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Bounds on orthogonal polynomials
and separation of their zeros

Eli Levin and Doron S. Lubinsky

Abstract. Let {p,} denote the orthonormal polynomials associated with a measure u with
compact support on the real line. Let x be regular in the sense of Stahl, Totik, and Ullmann, and
I be a subinterval of the support in which u is absolutely continuous, while w” is positive and
continuous there. We show that boundedness of the {p,} in that subinterval is closely related
to the spacing of zeros of p,, and p,_1 in that interval. One ingredient is proving that “local
limits” imply universality limits.

1. Results

Let p be a finite positive Borel measure with compact support, which we denote by
supp[u]. Then we may define orthonormal polynomials

Pn(x) = ypx" + -, Y >0,

n =0,1,2,...satisfying the orthonormality conditions

/pnpmdu = Smn.
The zeros of p, are real and simple. We list them in decreasing order:
Xin > Xopn > > Xp—1,n > Xnn.
They interlace the zeros y;, of p), :
Pn(yjn) =0 and yjn € (Xj+1,0,Xjn), 1=<j<n-—1.

It is a classic result that the zeros of p, and p,—; also interlace. The three term
recurrence relation has the form

(X = bn) pn(x) = ant+1Pn+1(X) + anpn—1(x),
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where forn > 1,

_ VYn—1 . _ 2
anp = Vo = /xpn—l(x)pn(x)dﬂ(x)’ by = /xpn(x)du(x).

Uniform boundedness of orthonormal polynomials is a long studied topic. For
example, given an interval /, one asks whether

SUp || |l Lo (1) < 00.
n>1

There is an extensive literature on this fundamental question - see for example [1-4,
12]. In this paper, we establish a connection to the distance between zeros of p, and
Pn—1-

The results require more terminology: we let dist(a, Z) denote the distance from
a real number a to the integers. We say that p is regular (in the sense of Stahl, Totik,
and Ullmann) if for every sequence of non-zero polynomials { P, } with degree P, at
most 7,

. POl 1/
1 —_ <1
i?lso‘ip(q mRaE) S

for quasi-every x € supp[u] (that is except in a set of logarithmic capacity 0). If the
support consists of finitely many intervals, and ' > 0 a.e. in each subinterval, then u
is regular, though much less is required [16]. An equivalent formulation involves the
leading coefficients {y,} of the orthonormal polynomials for u:

1/n 1

lim y,/" = ———,
n—oo " cap(supp[/i])

where cap denotes logarithmic capacity.
Recall that the equilibrium measure for the compact set supp[j] is the probability
measure that minimizes the energy integral

//log ! dv(x) dv(y)
[x =yl

amongst all probability measures v supported on supp[u]. If I is an interval con-

tained in supp[u], then the equilibrium measure is absolutely continuous in 7, and
moreover its density, which we denote throughout by w, is positive and continuous in
the interior I of I [13, Theorem IV.2.5, p. 216]. Given sequences {x, }, {y,} of non-0
real numbers, we write

Xn ~ YVn

if there exists C > 1 such that forn > 1,
c! <xn/yn <C.

Similar notation is used for functions and sequences of functions.
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Our main result is the following.

Theorem 1.1. Let i be a regular measure on R with compact support. Let I be a
closed subinterval of the support, and assume that in some open interval containing I,
W is absolutely continuous, while (' is positive and continuous. Let @ be the density
of the equilibrium measure for the support of . Let A > 0. The following statements
are equivalent:

a. there exists C > 0 such that, forn > 1 and xj, € I,

diSt(nC()(Xjn)(Xjn — Xjn-1), Z) > C,; (1.1)
b. there exists C > 0 such that, forn > 1 and y;, € I,

dist(n@(yn) (Vjn = Yjn-1).Z) = C: (1.2)
c. uniformly forn > landx € 1,

12n1p et gl Pnl ey ~ 1 (13)

d. there exists C > 0 such that, forn > 1 and x € I,

1P et e 1Pl et gy = € (1:4)
Moreover, under any of (a)—(d), we have

sup Sup||x_bn|l/2pn(x)| < o0. (1.5)
n>1xel
Remarks. (a) The main idea behind the proof is that universality limits and “local”
limits give

| Pn—1(Vjn—1) Pn (Vi) || sin[Tn@(yjn) (Vjn — Yjn—1)] + o) ~ 1,

uniformly in j, n, while p, has a local extremum at y;,.

(b) We could replace x;,—1 — Xj, in (1.1) by xj,—1 — Xj 4k, for any fixed
integer k (see Lemma 4.1).

(d) Under additional assumptions, involving the spacing of zeros of p, and p,_»,
we can remove the factor |x — b,|'/? in (1.5).

Theorem 1.2. Let i be a regular measure on R with compact support. Let I be a
closed subinterval of the support and assume that in some open interval containing I,
W is absolutely continuous, while ' is positive and continuous. Let @ be the density
of the equilibrium measure for the support of u. Let A > 0. Assume that (1.1) holds
in I. The following statements are equivalent:
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a. there exist C1 > 0 such that, forn > 1 and x;, € I,
|n(xjn _xj—l,n—2)| = C1|xjn —bp1l; (1.6)

b. uniformly forx € I andn > 1,

1Pnllp et g a7 ~ 15 (1.7)
c. one has

Sup || prll Lo (1) < 00. (1.8)

n>1

Remark. We note that because of the interlacing, both x;, and x;_; ,—» belong to
the interval (x; n—1, Xj—1,n—1)-

Two important ingredients in our proofs are universality and local limits. The so-
called “universality limit” involves the reproducing kernel

Yn—1 Pn(X) Pn—1(¥) — Pn—1(x) pn(y)
Vn X =) .

n—1
Kn(x,y) =Y pe(¥)pe(y) = (1.9)

k=0

For x in the interior of supp[u] (the “bulk” of the support), at least when w'(x) is
finite and positive, the universality limit typically takes the form [6, 8, 14, 15, 18]

b
i KO ke X+ rekies)
n—00 Ku(x,x)

= S(a - b), (1.10)

uniformly for a, b in compact subsets of C. Here S is the sinc kernel,

Universality limits holds far more generally than pointwise asymptotics for ortho-
normal polynomials, that at one stage were used to prove them. In a series of recent
papers [7,9-11], it was shown that one can go in the other direction, namely from
universality limits, to “local ratio limits” for orthogonal polynomials.

Under fairly general conditions on w, the Christoffel function K, (x, x) admits the
asymptotic [17]

lim lK,,(x,x);/(x) = w(x)

n—oon

for x in the interior of the support of w. This allows us to reformulate the universality
limit (1.10) as

K+ #(X))M'(x)
lim

n—00 nw(x)

= S(a — b), (1.11)

uniformly for a, b in compact subsets of C.
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Using this universality limit, we proved in [9]:

Theorem A. Assume that | is a regular measure with compact support. Let I be
a closed subinterval of the support in which u is absolutely continuous, and |\ is
positive and continuous. Let J be a compact subset of the interior I of 1. Then

pn(y in + #ym))

lim = CosTmz (1.12)
n—00 pn(yjn)

uniformly for y;, € J and z in compact subsets of C.

A secondary goal of this paper is to prove a converse of Theorem A, namely to
show that local limits such as (1.12) imply a universality limit like (1.11). For meas-
ures on the unit circle this was undertaken in [10] — however the results necessarily
take a quite different form.

Theorem 1.3. Let | be a measure with compact support. Assume that we are given
both a bounded sequence of real numbers {&,} such that

supn|&, — &p—1] < 00, (1.13)

n>1

and a sequence {1, } of positive numbers with t,, ~ 1 such that

Tn

lim =1 (1.14)
n—00 T, _1
and, uniformly for z in compact subsets of C,
+ 2z

lim M = CoSTZ. (1.15)

n=>00 pu(n)

Let A > 0. Then uniformly for a, b in compact subsets of C, and x, such that

oo — bl < 2 (1.16)
we have
In In Pu=l
folte LB B0 gy o )
Moreover, z T
Ky (xn + 3a, xn + D) _ S(a—b) + o(1), (1.18)

Ky (xn’ xn)
provided either
lim infdist(i(s,, —E), Z) >0 (1.19)
n—o00 Tn
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or
Yn—1

=111 | pn—1(6n—1) Pn (€n)|
sup <

n>1 Kn(xn, xz)

0. (1.20)

We prove Theorem 1.3 in Section 2 and Theorem 1.1 in Section 3. Theorem 1.2
is proved in Section 4. In the sequel C, Cq, C5, ... denote constants independent of
n, x, 8. The same symbol does not necessarily denote the same constant in different
occurrences.

2. Proof of Theorem 1.3
Throughout this section, we assume the hypotheses of Theorem 1.3. Write forn > 1

andm =n—1,n, .
Xn = Em + An,mEm (2.1)

o= ()

Recall from (1.14) that y, — 1 as n — oo. Note too that in view of (1.13), (1.14),
and (1.16), {An »} and {A, ,—1} are bounded sequences. We start with:

and

Lemma 2.1. a. Uniformly for z in compact subsets of C,

n p;; én + Tn_nz)

im = —msinmz. (2.3)
n—oo n Pn(&n)

b. Uniformly for a, b in compact subsets of C,

(pn (xn + ‘L’;—na) — Dn (xn + ‘;_nb))/pn(gn)
= - / sinw(Appn +1t)dt + o(la —b)).
b
c. Moreover,

T,

(pn—l(xn - F"a) - pn—l(xn + ;_nb>)/]7n—l(§n—l)

= -7 / sinw(App—1 +1t)dt +o(la —b)).
b

Proof. (a) As the asymptotic (1.15) holds uniformly for z in compact subsets of the
plane, we can differentiate it to obtain (2.3).
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(b) Now

(Pu(oen + ) = p (0 + 226)) / pa(6n)

a

_ / P Con + 20 it ).

b

Note that this is meaningful even for complex a, b, with the integral being taken over
the directed line segment from b to a. Using (2.1) and (2.3), we continue this as

/“ P+ 2 (A0 + 1)) 2
b

Pn(€n)

dt = /(—Tl’ sinm(Apn+1t)+0(1))dt

= -7 / sinw(Appn +t)dt + o(la —b)).
b

(c) Using (2.2),

(pn—l(xn + ;—"a> - pn—l(xn + ;_nb)>/pn—l($n—l)

P —r)—dt/pn 1(En)

n,n— 1+Xnt)> Th—1

/
/ sl P i
J

(=7 Sin(n(An,n—l + xat)) +o(1)) dt

= —Jr/sinjr(An,n_l +t)dt + o(la —b)). [
b

Proof of Theorem 1.3. We apply (1.15) and Lemma 2.1(b,c). Now, if a # b,
Tn Tn Tn
oy < (4 S+ 500)
Va1 [Pn(on + 2a) — pu(ocn + 22D)] pp—1(xn + 2b)
B Vn (a —b)pn(&n) Pn—16n—1)
4 Yo Pn(Xn + 2b) [pn—1(Xn + 2b) — pu—1(xn + 2a)]
Y (@ —b) pn(n) pn—1(5n—1)
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= Vr;/—l [a—_”b /sin (A, +1)dt + 0(1)][cos T(Ap -1+ byn) +o0(1)]
! b

Yn—1

Vn

_|_

[0S T(App + b) + 0(1)1[£ / Sin7(Ap it + 1) dt + 0(1)]
b

by (1.15) and Lemma 2.1 (b,c). Note that because of the uniformity of the limits, this
holds in a confluent form even if @ = b. We continue this, using y, = 1 + o(1), as

b
_ Y1 ; /[sinn(An,n + 1) cos w(Apn—1 + b)

Yn a—
oS T (Anp 4+ b) sin w(Ap i + 1)]dt + o(V;’/‘1 ) 2.4)

n

Next, we expand the integrand using double angle formulae, in a straightforward but
tedious fashion:

sinw(Appn +1t)cosm(Appn—1+b)—cosn(Appn+ b)sinn(Appn—1+1)
= [sinwA, ,cost + coswA, , sint]
X [cos mAp p—1cosmhb —sinwA, ,—1 sinwb]
— [cos A, p cosTh —sinw A, , sinwh]
X [sinwAy n—1 coswt + cos wAy, p—1 sin ]
=cosmtcosmhsinm(Ayp— App—1) +sinmtsinabsina(Aypn— Ay pn—1)
=cos(nw(t — b)) sinm(Anpn — Apn—1).

We can then continue (2.4) as

b
Ynot 7 /[cos(n(t — b)) sin(App — Apn_)] df + o(V"‘l)
Yn a—>b Vn
a
— 1 —
= "L Gint(Apw — Apn1)—— (—sin (@ — b)) + o(2=L)
Vn a—>b n
= g et sinn(A,,,,, — A,,,,,_I)S(a —b)+ o(V”‘1 )
Vn Vn
In summary, uniformly for a, b in compact subsets of the plane,
Tn Tn Tn
K (x + —a,x, + —b)
npn—l(én—l)pn(gn) A n " n
= 2" Sint(Apn — Ann1)S(a —b) + o(V”‘1 ) 2.5)
Vn n
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Next, observe from (2.1), (1.13), and (1.14), that

T, T, 1
Xn =En 4 Ay =1 + Apn1— + 0(_)
n n n

Tn

1
_[An,n - An,n—l] = En—l - En + 0(—).
n n
As 1, is bounded below, this allows us to reformulate (2.5) as
T_nKn(xn + T—"a,xn + T—"b)
n n n

P pt (n) P ) {sin 7 = (611 = E) [S(@ = B) +0(D)|. 2.6)

n n

= -7
In particular, settinga = b = 0,
Tn
;Kn (xm xn)

P pri a0 paE) {sin[ 7 =G — )| +o(D). @)

n n

=7

so that (2.6) can be recast as

T T T

_nKn(xn + _na’ Xn + _nb)

n n n

Yn—1
Vn

= T—nKn(xn, Xn)S(a —b) + 0( |Pn—1($n—1)pn(§:n)|>’
n

giving (1.17). If (1.19) holds, then sin[yr%(én_l — &,)] is bounded away from 0, so
we can reformulate (2.6) as

T, T T
— K (xn + Za, x, + —"b)
n n n

= P 1 am) pa (E) sin 7 (601 — £0) (S (@ = ) + (1))
Vn Tn
and (2.7) as
2K (s 6n) = = 2 pry (Enm) P (6 sin 7= (1 — ) {1+ 0(1).

Together these give (1.18). Finally, if (1.20) holds, then we see from (2.6) that neces-
sarily sin[n%(én_l — &,)] is bounded away from 0 and again (1.18) follows. ]

3. Proof of Theorem 1.1

Recall that y;, is the zero of p), in (Xj41,,, Xj»). We begin with:
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Lemma 3.1. Let u be a regular measure on R with compact support. Let I be a
closed subinterval of the support and assume that in some open interval containing 1,
W is absolutely continuous, while |1’ is positive and continuous.

a. Uniformly for yj, € 1,

. 1 .
nli)nolon(xjn - an)w(xjn) = 5 = nlgrolon(yjn - xj-i—l,n)w(xjn)’ 3.1
lim n(xjn — xj41,0)0(xjn) =1, (3.2)
n—>o0
lim n()’jn - J’j-i-l,n)a)(xjn) =1. (3.3)

n—>oo
b. Uniformly for y;jn € I,
Yn—1

n

| Pn—1(Vj.n—1) Pn (Vi) || sin[rnew(yjn) (yjn—1 — yjn)] +o(1)| ~ 1. (3.4)
c. Fix A > 0. Uniformly forn > 1 and x € I,

”p"”Loo[x—ﬁ,x-l-%] ~ | pn(Yjn)ls (3.5)

where yjn € [x — 4+, X + 2] or is the closest zero of py, to this interval.

Proof. (a) First note that uniformly for y;, € I and z in compact subsets of C,

Pn ()’jn + ;)
lim neWin) _ cosmz. (3.6)
n—00 Pn(J’jn)

This was proved in [9] and is Theorem A above. Next, [18, Theorem 2.1] shows
that (3.2) holds uniformly for x;, € I.In particular, x;, — X;+1,, = 0(%) uniformly

for xj, € 1. Write
Zn

no(yjn)

so that z, > 0 and z, = O(1). From (3.6), we have

Xjn = Yjn +

Pn (xjn)
0=
Pn(Yjn)

= cosmz, + o(1)
so necessarily for some non-negative integer j,,
: 1
Zin = Jn + 5 +o(1).

If j, > 1 for infinitely many n, then Hurwitz’ theorem shows that there would be
other zeros of p, between x;j, and yj,, which contradicts that y;, € (X;j 41,4, Xjn).
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So, j, = 0 for n large enough, which gives the first limit in (3.1). Note too that
o (Xjn)/w(yjn) = 1 + o(1) by continuity of w. The second is similar. Both (3.2)
and (3.3) follow from (3.1), though as noted, (3.2) appears in [18].

(b) Because of (3.6), we can apply Theorem 1.3 and results from its proof.
In that theorem, we set x, = yj,, Tn = m &, = yjn; so that &1 = yjn—1.
Note that (1.13), (1.14), and (1.16) are satisfied because of the spacing estimates in
Lemma 3.1, and the continuity of w. From (2.7),

K -
nw(yjn) n(J’jn J’jn)

VYn—1

n

=-7 Pn—1(Yjn—1) Pn(Yin)isin[mrnw(yjn) (yjn—1 — yjn)l +o()}. (3.7)

Next, [18, Theorem 2.2] establishes that uniformly forz € I,

1
lim — K, t)u'(t) = w(t).
n—oon

Since w is positive and continuous in I as is u’, we then obtain (3.4) from (3.7).
(c) This follows directly from the limit in (3.6) and the fact that | p, (y;,)| is the
maximum of |p, | in [X; 1,4, Xjn]. [

Proof that Theorem 1.1 (a) <= (b). This follows directly from Lemma 3.1.a). =

Proof that Theorem 1.1 (b) => (c). First note that as supp[u] is compact [5, p. 41],

ol _ (3.8)

Vn
Our hypothesis (1.2), as well as (3.4) give that uniformly for y;, € I,
Vn—1

n

|pn—1(J’j,n—1)pn(J’jn)| ~ L. (3.9)

Then (3.5) gives uniformly for x € 1,

VYn—1

n

IPn=1llL - aylPnllp pe—a cypay ~ 1. (3.10)
Let I;;, = [yj+1,,Yjn] for all j,n. We similarly obtain from (3.6) and (3.9) and our

~ 1/2 12 ¢
! 1( f Proi du) (/pﬁ du) > =
Vn n

Ij,n—l Ijn

spacing that
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Here we are also using that u’ is positive and continuous in /. Adding over yj, € I,
and using that there are necessarily > Cn such y;,, because of the spacing, we obtain

Va1 1/2 1/2
5 () ()"

in€l
Yin Ijn— in

Cauchy—-Schwarz’ inequality gives

Vot 1/2

.

y—(/Pi—ldﬂfpi d#) >C
n

so that
Yn
Together with (3.8), this gives
ay = 7L, 3.11)
Vn

So, from (3.10), uniformly in x € I,

”pn_l”Loo[x—%’x—‘,-%]||pn||Loo[x—%’x+%] ~ 1 u
Proof that Theorem 1.1 (¢c) = (d). This is immediate. [ ]

Proof that Theorem 1.1 (d) = (b). From (3.4), (3.11), and our bound (1.4),
| sin[rnw(yjn)(Vjin—1—yjn)] +o(1)] > C.

This yields
dist(nw(yjn)(J’jn — Yin—1) Z) = C. "

Proof of the bound (1.5). From the recurrence relation and (3.11),
(x — bn)Pn||Loo[x_§,x+%]||Pn||Loo[x_%,x+%]
< C(lpn+1 ”Loo[x—ﬁ,x—i—%]”p”“Loo[x—%,x+%]

+ ||Pn—1||Loo[x_%,x+%]||Pn||Loo[x_%,x+%]) =C,
by (1.4). Then also uniformly in x € I,
[ (x — bn)PZ”LOO[x_%,x.;_%] <C

and we obtain (1.5). [ ]
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4. Proof of Theorem 1.2

We begin with:

Lemma 4.1. Let u be a regular measure on R with compact support. Let I be a
closed subinterval of the support and assume that in some open interval containing I,
W is absolutely continuous, while |1’ is positive and continuous. Assume (1.1). Let
A > 0.

a. Let L > 1. There exists ng such that, uniformly for n > ny, for xj, € I, and
lk—Jjl =L,
dist(na)(xjn)(xk,n_l - xjn),Z) > C. 4.1)
b. Let

Sjn = nw(xjn)(Xjn — Xj—1,n-2). 4.2)

There exist ng, no > 0 such that, uniformly for n > ng, and for xj, € I,
8jn] < 1 —no. (4.3)

c. There exist ng, C1 > 0 such that, uniformly for n > ng and for x;, € I, we

have
Xn = bnal ~ a2l g o ayldnl. (4.4)

Jn " Xjn

Here if Xjp — bp—1 = 0, both sides are 0.
Proof. (a) Using the spacing (3.2),
dist(nw(xjn) (Xk,n—1 — Xjn), Z) = dist(nw(xjn)(Xjn—1 — Xjn), Z) + o(1)

so (1.1) gives the result.

(b) The interlacing of the zeros of successive orthogonal polynomials shows that
both x;, and x;_; ,—» lie in the interval (x; ,—1, Xj—1,,—1). Even more, the bounds
given in (a) show that for n large enough, both xj, and x; 1, lie in the interval

C C
(Xjn—1+ lejn)’xf—l’"—l - lejn)) for some C; > 0. Then

18jn] = Inw(xjn)(Xjn — Xj—1,n—2)|
<no(xjn)(Xjn—1—Xj+1,n—1) —2C1 =1 -2C1 + o(1),

by (3.2).

(¢) From the recurrence relation,

(xjn - bn—l)Pn—l(xjn) = an—lpn—Z(xjn)- 4.5)
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We now examine the behavior of the left and right-hand side as n — oco. By (3.1)
to (3.3), the local asymptotic (3.6), and the fact that x;, — y;j ,—1 = 0(%),

DPn—1(Xjn)

————— =cosm(nw(vin-1)(Xin — Vin— +o(1
Pn—1(Yjn—1) (@ (yjn—1)(Xjn = Yjn-1)) (1)

= cos T (nw(yjn—1)(Xjn — Xjn—1 + Xjn—1 — Yjn—1)) +o(1)
1

= cos T(nw(yjn—1)(Xjn — Xjn—1) + 5) +o(1)

= —sinw(nw(y;jn-1)(Xjn — Xjn—1)) + o(1)

so using our original condition (1.1), we obtain for some threshold 7 that is inde-
pendent of j, and for n > ny,

|pn—1(xjn)| ~ |Pn—1(yj,n—1)|- (4.6)

Next, in analyzing the term on the right in (4.5), we use the differentiated form
of (3.6): uniformly for y;, € I and z in compact subsets of C,
PnOin + 5o

lim = —msinmz. 4.7)
n—=>00 nw(yjn) Pn(Yjn)

Then noting that we can replace n by n £ 2 in the term involving z, we see that

pn—z(xjn)
Pn—2(Yj—-1,n-2)

Xjn=Yj—1,n—2)no(y;j_1 n—2)
_ / J P ¥ )
na)(yj—1,n—2)pn—2(yj—1,n—2)

(xj—1.n—2=Yj—1.n-2)n0(Yj—1.n—2)
xXjn=yj—1.n—2)n0(y;—1 n—2)
= / (—msinzt + o(1))dt.

xXj—1,n—2=Yj—1.n—2)n0(¥; —1,n-2)

Here the lower limit of integration is

1
(Xj—1,n—2 = Yj-1.n-2)N0(Yj—1n-2) = 5t o(1),
(by (3.1)), so we can continue the above as

pn—z(xjn)
Pn—2(Yj—1,n—2)

Xjn—xj—1,n—2)n0(y;_1,n—2)

- / (—n sin(n(l + %)) + 0(1)>dt +0(djn)
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xjn—xj—1.n—2In0(y;—1.n—2)
= / (—Tl’ cost —|—0(1))dl + 0(Sjn)
0
= —sinmdjn + 0(djn).

Here we are also using that w(y;_1,,—2)/w(xj») — 1 as n — oo by continuity of w
in the interior of /. Next, from (b), |§;,| < 1 — ¢, so |sin7d;,| ~ |§;»| and we can
continue this as

_ o) G s (1 + o(1)).
Pn—2(yj—1,1—2)

It is possible here that §;,, = 0, but in such a case both sides are 0. Combining this
with (4.5), (4.6), and (3.11) gives uniformly in j and n, for n > ny,

1Xjn = bu—1l|Pn—1(Vjmn—1)| ~ [Pn—2(yj—1.n=2)|| sin78jn| ~ | pn—2(yj-1.1-2)||8jn|.

Here by our local limits and (1.3),
|Pa=1(Vjn=01 = [Pn=1Loolxj g 1m13)m11 ~ ||Pn—2”Zio[x,-n A xjintal

-4,

A related assertion holds for p,_2(yj—1,,—2). We deduce that

. —_ 2 >
|xjn bp—1] ~ ”pn_2||Loo[xjn—%,xjn+%]|8]n|'

Again, if xj, = b,—1, 8, = 0. "

Proof that Theorem 1.2 (a) <=> (c). If first (1.6) holds, then |§j,| > C|xj, — bp—1]
and (4.4) gives

2
Cléjnl = Ipn2l? 4y a)ldinl:
A,

which forces

2
<
||pn_2||LOO[xjn A 1— Clv

LA
e Xintu

uniformly in x;, € I, provided no §;, = 0. Since §;, = 0 can occur for at most one j,

namely when x;, = b,_; (as follows from the recurrence relation), that exceptional

interval can be covered by others with A large enough. So, we have (1.8).
Conversely, suppose we have (1.8). Then from (4.4),

|xjn _bn—1| = C|8]n|7

so that we have (1.6). [ ]
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Proof that Theorem 1.2 (b) <= (c). It is immediate that (b) = (c). For the con-
verse we note that if (c¢) holds, then from Theorem 1.1 (¢),

| Pn—1 ”Loo[-x—%,x-i‘%] >C

uniformly for x € I. This together with (1.8), gives (1.7). |
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