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Bounds on orthogonal polynomials

and separation of their zeros

Eli Levin and Doron S. Lubinsky

Abstract. Let ¹pnº denote the orthonormal polynomials associated with a measure � with

compact support on the real line. Let � be regular in the sense of Stahl, Totik, and Ullmann, and

I be a subinterval of the support in which � is absolutely continuous, while �0 is positive and

continuous there. We show that boundedness of the ¹pnº in that subinterval is closely related

to the spacing of zeros of pn and pn�1 in that interval. One ingredient is proving that “local

limits” imply universality limits.

1. Results

Let � be a finite positive Borel measure with compact support, which we denote by

suppŒ��. Then we may define orthonormal polynomials

pn.x/ D nxn C � � � ; n > 0;

n D 0; 1; 2; : : : satisfying the orthonormality conditions
Z

pnpmd� D ımn:

The zeros of pn are real and simple. We list them in decreasing order:

x1n > x2n > � � � > xn�1;n > xnn:

They interlace the zeros yjn of p0
n W

pn.yjn/ D 0 and yjn 2 .xj C1;n; xjn/; 1 � j � n � 1:

It is a classic result that the zeros of pn and pn�1 also interlace. The three term

recurrence relation has the form

.x � bn/pn.x/ D anC1pnC1.x/ C anpn�1.x/;
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where for n � 1;

an D
n�1

n

D

Z

xpn�1.x/pn.x/d�.x/I bn D

Z

xp2
n.x/d�.x/:

Uniform boundedness of orthonormal polynomials is a long studied topic. For

example, given an interval I , one asks whether

sup
n�1

kpnkL1.I / < 1:

There is an extensive literature on this fundamental question - see for example [1–4,

12]. In this paper, we establish a connection to the distance between zeros of pn and

pn�1.

The results require more terminology: we let dist.a; Z/ denote the distance from

a real number a to the integers. We say that � is regular (in the sense of Stahl, Totik,

and Ullmann) if for every sequence of non-zero polynomials ¹Pnº with degree Pn at

most n;

lim sup
n!1

� jPn.x/j

.
R

jPnj2d�/1=2

�1=n

� 1

for quasi-every x 2 suppŒ�� (that is except in a set of logarithmic capacity 0). If the

support consists of finitely many intervals, and �0 > 0 a.e. in each subinterval, then �

is regular, though much less is required [16]. An equivalent formulation involves the

leading coefficients ¹nº of the orthonormal polynomials for �:

lim
n!1

1=n
n D

1

cap.suppŒ��/
;

where cap denotes logarithmic capacity.

Recall that the equilibrium measure for the compact set suppŒ�� is the probability

measure that minimizes the energy integral
“

log
1

jx � yj
d�.x/ d�.y/

amongst all probability measures � supported on suppŒ��. If I is an interval con-

tained in suppŒ��, then the equilibrium measure is absolutely continuous in I , and

moreover its density, which we denote throughout by !, is positive and continuous in

the interior VI of I [13, Theorem IV.2.5, p. 216]. Given sequences ¹xnº; ¹ynº of non-0

real numbers, we write

xn � yn

if there exists C > 1 such that for n � 1;

C �1 � xn=yn < C:

Similar notation is used for functions and sequences of functions.



Bounds on orthogonal polynomials 499

Our main result is the following.

Theorem 1.1. Let � be a regular measure on R with compact support. Let I be a

closed subinterval of the support, and assume that in some open interval containing I ,

� is absolutely continuous, while �0 is positive and continuous. Let ! be the density

of the equilibrium measure for the support of �. Let A > 0. The following statements

are equivalent:

a. there exists C > 0 such that, for n � 1 and xjn 2 I;

dist
�

n!.xjn/.xjn � xj;n�1/; Z
�

� C I (1.1)

b. there exists C > 0 such that, for n � 1 and yjn 2 I;

dist
�

n!.yjn/.yjn � yj;n�1/; Z
�

� C I (1.2)

c. uniformly for n � 1 and x 2 I;

kpn�1kL1Œx�
A
n ;xC

A
n �kpnkL1Œx�

A
n ;xC

A
n � � 1I (1.3)

d. there exists C > 0 such that, for n � 1 and x 2 I;

kpn�1kL1Œx� A
n

;xC A
n

�kpnkL1Œx� A
n

;xC A
n

� � C: (1.4)

Moreover, under any of (a)–(d), we have

sup
n�1

sup
x2I

jjx � bnj1=2pn.x/j < 1: (1.5)

Remarks. (a) The main idea behind the proof is that universality limits and “local”

limits give

jpn�1.yj;n�1/pn.yjn/jj sinŒ�n!.yjn/.yjn � yj;n�1/� C o.1/j � 1;

uniformly in j; n, while pn has a local extremum at yjn.

(b) We could replace xj;n�1 � xjn in (1.1) by xj;n�1 � xj;nCk , for any fixed

integer k (see Lemma 4.1).

(d) Under additional assumptions, involving the spacing of zeros of pn and pn�2,

we can remove the factor jx � bnj1=2 in (1.5).

Theorem 1.2. Let � be a regular measure on R with compact support. Let I be a

closed subinterval of the support and assume that in some open interval containing I;

� is absolutely continuous, while �0 is positive and continuous. Let ! be the density

of the equilibrium measure for the support of �. Let A > 0. Assume that (1.1) holds

in I . The following statements are equivalent:
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a. there exist C1 > 0 such that, for n � 1 and xjn 2 I;

jn.xjn � xj �1;n�2/j � C1jxjn � bn�1jI (1.6)

b. uniformly for x 2 I and n � 1;

kpnkL1Œx� A
n

;xC A
n

� � 1I (1.7)

c. one has

sup
n�1

kpnkL1.I / < 1: (1.8)

Remark. We note that because of the interlacing, both xjn and xj �1;n�2 belong to

the interval .xj;n�1; xj �1;n�1/.

Two important ingredients in our proofs are universality and local limits. The so-

called “universality limit” involves the reproducing kernel

Kn.x; y/ D
n�1
X

kD0

pk.x/pk.y/ D
n�1

n

pn.x/pn�1.y/ � pn�1.x/pn.y/

x � y
: (1.9)

For x in the interior of suppŒ�� (the “bulk” of the support), at least when �0.x/ is

finite and positive, the universality limit typically takes the form [6, 8, 14, 15, 18]

lim
n!1

Kn.x C a
�0.x/Kn.x;x/

; x C b
�0.x/Kn.x;x/

/

Kn.x; x/
D S.a � b/; (1.10)

uniformly for a; b in compact subsets of C. Here S is the sinc kernel,

S.a/ D
sin �a

�a
:

Universality limits holds far more generally than pointwise asymptotics for ortho-

normal polynomials, that at one stage were used to prove them. In a series of recent

papers [7, 9–11], it was shown that one can go in the other direction, namely from

universality limits, to “local ratio limits” for orthogonal polynomials.

Under fairly general conditions on �, the Christoffel function Kn.x; x/ admits the

asymptotic [17]

lim
n!1

1

n
Kn.x; x/�0.x/ D !.x/

for x in the interior of the support of �. This allows us to reformulate the universality

limit (1.10) as

lim
n!1

Kn.x C a
n!.x/

; x C b
n!.x/

/�0.x/

n!.x/
D S.a � b/; (1.11)

uniformly for a; b in compact subsets of C.
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Using this universality limit, we proved in [9]:

Theorem A. Assume that � is a regular measure with compact support. Let I be

a closed subinterval of the support in which � is absolutely continuous, and �0 is

positive and continuous. Let J be a compact subset of the interior VI of I . Then

lim
n!1

pn.yjn C z
n!.yjn/

/

pn.yjn/
D cos �z (1.12)

uniformly for yjn 2 J and z in compact subsets of C.

A secondary goal of this paper is to prove a converse of Theorem A, namely to

show that local limits such as (1.12) imply a universality limit like (1.11). For meas-

ures on the unit circle this was undertaken in [10] – however the results necessarily

take a quite different form.

Theorem 1.3. Let � be a measure with compact support. Assume that we are given

both a bounded sequence of real numbers ¹�nº such that

sup
n�1

nj�n � �n�1j < 1; (1.13)

and a sequence ¹�nº of positive numbers with �n � 1 such that

lim
n!1

�n

�n�1

D 1 (1.14)

and, uniformly for z in compact subsets of C;

lim
n!1

pn.�n C �n

n
z/

pn.�n/
D cos �z: (1.15)

Let A > 0. Then uniformly for a; b in compact subsets of C; and xn such that

jxn � �nj �
A

n
(1.16)

we have

Kn.xn C �n

n
a; xn C �n

n
b/

Kn.xn; xn/
D S.a � b/ C o

�

n�1

n
njpn�1.�n�1/pn.�n/j

Kn.xn; xn/

�

: (1.17)

Moreover,
Kn.xn C �n

n
a; xn C �n

n
b/

Kn.xn; xn/
D S.a � b/ C o.1/; (1.18)

provided either

lim inf
n!1

dist
� n

�n

.�n � �n�1/; Z

�

> 0 (1.19)
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or

sup
n�1

n�1

n
njpn�1.�n�1/pn.�n/j

Kn.xn; xn/
< 1: (1.20)

We prove Theorem 1.3 in Section 2 and Theorem 1.1 in Section 3. Theorem 1.2

is proved in Section 4. In the sequel C; C1; C2; : : : denote constants independent of

n; x; � . The same symbol does not necessarily denote the same constant in different

occurrences.

2. Proof of Theorem 1.3

Throughout this section, we assume the hypotheses of Theorem 1.3. Write for n � 1

and m D n � 1; n;

xn D �m C �n;m

�m

m
(2.1)

and

�n D
��n

n

�

=
� �n�1

n � 1

�

: (2.2)

Recall from (1.14) that �n ! 1 as n ! 1. Note too that in view of (1.13), (1.14),

and (1.16), ¹�n;nº and ¹�n;n�1º are bounded sequences. We start with:

Lemma 2.1. a. Uniformly for z in compact subsets of C;

lim
n!1

�n

n

p0
n.�n C �n

n
z/

pn.�n/
D �� sin �z: (2.3)

b. Uniformly for a; b in compact subsets of C;

�

pn

�

xn C
�n

n
a

�

� pn

�

xn C
�n

n
b
��

=pn.�n/

D ��

a
Z

b

sin �.�n;n C t/ dt C o.ja � bj/:

c. Moreover,

�

pn�1

�

xn C
�n

n
a

�

� pn�1

�

xn C
�n

n
b
��

=pn�1.�n�1/

D ��

a
Z

b

sin �.�n;n�1 C t/ dt C o.ja � bj/:

Proof. (a) As the asymptotic (1.15) holds uniformly for z in compact subsets of the

plane, we can differentiate it to obtain (2.3).
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(b) Now

�

pn

�

xn C
�n

n
a

�

� pn

�

xn C
�n

n
b
��

=pn.�n/

D

a
Z

b

p0
n.xn C

�n

n
t/

�n

n
dt=pn.�n/:

Note that this is meaningful even for complex a; b, with the integral being taken over

the directed line segment from b to a. Using (2.1) and (2.3), we continue this as

a
Z

b

p0
n

�

�n C �n

n
.�n;n C t/

�

�n

n

pn.�n/
dt D

a
Z

b

.�� sin �.�n;n C t/ C o.1// dt

D ��

a
Z

b

sin �.�n;n C t/ dt C o.ja � bj/:

(c) Using (2.2),

�

pn�1

�

xn C
�n

n
a

�

� pn�1

�

xn C
�n

n
b
��

=pn�1.�n�1/

D

a
Z

b

p0
n�1

�

xn C
�n

n
t
��n

n
dt=pn�1.�n�1/

D

a
Z

b

p0
n�1

�

�n�1 C �n�1

n�1
.�n;n�1 C �nt/

�

pn�1.�n�1/

�n�1

n � 1
�n dt

D

a
Z

b

.�� sin.�.�n;n�1 C �nt// C o.1// dt

D ��

a
Z

b

sin �.�n;n�1 C t/ dt C o.ja � bj/:

Proof of Theorem 1.3. We apply (1.15) and Lemma 2.1(b,c). Now, if a ¤ b,

�n

npn�1.�n�1/pn.�n/
Kn

�

xn C
�n

n
a; xn C

�n

n
b
�

D
n�1

n

Œpn.xn C �n

n
a/ � pn.xn C �n

n
b/�pn�1.xn C �n

n
b/

.a � b/pn.�n/pn�1.�n�1/

C
n�1

n

pn.xn C �n

n
b/Œpn�1.xn C �n

n
b/ � pn�1.xn C �n

n
a/�

.a � b/pn.�n/pn�1.�n�1/
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D
n�1

n

�

��

a � b

a
Z

b

sin �.�n;n C t/ dt C o.1/

�

Œcos �.�n;n�1 C b�n/ C o.1/�

C
n�1

n

Œcos �.�n;n C b/ C o.1/�

�

�

a � b

a
Z

b

sin �.�n;n�1 C t/ dt C o.1/

�

by (1.15) and Lemma 2.1 (b,c). Note that because of the uniformity of the limits, this

holds in a confluent form even if a D b. We continue this, using �n D 1 C o.1/, as

D
n�1

n

�

a � b

b
Z

a

Œsin �.�n;n C t/ cos �.�n;n�1 C b/

� cos �.�n;n C b/ sin �.�n;n�1 C t/�dt C o
�n�1

n

�

: (2.4)

Next, we expand the integrand using double angle formulae, in a straightforward but

tedious fashion:

sin �.�n;n C t/ cos �.�n;n�1 C b/ � cos �.�n;n C b/ sin �.�n;n�1 C t/

D Œsin ��n;n cos �t C cos ��n;n sin �t�

� Œcos ��n;n�1 cos �b � sin ��n;n�1 sin �b�

� Œcos ��n;n cos �b � sin ��n;n sin �b�

� Œsin ��n;n�1 cos �t C cos ��n;n�1 sin �t�

D cos �t cos �b sin �.�n;n � �n;n�1/ C sin �t sin �b sin �.�n;n � �n;n�1/

D cos.�.t � b// sin �.�n;n � �n;n�1/:

We can then continue (2.4) as

n�1

n

�

a � b

b
Z

a

Œcos.�.t � b// sin �.�n;n � �n;n�1/� dt C o
�n�1

n

�

D
n�1

n

sin �.�n;n � �n;n�1/
1

a � b
.� sin �.a � b// C o.

n�1

n

/

D ��
n�1

n

sin �
�

�n;n � �n;n�1

�

S.a � b/ C o
�n�1

n

�

:

In summary, uniformly for a; b in compact subsets of the plane,

�n

npn�1.�n�1/pn.�n/
Kn

�

xn C
�n

n
a; xn C

�n

n
b
�

D ��
n�1

n

sin �.�n;n � �n;n�1/S.a � b/ C o
�n�1

n

�

: (2.5)
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Next, observe from (2.1), (1.13), and (1.14), that

xn D �n C �n;n

�n

n
D �n�1 C �n;n�1

�n

n
C o

� 1

n

�

H)
�n

n
Œ�n;n � �n;n�1� D �n�1 � �n C o

� 1

n

�

:

As �n is bounded below, this allows us to reformulate (2.5) as

�n

n
Kn

�

xn C
�n

n
a; xn C

�n

n
b
�

D ��
n�1

n

pn�1.�n�1/pn.�n/
°

sin
h

�
n

�n

.�n�1 � �n/
i

S.a � b/ C o.1/
±

: (2.6)

In particular, setting a D b D 0;

�n

n
Kn.xn; xn/

D ��
n�1

n

pn�1.�n�1/pn.�n/
°

sin
h

�
n

�n

.�n�1 � �n/
i

C o.1/
±

; (2.7)

so that (2.6) can be recast as

�n

n
Kn

�

xn C
�n

n
a; xn C

�n

n
b
�

D
�n

n
Kn.xn; xn/S.a � b/ C o

�n�1

n

jpn�1.�n�1/pn.�n/j
�

;

giving (1.17). If (1.19) holds, then sinŒ� n
�n

.�n�1 � �n/� is bounded away from 0, so

we can reformulate (2.6) as

�n

n
Kn

�

xn C
�n

n
a; xn C

�n

n
b
�

D ��
n�1

n

pn�1.�n�1/pn.�n/ sin
h

�
n

�n

.�n�1 � �n/
i

¹S.a � b/ C o.1/º

and (2.7) as

�n

n
Kn.xn; xn/ D ��

n�1

n

pn�1.�n�1/pn.�n/ sin
h

�
n

�n

.�n�1 � �n/
i

¹1 C o.1/º:

Together these give (1.18). Finally, if (1.20) holds, then we see from (2.6) that neces-

sarily sinŒ� n
�n

.�n�1 � �n/� is bounded away from 0 and again (1.18) follows.

3. Proof of Theorem 1.1

Recall that yjn is the zero of p0
n in .xj C1;n; xjn/. We begin with:
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Lemma 3.1. Let � be a regular measure on R with compact support. Let I be a

closed subinterval of the support and assume that in some open interval containing I;

� is absolutely continuous, while �0 is positive and continuous.

a. Uniformly for yjn 2 I ,

lim
n!1

n.xjn � yjn/!.xjn/ D
1

2
D lim

n!1
n.yjn � xj C1;n/!.xjn/; (3.1)

lim
n!1

n.xjn � xj C1;n/!.xjn/ D 1; (3.2)

lim
n!1

n.yjn � yj C1;n/!.xjn/ D 1: (3.3)

b. Uniformly for yjn 2 I ,

n�1

n

jpn�1.yj;n�1/pn.yjn/jj sinŒ�n!.yjn/.yj;n�1 � yjn/� C o.1/j � 1: (3.4)

c. Fix A > 0. Uniformly for n � 1 and x 2 I ,

kpnkL1Œx�
A
n

;xC
A
n

� � jpn.yjn/j; (3.5)

where yjn 2 Œx � A
n

; x C A
n

� or is the closest zero of p0
n to this interval.

Proof. (a) First note that uniformly for yjn 2 I and z in compact subsets of C,

lim
n!1

pn.yjn C z
n!.yjn/

/

pn.yjn/
D cos �z: (3.6)

This was proved in [9] and is Theorem A above. Next, [18, Theorem 2.1] shows

that (3.2) holds uniformly for xjn 2 I . In particular, xjn � xj C1;n D O. 1
n

/ uniformly

for xjn 2 I . Write

xjn D yjn C
zn

n!.yjn/
;

so that zn > 0 and zn D O.1/. From (3.6), we have

0 D
pn.xjn/

pn.yjn/
D cos �zn C o.1/

so necessarily for some non-negative integer jn,

zjn D jn C
1

2
C o.1/:

If jn � 1 for infinitely many n; then Hurwitz’ theorem shows that there would be

other zeros of pn between xjn and yjn, which contradicts that yjn 2 .xj C1;n; xjn/.
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So, jn D 0 for n large enough, which gives the first limit in (3.1). Note too that

!.xjn/=!.yjn/ D 1 C o.1/ by continuity of !. The second is similar. Both (3.2)

and (3.3) follow from (3.1), though as noted, (3.2) appears in [18].

(b) Because of (3.6), we can apply Theorem 1.3 and results from its proof.

In that theorem, we set xn D yjn; �n D 1
!.yjn/

; �n D yjnI so that �n�1 D yj;n�1.

Note that (1.13), (1.14), and (1.16) are satisfied because of the spacing estimates in

Lemma 3.1, and the continuity of !. From (2.7),

1

n!.yjn/
Kn.yjn; yjn/

D ��
n�1

n

pn�1.yj;n�1/pn.yjn/¹sinŒ�n!.yjn/.yj;n�1 � yjn/� C o.1/º: (3.7)

Next, [18, Theorem 2.2] establishes that uniformly for t 2 I;

lim
n!1

1

n
Kn.t; t/�0.t/ D !.t/:

Since ! is positive and continuous in I as is �0, we then obtain (3.4) from (3.7).

(c) This follows directly from the limit in (3.6) and the fact that jpn.yjn/j is the

maximum of jpnj in Œxj C1;n; xjn�.

Proof that Theorem 1.1 (a) () (b). This follows directly from Lemma 3.1.a).

Proof that Theorem 1.1 (b) H) (c). First note that as suppŒ�� is compact [5, p. 41],

n�1

n

� C: (3.8)

Our hypothesis (1.2), as well as (3.4) give that uniformly for yjn 2 I ,

n�1

n

jpn�1.yj;n�1/pn.yjn/j � 1: (3.9)

Then (3.5) gives uniformly for x 2 I;

n�1

n

kpn�1kL1Œx� A
n

;xC A
n

�kpnkL1Œx� A
n

;xC A
n

� � 1: (3.10)

Let Ijn D Œyj C1;n; yjn� for all j; n. We similarly obtain from (3.6) and (3.9) and our

spacing that

n�1

n

� Z

Ij;n�1

p2
n�1 d�

�1=2� Z

Ijn

p2
n d�

�1=2

�
C

n
:
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Here we are also using that �0 is positive and continuous in I . Adding over yjn 2 I ,

and using that there are necessarily � C n such yjn, because of the spacing, we obtain

n�1

n

X

yjn2I

� Z

Ij;n�1

p2
n�1 d�

�1=2� Z

Ijn

p2
n d�

�1=2

� C:

Cauchy–Schwarz’ inequality gives

n�1

n

� Z

p2
n�1d�

Z

p2
n d�

�1=2

� C

so that
n�1

n

� C:

Together with (3.8), this gives

an D
n�1

n

� 1: (3.11)

So, from (3.10), uniformly in x 2 I;

kpn�1kL1Œx� A
n

;xC A
n

�kpnkL1Œx� A
n

;xC A
n

� � 1:

Proof that Theorem 1.1 (c) H) (d). This is immediate.

Proof that Theorem 1.1 (d) H) (b). From (3.4), (3.11), and our bound (1.4),

j sinŒ�n!.yjn/.yj;n�1 � yjn/� C o.1/j � C:

This yields

dist
�

n!.yjn/.yjn � yj;n�1/; Z
�

� C:

Proof of the bound (1.5). From the recurrence relation and (3.11),

k.x � bn/pnkL1Œx�
A
n

;xC
A
n

�kpnkL1Œx�
A
n

;xC
A
n

�

� C.kpnC1kL1Œx�
A
n

;xC
A
n

�kpnkL1Œx�
A
n

;xC
A
n

�

C kpn�1kL1Œx� A
n

;xC A
n

�kpnkL1Œx� A
n

;xC A
n

�/ � C;

by (1.4). Then also uniformly in x 2 I;

k.x � bn/p2
nkL1Œx�

A
n ;xC

A
n � � C

and we obtain (1.5).



Bounds on orthogonal polynomials 509

4. Proof of Theorem 1.2

We begin with:

Lemma 4.1. Let � be a regular measure on R with compact support. Let I be a

closed subinterval of the support and assume that in some open interval containing I;

� is absolutely continuous, while �0 is positive and continuous. Assume (1.1). Let

A > 0:

a. Let L � 1. There exists n0 such that, uniformly for n � n0, for xjn 2 I , and

jk � j j � L,

dist
�

n!.xjn/.xk;n�1 � xjn/; Z
�

� C: (4.1)

b. Let

ıjn WD n!.xjn/.xjn � xj �1;n�2/: (4.2)

There exist n0; �0 > 0 such that, uniformly for n � n0, and for xjn 2 I ,

jıjnj � 1 � �0: (4.3)

c. There exist n0; C1 > 0 such that, uniformly for n � n0 and for xjn 2 I , we

have

jxjn � bn�1j � kpn�2k2

L1Œxjn�
A
n

;xjnC
A
n

�
jıjnj: (4.4)

Here if xjn � bn�1 D 0, both sides are 0.

Proof. (a) Using the spacing (3.2),

dist
�

n!.xjn/.xk;n�1 � xjn/; Z
�

D dist
�

n!.xjn/.xj;n�1 � xjn/; Z
�

C o.1/

so (1.1) gives the result.

(b) The interlacing of the zeros of successive orthogonal polynomials shows that

both xjn and xj �1;n�2 lie in the interval .xj;n�1; xj �1;n�1/. Even more, the bounds

given in (a) show that for n large enough, both xjn and xj �1;n�2 lie in the interval

.xj;n�1 C C1

n!.xjn/
; xj �1;n�1 � C1

n!.xjn/
/ for some C1 > 0. Then

jıjnj D jn!.xjn/.xjn � xj �1;n�2/j

� n!.xjn/.xj;n�1 � xj C1;n�1/ � 2C1 D 1 � 2C1 C o.1/;

by (3.2).

(c) From the recurrence relation,

.xjn � bn�1/pn�1.xjn/ D an�1pn�2.xjn/: (4.5)
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We now examine the behavior of the left and right-hand side as n ! 1. By (3.1)

to (3.3), the local asymptotic (3.6), and the fact that xjn � yj;n�1 D O. 1
n
/,

pn�1.xjn/

pn�1.yj;n�1/
D cos �.n!.yj;n�1/.xjn � yj;n�1// C o.1/

D cos �.n!.yj;n�1/.xjn � xj;n�1 C xj;n�1 � yj;n�1// C o.1/

D cos �.n!.yj;n�1/.xjn � xj;n�1/ C
1

2
/ C o.1/

D � sin �.n!.yj;n�1/.xjn � xj;n�1// C o.1/

so using our original condition (1.1), we obtain for some threshold n0 that is inde-

pendent of j; and for n � n0;

jpn�1.xjn/j � jpn�1.yj;n�1/j: (4.6)

Next, in analyzing the term on the right in (4.5), we use the differentiated form

of (3.6): uniformly for yjn 2 I and z in compact subsets of C;

lim
n!1

p0
n.yjn C z

n!.yjn/
/

n!.yjn/pn.yjn/
D �� sin �z: (4.7)

Then noting that we can replace n by n ˙ 2 in the term involving z, we see that

pn�2.xjn/

pn�2.yj �1;n�2/

D

.xjn�yj �1;n�2/n!.yj �1;n�2/
Z

.xj �1;n�2�yj �1;n�2/n!.yj �1;n�2 /

p0
n�2.yj �1;n�2 C t

n!.yj �1;n�2/
/

n!.yj �1;n�2/pn�2.yj �1;n�2/
dt

D

.xjn�yj �1;n�2/n!.yj �1;n�2/
Z

.xj �1;n�2�yj �1;n�2/n!.yj �1;n�2 /

.�� sin �t C o.1//dt:

Here the lower limit of integration is

.xj �1;n�2 � yj �1;n�2/n!.yj �1;n�2/ D
1

2
C o.1/;

(by (3.1)), so we can continue the above as

pn�2.xjn/

pn�2.yj �1;n�2/

D

.xjn�xj �1;n�2/n!.yj �1;n�2 /
Z

0

�

�� sin
�

�
�

t C
1

2

��

C o.1/
�

dt C o.ıjn/
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D

.xjn�xj �1;n�2/n!.yj �1;n�2 /
Z

0

�

�� cos �t C o.1/
�

dt C o.ıjn/

D � sin �ıjn C o.ıjn/:

Here we are also using that !.yj �1;n�2/=!.xjn/ ! 1 as n ! 1 by continuity of !

in the interior of I . Next, from (b), jıjnj � 1 � ", so j sin �ıjnj � jıjnj and we can

continue this as
pn�2.xjn/

pn�2.yj �1;n�2/
D �.sin �ıjn/.1 C o.1//:

It is possible here that ıjn D 0, but in such a case both sides are 0. Combining this

with (4.5), (4.6), and (3.11) gives uniformly in j and n; for n � n0;

jxjn � bn�1jjpn�1.yj;n�1/j � jpn�2.yj �1;n�2/jj sin �ıjnj � jpn�2.yj �1;n�2/jjıjnj:

Here by our local limits and (1.3),

jpn�1.yj;n�1/j D kpn�1kL1Œxj C1;n�1;xj;n�1� � kpn�2k�1

L1Œxjn� A
n

;xjnC A
n

�
:

A related assertion holds for pn�2.yj �1;n�2/. We deduce that

jxjn � bn�1j � kpn�2k2

L1Œxjn�
A
n ;xjnC

A
n �

jıjnj:

Again, if xjn D bn�1, ıjn D 0.

Proof that Theorem 1.2 (a) () (c). If first (1.6) holds, then jıjnj � C jxjn � bn�1j
and (4.4) gives

C jıjnj � kpn�2k2

L1Œxjn� A
n

;xjnC A
n

�
jıjnj;

which forces

kpn�2k2

L1Œxjn�
A
n ;xjnC

A
n �

� C1;

uniformly in xjn 2 I , provided no ıjn D 0. Since ıjn D 0 can occur for at most one j ,

namely when xjn D bn�1 (as follows from the recurrence relation), that exceptional

interval can be covered by others with A large enough. So, we have (1.8).

Conversely, suppose we have (1.8). Then from (4.4),

jxjn � bn�1j � C jıjnj;

so that we have (1.6).
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Proof that Theorem 1.2 (b) () (c). It is immediate that (b) H) (c). For the con-

verse we note that if (c) holds, then from Theorem 1.1 (c),

kpn�1kL1Œx�
A
n

;xC
A
n

� � C

uniformly for x 2 I . This together with (1.8), gives (1.7).
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