828800�2/ � 718743872q2

C 7761600�2.57 � 42q C 83q2// � 0: (4.6)

This proof proceeds similarly to our proof in Area I. For fixed q and ˛, (4.6) is a
quadratic in p with leading coefficient given by

84.�25669424 � 7˛.13319850 C 7851173˛/ C 2217600�2.13 C 7˛2//; (4.7)

and at fixed p and ˛, (4.6) is a quadratic in q with leading coefficient given by

3.�718743872 � 2610690600˛ � 1538829908˛2 C 7761600�2.83 C 35˛2//:

(4.8)
As in the proof for Area I, we now show that these leading coefficients are positive

for all real ˛. We again check that the discriminant of each is negative, guaranteeing
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no real roots, which in combination with having a positive leading coefficient implies
each is positive for all real ˛. We can bound (4.7) in the following way:

84.�7 � 7851173 C 7 � 2217600�2/ > 84.�107 C 108/ > 0:

Similarly, we can bound (4.8) in the following way:

3.�1538829908 C 35 � 7761600�2/ > 3.�109 C 2 � 109/ > 0

The discriminant corresponding to (4.7) is given by

.�7 � 84 � 13319850/2

� 4 � 842.�7 � 7851173 C 7 � 2217600�2/.�25669424 C 13 � 2217600�2/

� �2:4 � 1019 < 0;

and the discriminant corresponding to (4.8) is given by

.3 � �2610690600/2

� 4 � 32.�718743872 C 7761600 � 83�2/

� .�1538829908 C 7761600 � 35�2/ � �7:6 � 1020 < 0:

Therefore, both discriminants of the above polynomials with positive leading
coefficients are negative, and they are therefore both always positive for all real ˛.
Hence, as in Area I, it suffices to show (4.6) at points where both p and q are
extremal assuming the other one is fixed. Thus, we only need to check at the point
.0:65; 0:156/, the line segment covering points .p; 1:7p � 1:38/ as p ranges over
Œ384

425
; 1423C10

p
1729

1945
�, and the semicircular arc covering points .p;

p

1=4�.p � 1=2/2/

as p ranges over Œ0:65; 1423C10
p

1729
1945

�.
We first address the point .0:65; 0:156/. Here we wish to show that

3.6788089600688 C 7˛.1414193259450 C 1768358569901˛//

62500

C 3.�7761600�2.312007 C 977515˛2//

62500
� 0:

The left hand side is a quadratic in ˛ with leading coefficient � �3:00014 � 109 < 0

and discriminant � �9:6317 � 1018 < 0 so indeed it is always negative.
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Next we address the line segment q D 1:7p � 1:38. Plugging this into (4.6), we
wish to show that

1

625

�

528
�

� 5857161498 C 15856621390p � 9928670675p2

C 11025
�

682563 C 5p.�2211921178 C 1208998385p/
��

˛

C 1617
�

� 4394582298 C 11485165390p � 6941150675p2

C 126000
�

10401 C 5p.�4566 C 2245p/
�

�2
�

˛2
�

� 0: (4.9)

For fixed p, this is a quadratic in ˛, so we only need to check that its leading
coefficient and discriminant are both negative. Firstly, its leading coefficient is

1617

625

�

� 4394582298 C 11485165390p � 6941150675p2

C 126000.10401 C 5p.�4566 C 2245p//�2
�

:

This is a quadratic in p, and over the interval of interest it is maximized at p D 384
425

,
where its value is � �2:60188 � 109 < 0, so indeed the leading coefficient of (4.9) is
negative. Next, the discriminant of (4.9) is given by

1764

390625

�

5625
�

4620157398 C 5p.�2211921178 C 1208998385p/
�2

� 1936
�

�4394582298 C 11485165390p � 6941150675p2

C 126000
�

10401 C 5p.�4566 C 2245p/
�

�2
�

�
�

�5857161498 C 15856621390p � 9928670675p2

C 11025
�

682563 C 5p.�308418 C 171935p/
�

�2
��

: (4.10)

We now show that (4.10) is negative over our interval Œ384
425

; 1423C10
p

1729
1945

�. Again,
we could do this explicitly but we provide a simpler proof. The second derivative of
(4.10) is a quadratic in p that is minimized at 384

425
, achieving a minimum of 1:21487 �

1021 > 0, so this quartic is convex over this interval. Hence, to show that it is negative
it suffices to check that it is negative at the endpoints of our interval. At p D 384

425
, this

discriminant is

� 1

20390869140625

�

63504 �
�

�1238597349932730480637535561

C 1524600�2
�

�147282555087281544521

C 24336702382640067000�2
���

� �4:96593 � 1017 < 0;
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while at p D 1423C10
p

1729
1945

it evaluates to

� 1

572451126025
142884

�

�93894331197981557997.�214373 C 880
p

1729/

C 1355200�2
�

�114850305.�57253311661

C 1065417440
p

1729/

C 21952.�155377895789549

C 3421629255040
p

1729/�2
��

� �3:44375 � 1017 < 0:

Thus, (4.10) is indeed negative. This proves (4.9), achieving the desired result along
the line segment q D 1:7p � 1:38.

Finally, we show (4.6) along the semi-circular boundary arc; in this domain, we
are restricted to q D

p

1=4 � .p � 1=2/2 and p 2 Œ0:65; 1423C10
p

1729
1945

�. For conve-

nience, let p1 D 0:65 and p2 D 1423C10
p

1729
1945

. Plugging in q D
p

1=4 � .p � 1=2/2

to (4.6), we want to show that

27
�

� 177147.22 C 7˛/.8 C 77˛/ C 236196p.22 C 7˛/.8 C 77˛/

C 18110400p2�2.1 C ˛2/ � 862400p�2.73 C 49˛2/

� 2587200�2
�

�19 C 14
p

p.1 � p/
�

C 7
�

�1 C 2
p

p.1 � p/
�

˛2
�

� 0: (4.11)

Once again, for fixed p this is a quadratic in ˛. Its leading coefficient is

27
�

� 95482233 C 127309644p � 42257600p�2 C 18110400p2�2

� 18110400.�1 C 2
p

.1 � p/p/�2
�

WD 27f .p/;

and its constant coefficient is

27
�

� 31177872 C 41570496p � 62955200p�2 C 18110400p2�2

� 2587200.�19 C 14
p

�.�1 C p/p/�2
�

WD 27g.p/:

We show that f .p/ is negative in the interval Œp1;p2� by showing that f .p/ is strictly
increasing in Œp1; p2� and that f .p2/ < 0. Note that the derivative f 0.p/ is given by
the following:

f 0.p/ D .127309644 � 42257600�2/ C 2 � 18110400�2p

C 18110400�2 2p � 1
p

.1 � p/p
:

Since Œp1; p2� � .0:5; 1/, it trivially holds that both 2p � 1 and 1p
.1�p/p

are increas-

ing on Œp1; p2�. Since both are also positive on Œp1; p2�, it follows that 2p�1p
.1�p/p

is
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increasing on Œp1;p2�. We can then conclude that f 0.p/ is increasing on Œp1;p2�, and
thus

f 0.p/ � f 0.p1/ D .127309644 � 42257600�2/ C 2 � 18110400�2 � 0:65

C 18110400�2 0:3p
0:2265

� 5:5 � 107 > 0:

Hence, f is increasing, and evaluating f .p2/ gives

� 95482233 C 127309644.1423 C 10
p

1729/

1945
� 8451520

389
.1423 C 10

p
1729/�2

C 724416.1423 C 10
p

1729/2�2

151321

� 18110400
�

�1 C 2

s

.1423 C 10
p

1729/.1 C �1423�10
p

1729
1945

/

1945

�

�2

� �1:12135 � 108 < 0;

showing that f .p/ is negative for p 2 Œp1; p2�, and thus the leading coefficient of
equation (4.11) is negative. It remains to show that its discriminant is also negative.

Similarly, it is easy to see that g.p/ is negative for p 2 Œp1; p2�. The function
g is smooth in the given interval, so its extrema occur at p1, p2, or points within
.p1; p2/ where the derivative of g vanishes. By considering the derivative of g on
.p1; p2/, we find that g has exactly one minimum in .p1; p2/ and no other local
extrema. (Specifically, solving g0 D 0 in the interval can be reduced to finding the
roots of a quartic polynomial, which can be done accurately up to a small error
term. Doing so, we find that g0 has at most one root in this interval, and we can
use the graph of g0 and the intermediate value theorem to see that it has exactly one
root.) We call this minimizing value p3 and note that p3 � 0:81416. Furthermore,
g.p1/ > g.p3/ and g.p2/ > g.p3/, so p3 is the unique global minimizer on Œp1; p2�.
Thus, g is decreasing on Œp1; p3� and increasing on Œp3; p2�. More details can be
found in Section4-2.nb in the GitHub repository.

We have that �f and �g are both decreasing and positive on Œp3; p2�, and hence
fg is as well, as is any non-trivial function proportionate to it. Meanwhile, the square
of the linear coefficient, 729.�310007250 C 413343000p/2, is increasing on Œp3;p2�

and is positive. Thus, the discriminant

729.�310007250 C 413343000p/2 � 2916f .p/g.p/

is increasing on Œp3; p2�. Since evaluation at p2 gives � �3:4 � 1017 < 0, the discrim-
inant is negative over Œp3; p2�.
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We now check the region Œp1; p3�. In this interval, we have the bounds

�2.p � 1=2/2 C 1=2 �
p

.1 � p/p

and

1

2
�

�

p � 1

2

�2

� 0:02 �
p

.1 � p/p;

which hold for p 2 Œp1; p3�. Define the following functions, which are modifications
of f and g respectively:

f0.p/ WD � 95482233 C 127309644p � 42257600p�2 C 18110400p2�2

� 18110400
�

�1 C 2
�1

2
�

�

p � 1

2

�2

� 0:02
��

�2;

and

g0.p/ WD � 31177872 C 41570496p � 62955200p�2 C 18110400p2�2

� 2587200
�

�19 C 14.�2.p � 1=2/2 C 1=2/
�

�2:

Then f � f0, and additionally �g is positive in p 2 Œp1; p3�, so �fg � �f0g. It
is not hard to check that �f0 is positive in Œp1; p3�, and as g � g0, we similarly have
�f0g � �f0g0. So

729.�310007250 C 413343000p/2 � 2916f .p/g.p/

� 729.�310007250 C 413343000p/2 � 2916f0.p/g0.p/: DW r.p/:

We will now prove that the left hand side is negative throughout Œp1; p3� by prov-
ing this statement for r.p/. To do this, we first want to prove as a lemma that r is
concave up in Œp1; p3�; r is a quartic polynomial, meaning that its second derivative
r 00 is quadratic. To find the critical point of the quadratic r 00, we find the root of its
derivative. The derivative is given by

� 344307200786841600000�4p � 241212414904592947200�2

C 253038466610012160000�4;

which has its root at p D .�17301357 C 18149600�2/=.24696000�2/ � 0:663938,
achieving the value � 1:32883 � 1021 > 0. Since r 00 is a quadratic whose leading
coefficient is �172153600393420800000�4 < 0, r 00.p/ is a maximum, and since p 2
Œp1; p3�, we merely have to check that both r 00.p1/ > 0 and r 00.p3/ > 0 to conclude
that r 00.p/ > 0 for all p 2 Œp1;p3�. It suffices to prove that r 00.q/ > 0 for some q > p3

in place of the statement r 00.p3/ > 0 to avoid approximations involving the evaluation
of r 00.p3/. At p D 0:65 and p D 0:83 > p3, r 00 evaluates to � 1:32557 � 1021 and
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0:24

0:22

0:20

0:18

0:16

0:14

0:70 0:75 0:80 0:85 0:90 0:95 1:00

Figure 3. Visualization showing that the range of angles � in Area III is contained in Œ0:15;0:24�.
Area III (shown in blue) is covered by the region p tan.0:15/ � q � p tan.0:24/ (shown in
orange).

� 8:66388 � 1020, respectively. Therefore, r 00.p/ > 0 for all p 2 Œp1; p3�, and r is
concave upwards in this region.

Thus, it suffices to check that r.p/ < 0 at p D p1 and p D 0:83 > p3. At these
points, r.p/ has the values � �4:39 � 1018 < 0 and � �1:62 � 1018 < 0, respectively.
Hence, r.p/ < 0 for all p 2 Œp1;p3�, implying that the same holds for the discriminant
of 4.11.

This completes the proof of equation (4.6), and hence Theorem 1.1 over Area II.

4.3. Area III

For this area, we use bounds (3.7) and (2.2). Here we are concerned with the region
where 0:156 � q � 1:7p � 1:38. Note that in this region the range of angles � achieved
is contained in Œ0:15; 0:24�. This is straightforward to check since all the conditions of
interest are linear or quadratic inequalities in p; q, and is shown visually in Figure 3.
Detailed code for producing this figure and the other computations in this section can
be found in Section4-3.nb in the GitHub repository.



R. Arbon, M. Mannan, M. Psenka, and S. Ragavan 530

Noting that A D q
2

, we can then rearrange our target inequality to the following:

�2 .1C 3
p

4q2/3

q2

�j 2
�=�

2A

� 7

3
() 3�2 .1 C 3

p

4q2/3

q2
� 7

�j 2
�=�

2A

() 3�2 .1 C 3
p

4q2/3

q
� 7�j 2

�=� :

Call the left hand side f .q/ and the right hand side g.�/. We claim that these are
decreasing functions of q and � respectively in the region we are interested in. We
first check this for f .q/, omitting the constant factor of 3�2:

d

dq

.1 C 3
p

4q2/3

q
D 2 � 22=3.1 C 3

p

4q2/2

q4=3
� .1 C 3

p

4q2/3

q2

D .1 C 3
p

4q2/2

q2
.2 � 22=3q2=3 � .1 C 3

p

4q2//

D .1 C 3
p

4q2/2

q2
.

3
p

4q2 � 1/ � 0;

since q � 1=2.
Now, for g.�/, let t D �=� 2 Œ13; 21�. Since t is decreasing with respect to � , we

wish to show (omitting the constant factor of 7) that j 2
t

t
is increasing with respect to t

in this region:

d

dt

j 2
t

t
D

t2jt
djt

dt
� j 2

t

t2
:

So, we want to show that t2jt
djt

dt
� j 2

t � 0 () j 2
t � 2tjt

djt

dt
() jt � 2t djt

dt
.

To do this, we use the following results shown in [4]:

(1) djt

dt
> 1 (this is [4, Lemma 1.1], which is applicable here since t > 0 and

j0 � 2:40 > 1
4

.

(2) jt is concave as a function of t (this is [4, Corollary 3.3]).

The first point means we just need to show that jt � 2t . Note that at t D 13 we have
jt � 17:802 < 26 D 2t so it suffices to show that djt

dt
� 2 for t � 13. By the second

point, we know that djt

dt
is non-increasing so we just need to show that djt

dt
jtD13 � 2.

But this is straightforward; by concavity, the left hand side is at most j13 � j12 �
1:10 < 2.

Hence, our claim is proven. Then the key observation is this, if we have a particular
pair .q0; �0/ such that f .q0/ � g.�0/, then whenever q � q0 and � � �0 we have
f .q/ � f .q0/ � g.�0/ � g.�/. So, if we call the set of points inside our quarter
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0:16
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0:70 0:75 0:80 0:85 0:90 0:95 1:00

Figure 4. Final step for the proof in Area III (shown in blue here). The orange region is the
union of three sector-like regions, each of which corresponds to one Sq0;�0

. As desired, the
orange region covers Area III.

circle satisfying q � q0 and � � �0 as Sq0;�0
then it suffices to specify a set of pairs

.q0; �0/ each satisfying f .q0/ � g.�0/ such that the sets Sq0;�0
collectively cover

Area III. We take the following three pairs:

• q0; �0 D 0:15; 0:2, satisfies f .q0/=g.�0/ � 0:9929 < 1,

• q0; �0 D 0:185; 0:225, satisfies f .q0/=g.�0/ � 0:9943 < 1,

• q0; �0 D 0:21; 0:24, satisfies f .q0/=g.�0/ � 0:9959 < 1.

It is straightforward to verify that the three Sq0;�0
’s thus defined cover the region of

interest (since all the conditions of interest are linear or quadratic inequalities in p;q).
This is visually shown in Figure 4.

4.4. Area IV

As mentioned earlier, here we use bounds (3.7) and (2.1). We are concerned with the
region q � 0:156, where we wish to show that

�2 .1C 3
p

4q2/3

q2

�2.1 C 1
q
/2

� 7

3
() .1 C 3

p

4q2/3

.q C 1/2
� 7

3

() 3.1 C 3
p

4q2/3 � 7.q C 1/2 � 0:
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Call the left hand side f .q/. Note that f .0:156/ � �0:0177 < 0 so it suffices to
show that f is non-decreasing on Œ0; 0:156�. To do this, substitute x D 3

p
q (note that

this is an increasing function of q) and differentiate f with respect to x. We want to
show that this derivative is non-negative on Œ0;

3
p

0:156�, i.e., that

6x.3 � 22=3 � 7x C 12 � 21=3x2 C 5x4/ � 0:

But this is clear since x � 0 and x � 3
p

0:156 < 3�22=3

7
H) 3 � 22=3 � 7x > 0. This

completes our proof for this case.

Acknowledgments. We wish to thank Javier Gómez-Serrano for introducing this
problem to us in his class and for guiding us while writing this paper. We also thank
the Princeton University Department of Mathematics.

References

[1] P. Antunes and P. Freitas, A numerical study of the spectral gap. J. Phys. A 41 (2008),
no. 5, article id. 055201 Zbl 1142.35054 MR 2433425

[2] M. S. Ashbaugh and R. D. Benguria, Proof of the Payne–P ólya–Weinberger conjecture.
Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 1, 19–29 Zbl 0736.35075 MR 1085824

[3] M. S. Ashbaugh and R. D. Benguria, A sharp bound for the ratio of the first two eigenval-
ues of Dirichlet Laplacians and extensions. Ann. of Math. (2) 135 (1992), no. 3, 601–628
Zbl 0757.35052 MR 1166646

[4] Á. Elbert, L. Gatteschi, and A. Laforgia, On the concavity of zeros of Bessel functions.
Applicable Anal. 16 (1983), no. 4, 261–278 Zbl 0498.33008 MR 718534

[5] P. Freitas, Precise bounds and asymptotics for the first Dirichlet eigenvalue of triangles
and rhombi. J. Funct. Anal. 251 (2007), no. 1, 376–398 Zbl 1137.35049 MR 2353712

[6] P. Freitas and B. Siudeja, Bounds for the first Dirichlet eigenvalue of triangles and quadri-
laterals. ESAIM Control Optim. Calc. Var. 16 (2010), no. 3, 648–676 Zbl 1205.35174
MR 2674631

[7] A. Henrot, Extremum problems for eigenvalues of elliptic operators. Front. Math.,
Birkhäuser, Basel, 2006 Zbl 1109.35081 MR 2251558

[8] A. Henrot (ed.), Shape optimization and spectral theory. De Gruyter Open, Warsaw, 2017
Zbl 1369.49004 MR 3681143

[9] W. Hooker and M. H. Protter, Bounds for the first eigenvalue of a rhombic membrane.
J. Math. and Phys. 39 (1960), 18–34 Zbl 0097.30504 MR 127610

[10] B. J. McCartin, Eigenstructure of the equilateral triangle. I. The Dirichlet problem. SIAM

Rev. 45 (2003), no. 2, 267–287 Zbl 1122.35311 MR 2010379
[11] L. E. Payne, G. Pólya, and H. F. Weinberger, On the ratio of consecutive eigenvalues. J.

Math. and Phys. 35 (1956), 289–298 Zbl 0073.08203 MR 84696
[12] B. Siudeja, Sharp bounds for eigenvalues of triangles. Michigan Math. J. 55 (2007), no. 2,

243–254 Zbl 1148.35056 MR 2369934

https://zbmath.org/?q=an:1142.35054&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2433425
https://zbmath.org/?q=an:0736.35075&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1085824
https://zbmath.org/?q=an:0757.35052&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1166646
https://zbmath.org/?q=an:0498.33008&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=718534
https://zbmath.org/?q=an:1137.35049&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2353712
https://zbmath.org/?q=an:1205.35174&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2674631
https://zbmath.org/?q=an:1109.35081&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2251558
https://zbmath.org/?q=an:1369.49004&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3681143
https://zbmath.org/?q=an:0097.30504&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=127610
https://zbmath.org/?q=an:1122.35311&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2010379
https://zbmath.org/?q=an:0073.08203&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=84696
https://zbmath.org/?q=an:1148.35056&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2369934


A proof of the triangular Ashbaugh–Benguria–Payne–Pólya–Weinberger inequality 533

[13] B. Siudeja, Isoperimetric inequalities for eigenvalues of triangles. Indiana Univ. Math. J.

59 (2010), no. 3, 1097–1120 Zbl 1220.35105 MR 2779073
[14] C. J. Thompson, On the ratio of consecutive eigenvalues in N -dimensions. Studies in Appl.

Math. 48 (1969), 281–283 Zbl 0183.11005 MR 257592

Received 29 September 2020; revised 25 March 2021.

Ryan Arbon

Department of Mathematics, UCLA, Los Angeles, CA 90095, USA; rarbon@math.ucla.edu

Mohammed Mannan

Courant Institute of Mathematical Sciences, New York University, New York, NY 10012,
USA; mm11612@nyu.edu

Michael Psenka

Department of Electrical Engineering and Computer Science, UC Berkeley, Berkeley,
CA 94720, USA; psenka@berkeley.edu

Seyoon Ragavan

Department of Mathematics, Princeton University, Princeton, NJ 08544, USA;
sragavan@alumni.princeton.edu

https://zbmath.org/?q=an:1220.35105&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2779073
https://zbmath.org/?q=an:0183.11005&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=257592
mailto:rarbon@math.ucla.edu
mailto:mm11612@nyu.edu
mailto:psenka@berkeley.edu
mailto:sragavan@alumni.princeton.edu

	1. Introduction
	2. Proof outline
	3. Upper bounds on λ_2
	3.1. Variational bounds
	3.1.1 30-60-90 bound
	3.1.2 45-45-90 bound

	3.2. Rectangle bound

	4. Proofs in each area
	4.1. Area I
	4.2. Area II
	4.3. Area III
	4.4. Area IV

	References

