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Spectral fluctuations

for the multi-dimensional Anderson model

Yoel Grinshpon and Moshe J. White

Abstract. In this paper, we examine fluctuations of polynomial linear statistics for the Ander-

son model on Z
d for any potential with finite moments. We prove that if normalized by the

square root of the size of the truncated operator, these fluctuations converge to a Gaussian limit.

For a vast majority of potentials and polynomials, we show that the variance of the limiting dis-

tribution is strictly positive, and we classify in full the rare cases in which this does not happen.

1. Introduction

The purpose of this paper is to study fluctuations of the eigenvalue counting measure

for the Anderson model on Z
d . We denote jnj D

Pd
vD1 nv for any n 2 Z

d , and write

n � m for n;m 2 Z
d if and only if jn �mj D 1. Define the operator H W `2.Zd / !

`2.Zd / by

.Hu/n D .�u/n C .Xu/n D
X

m�n

um CXn � un

where ¹Xnºn2Zd is an array of independent, identically distributed (iid) random vari-

ables with finite moments, satisfying EŒXn� D 0. We denote the distribution of each

variableXn by d�, which will henceforth be referred to as the underlying distribution.

In this paper, we aim to study the fluctuations of the counting measure for the

eigenvalues of finite volume approximations. Explicitly, we study fluctuations of poly-

nomial linear statistics of finite volume truncations of H : for any L 2 N, denote

ƒL D Œ�L;L� \ Z;

and let HL be the truncation of H to the cube ƒd
L � Z

d . That is, HL D 1ƒd
L
H1ƒd

L
,

where

.1ƒd
L
.u//n D

´

un n 2 ƒd
L;

0 n … ƒd
L:
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We denote byN.0;�2/ the normal distribution on R with mean 0 and variance �2,

and denote by
d! convergence in distribution. We agree that the zero random variable

is also normal, by allowing �2 D 0 (in this case we say the distribution is degenerate).

The empirical measure of HL is the measure

d�L D 1

.2LC 1/d

jƒd
L

j
X

iD0

ı
�

.ƒd
L

/

i

where ¹�.ƒd
L

/

1 ; �
.ƒd

L
/

2 ; : : : ; �
.ƒd

L
/

jƒd
L

j
º D �.HL/ are the eigenvalues ofHL (counting mul-

tiplicity), and ı� is the Dirac measure at �. When the empirical measure has a limit

as L ! 1, this limit is known as the density of states of H . In our case, it is known

that the random measure d�L converges weakly almost surely to a deterministic meas-

ure d� (see e.g., [1] and references within).

We want to focus on asymptotics of the fluctuations of d�L. A natural way to

study this is using linear statistics for polynomials, i.e., random variables of the form
R

f d�L D 1

.2LC1/d Tr.f .HL// for some polynomial f .x/ 2 RŒx�.

Fluctuations of the truncated eigenvalues �
.ƒd

L
/

i are assumed to be associated to

continuity properties of the spectral measures. There are several results indicating

this is indeed true. Minami [6] studied the microscopic scale of the eigenvalues of the

Anderson model in Z
d , after Molchanov [7] did the same for the continuous case in

one dimension. Minami proved that, under certain conditions that ensure localization

with exponentially decaying eigenfunctions, the eigenvalues of the Anderson model

have Poisson behavior on the microscopic scale. For d D 1, it is well known that

localization holds for any ergodic non-deterministic potential [1]. However, for d � 3

and for sufficiently low energies, it is conjectured thatH has extended states, i.e., the

spectrum of H has an absolutely continuous component.

We now state our main theorem:

Theorem 1.1. Let f .x/ 2 RŒx� be a non-constant polynomial. Then

Tr.f .HL// � EŒTr.f .HL//�

.2LC 1/d=2

d! N.0; �.f /2/

as L ! 1, where

1. if the underlying distribution .d�/ is supported by more than three points, then

�.f /2 > 0;

2. if the underlying distribution is supported by exactly two points, there exist

polynomials g2; g3; g5 2 RŒx�, of degrees 2; 3; 5 respectively, such that

�.f /2 D 0 if and only if f 2 spanR¹g5; g3; g2; 1º;
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3. if the underlying distribution is supported by exactly three points, there exists

a polynomial Qg3 2 RŒx� of degree 3, such that �.f /2 D 0 if and only if f 2
spanR¹ Qg3; 1º.

The polynomials g2; g3; g5; Qg3 depend on d� as well as on the dimension d , and

are given explicitly in Propositions 4.3 and 4.4 below.

The study of fluctuations of finite truncations of the Anderson Model has received

a considerable amount of attention, although most results focus on the one-dimen-

sional case. Reznikova [10] proved a central limit theorem (CLT) for the eigenvalue

counting function of the truncated Anderson model in 1-dimension. Kirsch and Pas-

tur [5] proved a CLT for the trace of truncations of the Green function of the Anderson

model in one dimension. Recently, Pastur and Shcherbina [9] extended this result to

other functions of H .

In our proof we shall compute the trace of powers of HL by counting paths on

the associated lattice. Path counting and weighted path counting is commonly used in

the study of random Schrodinger operators and in the study of random matrices (see,

e.g., [1, 2] and references therein).

This paper can be viewed as a second paper in a series, continuing the work of

Breuer with the authors [3]. In the previous paper, path counting was used to prove

a CLT for a decaying model over N. In this paper, the methods have been modified

to apply to the Anderson model over Z
d for general d 2 N. Each of the papers is

self contained, but there are many parallels in the overall structure of the paper and

propositions.

The rest of the paper is organized as follows. In Section 2 we set up our definitions,

and prove that “typical” diagonal elements in the matrix representation of H k
L have

a combinatorial description (using path counting). In Sections 3 and 4 we prove our

main theorem – in Section 3 we show that fluctuations of Tr.f .HL// converge to a

normally distributed random variable, and in Section 4 we classify all cases in which

the limit distribution is non-degenerate. The final proof of Theorem 1.1 appears at the

end of Section 4. We conclude with Section 5 (which is independent from the rest

of the paper) in which we state and prove a CLT for m-dependent random variables

indexed by Z
d , which implies the CLT we use in Section 3.

2. Definitions and preliminaries

Fix d 2 N. As stated in the introduction, we explore the random operator

H W `2.Zd / ! `2.Zd /:
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It is useful to decomposeH as

H D V C
d

X

vD1

Uv C
d

X

vD1

Dv; (2.1)

where V is the random potential operator, and each Uv (respectively Dv) is the

operator shifting forward (respectively backward) in direction v. In other words, let

e1; e2; : : : ; ed denote the standard generators of Z
d as a free abelian group. Then,

for every n 2 Z
d and u 2 `2.Zd /, we have .V u/n D Xnun, and for every integer

1 � v � d we have .Uvu/n D unCev
and .Dvu/n D un�ev

. A corresponding decom-

position is also given for every finite volume truncation,HL.

Our theorem deals with the asymptotic behavior (as L ! 1) of Tr.f .HL//, for

polynomials f 2 RŒx�. We consider Tr.f .HL// as a polynomial in the variables ¹Xn j
n 2 Z

d º. To slightly ease notation, we denote our variables by a lowercase Latin

letter (such as x; z) when referring to a single variable in a polynomial ring, and by

uppercase letters (such as Xn;Zn;Z) when referring to variables in polynomial rings

which can also be understood as random variables with some distribution.

To work with such multivariate monomials, we introduce the following defini-

tions:

Definition 2.1. A finitely supported function ˇW Zd ! N [ ¹0º will be called a multi-

index. Let ˇn denote the value ˇ.n/ for every n 2 Z
d . Let Xˇ denote the monomial

Q

n2Zd X
ˇn
n .

Fix a multi-index ı, by

ın D
´

1 n D 0;

0 n ¤ 0:

Definition 2.2. For every multi-index ˇ and i 2 Z
d , define ˇi (ˇ shifted by i ), by

ˇi
n D ˇn�i for every n 2 Z

d .

Note that using these definitions, for n; i 2 Z
d , ıi

n is 1 if n D i and 0 otherwise.

Additionally, ˇ D
P

i2Zd ˇiı
i for every multi-index ˇ (this is a finite sum as ˇ is

finitely supported).

Next, we fix k 2 N and begin exploring the asymptotic behavior (as L ! 1)

of Tr.H k
L/. As we shall see, the coefficient of any monomial Xˇ in Tr.H k

L/ is fixed

for sufficiently large L, and has a concrete combinatorial description. Furthermore,

these coefficients are invariant under translations of the monomials in Z
d . The precise

statement is given in Proposition 2.7 below, which requires some more definitions.

Definition 2.3. Let � D ¹V;U1;U2; : : : ;Ud ;D1;D2; : : : ;Dd º be considered as formal

symbols. Then �
k denotes the set of all ordered k-tuples with elements from � , or all

strings of length k from the alphabet � .
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Definition 2.4. For every s 2 �
k , we define a finite sequencey0.s/;y1.s/; : : : ;yk.s/2

Z
d as follows:

• y0.s/ D .0; 0; : : : ; 0/;

• yj .s/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

yj �1.s/C ev sj D Uv;

yj �1.s/ � ev sj D Dv;

yj �1.s/ sj D V:

We say that s is balanced if yk.s/ D y0.s/.

Note that s 2 �k is balanced if and only if for every v D 1; 2; : : : ; d , the symbols

Uv andDv appear in s the same number of times.

Definition 2.5. For every s 2 �
k , define a multi-index '.s/ by

'.s/n D #¹1 � j � k j yj .s/ D yj �1.s/ D nº;

for every n 2 Z
d .

In other words, given a string s 2 �
k , the following process describes the multi-

index '.s/ in terms of the symbols of s: we initialize '.s/D 0 at the position 0 2 Z
d ,

and then read the symbols of s consecutively. When we encounter a symbol Uv, we

update our position in Z
d by adding ev, when we encounter Dv we subtract ev (not

changing the multi-index), and when we encounter V we increase the value of '.s/n

by 1, where n 2 Z
d is the current position (which is not changed by the symbol V ).

Thus, a symbol V which appears in s at the j -th position, contributes 1 to '.s/n

for a unique n 2 Z
d , where nv counts the difference between the number of times Uv

and Dv appear in s in positions < j . For example, if d D 2 and

s D U1V U1D2VD1U2VD1;

then ˇ D '.s/ has ˇ.1;0/ D 2, ˇ.2;�1/ D 1, and ˇn D 0 for all other n 2 Z
2.

Definition 2.6. For every multi-index ˇ, let pk.ˇ/ be the number of balanced strings

s 2 �
k satisfying '.s/i D ˇ, for some i 2 Z

d .

Note that for every s 2 �
k and multi-index ˇ, there is at most one i 2 Z

d for

which '.s/i D ˇ.

Proposition 2.7. For every non-zero multi-index ˇ, and k; L 2 N, let ak
L.ˇ/ denote

the coefficient of Xˇ in the polynomial Tr.H k
L/. Then

1. 0 � ak
L.ˇ/ � pk.ˇ/;

2. if ˇn > 0 for some n 2 ƒd
L�k

, we have ak
L.ˇ/ D pk.ˇ/;

3. if ˇn > 0 for some n … ƒd
L, we have ak

L.ˇ/ D 0.
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Proof. Use (2.1) to expand H k . This gives us a bijection between operators in the

expansion of H k and strings in �k . Furthermore, let ML be any matrix in the expan-

sion of H k
L corresponding to a string s 2 �

k . It is straightforward to verify that if

s 2 �
k is balanced, and i 2 ƒd

L, and yj .s/C i 2 ƒd
L for every j D 1; 2; : : : ; k, we

have .ML/i;i D X'.s/i
. Otherwise, we have .ML/i;i D 0.

Therefore, fixing a multi-index ˇ, the coefficient ak
L.ˇ/ equals the number of

strings s 2 �
k , for which '.s/i D ˇ and the additional conditions yj .s/C i 2 ƒd

L are

fulfilled (we simply compute the trace as the sum over all diagonal entries from all

matrices in the expansion). The number of such strings is at least 0 and at most pk.ˇ/

(which is the number of such strings without the additional conditions), proving (1).

Note that for any balanced s 2 �
k , we have jyj .s/j � k

2
for every j D 0; 1; : : : ; k.

We deduce that whenever ˇ takes a non-zero value in ƒd
L�k

, if ˇ D '.s/i we must

have yj .s/C i 2ƒd
L�k

for some j , therefore yj .s/C i 2ƒd
L for every j D 0;1; : : : ;k.

For such ˇ, any i 2 Z
d and s 2 �

k satisfying '.s/i D ˇ automatically fulfill the

additional conditions, proving (2).

Similarly, if ˇ obtains a non-zero value outside ofƒd
L, satisfying '.s/i D ˇ guar-

antees that yj .s/C i … ƒd
L for some j , therefore Xˇ does not appear anywhere on

the diagonal of ML, proving (3).

Note that, from Definition 2.6, it is clear that pk.ˇi/ D pk.ˇ/, for any multi-

index ˇ, any i 2 Z
d , and any k 2 N. Therefore, when considering the integers pk.ˇ/

which appear as coefficients in the polynomials Tr.H k
L/, we may restrict our attention

to a set of non-zero multi-indices which contains some shifting of every multi-index

exactly once. We denote this set by B:

Definition 2.8. Two multi-indices ˇ and 
 are said equivalent if 
 D ˇi for some

i 2 Z
d . From each equivalence class other than zero, choose a unique representat-

ive ˇ, satisfying ˇ0 > 0 (one way to make such choices, is to require the lexicographic

minimum of the support of ˇ to be 0). Let B be the set of all chosen representatives.

In other words, B is any set of multi-indices with the properties:

1. for any non-zero multi-index 
 , we have 
 i 2 B for a unique i 2 Z
d ;

2. ˇ0 > 0 for every ˇ 2 B .

3. A central limit theorem for polynomial linear statistics

In this section, we prove that for every polynomial f .x/ 2 RŒx�,

Tr.f .HL//� EŒTr.f .HL//�

.2LC 1/d=2
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converges in distribution (as L ! 1) to a normal distribution with variance �.f /2 2
Œ0;1/ (see Proposition 3.8 below). We start by proving this CLT in the case where

f .x/ D xk is a monomial, which is easier to prove for an approximated version of

the random variable Tr.H k
L/:

Definition 3.1. For every k;L 2 N, let

T k
L D

X

ˇ2B

pk.ˇ/
X

i2ƒd
L

Xˇ i

; (3.1)

which we consider both as a random variable, and as a polynomial in the variables

¹Xn j n 2 Z
d º.

Note that the above sum is finite, since pk.ˇ/D 0 for all but finitely many ˇ 2 B .

We start by proving that T k
L can indeed approximate Tr.H k

L/, in the following

sense:

Proposition 3.2. For every k 2 N, the random variables

Tr.H k
L/ � EŒTr.H k

L/�

.2LC 1/d=2
�
T k

L � EŒT k
L �

.2LC 1/d=2

converge in probability (as L ! 1) to 0.

Proof. It is sufficient to show that Var.T k
L � Tr.H k

L//D o.Ld /. From Proposition 2.7

and (3.1), we have

T k
L � Tr.H k

L/ D
X

ˇ2B

X

i2ƒd
L

.pk.ˇ/ � ak
L.ˇ

i //Xˇ i

;

where pk.ˇ/ � ak
L.ˇ

i / D 0 whenever i 2 ƒd
L�k

. Therefore, the number of non-zero

terms in the above sum is at most

jBk j.jƒd
Lj � jƒd

L�kj/ D O.Ld�1/;

where Bk D ¹ˇ 2 B j pk.ˇ/ ¤ 0º is finite. Next, consider the sum

Var.T k
L � Tr.H k

L//

D
X

ˇ;
2Bk

X

i;j 2ƒd
L

.pk.ˇ/� ak
L.ˇ

i//.pk.
/� ak
L.


j //Cov.Xˇ i

; X
j

/: (3.2)

Fixing ˇ; 
 2 Bk and i 2ƒd
L nƒd

L�k
, we see that whenever j � i …ƒd

k
, the supports

of ˇi and 
 j are disjoint, therefore Xˇ i
and X
j

are independent. This tells us that

there are at most

jBkj2 � .jƒd
Lj � jƒd

L�kj/ � jƒd
k j D O.Ld�1/
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non-zero terms in (3.2). We know from Proposition 2.7 (1) that

0 � .pk.ˇ/� ak
L.ˇ

i//.pk.
/� ak
L.


j // � pk.ˇ/pk.
/: (3.3)

Since ¹Xn j n 2 Z
d º are identically distributed, we have

Cov.Xˇ i

; X
j

/ D Cov.Xˇ ; X
j �i

/:

From here we deduce that for fixed ˇ; 
 2 Bk , the term Cov.Xˇ i
; X
j

/ only obtains

a finite number of values: it is either 0 or uniquely determined by ˇ; 
 2 Bk , the value

of j � i 2 ƒd
k

, and some of the (finite) moments of the underlying distribution d�.

Together with (3.3), this gives us a uniform bound on all terms in (3.2), showing that

indeed

Var.T k
L � Tr.H k

L// D O.Ld�1/:

Our next step is a central limit theorem for the random variables T k
L . Although

our initial random variables ¹Xn j n 2 Z
d º were iid, for a fixed multi-index ˇ the

random variables ¹Xˇ i j i 2 Z
d º are generally not independent. However, for any i

and j sufficiently far apart (j � i … ƒd
k

is sufficient), the variables Xˇ i
and Xˇj

are

independent. We use CLTs for weakly dependent random variables, by Hoeffding and

Robbins [4] and Neumann [8], to prove:

Theorem 3.3. Let ¹Xnºn2Zd be an array of iid random variables with finite moments,

satisfying EŒXn� D 0. Let B be any set of multi-indices, and let ¹aˇ ºˇ2B be a set of

coefficients such that aˇ D 0 for all but finitely many ˇ 2 B . Then

1

.2LC 1/d=2

X

ˇ2B

aˇ

X

i2ƒd
L

.Xˇ i � EŒXˇ i

�/
d! N.0; �2/;

as L ! 1, for some �2 � 0.

The proof is postponed to Section 5.

Corollary 3.4. For every k 2 N,

T k
L � EŒT k

L �

.2LC 1/d=2

d! N.0; �2
k /

as L ! 1, for some �2
k

� 0.

Now, that we have a central limit theorem for our approximating random vari-

ables, we would like to compute the limit variances, and more generally, the limit

covariances. We do this first for individual multi-indices:
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Lemma 3.5. For every two multi-indices ˇ and 
 , we have

lim
L!1

1

.2LC 1/d
Cov

�

X

i2ƒd
L

Xˇ i

;
X

i2ƒd
L

X
 i
�

D
X

j 2Zd

Cov.Xˇ ; X
j

/ (3.4)

Note that the sum on the right-hand side of (3.4) is uniquely determined by ˇ; 
 ,

and the moments of the underlying distribution d�, and it is in fact a finite sum: since

ˇ and 
 are finitely supported, the supports of ˇ and 
 j are disjoint (and therefore

Xˇ and X
j
are independent) for all but finitely many j 2 Z

d .

Proof. Since ¹Xn j n 2 Z
d º are identically distributed, the covariances are invariant

to translations, and we may write

Cov
�

X

i2ƒd
L

Xˇ i

;
X

i2ƒd
L

X
 i
�

D
X

i;i 02ƒd
L

Cov.Xˇ i

; X
 i 0

/

D
X

i;i 02ƒd
L

Cov.Xˇ ; X
 i 0�i

/

D
X

j 2Zd

zj .L/ � Cov.Xˇ ; X
j

/;

where zj .L/ D #¹i; i 0 2 ƒd
L j j D i � i 0º. Clearly

lim
L!1

zj .L/

.2LC 1/d
D 1

for any j 2 Z
d , and since Cov.Xˇ ; X
j

/ ¤ 0 only for finitely many j 2 Z
d , the

claim follows.

Corollary 3.6. For every k; ` 2 N,

lim
L!1

Cov
� T k

L

.2LC 1/d=2
;

T `
L

.2LC 1/d=2

�

D lim
L!1

1

.2LC 1/d
Cov.T k

L ; T
`

L/

D
X

ˇ;
2B

pk.ˇ/p`.
/
X

j 2Zd

Cov.Xˇ ; X
j

/ (3.5)

This result allows us to deduce results for the asymptotic behavior of the trace of

monomials:

Corollary 3.7. For any k 2 N,

Tr.H k
L/ � EŒTr.H k

L/�

.2LC 1/d=2

d! N.0; �2
k /
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as L ! 1, where

�2
k D

X

ˇ;
2B

pk.ˇ/pk.
/
X

j 2Z
d

Cov.Xˇ ; X
j

/:

Furthermore, for every k; ` 2 N,

lim
L!1

Cov
�Tr.H k

L/ � EŒTr.H k
L/�

.2LC 1/d=2
;

Tr.H `
L/ � EŒTr.H `

L/�

.2LC 1/d=2

�

D
X

ˇ;
2B

pk.ˇ/p`.
/
X

j 2Zd

Cov.Xˇ ; X
j

/:

Proof. Follows directly from Proposition 3.2 and Corollaries 3.4 and 3.6.

And now we can prove the CLT for any polynomial:

Proposition 3.8. Let f .x/ D
Pm

kD0 akx
k 2 RŒx� be a polynomial. Then

Tr.f .HL// � EŒTr.f .HL//�

.2LC 1/d=2

d! N.0; �.f /2/

as L ! 1, where

�.f /2 D
m

X

k;`D1

aka`

X

ˇ;
2B

pk.ˇ/p`.
/
X

j 2Z
d

Cov.Xˇ ; X
j

/:

Proof. Since Tr.f .HL// � EŒTr.f .HL//� does not depend on a0, we may assume

without loss of generality that a0 D 0 and deg.f / D m > 0. Then

Tr.f .HL// � EŒTr.f .HL//�

.2LC 1/d=2
D

m
X

kD1

ak

Tr.H k
L/ � EŒTr.H k

L/�

.2LC 1/d=2
;

and from Corollary 3.7 we obtain the value of the variance �.f /2. Using Proposi-

tion 3.2 and (3.1), we now rewrite

lim
L!1

Tr.f .HL//� EŒTr.f .HL//�

.2LC 1/d=2

D lim
L!1

1

.2LC 1/d=2

m
X

kD1

ak.T
k

L � EŒT k
L �/

D lim
L!1

1

.2LC 1/d=2

m
X

kD1

ak

X

ˇ2B

pk.ˇ/
X

i2ƒd
L

.Xˇ i � EŒXˇ i

�/

D lim
L!1

1

.2LC 1/d=2

X

ˇ2B

�

m
X

kD1

akp
k.ˇ/

�

X

i2ƒd
L

.Xˇ i � EŒXˇ i

�/: (3.6)
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Note that the first equality holds in the sense that both limit random variables have

the same distribution. Theorem 3.3 now applies, proving that the limit has a normal

distribution.

4. Degenerate and non-degenerate cases

Now that we proved the convergence in Theorem 1.1, it remains to determine under

which conditions the limit distribution is non-degenerate, that is when �.f /2 > 0 for

a non-constant polynomial f 2 RŒx�. It turns out that �.f /2 is always positive if

deg.f / ¤ 2; 3; 5, but for some polynomials of degree 2; 3; 5 and some specific under-

lying distributions, the variance may vanish. We first demonstrate positive variance in

degrees ¤ 2; 3; 5:

Proposition 4.1. Let f .x/ D
Pm

kD0 akx
k 2 RŒx� be a non-constant polynomial of

degreem ¤ 2; 3; 5. Then �.f /2 > 0.

Proof. Using (3.6), we write

�.f /2 D Var
�

lim
L!1

Tr.f .HL//� EŒTr.f .HL//�

.2LC 1/d=2

�

D lim
L!1

Var
� 1

.2LC 1/d=2

X

ˇ2B

�

m
X

kD1

akp
k.ˇ/

�

X

i2ƒd
L

.Xˇ i � EŒXˇ i

�/
�

: (4.1)

We follow the same general method used in [3] – it is sufficient to find a multi-index


 2 B , with the following properties:

1. pm.
/ ¤ 0;

2. pk.
/ D 0 for every k < m;

3.
P

j 2Zd Cov.X
 ; X
j
/ > 0;

4. Cov.X
 ;Xˇj
/D 0 for every j 2Z

d and every 
 ¤ ˇ2B satisfying pk.ˇ/¤ 0

for some 1 � k � m.

If we find such 
 , we deduce from property (4) that the random variables

Y 1
L � amp

m.
/
X

i2ƒd
L

.X
 i � EŒX
 i

�/

and

Y 2
L �

X

ˇ2Bn¹
º

�

m
X

kD1

akp
k.ˇ/

�

X

i2ƒd
L

.Xˇ i � EŒXˇ i

�/
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are uncorrelated (for any L 2 N), and (4.1) becomes

�.f /2 D lim
L!1

Var
� Y 1

L C Y 2
L

.2LC 1/d=2

�

D lim
L!1

Var
� Y 1

L

.2LC 1/d=2

�

C lim
L!1

Var
� Y 2

L

.2LC 1/d=2

�

� lim
L!1

Var
� Y 1

L

.2LC 1/d=2

�

D amp
m.
/

X

j 2Zd

Cov.X
 ; X
j

/ > 0;

where the final equality is due to Lemma 3.5. We make the following choices for 
 :

1. if m D 1, choose 
 D ı;

2. if m � 4 is even, choose 
 D ı C ı. m
2 �1/e1 ;

3. if m � 7 is odd, choose 
 D ı C ıe1 C ı. m�3
2

/e1 .

The proof that these 
 satisfy properties (1) and (2) is straightforward path counting.

For (3) and (4), recall that

Cov.X
 ; Xˇj

/ D EŒX
Xˇj

� � EŒX
 �EŒXˇj

�

D E

h

Y

n2Zd

X
n
n Xˇ

j
n

n

i

� E

h

Y

n2Zd

X
n
n

i

E

h

Y

n2Zd

Xˇ
j
n

n

i

D
Y

n2Zd

EŒX
nCˇ
j
n

n � �
Y

n2Zd

EŒX
n
n �EŒXˇ

j
n

n �:

If there exists any n 2 Z
d such that 
n D 1 and ˇ

j
n D 0, the term EŒXn�D 0 appears in

both products, thus Cov.X
 ;Xˇj
/D0 and any ˇj for which Cov.X
 ;Xˇj

/¤0must

have ˇ
j
n � 
n for every n 2 Z

d . If ˇj D 
 , since ˇ; 
 2 B we must also have j D 0

and ˇ D 
 . Otherwise, we have ˇ
j
n > 
n for some n 2 Z

d , and it is straightforward to

verify that every string s with '.s/i D ˇj must have length>m, therefore pk.ˇ/D 0

for every 1 � k � m.

Note that there is some freedom in the choice of the representative set B , but one

may choose B such that 
 2 B in all of the above cases, or alternatively replace the

above choice of 
 with some 
 i 2 B .

For polynomials f of degree 2, 3, or 5, we must carefully analyze all cases. Since

there are specific underlying distributions and polynomials f for which �.f /2 D 0,

and we want an explicit description of all such cases, we need to explicitly compute

all non-zero values of pk.ˇ/, for 1 � k � 5.

Lemma 4.2. If k 2 ¹1; 2; 3; 4; 5º and 
 is a multi-index with pk.
/ > 0, then

1. 
 is either equivalent to a unique ˇ which equalsm � ı (for some m 2 ¹1; 2; 3;
4; 5º), or to one of ıC ıe , 2ıC ıe , or 2ıC ı�e (for some e 2 ¹e1; e2; : : : ; ed º).
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2. The value of pk.
/ D pk.ˇ/ is given in the table below (empty entries corres-

pond to pk.ˇ/ D 0):

k
ˇ ı 2ı 3ı 4ı 5ı ı C ıe 2ı C ı˙e

1 1

2 1

3 6d 1

4 8d 1 4

5 60d2 � 30d 10d 1 5

To prove the lemma, we found no alternative to enumerating the relevant strings

in �
k (for k D 1; 2; 3; 4; 5). We omit this technical proof.

Our method of verifying which polynomials f .x/ D
P5

kD0 akx
k satisfy the con-

dition �.f /2 > 0, is to describe random variables W1; W2; W3; W4; W5 such that

Var.
P5

kD1 akWk/ D �.f /2 (for any choice of coefficients a0; a1; : : : ; a5). We then

explore the random variable
P5

kD1 akWk and determine under which conditions it

is almost surely constant. If deg.f / � 3, we may replace ¹Wi º with a simpler set of

random variables, T1; T2; T3. We verify this case before approaching polynomials of

degree 5:

Proposition 4.3. Let f .x/D
Pm

kD0 akx
k 2RŒx� be a polynomial of degree 1�m�3.

Then

1. if the underlying distribution .d�/ is supported by more than three values, then

�.f /2 > 0;

2. if the underlying distribution is supported by exactly three values, denoted by

a; b; c 2 R, then �.f /2 D 0 if and only if f D a3 Qg3 C a0, where

Qg3.x/ D x3 � .aC b C c/x2 C .ab C ac C bc � 6d/xI

3. if the underlying distribution is supported by exactly two values, denoted by

a; b 2 R, then �.f /2 D 0 if and only if

f D a3g3 C a2g2 C a0;

where

g3.x/ D x3 � .a2 C ab C b2 C 6d/x;

g2.x/ D x2 � .aC b/x:

Proof. Let Z denote both a random variable distributed by d�, and the variable in

polynomial ring RŒZ�. Define

T1 D Z; T2 D Z2; T3 D Z3 C 6dZ:
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Using Lemma 4.2, we see that for every k D 1; 2; 3, we have Tk D
P3

nD1 p
k.nı/Zn,

thus for every k; ` D 1; 2; 3,

Cov.Tk; T`/ D
X

n;mD1;2;3

pk.nı/p`.mı/Cov.Zn; Zm/

X

ˇ;
Dı;2ı;3ı

pk.ˇ/p`.
/Cov.Xˇ ; X
 /

X

ˇ;
2B

pk.ˇ/p`.
/
X

j 2Zd

Cov.Xˇ ; X
j

/

(we may assume without loss of generality that ı; 2ı; 3ı 2 B). We now deduce from

Proposition 3.8 that

�.f /2 D Var.a3T3 C a2T2 C a1T1/;

which is zero if and only if F D a3T3 C a2T2 C a1T1 is almost surely constant, as

a random variable. As a polynomial, F 2 RŒZ� has at most 3 distinct roots, so if

Z is supported by more than 3 points, F is non-constant as a random varaible, thus

Var.F / > 0, proving (1).

Observe that any assignment of a value to the random variable Z corresponds

to a ring homomorphism RŒZ� ! R. Furthermore, if we only assign values from

¹a; b; cº, all three assignment homomorphisms factor through the quotient ring

RŒZ�=..Z � a/.Z � b/.Z � c//. Write P � Q for two polynomials P;Q, if they

have the same projection in the quotient. Note that P � Q if and only if as random

variables,P DQ almost surely. Clearly, Var.F /D 0 as a random variable if and only

if F � const in RŒZ�. Now, write

.Z � a/.Z � b/.Z � c/ D Z3 � .aC b C c/Z2 C .ab C ac C bc/Z � abc

D T3 � .aC b C c/T2 C .ab C ac C bc � 6d/T1 � abc;

and deduce (2): the polynomial Qg3.x/ has �. Qg3/ D 0 from the above, therefore

�.a3 Qg3 C a0/ D 0:

If f ¤ a3 Qg3 C a0, we see thatF D a3T3 C a2T2 C a1T2 is equivalent to a polynomial

of degree 1 or 2 in RŒZ�, and therefore is not fixed under assignments from ¹a; b; cº.

Finally, if d� is supported on ¹a; bº, the same arguments hold with a different

quotient ring, RŒZ�=..Z � a/.Z � b//. Now, note that

0 � .Z � a/.Z � b/ D Z2 � .aC b/Z C ab;

therefore

T2 � .aC b/T1 D Z2 � .aC b/Z � const;
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proving �.g2/
2 D 0. We also have

Z3 � .aC b/Z2 � abZ � .a2 C ab C b2/Z � ab.aC b/;

therefore

T3 � .a2 C ab C b2 C 6d/T1 D Z3 � .a2 C ab C b2/Z � const;

proving �.g3/
2 D 0. If f ¤ a3g3 C a2g2 C a0, then the above computations show

that F is equivalent to a polynomial of degree 1, which is not equivalent to any con-

stant, therefore Var.F / > 0.

Proposition 4.4. Let f .x/ D
P5

kD0 akx
k 2 RŒx� be a polynomial of degree 5. Then

1. if the underlying distribution .d�/ is supported by more than two values, then

�.f /2 > 0,

2. if the underlying distribution is supported by exactly two values, denoted by

a; b 2 R, then �.f /2 D �.f � a5g5/
2, where

2g5.x/ D 2x5 � 5.aC b/x4 C
�

3.a4 C b4/C 8.a3b C a2b2 C ab3/

C 20d.a2 C b2/C 100dab

� 120d2 C 60d
�

x:

In particular, �.g5/
2 D 0.

Proof. For every n 2 ƒd
1 , let Zn D Xn. We regard the variables ¹Znº both as 3d

independent random variables distributed by d�, and as the variables in the polynomial

ring R D RŒZn j n 2 ƒd
1 �. Define

W1 D 3�d=2
X

n2ƒd
1

Zn; W2 D 3�d=2
X

n2ƒd
1

Z2
n:

and

W3 D 3�d=2
X

n2ƒd
1

.Z3
n C 6dZn/:

Let E consist of all unordered pairs ¹n;mº, such that n;m 2 ƒd
1 differ in exactly one

coordinate, that is

E D ¹¹n;mº j n;m 2 ƒd
1 ; #¹1 � v � d j nv ¤ mvº D 1º:

Now, define

W4 D 3�d=2
X

n2ƒd
1

.Z4
n C 8dZ2

n/C 3�d=2
X

¹n;mº2E

4ZnZm
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and

W5 D 3�d=2
X

n2ƒd
1

.Z5
n C 10dZ3

n C .60d2 � 30d/Zn/

C 3�d=2
X

¹n;mº2E

5.Z2
nZm CZnZ

2
m/:

Following Lemma 4.2 and a straightforward computation that we omit, we verify that

Cov.Wk; W`/ D
X

ˇ2B

pk.ˇ/p`.
/
X

j 2Zd

Cov.Xˇ ; X
j

/

for every k; ` 2 ¹1; 2; 3; 4; 5º then deduce from Proposition 3.8 that

�.f /2 D Var
�

5
X

kD1

akWk

�

:

Denote

F D
5

X

kD1

akWk: (4.2)

As in the proof of Proposition 4.3, we note that Var.F / D 0 if and only if F is almost

surely constant as a random variable. This shows that Var.F / > 0 if d� is not finitely

supported: generally if f 2 RŒx1; : : : ; xm� is a non-constant multivariate polynomial,

and S is a set such that f .s1; : : : ; sm/ D 0 for every s1; : : : ; sm 2 S , then straightfor-

ward induction on m shows that jS j � deg.f /.

So, let us assume henceforth that the variables Zn are supported by a finite set

supp.d�/ � R. Denote q.x/ D
Q

a2supp.d�/.x � a/, letQn D q.Zn/ 2 R, and let I �
R be the ideal generated by the polynomials ¹Qnºn2ƒd

1
. Every possible assignment

of values to ¹Znº corresponds to a ring homomorphism R ! R. If we only assign

values from supp.d�/, the homomorphism factors through the quotient ring R=I .

Write P � Q for two polynomials P; Q, if they have the same projection in the

quotient. Note that P � Q in R if and only if, as random variables, P D Q almost

surely. Clearly, Var.F / D 0 as a random variable if and only if F � const in R.

Next, we denote !1 D !2 D !3 D 0,

!4 D 3�d=2
X

¹n;mº2E

4ZnZm;

and

!5 D 3�d=2
X

¹n;mº2E

5.Z2
nZm C ZnZ

2
m/ (4.3)
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(so each !k is the part of Wk which is a sum of products involving more than one

variable). Now, rewrite (4.2) as

F D a5!5 C a4!4 C
5

X

kD1

ak.Wk � !k/;

and note that if j supp.d�/j � k, thenWk � !k is equivalent to a polynomial of degree

lowith respect to j supp.d�/j: every term of the form Zk
n is equivalent to

Zk
n �Zk�j supp.d�/j

n q.Zn/;

with degree strictly lowith respect to k. Thus

X

n2ƒ1

Zk
n �

X

n2ƒd
1

Zk
n �Zk�j supp.d�/j

n q.Zn/;

and summing over n 2ƒd
1 allows us to reduceWk �!k to an equivalent combination

of W1 � !1; : : : ; Wk�1 � !k�1, to eventually obtain

F � zF D a5!5 C a4!4 C
j supp.d�/j�1

X

kD1

Qak.Wk � !k/ (4.4)

for some Qa1; : : : ; Qaj supp.d�/j�1 2 R. We are now ready to prove that Var. zF / > 0,

whenever j supp.d�/j � 3. Otherwise, Var. zF / D 0 implies that zF � c 2 I for some

constant c, so we can find polynomialsHn 2 R, such that

zF � c D
X

n2ƒd
1

Hn �Qn (4.5)

in R. Fix some a 2 supp.d�/, and let  aWR ! RŒx� be the ring homomorphism,

defined by

 a.Zn/ D
´

x; n D 0;

a; n ¤ 0:

We have  a.Qn/ D q.a/ D 0 for every n ¤ 0; so, when we apply  a to (4.5), we

obtain the equality

 a. zF / � c D h.x/q.x/ (4.6)

in RŒx�, where h.x/ D  a.H0/. Note that Wk � !k has degree k in R, therefore

 a.Wk � !k/ has degree at most k. Clearly,  a.a5!5 C a4!4/ has degree 2, so

from (4.4) the polynomial in the left-hand side of (4.6) has degree strictly less than

j supp.d�/j. But q.x/ has degree j supp.d�/j, so we must have h.x/ D 0 (otherwise
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the right-hand side of (4.6) would have degree j supp.d�/j or higher). We deduce that

 a. zF / � c D 0 as a polynomial in RŒx�.

Since for every n 2 ƒd
1 there are #¹m j ¹n;mº 2 Eº D 2d values of m for which

5 �Z2
nZm appears in the sum (4.3), the coefficient of x2 in  a.!5/ is 2d � 3�d=2 � 5a.

We deduce that the coefficient of x2 in  a. zF / � c D 0 is

a5 � 10d � 3�d=2 � aC c0 D 0;

where c0 does not depend on our choice of a 2 supp.d�/. Since a5 ¤ 0, there is at most

one a 2 R satisfying the above equation. However, for any b 2 supp.d�/, applying

 b to (4.5) allows us to obtain a5 � 10d � 3�d=2 � b C c0 D 0, which is a contradiction.

This concludes the proof of (1).

If supp.d�/ D ¹a; bº then q.Zn/ D .Zn � a/.Zn � b/ 2 I , therefore

Z2
n � .aC b/Zn � ab (4.7)

for every n 2 ƒd
1 , thus (4.3) becomes !5 � 5

2
.a C b/!4 � 20dabW1, which allows

us to deduce

a5!5 C a4!4 � �20a5dabW1 (4.8)

whenever a4 D �5
2
.aC b/a5.

Finally, from (4.7) we verify

Z2
n � .aC b/Zn � ab; (4.9a)

Z3
n � .a2 C ab C b2/Zn � ab.aC b/; (4.9b)

Z4
n � .a3 C a2b C ab2 C b3/Zn � ab.a2 C ab C b2/; (4.9c)

Z5
n � .a4 C a3b C a2b2 C ab3 C b4/Zn � const: (4.9d)

Summing over n2ƒd
1 allows us to reduce 3�d=2

P

nZ
k
n (for kD 2;3;4;5) to equival-

ent expressions involving W1 and constants, and along with (4.8) and the definitions

of W1; W4; W5 we deduce

2W5 � 5.aC b/W4 C const � . � 3a4 � 8a3b � 8a2b2 � 8ab3 � 3b4 � 20da2

� 100dab � 20db2 C 120d2 � 60d/W1:

From here it follows that �.g5/
2 D 0 and that �.f /2 D �.f � cg5/

2 for any polyno-

mial F and constant c, concluding our proof.

Proof of Theorem 1.1. Given a polynomial f .x/ D
Pm

kD0 akx
k 2 RŒx�, we have

Tr.f .HL// � EŒTr.f .HL//�

.2LC 1/d=2

d! N.0; �.f /2/
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for �.f /2 2 Œ0;1/ as L ! 1, from Proposition 3.8. From Propositions 4.1 and 4.3

we determine the cases in which �.f /2 > 0whenever deg.f /¤ 5. If deg.f /D 5, we

know from Proposition 4.4 that �.f /2 D �.f � a5g5/
2. If f � a5g5 is non-constant

and deg.f � a5g5/ is 1 or 4, we determine that �.f /2 D �.f � a5g5/
2 > 0 from

Proposition 4.1, otherwise we use Proposition 4.3 to determine the positivity.

5. Appendix – Proof of Theorem 3.3

In the setting of Theorem 3.3, we consider a d -dimensional array of weakly dependent

random variables. Explicitly, we prove a central limit theorem which is valid in the

setting of m-dependent random variables, which we now define:

Definition 5.1. Let ¹Yi ºi2Zd be a sequence of random variables. We say that the

sequence is m-dependent if for any two finite sets of indices I; J � Z
d which satisfy

ji � j j > m for every i 2 I and j 2 J , the corresponding sets of random variables

¹Yi ºi2I ; ¹Yj ºj 2J

are independent.

Note that this definition extends a notion of m-dependence from [4] defined for

sequences of variables indexed by N (the definition of m-dependence in [4] is equi-

valent to m-dependence as defined above, when we take d D 1 and Yi D 0 for every

i … N). In [4], Hoeffding and Robbins proved the following central limit theorem:

Theorem 5.2 (Hoeffding–Robbins). Let ¹Xi ºi2N be an m-dependent sequence of

random variables satisfying EŒXi � D 0 and EŒjXi j3� � R3 < 1 for every i 2 N,

and

lim
p!1

p�1

p
X

hD1

AiCh D A

uniformly for all i 2 N, where

Ai D EŒX2
iCm�C 2

m
X

j D1

EŒXiCm�jXiCm�:

Then
X1 C � � � CXn

n
1
2

d! N.0;A/:

Theorem 5.2 allows us to deduce a central limit theorem for d D 1, and the fol-

lowing theorem by Neumann [8] will allow us to prove an induction argument on d :
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Theorem 5.3 (Neumann). Suppose that ¹Xn;k j n2 N; kD 1;2; : : : ;nº is a triangular

scheme of random variables with EŒXn;k� D 0 and

n
X

kD1

EŒX2
n;k� � C

for all n; k and some C < 1. We assume that

�2
n D Var.Xn;1 C � � � CXn;n/ ����!

n!1
�2 2 Œ0;1/;

and that
n

X

kD1

EŒX2
n;k1.jXn;kj > "/� ����!

n!1
0

holds for all " > 0. Furthermore, we assume that there exists a summable sequence

.�r/r2N such that for all u 2 N and all indices

1 � s1 < s2 < � � � < su < su C r D t1 � t2 � n;

the following upper bounds for covariances hold true: for all measurable functions

gW R
u ! R with jjgjj1 D supx2Ru jg.x/j � 1, we have

j Cov.g.Xn;s1
; : : : ; Xn;su

/Xn;su
; Xn;t1/j �

�

EŒX2
n;su

�C EŒX2
n;t1
�C 1

n

�

�r (5.1)

and

j Cov.g.Xn;s1
; : : : ; Xn;su

/; Xn;t1Xn;t2/j �
�

EŒX2
n;t1
�C EŒX2

n;t2
�C 1

n

�

�r : (5.2)

Then

Xn;1 C � � � CXn;n
d! N.0; �2/

as n ! 1.

Our central limit theorem for m-dependent random variables follows:

Proposition 5.4. Let ¹Yi ºi2Zd be an identically distributed d -dimensionalm-depend-

ent array of random variables such that EŒYi � D 0, and EŒjYi j3� < 1.

Then
1

.2LC 1/d=2

X

i2ƒd
L

Yi
d! N.0; �2/;

where

�2 D lim
L!1

1

.2LC 1/d
Var

�

X

i2ƒd
L

Yi

�

:
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Proof. By induction on d . For d D 1, this is a straightforward application of The-

orem 5.2 to the random variables ¹Xi ºi2N , defined by Xi D YiCm C Y�i�m (noting

that for i > m, ¹Xi ºi2N are identically distributed and m-dependent, and the exclu-

sion of a finite set of random variables ¹Yi W ji j �mº from the sum has no effect on the

limit distribution).

We now assume by induction that the proposition holds for some d 2 N, and

prove it in dimension d C 1. For every L 2 N we denote n D 2LC 1, rewrite

1

.2LC 1/.dC1/=2

X

i2ƒ
dC1
L

Yi D
L

X

j D�L

Zn;j ;

where

Zn;j D 1

n1=2
� 1

nd=2

X

i2In;j

Yi

and

In;j D ƒd
L � ¹j º D ¹.i1; : : : ; idC1/ 2 ƒdC1

L j idC1 D j º

are defined for every j 2 ƒL. Our proof will be completed by applying Theorem 5.3

to the random variables

Xn;k D
´

Zn;k�L�1; n D 2LC 1;

ZnC1;k�L�1; n D 2L;

which are defined for every n2 N and k D 1;2; : : : ;n. We will apply the requirements

of the theorem to the corresponding variablesZn;j (we henceforth ignore even values

of n).

Fixing any j 2 Z, we may identify In;j withƒd
L, and note that the d -dimensional

array ¹Yi j i 2 Z
dC1; idC1 D j º is identically distributed and m-dependent (the dis-

tribution of the array is independent of j 2 Z as well). The induction hypothesis now

applies, and we deduce

p
nZn;j D 1

nd=2

X

i2In;j

Yi

d! N.0; �2
d/ (5.3)

as n ! 1, uniformly in j , for some �2
d

� 0. The variables Zn;j are “well behaved,”

in the sense that for any sufficiently large n,

EŒZ2
n;j � D Var.Zn;j / � 1

n
.�2

d C 1/
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(thus there exists C > 0 such that EŒZ2
n;j �� C

n
for all n 2 N and j 2ƒL). We deduce

that

EŒZn;j � D 0;

L
X

j D�L

EŒZ2
n;j � � C:

Additionally, since the finite sequence ¹Zn;j ºj 2ƒL
is both identically distributed and

m-dependent (for every n D 2LC 1 2 N), one can verify that

Var
�

L
X

j D�L

Zn;j

�

����!
n!1

�2 < 1:

Next, we prove that

L
X

j D�L

EŒZ2
n;j 1.jZn;j j > "/� �! Œn ! 1�0

for every " > 0. Note that

L
X

j D�L

EŒZ2
n;j1.jZn;j j > "/� D nEŒZ2

n;j1.jZn;j j > "/�
D EŒn.Zn;j /

21.j
p
nZn;j j > "

p
n/�: (5.4)

From the induction hypothesis, we know that
p
nZn;j

d! N.0; �2
d
/. We deduce that

for everyM > 0 we have

p
nZn;j1.j

p
nZn;j j > M/

d! ˆM ; (5.5)

where ˆM is a random variable satisfying EŒˆM � D 0, and

Var.ˆM / D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

2

1
Z

M

t2

�d

p
2�

exp
�

� t2

2�2
d

�

dt; �2
d > 0;

0; �2
d D 0:

Choose some M > 0 so that Var.ˆM / is arbitrarily close to 0. For every " > 0, any

sufficiently large n 2 N satisfies "
p
n > M , so

1.j
p
nZn;j j > "

p
n/ � 1.j

p
nZn;j j > M/;

and (5.4) now becomes

L
X

j D�L

EŒZ2
n;j1.jZn;j j > "/� D EŒn.Zn;j /

21.j
p
nZn;j j > "

p
n/�

� EŒn.Zn;j /
21.j

p
nZn;j j > M/�

D Var.
p
nZn;j1.j

p
nZn;j j > M// ����!

n!1
Var.ˆM /

(due to (5.5)).
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It remains to show that there exists a summable sequence .�r/r2N so that the

upper bounds for covariances required in Neumann’s theorem hold (equations (5.1)

and (5.2), for all relevant cases). From the m-dependence of the finite sequence

¹Zn;j ºj 2ƒL
, we deduce that the left-hand sides of (5.1) and (5.2) equal 0 whenever

r > m, so we conclude by finding some �1; : : : ; �m < 1. A straightforward compu-

tation shows that (5.1) holds as long as �r � 1. To prove (5.2), we use

Var.g.Zn;s1
; : : : ; Zn;su

// � EŒg.Zn;s1
; : : : ; Zn;su

/2� � 1

(as jjgjj1 � 1) to obtain

j Cov.g.Zn;s1
; : : : ; Zn;su

/; Zn;t1Zn;t2/j
�

p

Var.g.Zn;s1
; : : : ; Zn;su

//Var.Zn;t1Zn;t2/ �
p

Var.Zn;t1Zn;t2/;

and we conclude by showing that for some � < 1,

p

Var.Zn;t1Zn;t2/ � 1

n
�

holds for every n D 2LC 1 and t1; t2 2 ƒL. Equivalently, we will show that

sup
n;t1;t2

Var.
p
nZn;t1 �

p
nZn;t2/ < 1:

From (5.3), we deduce that

sup
n

Var.
p
nZn;t1 �

p
nZn;t2/ < 1

for every t1; t2 2 Z. Furthermore, since our initial variables ¹Yi ºi2Zd are identically

distributed, the value of Var.
p
nZn;t1 �

p
nZn;t2/ depends only on n and t2 � t1, and

since our variables are m-dependent, it is enough to consider jt2 � t1j 2 ¹0; 1; : : : ;
mC 1º. This concludes our proof.

Proof of Theorem 3.3. Theorem 3.3 will follow from Proposition 5.4, applied to the

variables

Yi D
X

ˇ2B

aˇ .X
ˇ i � EŒXˇ i

�/:

Clearly, the variables ¹Yi ºi2Zd are identically distributed (since ¹Xnºn2Zd are), and

EŒYi � D 0. Since every Xn has finite moments, so do Yi (as a finite sum of products

of the variables ¹Xnºn2Zd ). In particular, EŒjYi j3� < 1.

Since aˇ ¤ 0 only for finitely many ˇ 2 B , one can find sufficiently largem, such

that whenever jj � i j > m and aˇ ; a
 ¤ 0, the supports of ˇi and 
 j are disjoint.

From here it follows that ¹Yi ºi2Zd is m-dependent.
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