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Zero measure spectrum

for multi-frequency Schrödinger operators

Jon Chaika, David Damanik, Jake Fillman, and Philipp Gohlke

Abstract. Building on works of Berthé–Steiner–Thuswaldner and Fogg–Nous, we show that on

the two-dimensional torus, Lebesgue almost every translation admits a natural coding such that

the associated subshift satisfies the Boshernitzan criterion. As a consequence, we show that for

these torus translations, every quasi-periodic potential can be approximated uniformly by one

for which the associated Schrödinger operator has Cantor spectrum of zero Lebesgue measure.

We also describe a framework that can allow this to be extended to higher-dimensional tori.

1. Introduction

This work addresses the persistent occurrence of Cantor spectrum of zero Lebesgue

measure in the class of discrete one-dimensional Schrödinger operators with gener-

alized quasi-periodic potentials, where the underlying torus has dimension strictly

greater than one.

To motivate this problem, let us describe the setting and recall some of the known

results. Fix a dimension d 2 N and consider ˛ 2 T
d WD R

d=Zd that is such that the

translation R˛W T
d ! T

d , ! 7! ! C ˛ is minimal. If gW T
d ! R is bounded and

measurable, we can consider, for each ! 2 T
d , the discrete Schrödinger operator

ŒH˛;g;! �.n/ D  .nC 1/C  .n � 1/C g.! C n˛/ .n/

in `2.Z/. We call such an operator a generalized quasi-periodic Schrödinger operator.

Within this class of sampling functions, one distinguishes several standard regularity

classes and observes that the spectral properties of the operators in question depend

quite significantly on the chosen regularity class. Standard examples are given by

continuous g (this corresponds precisely to the class of quasi-periodic Schrödinger
operators), Hölder continuous g, g that are differentiable a certain finite number of

times, smooth (i.e., infinitely differentiable) g, and analytic g.
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One is interested in the spectrum and the spectral type. By standard arguments

involving the ergodicity of Lebesgue measure with respect to R˛ , there is a compact

set †˛;g such that, for Lebesgue almost every ! 2 T
d , the spectrum of H˛;g;! is

equal to †˛;g . Similarly, the spectral type of H˛;g;! is also Lebesgue-almost surely

independent of !. As we will focus on the spectrum in this paper, we will not go into

further details regarding the spectral type and refer the reader to the surveys [11, 21]

for background and more information.

The almost sure spectrum †˛;g can have various topological and measure-the-

oretic properties. It can be a Cantor (i.e., perfect and nowhere dense) set, but it can

also be a finite union of non-degenerate compact intervals. The Cantor spectra that

occur can have both positive and zero Lebesgue measure. Among those that have

zero Lebesgue measure, examples are known with small, and even zero, Hausdorff

dimension.

Roughly speaking, when d D 1, it is well known how to produce examples with

zero Lebesgue measure [12, 13] and even zero Hausdorff dimension [20]. On the

other hand, when d > 1, examples are known where the spectrum is a finite union

of intervals, and it is (essentially)1 open how to produce spectra of zero Lebesgue

measure. The present paper develops a way of producing many such examples. Indeed

they are “ample” in a way we will make precise.

Since we used zero Lebesgue measure and non-Cantor structure to distinguish

between the two cases d D 1 and d > 1 in the previous paragraph, let us point out

that proving the genericity of Cantor spectrum in C.Td / for any fixed minimal trans-

lation R˛ (without supplying any information about the Lebesgue measure of the set)

has a proof that works simultaneously for all values of d 2 N; see [3,4]. On the other

hand, in the analytic category, Cantor spectrum is typical when d D 1 (the literature

is extensive; see, e.g., [14, 16, 22], and the surveys [11, 21] for a more complete list),

while it is not typical when d > 1 (at least in the large coupling regime [17]).

To summarize, the mechanisms leading to Cantor spectrum of zero Lebesgue

measure in the context of generalized quasi-periodic Schrödinger operators are quite

well understood in the one-frequency case (d D 1), but so far they are poorly under-

stood in the multi-frequency case (d > 1). We will discuss a mechanism here that

works in the multi-frequency case, which leads to a class of examples that is in some

ways as rich and “ample” as the existing work in the one-frequency case.

Definition 1.1. A function gW T
d ! R is called elementary if it is measurable and

takes finitely many values. The set of elementary functions gW T
d ! R is denoted

1There is a way to recast some known results for primitive substitution subshifts in terms of

codings of torus translations; see, for example, [23] for the case of the Tribonacci substitution

and [1] for more examples.
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by E.Td /. A subset of E.Td / is called ample if its k � k1-closure in L1.Td / con-

tains C.Td /.

Theorem 1.2. Let d D 2. Then, for Lebesgue almost every ˛ 2 T
d , the set

Z˛ D ¹g 2 E.Td /W†˛;g is a Cantor set of zero Lebesgue measureº

is ample.

Remark 1.3. (a) In the case d D 1, this is a result of Damanik and Lenz [12, 13].

Specifically, it follows by combining [12, Theorem 2] and [13, Theorem 10]. Actually,

in this case, the full measure set of ˛ 2 T is explicit: it is the set of all irrational

numbers. By contrast, the full measure set in Theorem 1.2 is not explicit.

(b) The fact that the result can be extended to a value of d that is greater than

one is not obvious, and indeed surprising, since the straightforward extension of [13,

Theorem 10] is known to fail, compare Remark 3.7 below.

(c) The proof of Theorem 1.2 also employs [12, Theorem 2], but replaces the

use of [13, Theorem 10] by a more sophisticated process to verify the assumption of

[12, Theorem 2].

(d) To the best of our knowledge, there is no known example of a quasi-periodic

multi-frequency potential (i.e., d > 1 and g 2 C.Td /) so that the associated Schrö-

dinger operator has zero-measure spectrum. It is unclear whether such an example

exists. The fact that arbitrarily small k � k1 perturbations of an arbitrary g 2 C.Td /

can produce this effect is therefore interesting.

(e) We described the occurrence of zero-measure spectrum obtained via this route

as “persistent” above, so let us explain what we mean by that. The g 2 E.T2/ we

obtain for which †˛;g is a Cantor set of zero Lebesgue measure are actually such

that †˛;�g is a Cantor set of zero Lebesgue measure for every � 2 R with � 6D 0.

Thus, the phenomenon is persistent with respect to varying the coupling constant.

This should be contrasted with the fact that any known g 2 C.T / for which†˛;g has

been shown to have zero Lebesgue measure for suitable (irrational) ˛ 2 T is such

that †˛;�g has positive Lebesgue measure for every � 2 R with j�j 6D 1. In other

words, the zero-measure property is highly unstable with respect to a variation of the

coupling constant in the quasi-periodic setting.

(f) We regard it as an interesting open problem to explore whether Theorem 1.2

can be extended to some larger values of d . Several components of our proof of The-

orem 1.2 indeed do extend to values of d greater than 2. In the final section of this

paper, we comment on why our result is limited to the case d D 2 and point out the

obstacles one needs to overcome if one wants to prove a result for some d > 2.
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The remainder of the paper is organized in the following way. We collect some

necessary background in Section 2, including known results about multidimensional

continued fraction algorithms and S-adic subshifts. In Section 3, we prove a sufficient

criterion for an S-adic subshift to obey Boshernitzan’s criterion for unique ergodicity.

Building on [7], we apply this criterion in Section 4 to deduce that Boshernitzan’s

criterion holds for certain subshifts arising from suitable two-dimensional continued

fraction algorithms. We conclude the proof of Theorem 1.2 in Section 5. Finally, we

discuss the case d � 3 in Section 6, including the overall strategy that one should

implement as well as the obstacles that one must overcome in order to apply said

strategy.

2. Preliminaries

2.1. Multi-dimensional continued fraction algorithms

2.1.1. Motivation and notation. Continued fractions are a tool to understand the

Diophantine properties of numbers and the dynamical properties of rotations. The

theory has been best developed in dimension one, where the Euclidean algorithm and

its acceleration, the Gauss map, are incredibly useful. There are many generaliza-

tions of these algorithms to higher dimensions. For our purposes we will restrict our

attention to the Cassaigne–Selmer algorithm and the Brun algorithm (the latter in the

special case of four dimensions).

2.1.2. The Cassaigne–Selmer algorithm. Denote RC D Œ0;1/ and let

� D �3 D ¹.x1; x2; x3/ 2 R
3
CW x1 C x2 C x3 D 1º:

The Cassaigne–Selmer algorithm is given by

TC W� ! �;

T .x1; x2; x3/ D

8

ˆ

<

ˆ

:

� x1 � x3

x1 C x2

;
x3

x1 C x2

;
x2

x1 C x2

�

if x1 � x3;

� x2

x2 C x3

;
x1

x2 C x3

;
x3 � x1

x2 C x3

�

if x3 > x1:
(2.1)

This algorithm was studied in [9] for its connection to word combinatorics. There is

an ergodic TC -invariant probability measure �C on�which is equivalent to Lebesgue

measure. Indeed, the Cassaigne–Selmer algorithm is conjugate to the Selmer algorithm

[9]. This algorithm is ergodic by [24, Section 7], whose argument presenting the proof

of ergodicity of the fully sorted Selmer algorithm generalizes to show that the semi-

sorted Selmer algorithm is ergodic.
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2.1.3. The Brun algorithm for d D 4. Let

� D �4 D ¹.x1; x2; x3; x4/ 2 R
4
CW x1 C x2 C x3 C x4 D 1º

and, for i; j 2 ¹1; 2; 3; 4º, let

�.i; j / D ¹.x1; x2; x3; x4/W xi � xj � xk for all k … ¹i; j ºº:

The Brun algorithm TB W� ! � is defined for .x1; : : : ; x4/ 2 �.i; j / as

TB.x1; : : : ; x4/k D

8

ˆ

ˆ

<

ˆ

ˆ

:

xk

1 � xj

if k ¤ i;

xi � xj

1 � xj

if k D i:

This map is well defined almost everywhere on �. The ergodicity of this algorithm

follows as in [24]. Hence, there exists an ergodic TB-invariant probability measure �B

on � which is equivalent to Lebesgue measure.

2.2. S-adic subshifts

Given a finite set A, give the full shift AZ the product topology inherited from pla-

cing the discrete topology on each factor, and define the shift map S W A
Z ! A

Z by

ŒSx�.n/D x.nC 1/. A subshift over A is a closed (hence compact) S -invariant subset

X � A
Z.

The free monoid will be denoted by A� D
S1

nD0 An; the unique element of A0

is denoted by " and called the empty word; the length of u 2 A
n is juj D n. Write

#u.v/ WD #¹j W vj C1vj C2 : : : vj Cjuj D uº (2.2)

for the number of times u occurs in v, u G v if #u.v/ > 0, and L.u/ for the set of all

subwords of u 2 A�, AN or AZ. For a subshift X , the language of X is

L.X/ WD ¹uW u 2 L.x/ for some x 2 Xº:

When .X; S/ is minimal, L.X/ D L.x/ for every x 2 X .

In [8], Boshernitzan showed that a minimal subshift is also uniquely ergodic if the

following property holds.

Definition 2.1. Let .X; S/ be a minimal subshift. We say that .X; S/ satisfies the

Boshernitzan criterion if there exist an S -invariant probability measure �, a constant

C > 0, and a sequence n1; n2; : : : ! 1 so that for all w D w1 : : :wni
2 L.X/,

�.¹x 2 X W x1 : : : xni
D wº/ >

C

ni

:
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A substitution is an endomorphism � W A
� ! A

�, which is uniquely defined by its

values on individual letters of A. We shall also assume that all substitutions are non-
erasing in the sense that �.a/ ¤ " for every a 2 A, and denote the set of non-erasing

substitutions on A by Sub.A/. For each � 2 Sub.A/, one associates the substitution
matrix M D M� 2 End.ZA/, with entries given by

M� Œa; b� D #a.�.b//:

An S-adic system over A is defined by a choice of a directive sequence � D
.�n/

1
nD0 of substitutions on A. We will encounter products quite frequently, so, for

0 � m < n, we write

�Œm;n� D �m : : : �n;

with obvious conventions for open and half-open intervals. For a 2 A, write wn.a/D
�Œ0;n�.a/. Similarly, for the substitution matrices, we write MI D M�I

for an inter-

val I . Clearly, for I D Œm; n�, one has

MŒm;n� D M�m
M�mC1

: : :M�n
:

The language associated to � is

L.�/ WD ¹w 2 A
�Ww G wn.a/ for some a 2 A and n 2 N0º:

We also call this the set of allowed words. It is easy to check that

X D X.�/ WD ¹x 2 A
ZWL.x/ � L.�/º;

is a non-empty subshift, provided that

lim
n!1

max
a2A

jwn.a/j D 1:

In this case, we call X.�/ the S-adic subshift generated by �.

2.3. S-adic subshifts related to multi-dimensional continued fractions

Both the Cassaigne–Selmer algorithm and the Brun algorithm are of the form

T W� ! �; x 7!
A.x/�1x

kA.x/�1xk1

for some locally constant matrix valued function AW� ! GL.d;Z/. Following [7],

we select for each x 2 � a substitution '.x/ on the alphabet A D ¹1; : : : ; dº such
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that A.x/ coincides with the substitution matrix M'.x/. In the case of the Cassaigne–

Selmer algorithm this is achieved by

'.x/ D

´

1 if x1 � x3;

2 if x3 > x1;

with the Cassaigne–Selmer substitutions

1W

8

ˆ

ˆ

<

ˆ

ˆ

:

1 7! 1;

2 7! 13;

3 7! 2

2W

8

ˆ

ˆ

<

ˆ

ˆ

:

1 7! 2;

2 7! 13;

3 7! 3:

For the Brun algorithm, we consider the class of substitutions

ˇij W j 7! ij; k 7! k for k 2 A n ¹j º:

for i; j 2 A D ¹1; 2; 3; 4º and we set '.x/ D ˇij for x 2 �.i; j /.
Given a substitution selection 'W� ! Sub.A/, the orbit of a point x 2 � under

the action of T defines an S-adic system, called a substitutive realization of .�;T;A/,

given by the directive sequence

�.x/ D .'.T nx//1nD0:

The corresponding subshift is given by .X.�.x//; S/. On the other hand, we relate to

each point x in the d -dimensional simplex � a point on the torus T
d�1 by the map

�W� ! T
d�1, which denotes the projection to the first d � 1 coordinates. Note that

� is not a surjective map but for

T
d�1
� D ¹t 2 T

d�1W t1 C � � � C td�1 � 1º;

the map �W� ! T
d�1
� , x 7! �.x/ is a bijection, identifying T

d�1 Š Œ0; 1/d�1 in

the obvious fashion. Slightly abusing notation, we use the same symbol, � , to denote

both maps.

2.4. Natural codings of torus translations

For the d -dimensional torus T
d and ˛ 2 T

d , let R˛ W T
d ! T

d , R˛.!/ D ! C ˛

denote the torus translation associated to ˛.

We present in the following a weaker version of the term natural coding as defined

in [7]. This turns some of the results we cite from [7] into mere corollaries which are,

however, sufficient for our purposes. A collection F D ¹F1; : : : ;Fhº is called a natural
measurable partition of T

d if
Sh

iD1 Fi D T
d , Fj \ Fk has zero measure for each
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j ¤ k, and each Fi is measurable with dense interior and zero measure boundary.

Given the map R˛, the language associated with F, denoted by L.F/, is the set of

finite words w D w0 : : : wn 2 ¹1; : : : ; hº� such that
Tn

kD0 R
�k
˛

VFwk
¤ ;, where VA

denotes the interior of A.

Definition 2.2. A subshift .X; S/ is called a natural coding of .Td ; R˛/ if its lan-

guage coincides with the language of a natural measurable partition ¹F1; : : : ; Fhº
and

\

n2N

n
\

kD0

R�k
˛

VFxk

consists of a single point for every x D .xn/n2Z 2 X .

The following result concerning the Cassaigne–Selmer algorithm is essential for

our analysis.

Proposition 2.3 ([7, Theorem 6.2]). Let � be the substitutive realization of the Cas-
saigne–Selmer algorithm. For �C -almost every x 2 �, the subshift .X.�.x//; S/ is a
natural coding of .T2; R�.x//.

Note that [15, Theorems A and B] are closely related results, that would have also

been sufficient for our purposes.

Remark 2.4. If F D ¹F1; : : : ;Fhº is a natural measurable partition of T
2 and M 2

GL.2;Z/, then the language generated by R˛ on F coincides with the language gen-

erated by RM˛ on the natural measurable partition MF D ¹MF1; : : : ; MFhº. In

particular, if .X; S/ is a natural coding of .T2; R˛/, then it is also a natural coding

of .T2;RM˛/. In the 2-dimensional case, we could simply takeM˛ WD �˛, to obtain

natural codings for (almost) all ˛ 2 T
2 from codings for ˛ 2 T

2
�. For the more general

d -dimensional cases, we still obtain T
d from T

d
� via general linear transformations,

compare [7, Remark 3.5].

One would naturally like to obtain analogs of Proposition 2.3 for higher-dimen-

sional torus translations. For such translations, the Brun algorithm is a natural candid-

ate to use for the associated continued fraction algorithm. However, in that case, there

is a technical ingredient (namely negativity of the second Lyapunov exponent) which

is currently unclear. We discuss this in more detail in Section 6.

2.5. Zero-measure spectrum via the Boshernitzan criterion

Given a finite alphabet A and a subshiftX � AZ, one can define Schrödinger operat-

ors in `2.Z/ by generating potentials which are obtained through real-valued sampling

along the S -orbits of X . That is, if f WX ! R is given, we associate with each x 2 X
the potential Vx W Z ! R given by Vx.n/D f .Snx/, n 2 Z. The Schrödinger operator
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Hx in `2.Z/ is then given by

ŒHx �.n/ D  .nC 1/C  .n � 1/C Vx.n/ .n/:

One typically restricts attention to locally constant functions f , that is, functions that

depend on only finitely many entries of the input sequence x. Such functions are of

course continuous, but in addition they preserve the finite-valuedness, which is crucial

to many arguments in the study of these operators.

If X is minimal and f is locally constant, then a simple strong approximation

argument shows that there is a compact set †X;f � R such that �.Hx/ D †X;f for

every x 2 X . Obviously, a minimal subshift X is finite if and only if every Vx is

periodic, and in this case †X;f is well known to be a union of finitely many non-

degenerate compact intervals. Similarly, if f is constant, the same conclusions hold.

Ruling out these degenerate cases, it is an interesting question whether †X;f must

have zero Lebesgue measure. In fact, Simon conjectured that this must be the case in

complete generality, but this conjecture has been disproved in [5].

On the other hand, the Boshernitzan criterion turns out to be a sufficient condition

[12, Theorem 2]:

Theorem 2.5. If the minimal subshift X satisfies the Boshernitzan criterion and f is
locally constant, then either all Vx are periodic or the set†X;f is a Cantor set of zero
Lebesgue measure.

3. S-Adic subshifts satisfying the Boshernitzan criterion

Let � D .�k/
1
kD0

be a directive sequence generating an S-adic system, .X.�/; S/.

Refer to Section 2.2 for definitions and notation. Our key auxiliary result is a sufficient

criterion on � for .X.�/; S/ to satisfy Boshernitzan’s criterion for unique ergodicity.

Definition 3.1. For a; b 2 A, we say that a precedes b at level n if there are m 2 N

and c 2 A such that ab G �ŒnC1;nCm�.c/. For an interval I D ŒnC 1; nC `�, we say

�I is a word builder at level n if, whenever a precedes b at level n, there is c 2 A such

that ab G �I .c/.

Theorem 3.2. Suppose there exists a constant N > 0 so that, for infintely many n0,
there exist n0 < n1 < n2 < n3 so that

a. MŒn0C1;n1� and MŒn2C1;n3� are positive matrices,

b. �Œn1C1;n2� is a word builder at level n1,

c. max¹kMŒn0C1;n1�k; kMŒn1C1;n2�k; kMŒn2C1;n3�kº � N .

Then .X.�/; S/ satisfies Boshernitzan’s criterion.
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Lemma 3.3. If �nC1.a/ D b1 : : : br , then wnC1.a/ D wn.b1/ : : :wn.br/.

Proof. This follows immediately from the definition of wn.

Corollary 3.4. Let n; k 2 N. If MŒn;nCk� is a positive matrix, then, for all a; a0 2 A,

one has
jwnCk.a/j

jwnCk.a0/j
� max

i;j;j 0

°MŒn;nCk�Œi; j �

MŒn;nCk�Œi; j 0�

±

:

Proof. For each b 2 A, we apply Lemma 3.3 k times to write wnCk.b/ as a concat-

enation of wn.a/ for a 2 A. For each i; j; j 0 2 A, the ratio of occurrences of wn.i/

in such a decomposition of wnCk.j / and wnCk.j
0/ is at most the right-hand side.

Lemma 3.5. If �ŒnC1;nC`� is a word builder at level n, then every allowed word of
length at most minc2A jwn.c/j is a subword of wnC`.c/ for some c 2 A.

Proof. Every word is a truncation of concatenations of wn.c/ as c varies in A. So,

every word of length at most minc2A jwn.c/j is formed by concatenating a (possibly

empty) suffix of wn.a/ with a (possibly empty) prefix of wn.a
0/ where a precedes a0

at level n. All such combinations appear in wnC`.c/ for some c 2 A.

Lemma 3.6. If �ŒnC1;nC`� is a word builder andMŒnC`C1;nC`Ck� is positive, then the
measure of the cylinder set associated with any word of length mina2A jwn.a/j is at
least

.max
c2A

jwnC`Ck.c/j/
�1:

Proof. Every allowed word of length at most minc2A jwn.a/j appears at least once

in every wnC`Ck.c/. Indeed, every c appears in �nC`C1 : : : �nC`Ck.a/ by the posit-

ivity of MnC`C1 : : : MnC`Ck . So, every wnC`.c/ appears in every wnC`Ck.a/. By

Lemma 3.5 this implies that every allowed word of length at most minc2A jwn.a/j
appears at least once in every wnC`Ck.c/.

So, we have that the proportion of every allowed word in such blocks is at least

.maxc2A jwnC`Ck.c/j/�1. As our language is a concatenation of wnC`Ck.c/ as c

varies in A we have the claim.

Proof of Theorem 3.2. This follows from Lemma 3.6 and Corollary 3.4. Indeed,

max
c2A

jwn3
.c/j � N 2.max

c2A

jwn1
.c/j/ � N 3.min

c2A

jwn1
.c/j/:

So, we have that the measure of any cylinder of length min
c2A

jwn1
.c/j is at least

.N 3min
c2A

jwn1
.c/j/�1:

Consequently, there exist infinitely many r so that we satisfy the Boshernitzan cri-

terion with C D .N 3r/�1.
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Remark 3.7. It is easy to see that any subshift satisfying the Boshernitzan criterion

must have a complexity function that is linearly bounded on a subsequence. This

in turn shows that, for codings of higher-dimensional torus translations, care must

be taken if there is to be any hope to generate subshifts satisfying the Boshernitzan

criterion. Indeed, it is known that any coding of a minimal translation of T
d , d � 2,

relative to a partition of T
d into sufficiently nice sets has a super-linear lower bound;

compare, for example, [10, 27].

4. 2D toral translations

The substitution matrices associated to the Cassaigne–Selmer substitutions 1 and 2

are given by

C1 D

2

6

4

1 1 0

0 0 1

0 1 0

3

7

5
and C2 D

2

6

4

0 1 0

1 0 0

0 1 1

3

7

5
;

respectively. Recall that �C denotes the TC -ergodic measure on � which is equival-

ent to Lebesgue measure. For the remainder of this section, let T D TC and � D �C .

The pushforward of Lebesgue measure on � under � is equivalent to Lebesgue

measure (and therefore to �) on T
2
�. Hence, for almost all ˛ 2 T

2
�, the subshift

.X.�.��1.˛///; S/ is a natural coding of .T2; R˛/ due to Proposition 2.3.

Proposition 4.1. For Lebesgue a.e. ˛ 2 T
2
�, the subshift .X.�.��1.˛///;S/ satisfies

Boshernitzan’s criterion. In particular, for almost every ˛ 2 T
2, the toral translation

.T2; R˛/ admits a natural coding that satisfies Boshernitzan’s criterion.

Proof. It suffices to show that, for �-almost every x 2 �, the subshift .X.�.x//; S/

satisfies Boshernitzan’s criterion. Note that � D 1 ı 2 is a primitive substitution,

indeedM 3
� is positive.

Further, we claim that the substitution � 0 D 2
121

3
21 is a word builder, irre-

spective of its position within a directive sequence .�n/
1
nD0 2 ¹1; 2ºN0 . To verify

this, we first observe that the set 2
1 .A

2/ does not contain any of the words in ¹22; 23;
32; 33º as a subword. Hence, whenever � 0 D �ŒnC1;nC8� and a precedes b at level n, it

follows that ab 2 L2 WD ¹11; 12; 13; 21; 31º. A direct calculation yields that � 0.1/ D
1213113 and so for all ab 2 L2 we find that ab G � 0.1/. In particular, � 0 is a word

builder. The substitution �� D �3� 0�3 is a composition of ` D 14 substitutions drawn

from ¹1; 2º. Let

Bm D ¹.�n/n2N0
2 ¹1; 2ºN0 W �m ı � � � ı �mC`�1 D ��º
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and B D limm!1Bm. By Theorem 3.2, for every � 2 B , the corresponding subshift

.X.�/; S/ satisfies Boshernitzan’s criterion. Hence, it is enough to show that � D
� ı ��1 assigns full measure to B . We consider the set

D D ��1.B0/ D ¹x 2 �WA.x/ : : :A.T `�1x/ D M��º

Since the map � conjugates T and S , we have that

��1.Bm/ D ��1.S�mB0/ D T �m��1.B0/ D T �mD

for all m 2 N0. By Birkhoff’s ergodic theorem, we have for almost every x 2 � that

lim
n!1

1

n

n�1
X

mD0

1
��1.Bm/.x/ D lim

n!1

1

n

n�1
X

mD0

1D.T
mx/ D �.D/:

If �.D/ > 0, we therefore conclude that almost-every x is contained in infinitely

many ��1.Bm/ and hence in ��1.B/, implying �.��1.B// D 1. It remains to show

that �.D/ > 0.

Let �.1/ D ¹x 2 �W x1 � x3º and �.2/ D ¹x 2 �W x3 > x1º, that is,

A.x/ D Ci () x 2 �.i/:

In the following, we identify sets that coincide up to a set of Lebesgue measure zero—

this applies in particular to the boundaries of the sets �, �.1/, and �.2/. Since

T .�.i// D � and T acts on �.i/ as the radial projection of C�1
i .�.i// to �, we

obtain that the radial projection of Ci .�/ to � coincides with �.i/. Abusing nota-

tion slightly, we use Ci to also denote the projective action of Ci on �. With this

convention, it is straightforward to check that A.x/ D Ci if and only if x 2 Ci .�/

(note that here we could also replace � with the positive cone). Similarly, one has

A.x/A.Tx/DCiCj precisely if x 2Ci .�/ and T x 2Cj .�/, where T DC�1
i in this

case. That is, we have equivalence to x 2 Ci .�/ and x 2 CiCj .�/ � Ci .�/. Induct-

ively, we find that A.x/ : : : A.T kx/ D Ci0 : : : Cik if and only if x 2 Ci0 : : : Cik .�/:

For our case at hand, we obtain that x 2 D if and only if x 2 M��.�/. Note that, as

M�� is primitive, it acts as a projective contraction on the positive cone. Since each

of C1; C2 is invertible, so is M�� and the set M��.�/ has positive Lebesgue meas-

ure. It follows that the Lebesgue measure (and hence the �-measure) of D is positive.

Finally, to go from ˛ 2 T
2
� to more general ˛ 2 T

2, we make use of Remark 2.4.

5. Proof of Theorem 1.2

In this section we derive Theorem 1.2 from our work in the previous sections. Let us

begin with a discussion of elementary functions on T
d and how they relate to locally
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constant functions on .X; S/, where .X; S/ is a natural coding of R˛ associated with

the natural measurable partition ¹F1; : : : ;Fhº. We define �WX ! T
d by �.x/ D !,

where ! is the unique point in

\

n2N

n
\

kD0

R�k
˛

VFxk
:

Let

G D
\

k2Z

R�k
˛

h

h
[

j D1

VFj

i

;

which is a dense Gı set of full Lebesgue measure in T
d (by definition of natural

coding). For ! 2 G , we can invert this by mapping ! to x D .xk/k2Z given by

Rk
˛! 2 VFxk

.

Given w D w0 : : : wn 2 L.X/, let

Fw D
n

\

kD0

R�k
˛ Fwk

;

which is nonempty by the definition of L.X/. Let �w denote the characteristic func-

tion of Fw , and let A denote the algebra generated by ¹�w Ww 2 L.X/º.

Proposition 5.1. If .X; S/ is a natural coding of R˛, then A is ample. In particular,
A n ¹constantsº is ample as well.

Proof. Given f 2 C.Td / and " > 0, find ı > 0 so that jf .�1/� f .�2/j< "whenever

dist.�1; �2/ < ı. Choose n large enough that for any w 2 L.X/ of length n, one has

diam.Fw/ < ı, and define

g D
X

w2L.X/
jwjDn

aw�w

where aw D f .�/ for some � 2 Fw . Clearly, g 2 A and kf � gk1 < ".

Proof of Theorem 1.2. We consider the full measure set of ˛’s in T
2 that generate

a minimal translation R˛ W T
2 ! T

2 and belong to the full measure set determined

earlier; compare Proposition 4.1.

By these propositions, the minimal translation R˛ admits a natural coding that

satisfies the Boshernitzan criterion. As Rk
˛ is minimal and for any f 2 A has that its

level sets have non-empty interior, the Vx are all aperiodic. Thus, by Theorem 2.5,

every non-constant locally constant sampling function on this subshift generates a

potential so that the associated Schrödinger spectrum is a Cantor set of zero Lebesgue

measure.
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Since the coding is natural, each such locally constant function on the subshift

corresponds to an elementary function on the torus and the set of functions obtained

via this correspondence is ample by Proposition 5.1. This concludes the proof of the

theorem.

6. A discussion of possible extensions to higher dimensions

6.1. A road map to treating larger values of d

Proposition 2.3 is a significant new result that enabled this project and it is natural to

wonder how general it is. The plan for such a result is fairly general.

1. One finds a continued fraction algorithm and obtains S-adic systems from the

process applied to a.e. vector in the parameter space.

2. One shows that the resulting shift dynamical systems (a.s.) have purely discrete

spectrum, and in fact they are measurably isomorphic to a toral rotation and

moreover are natural codings thereof.

Step (2) requires

• an absolutely continuous ergodic invariant measure;

• the negativity of the second Lyapanov exponent (of the cocycle that gives the

S-adic system) with respect to the absolutely continuous invariant measure;

• a mild additional assumption on the continued fraction algorithm. For example,

either of the following two suffices.

– As in [15, Theorem B] it has a seed point ([15, Definition 64]) and the second

Lyapanov exponent is simple (this is part of the Pisot condition [15, Defini-

tion 60] in this paper).

– As in [7, Theorem 3.1]) it has a periodic Pisot point ([7, Definition 2.4]) with

positive range ([7, Definition 2.5]) so that the corresponding S-adic system

(which in this case is a substitution dynamical system) has discrete spectrum.

There are standard approaches to the ergodicity of these algorithms. For example,

one can relate the continued fraction algorithm to a flow that is known to be ergodic

(see, e.g., [2]) or one can show that it or an acceleration satisfies some well-known

conditions (see, e.g., [24, Theorem 8]).

The negativity of the second Lyapanov exponent in dimension greater than two is

shown via computer assisted proof in Hardcastle [18]; see also Berthé, Steiner, and

Thuswaldner [6].

There is a general strategy [19], but the rigor of these implementations even in

dimension 3 is not always complete [18]. For the Cassaigne–Selmer algorithm, one
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can appeal to the 2-dimensional Selmer algorithm (which it is conjugate to) and

quote [26] (which appeals to [25] where the result is proven for the closely related

Baldwin algorithm) for a proof without computer assistance.

6.2. A brief discussion of the case d D 3

For translations on T
3, the 4-dimensional Brun algorithm is a natural candidate for the

strategy outlined above, and [7, Section 6.4] collects (most of) the necessary inputs.

An analogue of Proposition 2.3 for the Brun algorithm requires one to verify that

the second Lyapunov exponent related to the cocycle induced by A on � is negative.

The negativity of the second exponent is unclear to us. In particular, [18] experi-

mentally studies this question but is not entirely rigorous.2 The other assumptions of

[7, Theorem 3.1] are verified in the paragraph before [7, Theorem 6.7]. The result in

[7, Theorem 6.7] states the following.

Proposition 6.1. Let � be the substitutive realization of the Brun algorithm. For
�B-almost every x 2�, the subshift .X.�.x//;S/ is a natural coding of .T3;R�.x//.

Given the indeterminate status of Proposition 6.1, we regard the following prob-

lem as an interesting question for future study.

Conjecture 6.2. For almost every ˛ 2 T
3, the toral translation .T3; R˛/ admits a

natural coding that satisfies Boshernitzan’s criterion.

The idea of proof of Conjecture 6.2 relies on Proposition 6.1 and thereby on the

question whether the second Lyapunov exponent associated to the Brun algorithm is

indeed negative—compare the discussion in Section 6.1. Assuming Proposition 6.1,

we can prove Conjecture 6.2 following the same lines as for Proposition 4.1. Here

we make use of the observation that the substitution � D ˇ12 ı ˇ23 ı ˇ34 ı ˇ41 is

primitive, which can be seen from a direct calculation (indeed i G �2.j / for every i

and j ); compare the discussion in [7] preceding Theorem 6.7. With x the right Perron

Frobenius eigenvector ofM� , we have �.x/D �1. A word builder can be constructed

as follows. If �ŒnC1;nC3� D ˇ14 ı ˇ13 ı ˇ12, then a can precede b at level n only if

ab 2 ¹11; 12; 13; 14; 21; 31; 41º. From this, we can verify that ˇ14 ı ˇ13 ı ˇ12 ı �2 is

a word builder, irrespective of its position in a sequence .�n/n2N0
.
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