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Carleman estimate for complex second order elliptic operators

with discontinuous Lipschitz coefficients

Elisa Francini, Sergio Vessella, and Jenn-Nan Wang

Abstract. In this paper, we derive a local Carleman estimate for the complex second order

elliptic operator with Lipschitz coefficients having jump discontinuities. Combing the result by

M. Bellassoued and J. Le Rousseau (2018) and the arguments by M. Di Cristo, E. Francini,

C.-L. Lin, S. Vessella, and J.-N. Wang (2017), we present an elementary method to derive the

Carleman estimate under the optimal regularity assumption on the coefficients.

1. Introduction

Carleman estimates are important tools for proving the unique continuation prop-

erty for partial differential equations. Additionally, Carleman estimates have been

successfully applied to study inverse problems and controllability of partial differen-

tial equations. Most of Carleman estimates are proved under the assumption that the

leading coefficients possess certain regularity. For example, for general second order

elliptic operators, Carleman estimates were proved when the leading coefficients are

at least Lipschitz [9]. In general, the Lipschitz regularity assumption is the optimal

condition for the unique continuation property to hold in R
n with n � 3 (see counter-

examples constructed by Pliś [17] and Miller [16]). Therefore, Carleman estimates for

second order elliptic operators with general discontinuous coefficients are most likely

not valid. Nonetheless, recently, in the case of coefficients having jump discontinuit-

ies at an interface with homogeneous or non-homogeneous transmission conditions,

one can still prove useful Carleman estimates, see, for example, Le Rousseau and

Robbiano [14, 15], Le Rousseau and Lerner [13], and [5].

Above mentioned results are proved for real coefficients. In many real world prob-

lems, the case of complex-valued coefficients arises naturally. The modeling of the

current flows in biological tissues or the propagation of the electromagnetic waves in

conductive media are typical examples. In the former case, the electric current is due
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to the ions in intracellular and extracellular fluids. The intracellular ions are separ-

ated by cell membranes which act like capacitors. When a constant voltage (DC) is

applied, a conductance current Ic flows through the extracellular fluid. At the same

time, a constant amount of charges will be stored in the cell membrane. If now an

alternating voltage (AC) is applied, the charges stored in the cell membranes will

change according to the frequency, resulting in a displacement current Id through the

intracellular fluid. From Ohm’s law, Ic depends on the material’s conductivity � while

Id depends on its permittivity ". Due to the 90 degrees phase difference, we see that

the total current I D Ic C Id is proportional to the product of the complex-valued

admittivity � C i!" and the applied voltage, where ! D 2�f and f is the frequency

of the applied signal. On the other hand, in some situations, the conductivities are not

continuous functions. For instance, in the human body, different organs have different

conductivities. Therefore, to model the current flow in the human body, it is more

reasonable to consider an anisotropic complex-valued conductivity with jump-type

discontinuities [11].

The electromagnetic waves propagating in conductive media is modeled by the

time-harmonic Maxwell equations:

r � E D i!�H; r �H D �i!�E C �E in �; (1.1)

where � is the magnetic permeability, � is the electric permittivity, and � is the con-

ductivity. Assume that� is small. Then the first equation of (1.1) can be approximated

by r � E D 0 in �. From this, there exists a potential function u such that E D ru
provided� is simply connected. Taking the divergence of the second equation of (1.1)

and using E D ru implies

div..� � i!�/ru/ D 0 in �;

which is an elliptic equation with complex-valued coefficients. Furthermore, if the

properties of the medium .�; �/ vary sharply across an interface in �, then it is legit-

imate to consider discontinuous coefficients � � i!�.

With potential applications in mind, our goal in this paper is to derive a Carleman

estimate for the second order elliptic equations with complex-valued leading coeffi-

cients having jump-type discontinuities. Although such a Carleman estimate has been

derived in [2], we want to remark that the method used in [2, 13–15] are based on

the technique of pseudodifferential operators and hence requires C1 coefficients and

interface; while the method in [5] (and its parabolic counterpart, [7]) relies on the

Fourier transform and a version of partition of unity which requires only Lipschitz

coefficients and C 1;1 interface. Hence, the main purpose of the paper is to extend

the method in [5, 7] to second order elliptic operators with complex-valued coeffi-

cients. It is important to point out that even though second order elliptic operators
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with complex-valued coefficients can be written as a coupled second order elliptic

system with real coefficients, neither the method in [13–15] nor that in [5] can be

applied to coupled elliptic systems. Therefore, we need to work on operators with

complex-valued coefficients directly.

Our strategy to derive the Carleman estimate consists of two major steps. In the

first step, we treat second order elliptic operators with constant complex coefficients.

Based on [2], by checking the strong pseudoconvexity and the transmission condi-

tions in a neighborhood of a fixed point at the interface, we can derive a Carleman

estimate for second order elliptic operators with constant complex coefficients from

[2, Theorem 1.6]. We will pay more attention to the verification of the transmis-

sion conditions at the interface. Such transmission conditions at the interface are the

Lopatinskii-type conditions for the conjugate operator and the transmission operators

at the interface, which an extension of the Lopatinskii-type conditions corresponding

to the conjugate operator and the boundary operators [1,18]. Note that the result in [2]

is stated for quite general complex coefficients and the corresponding weight func-

tion such that the definition of the transmission condition [2, Definition 1.4] holds.

However, no explicit form of weight function is given. In this work, one of the motiv-

ations in proving such a Carleman estimate is to derive the propagation of smallness

across the interface. Having established the propagation of smallness, we can study

some interesting applied questions such as inverse problems. Therefore, we need an

explicit form of weight function and check the transmission condition for such weight

function. To ensure the transmission condition, we are led to bound the size of the ima-

ginary parts of the complex coefficients. In the second step, we extend the Carleman

estimate to the operator with non-constant complex coefficients with small imaginary

parts. This method in this step is taken from the argument in [5, Section 4]. The key

tool is a version of partition of unity.

Furthermore, in the second step, we need an interior Carleman estimate for second

order elliptic operators having Lipschitz leading coefficients and with the weight func-

tion  ". An interior Carleman estimate was proved in [8, Theorem 8.3.1], but for

operators with C 1 leading coefficients. Another interior estimate was established in

[9, Proposition 17.2.3] for operators with Lipschitz leading coefficients, but with a

different weight function. Hörmander remarked in [10, p. 703, lines 7–8] that “inspec-

tion of proof of [8, Theorem 8.3.1] shows that only Lipschitz continuity was actually

used in the proof.” But, as far as we can check, there is no formal proof of this state-

ment in literature. To make the paper self contained, we would like give a detailed

proof of interior Carleman estimate for second order elliptic operator with Lipschitz

leading coefficients and with a rather general weight function, see Proposition 4.1.

This interior Carleman estimate may be useful on other occasions. We also refer to

[12] for other related results on the interior Carleman estimates with nearly optimal

assumptions on coefficients.
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In this paper, we present a detailed and elementary derivation of the Carleman

estimate for the second order elliptic equations with complex-valued coefficients hav-

ing jump-type discontinuities following our method in [5]. Having established the

Carleman estimate, we then can apply the ideas in [6] to prove a three-region inequal-

ity and those in [4] to prove a three-ball inequality across the interface. With the help

of the three-ball inequality, we can study the size estimate problem for the complex

conductivity equation following the ideas in [3]. We will present these quantitative

uniqueness results and the application to the size estimate in the forthcoming paper.

The paper is organized as follows. In Section 2, we introduce notations that will be

used in the paper and the statement of the theorem. In Section 3, we derive a Carleman

estimate for the operator having discontinuous piecewise constant coefficients. This

Carleman estimate is a special case of [2, Theorem 1.6]. Therefore, the main task of

Section 3 is to check the transmission condition and the strong pseudoconvexity con-

dition. Finally, the main Carleman estimate is proved in Section 4. The key ingredient

is a partition of unity introduced in [5].

2. Notations and statement of the main theorem

We will state and prove the Carleman estimate for the case where the interface is

flat. Since our Carleman estimate is local near any point at the interface, for general

C 1;1 interface, it can be flatten by a suitable change of coordinates. Moreover, the

transformed coefficients away from the interface remain Lipschitz. DefineH˙ D �R
n
˙

where R
n
˙ D ¹.x0; xn/ 2 R

n�1 � Rjxn ? 0º and �R
n
˙

is the characteristic function of

R
n
˙. In places we will use equivalently the symbols @, r andD D �ir to denote the

gradient of a function and we will add the index x0 or xn to denote gradient in Rn�1

and the derivative with respect to xn respectively. We further denote @` D @=@x`,

D` D �i@`, and @�`
D @=@�`.

Let u˙ 2 C1.Rn/. We define

u D HCuC CH�u� D
X

˙

H˙u˙;

hereafter, we denote
P

˙ a˙ D aC C a�, and

L.x;D/u WD
X

˙

H˙ div.A˙.x/ru˙/; (2.1)

where

A˙.x/ D ¹a˙
j̀ .x/ºn`;jD1 D ¹a˙

j̀ .x
0; xn/ºn`;jD1; x0 2 R

n�1; xn 2 R (2.2)

is a Lipschitz symmetric matrix-valued function. Assume that

a˙
j̀ .x/ D a˙

j`.x/; for all `; j D 1; : : : ; n; (2.3)
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and furthermore

a˙
j̀ .x/ D M˙

j̀ .x/C i
N˙
j̀ .x/; (2.4)

where .M˙
j̀
/ and .N˙

j̀
/ are real-valued matrices and 
 > 0. We further assume that

there exist �0; ƒ0 > 0 such that for all � 2 Rn and x 2 Rn we have

�0j�j2 � M˙.x/� � � � ƒ0j�j2 (2.5)

and

�0j�j2 � N˙.x/� � � � ƒ0j�j2: (2.6)

In the paper, we consider Lipschitz coefficientsA˙, i.e., there exists a constantM0>0

such that

jA˙.x/ �A˙.y/j � M0jx � yj: (2.7)

To treat the transmission conditions, for all x0 2 R
n�1, we write

h0.x
0/ WD uC.x

0; 0/ � u�.x
0; 0/; (2.8)

h1.x
0/ WD AC.x

0; 0/ruC.x
0; 0/ � � � A�.x

0; 0/ru�.x
0; 0/ � �; (2.9)

where � D en.

Let us now introduce the weight function. Let ' be

'.xn/ D
´

'C.xn/ WD ˛Cxn C ˇx2n=2; xn � 0;

'�.xn/ WD ˛�xn C ˇx2n=2; xn < 0;
(2.10)

where ˛C, ˛� and ˇ are positive numbers which will be determined later. In what

follows we denote by 'C and '� the restriction of the weight function ' to Œ0;C1/

and to .�1; 0/ respectively. We use similar notation for any other weight functions.

For any " > 0 let

 ".x/ WD '.xn/ � "

2
jx0j2; (2.11)

and let

�ı.x/ WD  ı .ı
�1x/; ı > 0: (2.12)

For a function h 2 L2.Rn/, we define

Oh.� 0; xn/ D
Z

R
n�1

h.x0; xn/e
�ix0�� dx0; � 0 2 R

n�1:

As usual we denote by H 1=2.Rn�1/ the space of the functions f 2 L2.Rn�1/ satis-

fying
Z

Rn�1

j� 0jj Of .� 0/j2 d� 0 < 1;
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with the norm

kf k2
H1=2.Rn�1/

D
Z

R
n�1

.1C j� 0j2/1=2j Of .� 0/j2 d� 0: (2.13)

Moreover, we define

Œf �1=2;Rn�1 D
� Z

Rn�1

Z

Rn�1

jf .x/ � f .y/j2
jx � yjn dy dx

�1=2

;

and recall that there is a positive constant C , depending only on n, such that

C�1

Z

Rn�1

j� 0jj Of .� 0/j2 d� 0 � Œf �2
1=2;Rn�1 � C

Z

Rn�1

j� 0jj Of .� 0/j2 d� 0;

so that the norm (2.13) is equivalent to the norm kf kL2.Rn�1/ C Œf �1=2;Rn�1 . We use

the letters C; C0; C1; : : : to denote constants. The value of the constants may change

from line to line, but it is always greater than 1.

We will denote byB 0
r .x

0/ the .n� 1/-ball centered at x0 2 R
n�1 with radius r > 0.

Whenever x0 D 0 we denote B 0
r D B 0

r.0/. Likewise, we denote Br.x/ be the n-ball

centered at x 2 Rn with radius r > 0 and Br D Br.0/.

Theorem 2.1. Let u and A˙.x/ satisfy (2.1)-(2.9). There exist ˛C; ˛�; ˇ; ı0; r0; 
0

and C depending on �0; ƒ0;M0 such that if 
 < 
0, ı � ı0 and � � C , then

X

˙

2
X

kD0

�3�2k

Z

R
n
˙

jDku˙j2e2��ı;˙.x
0;xn/ dx0 dxn

C
X

˙

1
X

kD0

�3�2k

Z

R
n�1

jDku˙.x
0; 0/j2e2�ı.x

0;0/ dx0

C
X

˙

�2Œe��ı.�;0/u˙.�; 0/�21=2;Rn�1 C
X

˙

ŒD.e��ı;˙u˙/.�; 0/�21=2;Rn�1

� C

�

X

˙

Z

R
n
˙

jL.x;D/.u˙/j2e2��ı;˙.x
0;xn/ dx0 dxn

C Œe��ı.�;0/h1�
2
1=2;Rn�1 C ŒDx0.e��ıh0/.�; 0/�21=2;Rn�1

C �3
Z

Rn�1

jh0j2e2��ı.x
0;0/ dx0 C �

Z

Rn�1

jh1j2e2��ı.x
0;0/ dx0

�

: (2.14)

where u D HCuC CH�u�, u˙ 2 C1.Rn/ and supp u � B 0
ır0

� Œ�ır0; ır0�, and

�ı is given by (2.12).



Carleman estimate for complex second order elliptic operators 541

Remark 2.2. Estimate (2.14) is a local Carleman estimate near xn D 0. As mentioned

above, by flattening the interface, we can derive a local Carleman estimate near a

C 1;1 interface from (2.14). Nonetheless, an estimate like (2.14) is sufficient for some

applications such as the inverse problem of estimating the size of an inclusion by one

pair of boundary measurement (see, for example, [6]).

3. Carleman estimate for operators with constant coefficients

The purpose of this section is to derive (2.14) for L.x;D/ with discontinuous piece-

wise constant coefficients. More precisely, we derive (2.14) for L0.D/, where L0.D/

is obtained from L.x;D/ by freezing the variable x at .x0
0; 0/. Without loss of gener-

ality, we take .x0
0; 0/ D .0; 0/ D 0 and thus

L0.D/u D L.0;D/u D
X

˙

H˙ div.A˙.0/ru˙/:

Since L0 has piecewise constant coefficients, to prove (2.14), we will apply [2, The-

orem 1.6]. So, the task here is to verify the strong pseudoconvexity and transmission

conditions for operator L0 with the weight function given in (2.11).

To streamline the presentation, we define �1 WD ¹xn < 0º; �2 WD ¹xn > 0º. On

each side of the interface, we have complex second order elliptic operators. We denote

Pk D
X

1�j;`�n

a
.k/

j̀
D`Dj ; k D 1; 2;

where a
.1/

j̀
D a�

j̀
and a

.2/

j̀
D aC

j̀
. Here we denote a

.k/

j̀
D a

.k/

j̀
.0/. The principal symbol

of Pk is denoted by

pk.�/ D
X

1�j;`�n

a
.k/

j̀
�`�j :

Corresponding to (2.3)–(2.6), we have

a
.k/

j̀
D a

.k/

j`
; (3.1)

a
.k/

j̀
D M

.k/

j̀
C i
N

.k/

j̀
; (3.2)

�0j�j2 � M .k/� � � � ƒ0j�j2; (3.3)

�0j�j2 � N .k/� � � � ƒ0j�j2: (3.4)

Since some computations in the verification of the transmission conditions are useful

in proving the strong pseudoconvexity condition, we will begin with the discussion of

the transmission conditions at the interface ¹xn D 0º.
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3.1. Transmission conditions

We consider the natural transmission conditions that use the interface operators

T 1k D .�1/k; T 2k D .�1/k
X

1�j�n

a
.k/
nj Dj

that correspond to the continuity of the solution and of the normal flux, respectively.

We now write the weight function

 ".x/ D '.xn/ � "

2
jx0j2; (3.5)

where

'.xn/ D
´

'1.xn/; xn < 0;

'2.xn/; xn � 0;

and

'k.xn/ D ˛kxn C 1

2
ˇx2n

with ˛1; ˛2 > 0 (corresponding to ˛� and ˛C in (2.10), respectively) and ˇ > 0.

Notice that ' is smooth in �1; �2 and is continuous across the interface. Then we

have

r ".0/ D
´

.0; : : : ; 0; ˛1/; xn < 0

.0; : : : ; 0; ˛2/; xn � 0:

As mentioned in the introduction, the transmission conditions considered here are

Lopatinkii-type conditions at the interface associated with the conjugate operators

e� "Pk.e
�� " �/ and the interface operators T 1

k
, T 2
k

. Roughly speaking, these condi-

tions guarantee the coercivity of the system ¹e� "Pk.e
�� " �/;T 1

k
; T 2
k

º. Before stating

the formal definition of the transmission conditions [2, Definition 1.4], we will fol-

low the notations and the calculations used in [2, Section 1.7.1]. Let us first denote

! WD .0; � 0; �; �/ with � 0 D .�1; : : : ; �n�1/ ¤ 0; � D en and � 2 C,

Qt1k; "
.!; �/ D .�1/k

and

Qt2k; "
.!; �/ D .�1/ka.k/nn ..�1/k�C i�@xn

 ".0//

C .�1/k
X

1�j�n�1

a
.k/
nj .�j C i�@xj

 ".0//

D .�1/ka.k/nn ..�1/k�C i�˛k/C .�1/k
X

1�j�n�1

a
.k/
nj �j :
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The principal symbols of Pk , k D 1; 2, can be written as

pk.�/ D a.k/nn

��

�n C
X

1�j�n�1

a
.k/
nj

a
.k/
nn

�j

�2

C bk.�
0/

�

; (3.6)

where

bk.�
0/ D .a.k/nn /

�2
X

1�`;j�n�1

.a
.k/

j̀
a.k/nn � a

.k/

n`
a
.k/
nj /�`�j : (3.7)

We also need to introduce the principal symbol of the conjugate operators

Qpk; "
.!; �/ D a.k/nn

h

�

.�1/k�C i�@xn
 ".0/C

X

1�j�n�1

a
.k/
nj

a
.k/
nn

.�j C i�@xj
 ".0//

�2

C bk.�
0 C i�@x0 ".0//

i

D a.k/nn

h�

.�1/k�C i�˛k C
X

1�j�n�1

a
.k/
nj

a
.k/
nn

�j

�2

C bk.�
0/

i

: (3.8)

Let us introduce A.k/; B.k/ 2 R for k D 1; 2 such that

bk.�
0/ D .a.k/nn /

�2
X

1�`;j�n�1

.a
.k/

j̀
a.k/nn � a

.k/

n`
a
.k/
nj /�`�j D .A.k/ � iB.k//2; (3.9)

where A.k/ � 0. We also denote

X

1�j�n�1

a
.k/
nj

a
.k/
nn

�j D E.k/ C iF .k/; (3.10)

where E.k/; F .k/ 2 R. Using (3.8), (3.9), and (3.10), we can write

Qp2; "
D a.2/nn Œ.�C i�˛2 C E.2/ C iF .2//2 C .A.2/ � iB.2//2�

D a.2/nn Œ.�C i�˛2 C E.2/ C iF .2/ C i.A.2/ � iB.2///

� .�C i�˛2 C E.2/ C iF .2/ � i.A.2/ � iB.2///�
D a.2/nn.�� �

.2/
1 /.�� �

.2/
2 /;

where

�
.2/
1 D �E.2/ � B.2/ � i.�˛2 C F .2/ C A.2//;

�
.2/
2 D �E.2/ C B.2/ � i.�˛2 C F .2/ � A.2//:
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On the other hand, we can write

Qp1; "
D a.1/nn Œ.��C i�˛1 CE.1/ C iF .1//2 C .A.1/ � iB.1//2�

D a.1/nn Œ.�� i�˛1 �E.1/ � iF .1/ C i.A.1/ � iB.1///

� .�� i�˛1 �E.1/ � iF .1/ � i.A.1/ � iB.1///�

D a.1/nn.� � � .1/1 /.�� �
.1/
2 /;

where

�
.1/
1 D E.1/ C B.1/ C i.�˛1 C F .1/ C A.1//;

�
.1/
2 D E.1/ � B.1/ C i.�˛1 C F .1/ �A.1//:

Let us introduce the polynomial

Kk; "
.!; �/ WD

Y

Im�
.k/

j
�0

.�� � .k/j /:

Now, we state the definition of transmission conditions given in [2, Definition 1.4].

Definition 3.1. The pair ¹Pk;  "; T jk ; k D 1; 2; j D 1; 2º satisfies the transmis-

sion conditions at ! if for any polynomials q1.�/; q2.�/, there exist polynomials

U1.�/; U2.�/ and constant c1; c2 such that

´

q1.�/ D c1 Qt11; "
.!; �/C c2 Qt21; "

.!; �/C U1.�/K1; "
.!; �/;

q2.�/ D c1 Qt12; "
.!; �/C c2 Qt22; "

.!; �/C U2.�/K2; "
.!; �/:

In this section, we will show that if we choose ˛1; ˛2 appropriately and restrict

the size of the imaginary parts of the complex coefficients, the transmission conditions

described in Definition 3.1 are satisfied.

Theorem 3.1. Assume that a
.k/

j̀
have properties (3.1)–(3.4). Moreover, the number 


in (3.2) satisfies 
 < 
0, where 
0 is explicitly given by


0 D
p
2�50

ƒ30

q

n�40 C n2ƒ40

: (3.11)

Let  " be given by (3.5) with ˛1; ˛2 satisfying (3.25). Then ¹Pk ;  "; T jk ; : D 1; 2;

j D 1; 2º satisfies the transmission conditions at 0.

Before going through the lengthy computation of checking the transmission con-

ditions, we give an overview of what we have to do. In order to check the transmission

conditions, we need to study the polynomialKk; "
.!; �/. More precisely, being able

to satisfy the conditions depends on the degree of K1; "
and K2; "

, that is, on the
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number of roots with negative imaginary parts. For this reason, we need to determine

the signs of the imaginary parts of the roots �
.k/
j defined above. Under the ellipticity

assumptions (3.3) and (3.4), we can show that Im�
.2/
1 < 0 and Im �

.1/
1 > 0. Thus, we

only need to treat three cases:

8

ˆ

ˆ

<

ˆ

ˆ

:

Case 1. K2; "
D 1; degK1; "

D 1 or 2;

Case 2. degK1; "
D 2; degK2; "

D 1;

Case 3. degK1; "
D 1; degK2; "

D 1;

(3.12)

where degKk; "
denotes the degree of Kk; "

. For Case 1, it is not hard to show that

the transmission conditions hold. In the second case, the ratio ˛2=˛1 (see (3.25))

will come into play. Case 3 is the most complicate one. It turns out satisfying a

non-degenerate condition (see (3.28)) will lead to the transmission conditions. This

non-degenerate condition holds trivially when coefficients of the equation are real. In

view of continuity, one can expect that the non-degenerate condition still holds true if

the imaginary parts of the coefficients are not too large. From the viewpoint of applic-

ations, restricting the size of imaginary parts is reasonable. For instance, the portion

of electric currents in the biological tissues due to cell membranes is small. In other

words, the conductivities of biological tissue have small imaginary parts.

We now prepare to prove Theorem 3.1. We begin with some preliminary compu-

tations about the signs of the imaginary parts of �
.k/
j . Note that we can write

bk.�
0/ D 1

a
.k/
nn

X

1�`;j�n�1

a
.k/

j̀
�`�j � .E.k/ C iF .k//2: (3.13)

Since bk plays an essential role, we begin by working some calculations on the matrix
1

a
.k/
nn

A
.k/, where A

.k/ is the matrix .a
.k/

j̀
/. Let a

.k/
nn D ja.k/nn jei� . Choosing � D en, we

have that

a.k/nn D
X

1�`;j�n

a
.k/

j̀
�`�j D

X

1�`;j�n

M
.k/

j̀
�`�j C i


X

1�`;j�n

N
.k/

j̀
�`�j :

Hence, from (3.3) and (3.4), we have that

�0 � Re.a.k/nn / � ƒ0 and �0 � Im.a
.k/
nn /



� ƒ0

and so that � 2 Œ0; �=2/. Let us evaluate

.a.k/nn /
�1

A
.k/ D ja.k/nn j�1.M .k/ C i
N .k//.cos� � i sin �/

D ja.k/nn j�1Œcos �M .k/ C 
 sin �N .k/

C i.� sin �M .k/ C 
 cos �N .k//�: (3.14)
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Using (3.3) and (3.4) again, we see that for � 2 R
n

Re..a.k/nn /
�1

A
.k/� � �/ D ja.k/nn j�1Œcos �M .k/� � � C 
 sin �N .k/� � ��

� ja.k/nn j�1�0.cos � C 
 sin �/j�j2: (3.15)

In fact, since cos � D M
.k/
nn ja.k/nn j�1 and sin � D 
N

.k/
nn ja.k/nn j�1, while

ja.k/nn j2 D .M .k/
nn /

2 C 
2.N .k/
nn /

2;

we have

ja.k/nn j�1.cos � C 
 sin �/ D M
.k/
nn C 
2N

.k/
nn

.M
.k/
nn /2 C 
2.N

.k/
nn /2

� �0.1C 
2/

ƒ20.1C 
2/
D �0

ƒ20
: (3.16)

Combining (3.15) and (3.16) implies

Re..a.k/nn /
�1

A
.k/� � �/ � �20

ƒ20
j�j2 WD Q�1j�j2: (3.17)

Now, let us write

Q�1j�j2 � Re..a.k/nn /
�1

A
.k/� � �/

D Re
h

X

1�`;j�n�1

a
.k/

j̀

a
.k/
nn

�`�j C 2
X

1�j�n�1

a
.k/
nj

a
.k/
nn

�n�j C �2n

i

D �2n C 2b
.k/
0 .� 0/�n C b

.k/
1 .� 0/; (3.18)

where

b
.k/
0 .� 0/ D Re

�

X

1�j�n�1

a
.k/
nj

a
.k/
nn

�j

�

D Re.E.k/ C iF .k// D E.k/

and

b
.k/
1 .� 0/ D Re

�

X

1�`;j�n�1

a
.k/

j̀

a
.k/
nn

�`�j

�

:

Substituting Q�n D �n D �b.k/0 .� 0/ into (3.18) gives

Q�1.j� 0j2 C jQ�nj2/ � Q�2n � 2b.k/0 .� 0/ Q�n C b
.k/
1 .� 0/ D �.b.k/0 .� 0/2 C b

.k/
1 .� 0/;

which implies

Q�1j� 0j2 � Re
�

X

1�`;j�n�1

a
.k/

j̀

a
.k/
nn

�`�j

�

� E2k : (3.19)
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Putting (3.13) and (3.19) together gives

Re.bk.x0; �
0// D Re

�

X

1�`;j�n�1

a
.k/

j̀

a
.k/
nn

�`�j

�

� .E.k//2 C .F .k//2

� Q�1j� 0j2 C .F .k//2 > 0: (3.20)

The following lemma guarantees the positivity of A.k/.

Lemma 3.2. Assume that (3.3) and (3.4) hold. Then

A.k/ �
q

Q�1j� 0j2 C jF .k/j2 > jF .k/j: (3.21)

Proof. From (3.9), it is easy to see that

A.k/ D Re
p

bk D
s

aC p
a2 C b2

2
;

where a D Re bk and b D Im bk . We have from (3.20) that a > 0 and thus

A.k/ � p
a �

q

Q�1j� 0j2 C .F .k//2 > jF .k/j:

Lemma 3.2 implies

Im �
.2/
1 D �.�˛2 C F .2/ C A.2// D ��˛2 � F .2/ � A.2/

� ��˛2 � jF .2/j � F .2/ � ��˛2 < 0 (3.22)

and

Im �
.1/
1 D �˛1 C F .1/ C A.1/ > �˛1 C F .1/ C jF .1/j � �˛1 > 0: (3.23)

In view of (3.22) and (3.23), to verify the transmission conditions, it suffices to con-

sider three cases listed in (3.12).

Proof of Theorem 3.1. We discuss three cases separately.

Case 1. Qp2; "
has two roots in ¹Im z < 0º, i.e., ��˛2 � F .2/ C A.2/ < 0 in view

of (3.22). In this case, we have that

K2; "
D 1; while K1; "

has degree 1 or 2 (note (3.23)).

Since Qt12; "
.!; �/ D 1 and

Qt22; "
.!; �/ D a.2/nn

�

�C i�˛2 C
X

1�j�n�1

a
.2/
nj

a
.2/
nn

�j

�

;
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for any q2.�/, we simply choose

U2.�/ D q2.�/ � c1 Qt12; "
� c2 Qt22; "

:

On the other hand, we have Qt11; "
.!; �/ D �1 and

Qt21; "
.!; �/ D a.1/nn .�� i�˛1 �

X

1�j�n�1

a
.1/
nj

a
.1/
nn

�j /:

Then, for any polynomial q1.�/, we choose U1.�/ to be the quotient of the division

between q1 andK1; "
. The remainder term is equal to c1 Qt1; "

C c2 Qt2; "
with suitable

c1, c2.

Case 2. Assume that Im �
.2/
2 � 0 and Im �

.1/
2 � 0, i.e.,

��˛2 � F .2/ C A.2/ � 0; �˛1 C F .1/ �A.1/ � 0:

ThenK1; "
has degree 2 andK2; "

has degree 1. In order to avoid this case, we need

to be sure that if ��˛2 � F .2/ C A.2/ � 0, then �˛1 C F .1/ � A.1/ < 0, that is,

�˛2 C F .2/ � A.2/ � 0 H) �˛1 C F .1/ � A.1/ < 0:

This can be achieved by assuming that

˛2

˛1
>
A.2/ � F .2/

A.1/ � F .1/
; for all � 0 ¤ 0: (3.24)

Recall that A.k/ � F .k/ > 0, k D 1; 2. We remark that all A.k/ and F .k/ are homo-

geneous of degree 1 in � 0. Hence, (3.24) holds provided

˛2

˛1
D max

j�0jD1

°A.2/ � F .2/

A.1/ � F .1/

±

C 1: (3.25)

Hence, if we assume (3.25), then the transmission conditions are satisfied.

Case 3. Each symbol has exactly one root in ¹Im z < 0º, i.e.,

�˛1 C F .1/ � A.1/ < 0; ��˛2 � F .2/ C A.2/ > 0:

In this case, we have

K1; "
D .�� �

.1/
1 /; K2; "

D .�� �
.2/
2 /:

Given polynomials q1.�/; q2.�/, there exist U1.�/; U2.�/ such that

q1.�/ D U1.�/K1; "
C Qq1;

q2.�/ D U2.�/K2; "
C Qq2;
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where Qq1; Qq2 are constants in �. The transmission conditions are satisfied if there exists

constants �1; �2; c1; c2 so that

´

Qq1 D �1K1; "
C c1 Qt11; "

C c2 Qt21; "
;

Qq2 D �2K2; "
C c1 Qt12; "

C c2 Qt22; "
;

namely,

´

Qq1 D �1.�� � .1/1 / � c1 C c2a
.1/
nn.�� i�˛1 �E.1/ � iF .1//;

Qq2 D �2.�� � .2/2 /C c1 C c2a
.2/
nn .�C i�˛2 C E.2/ C iF .2//:

(3.26)

System (3.26) is equivalent to

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

�1 C c2a
.1/
nn D 0;

�2 C c2a
.2/
nn D 0;

�1�
.1/
1 C c1 C c2a

.1/
nn .i�˛1 C E.1/ C iF .1// D �Qq1;

��2� .2/2 C c1 C c2a
.2/
nn .i�˛2 C E.2/ C iF .2// D Qq2:

(3.27)

System (3.27) has a unique solution if and only if the matrix

T D

0

B

B

B

@

1 0 0 a
.1/
nn

0 1 0 a
.2/
nn

�
.1/
1 0 1 �1

0 �� .2/2 1 �2

1

C

C

C

A

with �1 D a
.1/
nn.i�˛1 CE.1/ C iF .1//, �2 D a

.2/
nn .i�˛2 CE.2/ C iF .2//, is nonsingu-

lar. We compute

detT D det

0

B

@

1 0 a
.1/
nn

0 1 a
.2/
nn

0 �� .2/2 �2

1

C

A
� det

0

B

@

1 0 a
.1/
nn

0 1 a
.2/
nn

�
.1/
1 0 �1

1

C

A

D �2 C �
.2/
2 a.2/nn � �1 C �

.1/
1 a.1/nn

D a.2/nn.i�˛2 CE.2/ C iF .2/ �E.2/ C B.2/ � i�˛2 � iF .2/ C iA.2//

C a.1/nn .�i�˛1 �E.1/ � iF .1/ CE.1/ C B.1/ C i�˛1 C iF .1/ C iA.1//

D a.2/nn.B
.2/ C iA.2//C a.1/nn.B

.1/ C iA.1//:

Therefore, if

a.2/nn .B
.2/ C iA.2//C a.1/nn .B

.1/ C iA.1// ¤ 0; (3.28)

then the transmission conditions hold.
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We now verify (3.28). In the real case where a
.2/
nn ; a

.1/
nn are positive real numbers,

it is easy to see that

a.2/nnA
.2/ C a.1/nnA

.1/ > 0

and thus (3.28) holds.

For the complex case, we want to show that there exists 
0 > 0 such that if 
 < 
0,

then (3.28) is satisfied. Let uk D A.k/ C iB.k/ and vk D iuk D �B.k/ C iA.k/.

We will consider uk and vk as vectors in R2, i.e., uk D .A.k/; B.k//, vk D u?
k

D
.�B.k/; A.k//. Let a

.k/
nn D �.k/ C i
ı.k/ for �.k/; ı.k/ 2 R. By the ellipticity condi-

tions (3.3) and (3.4), we have

�0 � �.k/ � ƒ0; �0 � ı.k/ � ƒ0:

Notice that detT D 0 if and only if

.�.2/ C i
ı.2//.B.2/ C iA.2//C .�.1/ C i
ı.1//.B.1/ C iA.1// D 0;

i.e.,

.�.2/B.2/ � 
ı.2/A.2/ C �.1/B.1/ � 
ı.1/A.1//

C i.�.2/A.2/ C 
ı.2/B.2/ C �.1/A.1/ C 
ı.1/B.1// D 0;

which is equivalent to

�.2/
�

A.2/

B.2/

�

C �.1/
�

A.1/

B.1/

�

D 
ı.2/
��B.2/
A.2/

�

C 
ı.1/
��B.1/
A.1/

�

(3.29)

or simply

�.2/u2 C �.1/u1 D 
ı.2/v2 C 
ı.1/v1: (3.30)

Recall that A.k/ � jF .k/j > 0. Therefore, in the real case 
ı.k/ D 0, then (3.29)

will never be satisfied. If B.1/ and B.2/ have the same sign, that is, either B.k/ � 0

or B.k/ � 0 for k D 1; 2, (3.30) can not hold. To see this, let us consider B.k/ � 0,

k D 1;2. Then u1; u2 are in the first quadrant of the plane and v1; v2 are in the second

quadrant of the plane. The sets

Cu D ¹�.2/u2 C �.1/u1W �.k/ � 0º; Cu D ¹
ı.2/v2 C 
ı.1/v1W 
ı.k/ � 0º

can only intersect at the original. Same thing happens if B.k/ � 0 for k D 1; 2.

The only case we need to investigate is when B.1/ and B.2/ have different signs.

For example, let us assume

B.1/ > 0; B.2/ < 0:
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Even in this case, the intersection between Cu and Cv is non-trivial if the angle �

between u1 and u2 is less than �=2. Note that u1 is the first quadrant and u2 is in

the fourth quadrant. So, the angle between u1 and u2 is less than � . We would like to

show that (3.30) cannot hold for � 2 Œ�=2; �/ if we choose 
0 small enough.

Note that in this case cos � � 0. To do so, we estimate k�.2/u2 C �.1/u1k from

below and kı.2/v2 C ı.1/v1k from above. We now discuss the estimate of kı.2/v2 C
ı.1/v1k from above. Compute

kı.2/v2 C ı.1/v1k2
D .ı.2//2Œ.A.2//2 C .B.2//2�C .ı.1//2Œ.A.1//2 C .B.1//2�

C 2ı.1/ı.2/.�B.2/; A.2// � .�B.1/; A.1//
D .ı.2//2Œ.A.2//2 C .B.2//2�C .ı.1//2Œ.A.1//2 C .B.1//2�

C 2ı.1/ı.2/Œ.A.2//2 C .B.2//2�1=2Œ.A.1//2 C .B.1//2�1=2 cos�

� .ı.2//2Œ.A.2//2 C .B.2//2�C .ı.1//2Œ.A.1//2 C .B.1//2�: (3.31)

In view of (3.9) and (3.13), we have

.A.k//2 C .B.k//2 D jbkj D
ˇ

ˇ

ˇ

X

1�`;j�n�1

a
.k/

j̀

a
.k/
nn

�`�j � .E.k/ C iF .k//2
ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇ

X

1�`;j�n�1

a
.k/

j̀

a
.k/
nn

�`�j j C j.E.k/ C iF .k//2
ˇ

ˇ

ˇ: (3.32)

By (3.3), (3.4), and (3.14), we obtain

ˇ

ˇ

ˇ

X

1�`;j�n�1

a
.k/

j̀

a
.k/
nn

�`�j

ˇ

ˇ

ˇ

2

D
ˇ

ˇ

ˇ

1

a
.k/
nn

A
.k/� � �

ˇ

ˇ

ˇ

2

(with � D .� 0; 0/)

D ja.k/nn j�2j cos �M .k/� � � C 
 sin �N .k/� � �
C i.� sin �M .k/� � � C 
 cos �N .k/� � �/j2

D ja.k/nn j�2Œ.M .k/� � �/2 C 
2.N .k/� � �/2�

� ƒ2.1C 
2/j�j4
�20.1C 
2/

D Q��1
1 j�j4;

where we have used the estimate

�0.1C 
2/1=2 � ja.k/nn j � ƒ0.1C 
2/1=2 (3.33)

in deriving the inequality above. We thus obtain

ˇ

ˇ

ˇ

X

1�`;j�n�1

a
.k/

j̀

a
.k/
nn

�`�j

ˇ

ˇ

ˇ
� Q��1=2

1 j� 0j2: (3.34)
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Furthermore, we can estimate

j.E.k/ C iF .k//2j D
ˇ

ˇ

ˇ

�

X

1�j�n�1

a
.k/
nj

a
.k/
nn

�j

�2ˇ
ˇ

ˇ D
ˇ

ˇ

ˇ

X

1�j�n�1

a
.k/
nj

a
.k/
nn

�j

ˇ

ˇ

ˇ

2

�
�

X

1�j�n�1

ˇ

ˇ

ˇ

a
.k/
nj

a
.k/
nn

ˇ

ˇ

ˇ

2�

j� 0j2 � .n� 1/ƒ20.1C 
2/

�20.1C 
2/
j� 0j2

D .n � 1/ Q��1
1 j� 0j2: (3.35)

Substituting (3.34) and (3.35) into (3.32) gives

.A.k//2 C .B.k//2 � . Q��1=2
1 C .n� 1/ Q��1

1 /j� 0j2 � n
ƒ20
�20

j� 0j2: (3.36)

It follows from (3.31) and (3.36) that

kı.2/v2 C ı.1/v1k2 � 2ƒ20n
ƒ20
�20

j� 0j2: (3.37)

Next, we want to estimate k�.2/u2 C �.1/u1k from below. As above, we have

k�.2/u2 C �.1/u1k2
D .�.2//2Œ.A.2//2 C .B.2//2�C .�.1//2Œ.A.1//2 C .B.1//2�

C 2�.1/�.2/Œ.A.2//2 C .B.2//2�1=2Œ.A.1//2 C .B.1//2�1=2 cos�: (3.38)

Recall that B1 > 0, B2 < 0. Thus,

cos� D A.1/A.2/ C B.1/B.2/

Œ.A.2//2 C .B.2//2�1=2Œ.A.1//2 C .B.1//2�1=2

D A.1/A.2/ � jB.1/jjB.2/j
Œ.A.2//2 C .B.2//2�1=2Œ.A.1//2 C .B.1//2�1=2

D 1 � jB.1/j

A.1/

jB.2/j

A.2/

.1C .B
.2/

A.2/ /
2/1=2.1C .B

.1/

A.1/ /
2/1=2

:

Notice that by (3.21) and (3.37)

0 � jB.k/j
A.k/

�
p

.A.k//2 C .B.k//2

A.k/
�

p
nƒ0

�0
j� 0j

q

Q�1j� 0j
D

p
nƒ20
�20

WD Q�2 � 1:

It is readily seen that the function

f .x; y/ D 1 � xyp
1C x2

p

1C y2
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defined on .x; y/ 2 Œ0; Q�2� � Œ0; Q�2� attains its minimum at x D y D Q�2. Hence, we

have

cos� � 1 � Q�22
1C Q�22

D �1C 2

1C Q�22
:

Now, (3.38) gives

k�.2/u2 C �.1/u1k2
� .�.2//2Œ.A.2//2 C .B.2//2�C .�.1//2Œ.A.1//2 C .B.1//2�

C 2�.1/�.2/Œ.A.2//2 C .B.2//2�1=2Œ.A.1//2 C .B.1//2�1=2
�

�1C 2

1C Q�22

�

D �

.�.2//2Œ.A.2//2 C .B.2//2�1=2 � .�.1//2Œ.A.1//2 C .B.1//2�1=2
�2

C 4

1C Q�22
�.1/�.2/Œ.A.2//2 C .B.2//2�1=2Œ.A.1//2 C .B.1//2�1=2

� 4

1C Q�22
A.1/A.2/�20 � 4

1C Q�22
Q�1j� 0j2�20 D 4

1C Q�22
�40
ƒ20

j� 0j2: (3.39)

Hence, in view of (3.37), (3.39), if we choose 
0 given in (3.11), i.e.,


0 D
p
2�50

ƒ30

q

n�40 C n2ƒ40

;

then for 
 < 
0 we have

k�.2/u2 C �.1/u1k2 > 
2kı.2/v2 C ı.1/v1k2:
In other words, (3.30) cannot hold (i.e., detT ¤ 0), and equivalently, (3.28) is satisfied.

The proof of Theorem 3.1 is now completed.

3.2. Strong pseudoconvexity

Here we want to check the strong pseudoconvexity condition for the operator L0 and

the weight function  ".x/ in Bı 0 \ �1 and Bı 0 \ �2 for some small ı0 > 0. Even

though L0 is represented by Pk in �k , k D 1; 2, it is not necessary to discuss the

strong pseudoconvexity condition for P1 and P2 separately. We suppress the index k

in notations and denote the symbol

p.�/ D
X

1�j;`�n

a j̀ �`�j

with a j̀ D M j̀ C i
N j̀ and consider the weight function

 ".x/ D ˛xn C ˇ

2
x2n � "

2
jx0j2:
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In view of the definition of  ".x/ in (2.10), ˛ here represents either ˛2 D ˛C or

˛1 D ˛�. Hence, we have that

.@j ".x//
n
jD1 D r ".x/ D .�"x0; ˛ C ˇxn/

and

.@2j̀ ".x//
n
`;jD1 D r2 ".x/ D

��"In�1 0

0 ˇ

�

: (3.40)

The strong pseudoconvexity condition reads that in Bı 0 , if

´

p.� C i�r ".x// D 0;

.�; �/ ¤ 0; r ".x/ ¤ 0; x 2 Bı 0 ;

then

Q.x; �; �/ WD
n

X

`;jD1

@2j̀ ".x/@�jp.� C i�r ".x//@�`
p.� C i�r ".x//

C 1

�
Im

n
X

jD1

@jp.� C i�r ".x//@�jp.� C i�r ".x//

D
n

X

`;jD1

@2j̀ ".x/@�jp.� C i�r ".x//@�`
p.� C i�r ".x// > 0 (3.41)

(see [8, (8.3.2)]).

We now write

p.� C i�r "/
D

X

1�`;j�n

a j̀ .�` C i�@` "/.�` C i�@` "/

D
X

1�`;j�n

a j̀ �`�j C 2i
X

1�`;j�n

a j̀ �l .�@j "/ �
X

1�`;j�n

a j̀ .�@` "/.�@j "/:

Hence, p.� C i�r "/ D 0 implies

X

1�`;j�n

a j̀ .�@` "/.�@j "/ D
X

1�`;j�n

a j̀ �`�j C 2i
X

1�`;j�n

a j̀ �l.�@j "/ (3.42)

By (3.2)–(3.4), we have

ˇ

ˇ

ˇ

X

1�`;j�n

a j̀ .�@` "/.�@j "/
ˇ

ˇ

ˇ �
p

1C 
2ƒ0j�r "j2:
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From this estimate, we obtain from (3.42) that

p

1C 
2ƒ0j�r "j2

�
ˇ

ˇ

ˇ

X

1�`;j�n

a j̀ �`�j C 2i
X

1�`;j�n

a j̀ �l .�@j "/
ˇ

ˇ

ˇ

�
p

1C 
2�0j�j2 � 2
p

1C 
2ƒ0j�jj�r "j

�
p

1C 
2�0j�j2 �
p

1C 
2�0

2
j�j2 � 2

p

1C 
2ƒ20
�0

j�r "j2; (3.43)

which leads to
�0

2
j�j2 �

�

ƒ0 C 2ƒ20
�0

�

j�r "j2: (3.44)

By (3.44) and exchanging the roles of � and �r " in (3.43), we thus conclude that

there exist positive constants C1; C2, depending on �0; ƒ0 such that

C1j�j � j�r "j � C2j�j (3.45)

whenever p.� C i�r "/ D 0.

As in (3.6) and (3.7), we can write

p.�/ D ann

h�

�n C
X

1�j�n�1

anj

ann
�j

�2

C b.� 0/
i

;

where

b.� 0/ D 1

a2nn

X

1�`;j�n�1

.a j̀ann � an`anj /�`�j :

Similar to (3.9) and (3.10), we further express

b.� 0/ D .A.� 0/ � iB.� 0//2; (3.46)

with A.� 0/ � 0 and
X

1�j�n�1

anj

ann
�j D E.� 0/C iF.� 0/; (3.47)

where E.� 0/; F.� 0/ 2 R.

To verify that (3.41) for x near 0, we first derive an estimate of Q.0; �; �/. At

x D 0, we have @j ".0/ D 0, 1 � j � n � 1 and @n ".0/ D ˛, i.e.,

� C i�r ".0/ D .� 0; �n C i�˛/:

Thus, we can rewrite

p.� C i�r ".0// D p.� C i�˛en/ D ann.�n � �1/.�n � �2/; (3.48)
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where
´

�1 D �E � B � i.�˛C F C A/;

�2 D �E C B � i.�˛C F � A/:
(3.49)

From now on, we suppress the dependence of coefficients at 0 if there is no danger of

causing confusion.

By (3.40), we have that

Q.0; �; �/ D �"
X

1�j�n�1

j@�jp.� C i�˛en/j2 C ˇj@�n
p.� C i�˛en/j2;

where for 1 � j � n � 1

@�jp.� C i�˛en/ D 2
X

1�`�n�1

a j̀ �` C anj .�n C i�˛/

and

@�n
p.� C i�˛en/ D 2

X

1�`�n�1

a`n�` C ann.�n C i�˛/:

Therefore, we can write

Q.0; �; �/ D � 4"
X

1�j�n�1

ˇ

ˇ

ˇ

X

1�`�n�1

a j̀ �` C anj .�n C i�˛/
ˇ

ˇ

ˇ

2

C 4ˇ
ˇ

ˇ

ˇ

X

1�`�n�1

a`n�` C ann.�n C i�˛/
ˇ

ˇ

ˇ

2

: (3.50)

It follows from (3.48) and (3.49) that p.� C i�˛en/ D 0 if and only if

�n C i�˛ D �E � B � i.F C A/ (3.51)

or

�n C i�˛ D �E C B � i.F � A/: (3.52)

Therefore, if p.� C i�˛en/ D 0, then the second term in (3.50) can be further simpli-

fied as

ˇ

ˇ

ˇ

X

1�`�n�1

a`n�` C ann.�n C i�˛/
ˇ

ˇ

ˇ

2

D jannj2
ˇ

ˇ

ˇ

X

1�`�n�1

a`n

ann
�` C .�n C i�˛/

ˇ

ˇ

ˇ

2

D jannj2jE C iF C .�n C i�˛/j2 D jannj2.A2 C B2/; (3.53)

where we have used (3.47), (3.51) or (3.52). Combining (3.46), (3.47), (3.51) or (3.52),

we have that

j�n C i�˛j � jEj C jBj C jF j C jAj � Cƒ0j� 0j; (3.54)
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which implies

X

1�j�n�1

ˇ

ˇ

ˇ

X

1�`�n�1

a j̀ �` C anj .�n C i�˛/
ˇ

ˇ

ˇ

2

� Cƒ20j� 0j2: (3.55)

Putting (3.50), (3.53), and (3.55) together gives

Q.0; �; �/ � 4ˇjannj2.A2 C B2/ � 4"Cƒ0j� 0j2: (3.56)

Recall the estimate (3.21) in Lemma 3.2

A2 � Q�1j� 0j2 C jF j2 � Q�1j� 0j2:

Using this estimate in (3.56) and choosing " sufficiently small leads to

Q.0; �; �/ � 4.ˇ Q�1�20 � "Cƒ0/j� 0j2 � 2ˇ Q�1�20j� 0j2;

whenever p.� C i�˛en/ D 0. Furthermore, (3.54) implies

j� C i�˛enj2 � .1C C 2ƒ20/j� 0j2;

and it follows that if p.� C i�˛en/ D 0 then

Q.0; �; �/ � Cˇj� C i�˛enj2: (3.57)

In conclusion, we have shown that

.�; �/ 2 ¹.�; �/ 2 S Wp.� C i�˛en/ D 0º H) Q.0; �; �/ > 0; (3.58)

where S WD ¹.�; �/ 2 RnC1W j�j2 C �2 D 1º.

Now, we recall the following elementary theorem. Let X be a compact subset of

R
N and F;GWX ! R be two continuous functions, then the following two statements

are equivalent:

i. F.x/ D 0 for all x 2 X H) G.x/ > 0;

ii. there exist positive constants C1; C2 such that C1G.x/C jF.x/j � C2, for

all x 2 X .

With the help of this theorem, (3.58) is equivalent to

C1Q.0; �; �/C jp.� C i�˛en/j � C2 (3.59)

for all .�; �/ 2 S . Thanks to (3.59), we can estimate

C1Q.x; �; �/C jp.� C i�r ".x//j
D C1Q.0; �; �/C jp.� C i�˛en/j CR.x; �; �/ � C2 CR.x; �; �/;
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where

R.x; �; �/ D C1ŒQ.x; �; �/�Q.0; �; �/�C jp.� C i�r ".x//j � jp.� C i�˛en/j:

Observe that R.0; �; �/ D 0 for .�; �/ 2 S . Since R is continuous, there exists a small

number ı0 > 0 such that

jR.x; �; �/j � C2

2

for all x with jxj � ı0 < ˛
2ˇ

and .�; �/ 2 S . In other words, we have that

C1Q.x; �; �/C jp.� C i�r ".x//j � C2

2
(3.60)

in ¹jxj � ı0º � S . By the elementary theorem stated above, (3.60) is equivalent to

p.� C i�r ".x// D 0; for all x 2 Bı 0 ; :�; �/ 2 S
H) Q.x; �; �/ > 0; for all x 2 Bı 0 ; :�; �/ 2 S;

which immediately implies the strong pseudoconvexity condition near 0 in view of

the homogeneity of p and Q in .�; �/.

Having verified the strong pseudoconvexity in a neighborhood of 0 and the trans-

mission conditions at 0, we can derive a Carleman estimate with weight  ".x/ for the

operator L0.

Theorem 3.3 ([2, Theorem 1.6]). Assume that coefficients A˙.0/ satisfy conditions

(3.1)–(3.4). There exist ˛C; ˛�; ˇ; "0; 
0; r0 and C , depending on �0;ƒ0, such that if

" � "0, 
 � 
0, � � C , then

X

˙

2
X

kD0

�3�2k

Z

R
n
˙

jDku˙j2e2� ";˙.x/dx

C
X

˙

1
X

kD0

�3�2k

Z

Rn�1

jDku˙.x
0; 0/j2e2 ".x

0;0/dx0

C
X

˙

�2Œe� ".�;0/u˙.�; 0/�21=2;Rn�1 C
X

˙

ŒD.e� ";˙u˙/.�; 0/�21=2;Rn�1

� C

� Z

R
n
˙

jL0.D/.u˙/j2e2� ";˙.x/ dx C Œe� ".�;0/h
.0/
1 �2

1=2;Rn�1

C ŒDx0.e� "h
.0/
0 /.�; 0/�2

1=2;Rn�1 C �3
Z

R
n�1

jh.0/0 j2e2� ".x;0/ dx

C �

Z

Rn�1

jh.0/1 j2e2� ".x;0/ dx

�

: (3.61)
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for u D HCuC CH�u�, u˙ 2 C1.Rn/ and suppu � B 0
r0

� Œ�r0; r0�, and, for all

x0 2 Rn�1;

h
.0/
0 .x0/ WD uC.x

0; 0/� u�.x
0; 0/;

h
.0/
1 .x0/ WD AC.0/ruC.x

0; 0/ � en � A�.0/ru�.x
0; 0/ � en;

4. Derivation of the Carleman estimate

This section is devoted to the derivation of the Carleman estimate (2.14) following the

ideas used in [5]. We first introduce the partition of unity given in [5]. For any r > 0

and x0 2 Rn�1, denote the .n � 1/-cube

Qr.x
0/ D ¹y 0 2 R

n�1W jy 0
j � x0

j j � r; : D 1; 2; : : : ; n � 1º:

Let #0 2 C1
0 .R/ such that

0 � #0 � 1; supp#0 � .�3=2; 3=2/; #0.t/ D 1 for t 2 Œ�1; 1�: (4.1)

Let #.x0/ D #0.x1/ : : :#0.xn�1/, so that

supp# �
ı

Q3=2 .0/ and #.x0/ D 1 for x0 2 Q1.0/;

where
ı

Q denotes the interior of the set Q. Given � � 1 and g 2 Zn�1, we define

x0
g D g

�

and

#g;�.x
0/ D #.�.x0 � x0

g//:

Thus, we can see that

supp#g;� �
ı

Q3=2� .x
0
g/ � Q2=�.x

0
g/

and

jDk#g;�j � C1�
k.�Q3=2�.x

0
g/

� �Q1=�.x
0
g/
/; k D 0; 1; 2; (4.2)

where C1 � 1 depends only on n.
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Notice that, for any g 2 Z
n�1,

card.¹g0 2 Z
n�1W supp#g 0;� \ supp#g;� ¤ ;º/ D 5n�1: (4.3)

Thus, we can define

N#�.x0/ WD
X

g2Zn�1

#g;� � 1; x0 2 R
n�1: (4.4)

By (4.2), we get that

jDk N#�j � C2�
k; (4.5)

where C2 � 1 depends on n. Define

�g;�.x
0/ D #g;�.x

0/= N#�.x0/; x0 2 R
n�1; (4.6)

then we have that
8

ˆ

ˆ

<

ˆ

ˆ

:

P

g2Zn�1 �g;� D 1; x0 2 R
n�1;

supp�g;� � Q3=2�.x
0
g/ � Q2=�.x

0
g/;

jDk�g;�j � C3�
k�Q3=2�.x

0
g/
; k D 0; 1; 2;

(4.7)

where C3 � 1 depends on n.

We will first extend (3.61) to operators with leading coefficients depending on

the vertical variable xn. To do so, we need to derive an interior Carleman estimate

for second order elliptic operators having Lipschitz leading coefficients and with the

weight function  ". To derive such Carleman estimate, we define the n-cube KR D
¹x D .x1; : : : ; xn/W jxj j � R; 1 � j � nº for R > 0. Let us denote

P.x;D/ D
X

1�j;`�n

aj`.x/D
2
j`

and its symbol p.x; �/ D P

1�j;`�n aj`.x/�j �`. Assume that for all 1 � j; ` � n and

x; y 2 K1,
8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

aj`.x/ D a j̀ .x/;

jaj`.x/j � ƒ;

jaj`.x/� aj`.y/j � M0jx � yj;
jp.x; �/j � �j�j2; for all � 2 Rn;

(4.8)

where ƒ; � > 0. Let '.x/ 2 C 2.K1/ be real-valued and satisfy jr'.x/j ¤ 0 for all

x 2 K1. We denote

S.x; yI �; �/ D
n

X

`;jD1

@2j̀'.x/@�jp.y; � C i�r'.x//@�`
p.y; � C i�r'.x//

for x; y 2 K1, � 2 R
n, � > 0.
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Proposition 4.1. Assume that the following condition holds:

p.0; � C i�'.0// D 0

.�; �/ ¤ .0; 0/

µ

H) S.0; 0I �; �/ > 0: (4.9)

Then there exist xR 2 .0; 1�, ı0 2 .0; 1�, C0 � 1, �0 � 1, depending on �; ƒ; M0;

k'kC2.Q1/
, such that

X

j˛j�2

�3�2j˛j

Z

jD˛uj2e2�'.x/dx � C0

Z

jP.ıx;D/uj2e2�'.x/dx; (4.10)

for all u 2 C1
0 .

ı

K xR/, � � �0, 0 < ı � ı0.

Proof. In view of the homogeneity in .�; �/, (4.9) is equivalent to that there exist

C1 > 0;C2 > 0 such that for all .�; �/ 2 R
nC1,

C2jp.0; � C i�r'.0/j2 C .j�j2 C �2/S.0; 0I �; �/ � C1.j�j2 C �2/2:

From (4.8), we can see that there exists xR 2 .0; 1� such that, for all x;y 2K xR; :�; �/ 2
RnC1;

zC2jp.y; � C i�r'.x/j2 C .j�j2 C �2/S.x; yI �; �/ � zC1.j�j2 C �2/2; (4.11)

where zC1 >0, zC2 > 0 are independent of x, y. Thanks to (4.11), the Carleman derived

in [8, Theorem 8.3.1] holds for

P.ıy;Dx/u D
X

1�`;j�n

aj`.ıy/D
2
xjx`

u.x/;

that is,

X

j˛j�2

�3�2j˛j

Z

jD˛
xuj2e2�'.x/dx � C3

Z

jP.ıy;Dx/uj2e2�'.x/dx (4.12)

for all u 2 C1
0 .

VK xR/, 0 � ı � 1, and � � �1, where C3 and �1 do not depend on ı

and y. Note that for fixed ı, y, P.ıy;Dx/ is an operator having constant coefficients.

Now, we use the partition of unity introduced above, but with n� 1 being replaced

by n. In particular, for h 2 Z
n, we define

xh D h

�
; � D p

"�; with � � 1

"
;

where " 2 .0; 1� will be chosen later. Let u 2 C1
0 .

ı

K xR/, in view of the first relation

in (4.7), we have

u.x/ D
X

h2Zn

u.x/�h;�.x/;
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where �h;�.x/ is defined similarly as in (4.6) with n � 1; g being replaced by n; h,

respectively. Applying (4.12) with y D xh implies

X

j˛j�2

�3�2j˛j

Z

jD˛uj2e2�'.x/ dx

� c
X

h2Zn

X

j˛j�2

�3�2j˛j

Z

jD˛.u�h;�/j2e2�'.x/dx

� cC3

Z

jP.ıxh;D/.u�h;�/j2e2�'.x/dx; (4.13)

for all � � �2 D min¹�1; 1" º, where c D c.n/.

Now, we write

jP.ıxh;D/.u�h;�/j � jP.ıx;D/.u�h;�/j C j.P.ıxh;D/� P.ıx;D//.u�h;�/j
(4.14)

and use (4.5), the second inequality of (4.8), to estimate

jP.ıx;D/.u�h;�/j � jP.ıx;D/uj�h;� CC4ƒ.
p
"� jDuj C "� juj/�K2=�.xh/ (4.15)

and

j.P.ıxh;D/ � P.ıx;D//.u�h;�/j
D

ˇ

ˇ

ˇ

X

1�j;`�n

.aj`.ıxh/ � aj`.ıx//D
2
j`.u�h;�/

ˇ

ˇ

ˇ

� �h;�
X

1�j`;�n

jaj`.ıxh/ � aj`.ıx/jjD2
j`uj C 2C4ƒ.

p
"� jDuj C "� juj/�K2=�.xh/

� c�h;�
ıM0

�
jD2uj C 2C4ƒ.

p
"� jDuj C "� juj/�K2=�.xh/ (4.16)

with c D c.n/. Here K2=�.xh/ denotes the n-cube centered at xh with length 4=�

and �K2=�.xh/ is the characteristic function of K2=�.xh/. Substituting (4.14)–(4.16)

into (4.13) gives

X

j˛j�2

�3�2j˛j

Z

jD˛uj2e2�'.x/dx

� C5

Z

jP.ıx;D/uj2e2�'.x/dx

C C5

²

ı2M 2
0

"�

Z

jD2uj2e2�'.x/ dx C "�

Z

jDuj2e2�'.x/ dx

C ."�/2
Z

juj2e2�'.x/ dx
³

(4.17)
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for all � � �2, where C5 � 1. Finally, by choosing " D 1=.2C5/ and ı0 D ", all terms

inside of the curved brace on the right-hand side of (4.17) can be absorbed by its

left-hand side and (4.10) follows immediately.

4.1. Carleman estimate for operators depending on the vertical variable

Here we would like to prove a Carleman estimate for the operator that satisfies condi-

tions (3.1)–(3.4) but depending only on the xn variable. That is, we consider

L.xn;D/u WD
X

˙

H˙ div.A˙.xn/ru˙/;

where u˙ 2 C1.Rn/ and suppu � B 0
r0

� Œ�r0; r0�, where r0 is the number obtained

in Theorem 3.3. Introduce ı 2 .0; 1/ that will be chosen later, define

�ı.x/ WD  ı .ı
�1x/ D  ı .ı

�1x0; ı�1xn/;

and consider the scaled operator

L.ıxn;D/u WD
X

˙

H˙ div.A˙.ıxn/ru˙/:

Notice thatA˙.ıxn/ satisfies assumptions (3.3), (3.4) and also the Lipschitz condition

jA˙.ı Qxn/ � A˙.ıxn/j � M0ıj Qxn � xnj: (4.18)

Let #0 2 C1
0 .R/ be given as in (4.1). For � � 1 satisfying 2=� < r0, we define

��.xn/ D #0.�xn/; (4.19)

v�.x
0; xn/ D ��.xn/u.x

0; xn/ and z�.x
0; xn/ D .1 � ��.xn//u.x0; xn/: (4.20)

Since v�;˙.x
0; 0/ D u˙.x

0; 0/ and rv�;˙.x0; 0/ D ru˙.x
0; 0/, we have trivially, for

all x0 2 R
n�1,

v�;C.x
0; 0/� v�;�.x

0; 0/ D uC.x
0; 0/� u�.x

0; 0/ D h
.0/
0 .x0/; (4.21)

and

AC.0/rv�;C.x0; 0/ � en � A�.0/rv�;�.x0; 0/ � en
D AC.0/ruC.x

0; 0/ � en �A�.0/ru�.x
0; 0/ � en D h

.0/
1 .x0/: (4.22)
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The aim of this section is to prove a simple version of (2.14):

X

˙

2
X

kD0

�3�2k

Z

R
n
˙

jDku˙j2e2� ";˙.x/ dx

C
X

˙

1
X

kD0

�3�2k

Z

Rn�1

jDku˙.x
0; 0/j2e2 ".x

0;0/ dx0

C
X

˙

�2Œe� ".�;0/u˙.�; 0/�21=2;Rn�1 C
X

˙

ŒD.e� ";˙u˙/.�; 0/�21=2;Rn�1

� C

� Z

R
n
˙

jL.ıxn;D/.u˙/j2e2� ";˙.x/ dx C Œe� ".�;0/h
.0/
1 �2

1=2;Rn�1

C ŒDx0.e� "h
.0/
0 /.�; 0/�2

1=2;Rn�1 C �3
Z

Rn�1

jh.0/0 j2e2� ".x;0/ dx

C �

Z

Rn�1

jh.0/1 j2e2� ".x;0/ dx

�

: (4.23)

To proceed the proof of (4.23), we first note that supp z� � B 0
r0

� Œ�r0; r0� and

vanishes in the strip Rn�1 � Œ� 1
�
; 1
�
�. It is clear that A˙.ıxn/ satisfies (3.3), (3.4),

and (2.7). Estimate (3.59) implies that (4.9) holds for
P

1�j;`�n a
˙
j`
.x/D2

j`
with

' D  ". Observe that z� is supported away from xn D 0. It follows from (4.10) in

Proposition 4.1 that there exist ı0 2 .0; 1�, �0 > 0, and choose a small r0 if necessary,

such that

2
X

kD0

�3�2k

Z

Rn

jDkz�j2e2� ".x/dx � C

Z

Rn

jL.ıxn;D/z�j2:2� ".x/dx (4.24)

for all � � �0, 0 < ı � ı0, where C depends on ƒ0, �0, and M0.

Let us denote by LHS.u/ the left-hand side of inequality (4.23). We have

LHS.u/ � 2.LHS.v�/C LHS.z�//

D 2

�

LHS.v�/C
2

X

kD0

�3�2k

Z

Rn

jDkz�j2e2� ".x/dx

�

: (4.25)

Then applying (3.61) to v� and using (4.24) leads to

LHS.u/�C
� Z

Rn

jL0.D/v�j2:2� ".x/dx C Œe� ".�;0/h
.0/
1 �2

1=2;Rn�1

C ŒDx0.e� "h
.0/
0 /.�; 0/�2

1=2;Rn�1 C �3
Z

R
n�1

jh.0/0 j2e2� ".x
0;0/dx0

C�
Z

Rn�1

jh.0/1 j2e2� ".x
0;0/dx0C

Z

Rn

jL.ıxn;D/z�j2:2� ".x/dx

�

: (4.26)
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By (3.3), (3.4), (4.18), and (4.19) and since � > 1, we can estimate

jL0.D/v�j
� jL.ıxn;D/v�j C jL.ıxn;D/v� � L0.D/v�j

� jL.ıxn;D/uj�� C 2ıM0

�

X

˙

jD2u˙j��

C C.ıM0 Cƒ0/
X

˙

.�jDu˙j C �2ju˙j/�
Rn�1�.Œ� 2

�
; 2

�
�nŒ� 1

�
; 1

�
�/
: (4.27)

On the other hand, we have

jL.ıxn;D/z�j
� jL.ıxn;D/uj.1� ��/

C C.ıM0 Cƒ0/
X

˙

.�jDu˙j C �2ju˙j�
Rn�1�.Œ� 2

� ;
2
� �nŒ�

1
� ;

1
� �/
: (4.28)

Putting (4.27), (4.28), and (4.26) together implies

LHS.u/ � C1

� Z

Rn

jL.ıxn;D/uj2e2� ".x/ dx C TR

�

C C2R (4.29)

where

TR D Œe� ".�;0/h
.0/
1 �2

1=2;Rn�1 C ŒDx0.e� "h
.0/
0 /.�; 0/�2

1=2;Rn�1

C �3
Z

Rn�1

jh.0/0 j2e2� ".x
0;0/ dx0 C �

Z

Rn�1

jh.0/1 j2e2� ".x
0;0/ dx0;

R D ı2

�2

X

˙

Z

R
n
˙

jD2u˙j2 dx C �2
X

˙

Z

R
n
˙

jDu˙j2 dx C �4
Z

Rn

juj2 dx;

C1 depends only on ƒ0 and �0, and C2 depends only on ƒ0, �0 and M0.

Now, we choose � D p
"� and calculate

LHS.u/ � C2R D 1

�

�

1 � C2ı
2

"

�

X

˙

Z

R
n
˙

jD2u˙j2e2� " dx

C �.1� C2"/
X

˙

Z

R
n
˙

jDu˙j2e2� "� W dx

C �3
�

1 � C2"

�

�

Z

Rn

juj2e2� " dx C TL; (4.30)
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where

TL D
X

˙

1
X

kD0

�3�2k

Z

Rn�1

jDku˙.x
0; 0/j2e2 ".x

0;0/ dx0

C
X

˙

�2Œe� ".�;0/u˙.�; 0/�21=2;Rn�1 C
X

˙

ŒD.e� ";˙u˙/.�; 0/�21=2;Rn�1 :

By choosing " and ı satisfying

ı2 � "

2C2
and " � 1

2C2
; (4.31)

estimate (4.23) follows easily from (4.29) and (4.30).

4.2. Carleman estimate for operators depending on all variables

We now want to extend the estimate (4.23) to operators with coefficients depending

also on the variables x0. To treat this case we proceed exactly as in [5, Section 4.2,

pp. 198–200], that is, we approximate with coefficients depending only on xn. We use

the partition of unity introduced at the beginning of Section 4 and show that

LHS.u/ � C
X

g2Zn�1

LHS.u�g;�/C CR1; (4.32)

where we define

LHS.u/ D
X

˙

2
X

kD0

�3�2k

Z

R
n
˙

jDku˙j2e2� ";˙.x
0;xn/ dx0 dxn

C
X

˙

1
X

kD0

�3�2k

Z

Rn�1

jDku˙.x
0; 0/j2e2 ".x

0;0/ dx0

C
X

˙

�2Œe� ".�;0/u˙.�; 0/�21=2;Rn�1 C
X

˙

ŒD.e� ";˙u˙/.�; 0/�21=2;Rn�1

and

R1 WD ."�/1=2
X

˙

Z

Rn�1

e2� ".x
0;0/.jDxn

u˙.x
0; 0/j2 C jDx0u˙.x

0; 0/j2
C �2ju˙.x

0; 0/j2/ dx0:

Remind that �g;� is defined in (4.6). Notice that „ in [5, (4.25)] corresponds to LHS

here.
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As in [5, Section 4.3], we introduce some local differential operators that only

depend on xn, in such a way that we can apply estimate (4.23). Let us define

Aı˙.x
0; xn/ WD A˙.ıx

0; ıxn/; (4.33)

Lı.x
0; xn;D/u WD

X

˙

H˙ div.Aı˙.x
0; xn/ru˙/; (4.34)

and the transmission conditions

´

�0.x
0/ D uC.x

0; 0/� u�.x
0; 0/;

�1.x
0/ D AıC.x

0; 0/ruC.x
0; 0/ � en �Aı�.x0; 0/ru�.x

0; 0/ � en:

Next, recalling that x0
g D g=� and g 2 Z

n�1, we define

A
ı;g
˙ .xn/ WD Aı˙.x

0
g ; xn/ D A˙.ıx

0
g ; ıxn/;

Lı;g.xn;D/u W D
X

˙

H˙ div.A
ı;g
˙ .xn/ru˙/:

We notice that A
ı;g
˙ .xn/ satisfies assumptions (3.3), (3.4) and also the Lipschitz con-

dition

jAı;g˙ . Qxn/ � A
ı;g
˙ .xn/j � M0ıj Qxn � xnj:

We now apply (4.23) to each summand and add up with respect to g 2 Z
n�1 to

obtain that
X

g2Zn�1

LHS.u�g;�/ � C
X

g2Zn�1

.d .1/g;� C d .2/g;� C d .3/g;�/; (4.35)

where

d .1/g;� D
Z

Rn

jLı;g.xn;D/.u�g;�/j2e2� ".x/ dx;

d .2/g;� D �3
Z

Rn�1

je� ".x
0;0/�0Ig;�.x

0/j2 dx0 C ŒDx0.e� "�0Ig;�/.�; 0/�21=2;Rn�1 ;

d .3/g;� D �

Z

Rn�1

je� ".x
0;0/�1Ig;�.x

0/j2 dx0 C Œe� ".�;0/�1Ig;�.�/�21=2;Rn�1 ;

where we set

�0Ig;�.x
0/ WD uC.x

0; 0/�g;�.x
0/ � u�.x

0; 0/�g;�.x
0/ D �0.x

0/�g;�;

�1Ig;�.x
0/ WD A

ı;g
C .0/r.uC�g;�/ � en � Aı;g� .0/r.u��g;�/ � en:
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We now proceed as in [5, Section 4.3, pp. 201–204] for the estimates of the terms

d
.j /
g;�, j D 1; 2; 3 in (4.35). For the sake of clarity, we show here the estimate of the

term d
.1/
g;�. By (3.3), (3.4), (2.7), (4.7), and (4.33) we obtain that

jLı;g.xn;D/.u�g;�/j
� jLı.x

0; xn;D/.u�g;�/j C jLı.x
0; xn;D/.u�g;�/ � Lı;g.xn;D/.u�g;�/j

� �g;�jLı.x
0; xn;D/uj C C�g;�

X

˙

jAı˙.x0; xn/ �Aı˙.x0
g ; xn/jjD2u˙j

C C�Q 2
�
.x0

g/

X

˙

.�jDu˙j C �2ju˙j/

� �g;�jLı.x
0; xn;D/uj C C�Q 2

�
.x0

g/

X

˙

.ı��1jD2u˙j C �jDu˙j:�2ju˙j/;

which, together with (4.3) and since � D ."�/1=2 > 1, implies

X

g2Z
n�1

d .1/g;� � C

Z

Rn

jLı.x
0; xn;D/uj2:2� " dx C CR2; (4.36)

where

R2 D ı2

�2

X

˙

Z

R
n
˙

jD2u˙j2:2� ";˙ dx C �2
X

˙

Z

R
n
˙

jDu˙j2:2� ";˙ dx

C �4
Z

Rn

juj2:2� " dx:

With similar calculations, which are explicitly written in the above mentioned pages

of [5], we can estimate d
.2/
g;�, d

.3/
g;� and get

LHS.u/ � C

� Z

Rn

jLı.x
0; xn;D/uj2e2� " dx C Œe� ".�;0/�1�

2
1=2;Rn�1

C ŒDx0.e� "�0/.�; 0/�21=2;Rn�1 C �3
Z

R
n�1

e2� ".x
0;0/j�0.x0/j2 dx0

C �

Z

Rn�1

e2� ".x
0;0/j�1.x0/j2 dx0 CR3

�

: (4.37)

where

R3 D ı2

�2

X

˙

Z

R
n
˙

jD2u˙j2e2� ";˙ dx C �2
X

˙

Z

R
n
˙

jDu˙j2e2� ";˙ dx
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C �4
Z

Rn

juj2e2� " dx C .�C ı2"�1/
X

˙

Z

Rn�1

jDu˙.x
0; 0/j2e2� ".x;0/ dx

C ��2
X

˙

Z

R
n�1

ju˙.x
0; 0/j2e2� ".x

0;0/ dx0

C .�4 C ı2��2�2/
X

˙

Œe� ".�;0/u˙.�; 0/�21=2;Rn�1

C ı2��2
X

˙

ŒD.u˙e
� ";˙/.�; 0/�2

1=2;Rn�1 :

We now set " D ı and choose a sufficiently small ı0 and a sufficiently large �0, both

depending on �0,ƒ0,M0, and n such that if "D ı� ı0 inequalities (4.31) are satisfied

and if � � �0, then R3 on the right-hand side of (4.37) can be absorbed by LHS.u/.

We finally get the estimate (4.23) by the standard change of variable u.ıx0; ıxn/.
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