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The Lp boundedness of the wave operators

for matrix Schrödinger equations

Ricardo Weder

Abstract. We prove that the wave operators for n� n matrix Schrödinger equations on the half

line, with general selfadjoint boundary condition, are bounded in the spaces Lp.RC;Cn/;

1 < p < 1; for slowly decaying selfadjoint matrix potentials V that satisfy the conditionR 1

0
.1C x/jV.x/j dx < 1: Moreover, assuming that

R 1

0
.1C x
 /jV.x/j dx < 1; 
 > 5

2
;

and that the scattering matrix is the identity at zero and infinite energy, we prove that the

wave operators are bounded in L1.RC;Cn/ and in L1.RC;Cn/: We also prove that the

wave operators for n � n matrix Schrödinger equations on the line are bounded in the spaces

Lp.R;Cn/; 1 < p < 1; assuming that the perturbation consists of a point interaction at the

origin and of a potential V that satisfies the condition
R 1

�1 .1C jxj/jV.x/j dx < 1: Further,

assuming that
R 1

�1
.1 C jxj
 /jV.x/j dx < 1; 
 > 5

2
; and that the scattering matrix is the

identity at zero and infinite energy, we prove that the wave operators are bounded inL1.R;Cn/

and in L1.R;Cn/: We obtain our results for n � n matrix Schrödinger equations on the line

from the results for 2n � 2n matrix Schrödinger equations on the half line.

1. Introduction

In this paper we consider the wave operators for the matrix Schrödinger equation on

the half line with general selfadjoint boundary condition

8
<
:
i
@

@t
u.t; x/ D

�
� @2

@x2
C V.x/

�
u.t; x/; t 2 R; x 2 R

C;

u.0; x/ D u0.x/; x 2 R
C;

(1.1)

�B�u.t; 0/C A� @

@x
u.t; 0/ D 0: (1.2)

2020 Mathematics Subject Classification. Primary 34L25; Secondary 34L10, 34L40, 47A40,

81U99.

Keywords. Wave operators, Lp-boundedness, matrix Schrödinger equations, general boundary

conditions, half line, line.

https://creativecommons.org/licenses/by/4.0/


R. Weder 708

Here R
C WD .0;C1/; u.t; x/ is a function from R � R

C into C
n; A; B are constant

n � nmatrices, and the potential V is a n� n selfadjoint matrix-valued function of x,

V .x/ D V � .x/ ; x 2 R
C: (1.3)

The dagger designates the matrix adjoint. Let us denote by Mn the set of all n � n
matrices. We assume that V is in the Faddeev class L1

1.R
C; Mn/; i.e., that it is a

Lebesgue measurable n � n matrix-valued function and

Z

RC

.1C x/jV.x/j dx < 1; (1.4)

where by jV j we denote the matrix norm of V: The more general selfadjoint boundary

condition at x D 0 has been extensively studied. It can be written in many equivalent

ways. See [7,9,23,25,26]. For other formulations of the general selfadjoint boundary

condition, see [37]. In this paper we use the parametrization of the boundary condition

given in [7] and [9, Section 3.4]. We write the boundary condition as in (1.2), with

constant matrices A and B satisfying

B�A D A�B; (1.5)

and

A�AC B�B > 0: (1.6)

We prove that the wave operators for the n� nmatrix Schrödinger equation on the half

line (1.1) with the general selfadjoint boundary condition (1.2), (1.5), and (1.6), are

bounded in the spacesLp.RC;Cn/;1 < p <1: For this purpose, we suppose that the

potential satisfies (1.3) and (1.4). Assuming that
R 1

0
.1C x
 /jV.x/j dx <1; 
 > 5

2
;

and that the scattering matrix is the identity at zero and infinite energy, we prove that

the wave operators are bounded in L1.RC;Cn/ and in L1.RC;Cn/: We also prove

that the wave operators for the n � n Schrödinger equation on the line, with a point

interaction at the origin and a potential, are bounded in Lp.R;Cn/; 1 < p < 1: We

assume that the potential, that we denote by V ; is selfadjoint, i.e., V.x/D V.x/�; and

Z

R

.1C jxj/jV.x/j dx < 1: (1.7)

Further, assuming that
R 1

�1 .1C jxj
/jV.x/j dx < 1; 
 > 5
2
; and that the scattering

matrix is the identity at zero and infinite energy, we prove that the wave operators are

bounded in L1.R;Cn/ and in L1.R;Cn/: We obtain the boundedness of the wave

operators on the line for a n � n matrix Schrödinger equation from the boundedness

of the wave operators for a 2n � 2n matrix Schrödinger equation on the half line.
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In the scalar case, there are several results on the boundedness of the wave operat-

ors on the line. Recall that in the scalar case the potential is generic if the zero energy

Jost solutions from the left and from the right are linearly independent, and that it is

exceptional if the zero energy Jost solutions from the left and from the right are lin-

early dependent. In the exceptional case, the stationary Schrödinger equation on the

line (5.84) with zero energy, k2 D 0; has a bounded solution, that is called a zero-

energy resonance, or a half-bound state. In [41] it was proven that the wave operators

are bounded in Lp.R/; 1 < p < 1; under the assumption

Z

R

.1C jxj/
 jV.x/j dx < 1; (1.8)

with 
 > 3=2 in the generic case and 
 > 5=2 in the exceptional case. Furthermore,

in [41] it was proven that in the exceptional case if the Jost solution from the left

at zero energy tends to one as x ! �1; then the wave operators are bounded in

L1.R/ and in L1.R/: The paper [41] used a constructive proof that allowed to obtain

a detailed low-energy expansion, but that was somehow more demanding concern-

ing the decay of the potential. In [10] the boundedness of the wave operators in

Lp.R/; 1 < p < 1; was proven assuming that (1.8) holds with 
 D 3 in the gen-

eric case and 
 D 4 in the exceptional case and that, moreover, d
dx

V.x/ satisfies (1.8)

with 
 D 2; both in the generic and the exceptional cases. The boundedness of the

wave operators in Lp.R/; 1 < p <1; was proven in [16] assuming (1.8) with 
 D 1;

in the generic case and with 
 D 2 in the exceptional case. Furthermore, in [17] the

boundedness of the wave operators in Lp.R/; 1 < p < 1; was proven for a potential

that is the sum of a regular potential that satisfies (1.8) with 
 > 3=2 and of a singular

potential that is a sum of Dirac delta functions. In [15] the boundedness of the wave

operators was proven for the discrete Schrödinger equation on the line. There is a very

extensive literature on the Lp-boundedness of the wave operators and on the related

problem of dispersive estimates. For surveys, see [20, 39] and [43] for recent results.

In these papers also the results in the multidimensional case are discussed.

The matrix Schrödinger equations find their origin at the very beginning of

quantum mechanics. They are important in the description of particles with internal

structure like spin and isospin, in atoms, molecules and in nuclear physics, and also

in the study systems of particles. A well-known example is the Pauli equation, that is

the equation for half-spin particles. For further applications and references, see [2–5,

14, 18, 27, 33, 35].

Since a number of years, there is a renew of the interest in matrix Schrödinger

equations due to the importance of these equations for quantum graphs. For example,

see [11–13, 22, 25, 26, 28–32], as well as the references quoted there. The matrix

Schrödinger equation with a diagonal potential corresponds to a star graph. Such a
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quantum graph describes the dynamics of n connected very thin quantum wires that

form a star-graph, that is, a graph with only one vertex and a finite number of edges of

infinite length. This situation appears, for example, in the design of elementary gates

in quantum computing, in quantum wires, and in nanotubes for microscopic electronic

devices. In these cases strings of atoms can form a star-shaped graph. The analysis

of the most general boundary condition at the vertex is important in the applica-

tions to problems in physics. A relevant example is the Kirchoff boundary condition.

A quantum graph is an idealization of wires with a small cross-section that meet at

vertices. The graph is obtained in the limit when the cross-section of the wires goes

to zero. As it turns out, the boundary conditions on the vertices of the graph depend

on how the limit is taken. A priori, all the boundary conditions in (1.2) can appear in

this limit procedure. See [12, Section 7.5] for a detailed discussion of the extensive

literature on this problem. Hence, it is relevant to study the more general selfadjoint

boundary condition.

The boundedness of the wave operators in Lp spaces is an important problem on

itself, and it has important applications. Let us elaborate on this point. For any selfad-

joint operator H in a Hilbert space we denote by Hac.H/ the subspace of absolute

continuity of H and by Pac.H/ the orthogonal projector onto Hac.H/: Moreover,

for any pair H;H0 of selfadjoint operators in a Hilbert space, the wave operators are

defined as

W˙.H;H0/ WD s-lim
t!˙1

ei tH e�i tH0Pac.H0/;

provided that the strong limits exist. The operator H is the perturbed Hamiltonian,

and the operatorH0 is the unperturbed Hamiltonian. The wave operatorsW˙.H;H0/

are said complete if their range is equal to Hac.H/: In the theory of scattering, the

scattering solutions to the interacting Schrödinger equation

i
@

@t
u.t/ D Hu.t/; u.0/ D '; (1.9)

are defined as e�i tH'; with ' 2 Hac.H/: It is a purpose of scattering theory to com-

pare the behavior for large times of the scattering solutions e�i tH' with the scattering

solutions for free Schrödinger equation

i
@

@t
v.t/ D H0v.t/; v.0/ D  ; (1.10)

with Hamiltonian H0; that are given by e�i tH0 ; with  2 Hac.H0/: If the wave

operators exist and are complete, all the scattering solutions e�i tH' to the interact-

ing Schrödinger equation behave for large positive and negative times as scattering

solutions for the free Schödinger equation

lim
t!˙1

ke�i tH' � e�i tH0W˙.H;H0/
�'k D 0; ' 2 Hac:
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Furthermore, the wave operators fulfill the important intertwining relations

f .H/Pac.H/ D W˙.H;H0/f .H0/Pac.H0/W˙.H;H0/
�; (1.11)

where f is a Borel function. For these results see [36]. The intertwining relations

allow us to obtain important properties of f .H/Pac.H/ from those of f .H0/Pac.H0/:

Let us explain. Assume that the wave operatorsW˙.H;H0/ are bounded in a Banach

space Y and the adjoints W˙.H; H0/
� are bounded in a Banach space X: Then,

if f .H0/Pac.H0/ is bounded from X into Y; it follows from (1.11) that also

f .H/Pac.H/ is bounded between the same spaces and, furthermore,

kf .H/Pac.H/kB.X;Y / � Ckf .H0/Pac.H0/kB.X;Y /; (1.12)

for some constant C and where B.X; Y / denotes the Banach space of bounded oper-

ators from X into Y: In the applications, H0 is often a constant coefficients operator

and f .H0/ is a Fourier multiplier. It is usually a simple matter to obtain important

dispersive estimates, like the Lp � Lp0

estimates, 1
p

C 1
p0 D 1; 1 � p � 1; and the

Strichartz estimates for the free Schrödinger equation (1.10) with Hamiltonian H0;

and then (1.12) gives us these estimates for the interacting Schrödinger equation (1.9)

with Hamiltonian H . These dispersive estimates play a crucial role in the study of

initial value problems and in the scattering theory of nonlinear dispersive equations,

like the nonlinear Schrödinger equation, and also in other problems, like the stability

of soliton solutions. See [20, 39].

The wave operators are singular integral operators in the spectral representation

of the unperturbed operator. On this point, see [19] and [42, Section 1 of Chapter 4]

where this question is discussed. As singular integral operators are bounded in Lp

spaces, the wave operators are bounded in Lp spaces in the spectral representation of

the unperturbed operator. I thank D. R. Yafaev for calling this fact to my attention.

Note that in this paper we consider the related, but different, problem of the bounded-

ness of the wave operators in Lp spaces in the configuration representation.

The paper is organized as follows. In Section 2 we introduce the notation that we

use. In Section 3 we state our results on the boundedness of the wave operators on the

half line. In Section 4 we state our results on the boundedness of the wave operators

on the line. In Section 5 we mention the results on the scattering theory of matrix

Schrödinger equations that we need and we give the proofs of our theorems.

2. Notation

We denote by R
C the positive half line .0;1/; and we designate by C the complex

numbers. For a vector Y 2 C
n, we denote by Y T its transpose. By h�; �i we designate
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the scalar product in C
n: We introduce the following convenient notation. For any

vector Y D .y1;y2; : : : ;y2n/
T 2 C2n we denote by YC WD .y1;y2; : : : ;yn/

T 2 Cn the

vector with the first n components of Y; and Y� WD .ynC1; ynC2; : : : ; y2n/
T 2 C

n the

vector with the last n components of Y: Further, we use the notation Y D .YC; Y�/T :
We denote the entries of a n�mmatrixM by ¹M ºi;j ;1� i � n;1� j �m:By 0n

and In; n D 1; 2; : : : ; we designate the n � n zero and identity matrices, respectively.

By jM j we denote the norm of a matrixM:We designate by Lp.U;Cn/, 1 � p � 1;

where U D R
C or U D R, the Lebesgue spaces of C

n valued functions defined on U:

Let us denote byC1
0 .U;Cn/ the space of all infinitely differentiable functions defined

on U and that have compact support. We designate by Lp.U;Mn/, 1 � p � 1; the

Lebesgue space of n � nmatrix valued functions defined on U: Further, we designate

by L1

 .U;Mn/; 
 > 0; the Lebesgue space of n � n matrix-valued functions V.x/

such that Z

U

.1C jxj/
 jV.x/j dx < 1:

For an integerm� 1;H.m/.U;Cn/, whereU D R
C orU D R, is the standard Sobolev

space of C
n valued functions (see [1] for the definition and the properties of these

spaces). By H.m;0/.RC;Cn/; m � 1; we denote the closure of C1
0 .RC;Cn/ in the

space Hm.RC;Cn/. Note that the functions in H.m;0/.RC;Cn/; as well as their deriv-

atives of order up to m � 1; are zero at x D 0:

The Fourier transform, and the inverse Fourier transform are designated by

F f .k/ WD 1p
2�

Z

R

e�ikxf .x/ dx; F
�1f .x/ WD 1p

2�

Z

R

eikxf .k/ dk:

For any set O � R; we denote by �O the characteristic function of O:

For any operator G in a Banach space X , we denote by DŒG� the domain of G:

Further, for a densely defined operator G in a Banach space, we denote by G� its

adjoint. For any selfadjoint operatorH in a Hilbert space and for any Borel setO , we

designate by E.OIH/ the spectral projector of H for O .

We designate by Eeven the extension operator from Lp.RC;Cn/; 1 � p � 1; to

even functions in Lp.R;Cn/ as follows:

.EevenY /.x/ WD
´
Y.x/; x > 0;

Y.�x/; x � 0:

Clearly, Eeven is bounded from Lp.RC;Cn/ into Lp.R;Cn/; 1 � p � 1:Moreover,

we denote by Eodd the extension operator from Lp.RC;Cn/; 1 � p � 1; to odd
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functions in Lp.R;Cn/ in the following way:

.EoddY /.x/ WD
´
Y.x/; x > 0;

�Y.�x/; x � 0:

We have that Eodd is bounded from Lp.RC;Cn/ into Lp.R;Cn/; 1 � p � 1:

We denote by R the restriction operator from Lp.R;Cn/ into Lp.RC; Cn/;

1 � p � 1; given by

.RY /.x/ WD Y.x/; x > 0:

We have that R is bounded from Lp.R;Cn/ into Lp.RC;Cn/; 1 � p � 1:

For any integrable n� nmatrix valued functionG.x/;x 2 R;we denote byQ.G/

the operator of convolution by G.x/;

.Q.G/Y / .x/ WD
Z

R

G.x � y/Y.y/ dy D
Z

R

G.y/Y.x � y/ dy:

Since G is integrable, the operator Q.G/ is bounded in Lp.R;Cn/; 1 � p � 1:

For any n � n matrix valued measurable functionK.x; y/ defined for x; y 2 R
C; we

denote by K.K/ the operator

K.K/Y .x/ WD
Z

RC

K.x; y/Y.y/ dy:

The operator K.K/ is bounded in Lp.RC;Cn/; 1 � p � 1; provided that the fol-

lowing two conditions are satisfied:

sup
x2RC

Z

RC

jK.x; y/j dy < 1; sup
y2RC

Z

RC

jK.x; y/j dx < 1: (2.1)

The Hilbert transform H is defined as follows:

.HY /.x/ WD 1

�
PV

Z

R

Y.y/

x � y
dy;

where PV means the principal value of the integral. As is well known [38, 40], the

Hilbert transform is a bounded operator in Lp.R;Cn/; 1 < p < 1:

3. The wave operators on the half line

To define the wave operators we take as unperturbed Hamiltonian H0 the selfadjoint

realization inL2.RC;Cn/ of the formal differential operator � d2

dx2 with the Neumann
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boundary condition, d
dx
Y.0/ D 0; see Section 5 below and [9, Sections 3.3 and 3.5].

This choice is motivated by the theory of quantum graphs [25,26]. Note that the spec-

trum of H0 is absolutely continuous and that it coincides with Œ0;1/: The perturbed

HamiltonianH is the selfadjoint realization in L2.RC;Cn/ of the formal differential

operator � d2

dx2 C V.x/ with the boundary condition

�B�Y.0/C A� d

dx
Y.0/ D 0; (3.1)

where the constant matrices A; B satisfy (1.5) and (1.6), and the potential V ful-

fills (1.3) and (5.2). For the definition of H see Section 5 below and [9, Sections 3.3

and 3.5].

The wave operatorsW˙.H;H0/ are defined as follows:

W˙.H;H0/ WD s-lim
t!˙1

ei tHe�i tH0 ; (3.2)

sincePac.H0/D I: It is proven in [9, Section 4.4] that the wave operatorsW˙.H;H0/

exist and are complete.

Our result in the case of Lp.RC;Cn/; 1 < p < 1; is the following theorem.

Theorem 3.1. Suppose that V fulfills (1.3) and (1.4) and that the constant matrices

A;B satisfy (1.5), and (1.6). Then, for all Y 2 L2.RC;Cn/, we have

W˙.H;H0/Y D
3X

j D1

W
.j /

˙ Y; (3.3)

where

W
.1/

˙ Y WD .I C K.K//R
�˙i
2

HEevenY C 1

2
EevenY

�
; (3.4)

W
.2/

˙ Y WD .I C K.K//R
��i
2
.HS1EevenY /C 1

2
S1EevenY

�
; (3.5)

W
.3/

˙ Y WD .I C K.K//R
��i
2
.HQ.Fs/EevenY /C 1

2
.Q.Fs/EevenY /

�
: (3.6)

Moreover, the wave operatorsW˙.H;H0/ restricted to L2.RC;Cn/ \ Lp.RC;Cn/;

1 < p < 1; extend uniquely to bounded operators in Lp.RC;Cn/; 1 < p < 1 and

equations (3.3)–(3.6) hold for all Y 2 Lp.RC;Cn/; 1 < p < 1: Furthermore, the

adjoints of the wave operatorsW˙.H;H0/
�; restricted toL2.RC;Cn/\Lp.RC;Cn/;

1 < p <1; extend uniquely to bounded operators on Lp.RC;Cn/; 1 < p <1: The

n � n matrix valued function K.x; y/; x; y 2 R
C is defined in (5.12). Finally, the

quantity S1 is defined in (5.16), and the n � n matrix valued function Fs.x/; x 2 R,

is defined in (5.17).
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Our result in the case of L1.RC;Cn/ and in L1.RC;Cn/ is stated in the next

theorem. We first prepare a convenient notation, where the scattering matrix S.k/ is

defined in (5.15):

PC.x/ WD 1p
2�

�
F �RC.k/.S.�k/ � S1/

�
.x/; P�.x/

WD 1p
2�

�
F

�1�RC.k/.S.k/ � S1/
�
.x/: (3.7)

Theorem 3.2. Suppose that V fulfills (1.3) and (1.4), that V 2 L1

 .R

C;Mn/; 
 >
5
2
;

that the constant matrices A; B satisfy (1.5) and (1.6), and that S.0/ D S1 D In.

Then, for all Y 2 L2.RC;Cn/, we have

W˙.H;H0/Y D Y C K.K/Y C RQ.P˙/EevenY C K.K/RQ.P˙/EevenY: (3.8)

The wave operators W˙.H;H0/ and W˙.H;H0/
� restricted to L2.RC/ \ L1.RC/,

respectively to L2.RC/ \L1.RC/; extend to bounded operators on L1.RC/ and to

bounded operators on L1.R/: The n� n matrix valued functionK.x;y/; x; y 2 RC,

is defined in (5.12). Moreover, the scattering matrix, S.k/; k 2 R; is defined in (5.15),

the quantity S1 is defined in (5.16), and the n� n matrix valued functions P˙.x/ are

defined in (3.7).

In Remark 5.8 we prove by means of a counter example that the condition S.0/D
S1 D In is necessary for the boundedness of the wave operators on L1.RC/ and on

L1.R/:

Remark 3.3. It follows from [9, (3.10.37)] that S1 D In if and only if there are no

Dirichlet boundary conditions in the diagonal representation of the boundary matrices

given in (5.3)–(5.5). Further, by [9, Theorems 3.8.13 and 3.8.14], S.0/ D In if and

only if the geometric multiplicity � of the eigenvalue zero of the zero energy Jost

matrix J.0/ (see (5.11)) is equal to n:Moreover, by [9, Remark 3.8.10], the geometric

multiplicity of the eigenvalue zero of J.0/ is equal to n if and only if there are n

linearly independent bounded solutions to the Schrödinger equation (5.1) with zero

energy, k2 D 0; that satisfy the boundary condition (3.1). This corresponds to the

purely exceptional case where there are n linearly independent half-bound states or

zero-energy resonances. We provide below a simple example of this situation, with a

non-trivial potential. Consider the scalar case, n D 1; with the potential

V.x/ D
´
0; x > 1;

1; 0 < x < 1:
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The Jost solution (see (5.10)) is computed in [9, Example 6.4.1]. For k ¤ 1, it is given

by

f .k; x/ D

8
<̂

:̂

eikx ; x � 1;

1

2

�
1C k




�
eikei
.x�1/ C 1

2

�
1 � k




�
eike�i
.x�1/; 0 � x � 1;

where 
 WD
p
k2 � 1. We take the boundary matrices A D � sin �; B D cos �; with

� D arctan coth 1: The boundary condition is cos �Y.0/C sin �Y 0.0/ D 0: The Jost

function is given by J.k/ D f .k; 0/ cos � C f 0.k; 0/ sin �: We have J.0/ D 0: Then

S.0/ D 1 and, as we have the Robin boundary condition, S1 D 1: Of course, these

results can be obtained by explicit computation.

4. The wave operators on the line

We obtain our results on the line proving that a 2n � 2n matrix Schrödinger equation

on the half line is unitarily equivalent to a n � n matrix Schrödinger equation on the

line with a point interaction at x D 0: For this purpose, we follow [9, Section 2.4].

Let us denote by U the unitary operator from L2.RC;C2n/ onto L2.R;Cn/; defined

as follows:

Y.x/ D UZ.x/ WD
´
ZC.x/; x � 0;

Z�.�x/; x < 0;
(4.1)

where Z D .ZC; Z�/T ; with ZC; Z� 2 L2.RC;Cn/: Let us take as potential the

diagonal matrix

V.x/ WD
²
VC.x/ 0n

0n V�.x/

³
;

where both VC and V� are selfadjoint n � n matrix-valued functions that belong to

L1
1.R

C;Mn/:Under the action of the unitary transformation U the Hamiltonian in the

half line H is unitarily transformed into the Hamiltonian on the line HR as follows:

HR WD UHU�; DŒHR� WD ¹Y 2 L2.R;Cn/W U�Y 2 DŒH�º: (4.2)

The operator HR is a selfadjoint realization in L2.R;Cn/ of the formal differential

operator � d2

dx2 C V.x/, where the selfadjoint n� nmatrix valued potential V is given

by

V.x/ D
´
VC.x/; x � 0;

V�.�x/; x < 0:

Note that V 2 L1
1.R;Mn/: The boundary condition (3.1) satisfied by the functions in

the domain ofH implies that the functions in the domain ofHR fulfill a transmission



The Lp boundedness of the wave operators for matrix Schrödinger equations 717

condition at x D 0: To compute this transmission condition, it is convenient to write

the matrices A and B in (3.1) in the following way:

A D
²
A1

A2

³
; B D

²
B1

B2

³
; (4.3)

where Aj ; Bj ; j D 1; 2; are n � 2n matrices. Hence, (3.1) implies that the functions

in the domain of HR satisfy the following transmission condition at x D 0:

�B�
1Y.0

C/� B
�
2Y.0

�/C A
�
1

d

dx
Y.0C/ � A

�
2

d

dx
Y.0�/ D 0: (4.4)

Remark that u.t; x/ is a solution of the problem (1.1), (1.2) if and only if v.t; x/ WD
Uu.t; x/ is a solution of the following n � n matrix equation on the line:

8
ˆ̂̂
<̂
ˆ̂̂
:̂

i
@

@t
v.t; x/ D

�
� @2

@x2
C V.x/

�
v.t; x/; t 2 R; x 2 R;

v.0; x/ D v0.x/ WD Uu0.x/; x 2 R;

�B�
1v.t; 0

C/ � B�
2v.t; 0

�/C A
�
1

@

@x
v.t; 0C/ �A�

2

@

@x
v.t; 0�/ D 0:

(4.5)

Below we give an example. Let A;B be the following matrices:

A D
²
0n In

0n In

³
; B D

²�In ƒ

In 0n

³
; (4.6)

where ƒ is a selfadjoint n � n matrix. It is easy to check that these matrices sat-

isfy (1.5) and (1.6). The transmission condition in (4.5) is given by

v.t; 0C/ D v.t; 0�/ D v.t; 0/;
@

@x
v.t; 0C/ � @

@x
v.t; 0�/ D ƒv.t; 0/: (4.7)

This transmission condition is a Dirac-delta point interaction at x D 0 with coupling

matrix ƒ. In the particular case ƒ D 0; the functions v.t; x/ and @
@x
v.t; x/ are con-

tinuous at x D 0 and we have the matrix Schrödinger equation on the line without a

point interaction at x D 0:

Let us denote by H0;R the Hamiltonian (4.2) with the potential V identically zero

and with the boundary condition given by the matrices (4.6) with ƒ D 0: Note that

H0;R is the standard selfadjoint realization of the formal differential operator � d2

dx2

with domain DŒH0;R� WD H.2/.R;Cn/: In particular, H0;R is absolutely continuous

and its spectrum consists of Œ0;1/: We define the wave operators on the line as fol-

lows:

W˙.HR;H0;R/ WD s- lim
t!˙1

ei tHRe�i tH0;R : (4.8)

Using Theorem 3.1 and the unitary transformation (4.2) we prove the following the-

orem, on the boundedness of the wave operators on Lp.R;Cn/; 1 < p < 1:
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Theorem 4.1. LetHR be the Hamiltonian (4.2), with the transmission condition (4.4),

and where V .x/ ; x 2 R, is a n � n selfadjoint matrix-valued function, i.e., V.x/ D
V

�.x/ and, moreover, V satisfies (1.7). Then, the wave operators W˙.HR; H0;R/

exist and are complete. Moreover, theW˙.HR;H0;R/; and the adjoint wave operators

W.HR;H0;R/
�; restricted to L2.R;Cn/ \Lp.R;Cn/; 1 < p < 1; extend uniquely

to bounded operators in Lp.R;Cn/; 1 < p < 1:

Theorem 4.1 generalizes the results obtained in [10, 16, 17, 41] to the case of gen-

eral point interactions at x D 0 and to potentials that satisfy (1.8) with 
 D 1:

Below we state our theorem on the boundedness of the wave operators on the line

in L1.R;Cn/ and in L1.R;Cn/:

Theorem 4.2. LetHR be the Hamiltonian (4.2), with the transmission condition (4.4),

and where V.x/; x 2 R, is a n � n selfadjoint matrix-valued function, i.e., V.x/ D
V

�.x/; and V 2 L1

 .R;Mn/; 
 >

5
2
: Let SR.0/D SR;1 D I2n: Then, the wave oper-

ators W˙.HR; H0;R/ and W˙.HR; H0;R/
� restricted to L2.R;Cn/ \ L1.R;Cn/,

respectively to L2.R;Cn/\L1.R;Cn/; extend to bounded operators onL1.R;Cn/

and to bounded operators on L1.R;Cn/: The scattering matrix on the line SR.k/;

k 2 R; is defined in (5.100a) and the quantity SR;1 in (5.102).

Remark 4.3. In the case where the matrices A; B are equal to the matrices in (4.6)

andƒD 0; there is no point interaction at xD 0: The scattering theory in this situation

has been studied in [6], and the references quoted there. In this case SR.0/D SR;1 D
I2n in the purely exceptional case where there are n linearly independent bounded

solutions to the Schrödinger equation (5.84) with zero energy, k2 D 0 (in this case

we say that there are n linearly independent zero-energy resonances, or half-bound

states), and if, moreover, the zero-energy Jost solution from the left fl .0; x/ satisfies

limx!�1 fl .0; x/ D In For the definition of fl .k; x/; k 2 R; see (5.85).

As we have mentioned above, in [41, Theorem 1.1] we proved that in the scalar

case, n D 1; and without point interactions, the wave operators W˙.HR; H0;R/ and

W˙.HR;H0;R/
� extend to bounded operators on L1.R;C/ and to bounded operators

on L1.R;C/ in the exceptional case, and assuming that limx!�1 fl .0; x/ D 1, for

potentials that satisfy (1.8) with 
 > 5
2
: Theorem 4.2 generalizes this result of [41] to

the case where there is a general point interaction.

5. Scattering theory and the Lp-boundedness of the wave operators

5.1. Scattering theory for the matrix Schrödinger equation on the half line

We study the following the stationary matrix Schrödinger equation on the half line

� d2

dx2
Y.x/C V.x/Y.x/ D k2Y.x/; x 2 R

C: (5.1)
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In this equation, k2 is the complex-valued spectral parameter, the n � nmatrix valued

potential V.x/ satisfies (1.3) and, moreover,

V 2 L1.RC;Mn/: (5.2)

The solution Y that appears in (5.1) is either a column vector with n components,

or a n � n matrix-valued function. As we already mentioned, the general selfadjoint

boundary condition at x D 0 can be expressed in terms of two constant n� nmatrices

A and B as in (3.1), where the matrices A and B fulfill (1.5), (1.6).

Actually, there is a simpler equivalent form of the boundary condition (3.1). In

fact, in [8] and in [9, Section 3.4], it is given the explicit steps to go from any pair

of matrices A and B appearing in the selfadjoint boundary condition (3.1), and that

satisfy (1.5), (1.6) to a pair zA and zB; given by

zA D � diag¹sin �1; : : : ; sin �nº; zB D diag¹cos �1; : : : ; cos �nº; (5.3)

with appropriate real parameters �j 2 .0;��: The matrices zA; zB satisfy (1.5), (1.6). In

the case of the matrices zA, zB; the boundary condition (3.1) is given by

cos �jYj .0/C sin �j
d

dx
Yj .0/ D 0; j D 1; 2; : : : ; n: (5.4)

The case �j D � corresponds to the Dirichlet boundary condition and the case �j D
�=2 corresponds to the Neumann boundary condition. In the general case, there are

nN � n values with �j D �=2 and nD � n values with �j D � . Further, there are

nM remaining values, where nM D n � nN � nD such that those �j -values lie in the

interval .0; �=2/ or .�=2; �/: It is proven in [8] and in [9, Section 3.4], that, for any

pair of matrices .A; B/ that satisfy (1.5), (1.6), there is a pair of matrices . zA; zB/ as

in (5.3), a unitary matrix M , and two invertible matrices T1; T2 such

A D M zAT1M
�T2; B D M zBT1M

�T2: (5.5)

As we will see, the Hamiltonians with the boundary condition given by matrices A;B

and with the matrices zA; zB; are unitarily equivalent.

We construct a selfadjoint realization of the matrix Schrödinger operator � d2

dx2 C
V.x/ by quadratic forms methods. For the following discussion see [9, Sections 3.3

and 3.5]. Let �j be as in equations (5.3). We denote

yH.1/
j .RC;C/ WD H.1;0/.RC;C/ if �j D � (5.6a)

and
yH.1/

j .RC;C/ WD H.1/.RC;C/ if �j ¤ �: (5.6b)
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We put

zH.1/.RC;Cn/ WD
nM

j D1

yH.1/
j .RC;C/:

We define

‚ WD diagŒccot�1; : : : ;ccot�n�;

where ccot�j D 0; if �j D�=2; or �j D�; and ccot�j D cot�j ; if �j ¤�=2;�: Suppose

that the potential V satisfies (1.3) and (5.2). The following quadratic form is closed,

symmetric and bounded below:

h.Y;Z/ WD
� d
dx
Y;

d

dx
Z

�
L2.RC;Cn/

� hM‚M �Y.0/;Z.0/i C .V Y;Z/L2.RC;Cn/; (5.7a)

Q.h/ WD H.A;B/.RC;Cn/; (5.7b)

where by Q.h/ we denote the domain of h and

H.A;B/.RC;Cn/ WD M zH.1/.RC;Cn/ � H.1/.RC;Cn/: (5.8)

We denote byHA;B;V the selfadjoint bounded below operator associated to h, see [24].

The operator HA;B;V is the selfadjoint realization of � d2

dx2 C V .x/ with the selfad-

joint boundary condition (3.1). When there will be no possibility of misunderstanding,

we will use the notation H; i.e., H � HA;B;V : It is proven in [9, Section 3.6] that

HA;B;V D MH zA; zB;M �VMM
�: (5.9)

In the next proposition, we introduce the Jost solution given in [5]. See also [9,

Sections 3.1 and 3.2].

Proposition 5.1. Suppose that the potential V satisfies condition (5.2). For each fixed

k 2 CC n ¹0º, there exists a unique n � n matrix-valued Jost solution f .k; x/ to

equation (5.1) satisfying the asymptotic condition

f .k; x/ D eikx.I C o.1//; x ! C1: (5.10)

Moreover, for any fixed x 2 Œ0;1/; f .k; x/ is analytic in k 2 CC and continuous in

k 2 CC n ¹0º. If V satisfies (1.4), then the Jost solution also exists at k D 0; and, for

each fixed x 2 Œ0;1/; f .k; x/ is continuous in k 2 CC: Furthermore, if (1.4) holds,

for k 2 CC n ¹0º; the o.1/ in (5.10) can be replaced by o. 1
x
/:

Using the Jost solution and the boundary matrices A and B satisfying (1.5), (1.6),

we construct the Jost matrix J.k/;

J.k/ D f .�k�; 0/�B � f 0.�k�; 0/�A; k 2 CC; (5.11)
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where the asterisk denotes complex conjugation. For the following result see [5] and

also [9, Theorem 3.8.1].

Proposition 5.2. Suppose that the potential V satisfies (1.3) and (1.4). Then the Jost

matrix J.k/ is analytic for k 2 C
C, continuous for k 2 CC, and invertible for k 2

RŸ¹0º:

Let K.x; y/ be defined as follows:

K.x; y/ D .2�/�1

1Z

�1

Œf .k; x/ � eikxI �e�ikydk; x; y � 0: (5.12)

We introduce the quantities

�.x/ D
1Z

x

jV.y/jdy; �1 .x/ D
1Z

x

y jV .y/jdy; x � 0:

Remark that for potentials satisfying (1.4), both � .0/ and �1 .0/ are finite, and fur-

thermore,
R 1

0 �.x/ dx D �1.0/ < 1:

The following proposition is given in [5]. See also [9, Proposition 3.28].

Proposition 5.3. Suppose that the potential V satisfies (1.3) and (1.4). Then

1. the matrixK.x;y/ is continuous in .x;y/ in the region 0� x � y and is related

to the potential via

K.x; xC/ D 1

2

1Z

x

V.z/dz; x 2 Œ0;C1/I

2. the matrix K.x; y/ satisfies

8
<
:
K.x; y/ D 0; y < x; x; y 2 Œ0;1/;

jK.x; y/j � 1

2
e�1.x/�

�x C y

2

�
; x; y;2 R

CI
(5.13)

3. the Jost solution f .k; x/ has the representation

f .k; x/ D eikxI C
1Z

x

eikyK.x; y/ dy: (5.14)

The scattering matrix S .k/ is a n � n matrix-valued function of k 2 R that is

given by

S .k/ D �J.�k/J.k/�1; k 2 R: (5.15)
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In the exceptional case where J.0/ is not invertible, the scattering matrix is defined

by (5.15) only for k ¤ 0: However, it is proven in [7] and in [9, Theorem 3.8.14] that,

for potentials satisfying (1.3) and (1.4), the limit S.0/ WD limk!0 S.k/ exists in the

exceptional case and, moreover, a formula for S.0/ is given.

It is proven in [8] and in [9, Theorem 3.10.6] that the following limit exists:

S1 WD lim
jkj!1

S.k/: (5.16)

Let us denote by Fs the following quantity, that up to the factor 1=
p
2� is the

inverse Fourier transform of S .k/ � S1:

Fs.y/ D 1

2�

1Z

�1

ŒS.k/ � S1�e
iky dk; y 2 R: (5.17)

The following theorem is proven in [34].

Theorem 5.4. Suppose that the potential V satisfies (1.3) and (1.4). Then

Fs 2 L1.R;Mn/: (5.18)

In terms of the Jost solution f .k; x/ and the scattering matrix S.k/, we construct

the physical solution ([8] and [9, (2.2.29)])

‰.k; x/ D f .�k; x/C f .k; x/S.k/; k 2 R. (5.19)

The physical solution ‰.k; x/ is the main input to construct the generalized Fourier

maps F˙ for the absolutely continuous subspace ofH that are defined in [9, (4.3.44)]

(see also [9, Proposition 4.3.4]),

.F˙Y /.k/ D
r

1

2�

1Z

0

.‰ .�k; x//� Y.x/ dx; (5.20)

for Y 2 L1.RC;Cn/ \L2.RC;Cn/:

We have (see [9, (4.3.46)])

kF˙Y kL2.RC;Cn/ D kE.RCIH/Y kL2.RC;Cn/: (5.21)

Thus, F˙ extend to bounded operators on L2.RC;Cn/ that we also denote by F˙:
The following results on the spectral theory ofH are proven in [9,Theorems 3.11.1

and 4.3.3 and Proposition 4.3.4].
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Theorem 5.5. Suppose that the potential V satisfies (1.3) and (5.2), and that the con-

stant matrices A; B fulfill (1.5) and (1.6). Then the Hamiltonian H has no positive

eigenvalues and the negative spectrum ofH consists of isolated eigenvalues of multi-

plicity smaller or equal than n that can accumulate only at zero. Furthermore,H has

no singular continuous spectrum and its absolutely continuous spectrum is given by

Œ0;1/. The generalized Fourier maps F˙ are partially isometric with initial subspace

Hac .H/ and final subspace L2.RC;Cn/. Moreover, the adjoint operators are given

by

..F˙/�Z/.x/ D
r

1

2�

1Z

0

‰.�k; x/Z.k/ dk; (5.22)

for Z 2 L1.RC;Cn/ \L2.RC;Cn/: Furthermore,

F˙H.F˙/� D M; (5.23)

where M is the operator of multiplication by k2: If, in addition, V 2 L1
1.R

C; Mn/;

then 0 is not an eigenvalue and the number of eigenvalues ofH including multiplicit-

ies is finite.

Note that, by (5.21), .F˙/�F˙ is the orthogonal projector onto Hac.H/;

.F˙/�F˙ D Pac.H/: (5.24)

We denote by F0 the cosine transform,

.F0Y / .k/ WD
r
2

�

1Z

0

dx cos.kx/Y.x/; Y 2 L2.RC/: (5.25)

F0 coincides with the generalized Fourier maps for H0 given by Theorem 5.5.

The following theorem, proven in [9, Theorem 4.4.3], gives the stationary formu-

lae for the wave operators.

Theorem 5.6. Suppose that V satisfies (1.3) and (5.2). Then the wave operators

W˙.H;H0/ exist and are complete. Further, the following the stationary formulae

hold:

W˙.H;H0/ D .F˙/�F0: (5.26)

5.2. Lp-boundedness of the wave operators in the half-line

We prepare the following proposition.
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Proposition 5.7. Suppose that Y 2 L2.R;Cn/: Then

F
�1

�
�RC.k/.F Y /.k/

�
.x/ D i

2
.HY /.x/C 1

2
Y.x/; x 2 R; (5.27)

and

F
�
�RC.k/.F �1Y /.k/

�
.x/ D �i

2
.HY /.x/C 1

2
Y.x/; x 2 R: (5.28)

Proof. The proof is an immediate consequence of [21, equations (3) and (4)].

Proof of Theorem 3.1. Let us first take Y 2 C1
0 .RC;Cn/:Note that one has EevenY 2

C1
0 .R;Cn/: By (5.25),

.F0Y /.k/ D .F EevenY /.k/; k 2 R
C: (5.29)

By (5.14), (5.19), (5.22), (5.26), and (5.29),

.W˙.H;H0/Y / .x/ WD
6X

j D1

T
.j /
˙ .x/; (5.30)

where

T
.1/
˙ .x/ WD 1p

2�

Z

R

e˙ikx�RC.k/.F EevenY /.k/ dk; (5.31)

T
.2/
˙ .x/ WD 1p

2�

1Z

x

dzK.x; z/

Z

R

e˙ikz�RC.k/.F EevenY /.k/ dk; (5.32)

T
.3/
˙ .x/ WD 1p

2�

Z

R

e�ikx�RC.k/S1.F EevenY /.k/ dk; (5.33)

T
.4/
˙ .x/ WD 1p

2�

1Z

x

dz K.x; z/

Z

R

e�ikz�RC.k/S1.F EevenY /.k/ dk; (5.34)

T
.5/
˙ .x/ WD 1p

2�

Z

R

e�ikx�RC.k/.S.�k/ � S1/.F EevenY /.k/ dk; (5.35)

and

T
.6/
˙ .x/ WD 1p

2�

1Z

x

dzK.x; z/

Z

R

e�ikz�RC.k/.S.�k/ � S1/.F EevenY /.k/ dk:

(5.36)

Observe that

.F EevenY /.k/ D .F �1
EevenY /.k/; k 2 R: (5.37)
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It follows from Proposition 5.7, and (5.30)–(5.37) that (3.3) holds for Y2C1
0 .R

C;Cn/:

Finally, approximating Y 2 Lp.RC;Cn/; 1 < p < 1; by a sequence of functions in

C1
0 .RC;Cn/; it follows that equations (3.3)–(3.6) hold for all Y 2 Lp.RC;Cn/;

1 < p < 1; and that the wave operators W˙.H; H0/ extend to bounded operat-

ors on Lp.RC;Cn/; 1 < p < 1: Here we used the fact that Q.Fs/ is bounded in

Lp.R;Cn/;1�p� 1; since by Theorem 5.4Fs 2L1.R;Cn/; that K.K/ is bounded

in Lp.RC;Cn/; 1 � p � 1; because by (5.13), equations (2.1) hold, and that H is

bounded in Lp.R;Cn/; 1 < p < 1, see [38, 40]. The operator R is clearly bounded

from Lp.R;Cn/ into Lp.RC;Cn/; 1 � p � 1: The wave operators W˙.H;H0/
�

extend to bounded operators on Lp.RC;Cn/; 1 < p < 1; by duality.

Proof of Theorem 3.2. Let us take Y 2C1
0 .RC;Cn/:Recall that EevenY 2C1

0 .R;Cn/;

and that (5.29) holds. By (5.31), (5.33), S1 D In, and since F EevenY is an even func-

tion,

T
.1/
˙ .x/C T

.3/
˙ .x/ D 1p

2�

Z

R

e˙ikx�RC.k/.F EevenY /.k/ dk

C 1p
2�

Z

R

e�ikx�RC.k/.F EevenY /.k/ dk

D EevenY.x/ D Y.x/; x � 0; (5.38)

where in the second integral in the middle equation in (5.38) we made the change of

variable of integration k ! �k; and we used both F EevenY.k/ D F �1EevenY.k/ and

S1 D In: We similarly prove, using (5.32) and (5.34),

T
.2/
˙ .x/C T

.4/
˙ .x/ D .K.K/Y / .x/: (5.39)

Hence, by (5.30), (5.38), and (5.39),

.W˙Y / .x/ D Y.x/C .K.K/Y / .x/C T
.5/
˙ .x/C T

.6/
˙ .x/: (5.40)

By (5.35), (5.36), and the convolution theorem of the Fourier transform,

T
.5/
˙ .x/ D .Q.P˙/EevenY /.x/; x � 0; (5.41)

and

T
.6/
˙ .x/ D .K.K/RQ.P˙/EevenY / .x/; (5.42)

whereP˙ is defined in (3.7). Equation (3.8) for Y 2C1
0 .RC;Cn/ follows from (5.40),

(5.41), and (5.42). Moreover, as R is bounded from Lp.R;Cn/ into Lp.RC;Cn/;

1 � p � 1; Eeven is bounded from Lp.RC;Cn/ into Lp.R;Cn/; 1 � p � 1 and
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K.K/ is bounded inLp.RC;Cn/;1�p � 1; because by (5.13) equations (2.1) hold.

Moreover, by the Schwarz inequality,

kP˙kL1.R;M n/ � k.1C jxj2/�1=2kL2.RC/k.1C jxj2/1=2P˙kL2.R;M n/

� Ck�RC.k/.S.�k/� S1/kH.1/.R;Mn/: (5.43)

By the definition of S.k/ in (5.15) and by [9, Proposition 3.2.4 and Theorems 3.81,

and 3.9.15],S.k/ is differentiable for k2R;with continuous derivative for k2R n ¹0º:
Then, since S.0/DS1 and by Proposition A.3, S.k/�S1 2 H.1/.RC;Mn/, we have

�RC.k/.S.�k/� S1/ 2 H.1/.RC;Mn/: Hence, by (5.43), P˙ 2 L1.RC;Mn/; and

then Q.P˙/ is a bounded operator in Lp.R;Cn/; 1 � p � 1: Hence, (3.8) holds

for all Y 2 L2.RC;Cn/ and, moreover, the wave operators W˙.H;H0/ extend to

bounded operators in L1.RC;Cn/ and in L1.RC;Cn/:

We now prove that the adjoint wave operators W˙.H;H0/
� extend to bounded

operators in L1.RC;Cn/ and in L1.RC;Cn/: By (3.8),

.W
�

˙.H;H0/Y /.x/ D Y.x/C
�
K�.K/Y

�
.x/C

�
E

�
evenQ.P˙/

�
R

�Y
�
.x/

C
�
E

�
evenQ.P˙/

�
R

�K.K/�Y
�
.x/: (5.44)

We have

K.K/�Y.x/ D
xZ

0

K�.y; x/Y.y/ dy:

By (5.13), equation (2.1) holds, and then K.K/� is bounded in L1.RC;Cn/ and in

L1.RC;Cn/: Further,

Q�.P˙/Y.x/ D
1Z

�1

P
�
˙.y � x/Y.y/ dy;

and as P
�
˙ 2 L1.R; Mn/; it follows that Q�.P˙/ in bounded L1.R;Cn/ and in

L1.R;Cn/:Moreover, E
�
evenY.x/D Y.x/C Y.�x/; and then, E

�
even is bounded from

L1.R;Cn/ into L1.RC;Cn/ and from L1.R;Cn/ into L1.RC;Cn/: Furthermore,

R
�Y.x/ D

´
Y.x/; x � 0;

0; x < 0;

and it follows that R
� is bounded from L1.R; Cn/ into L1.RC; C

n/ and from

L1.R;Cn/ into L1.RC;Cn/: By (5.44), the adjoint wave operators W˙.H;H0/
�

extend to bounded operators in L1.RC;Cn/ and in L1.RC;Cn/:
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Remark 5.8. The condition S1 D S.0/D In is actually necessary in Theorem 3.2, as

the following example shows. Consider the scalar case, n D 1; with V D 0; Dirichlet

boundary condition, Y.0/ D 0; and boundary matrices, B D �1;A D 0: In this case,

by [9, (3.7.5)], S1 D S.0/ D �1: Further, by [9, (4.3.8)], the generalized Fourier

maps are given by

.F˙Y /.k/ WD �2i 1p
2�

1Z

0

sin kxY.x/ dx: (5.45)

Hence, by (5.26) and (5.29),

W˙.H;H0/Y D ˙RF
�1 sign kF EevenY: (5.46)

Moreover, we have

F
�1�R�.k/F EevenY D F �RC

.k/F �1
EevenY: (5.47)

Then, by (5.27), (5.28), (5.46), and (5.47),

W˙.H;H0/Y D ˙iRHEevenY: (5.48)

Finally, since the Hilbert transform is not bounded in L1.R;C/ and in L1.R;C/
(see [38, 40]), it follows that W˙.H; H0/ are not bounded in L1.RC; C/ and in

L1.RC;C/:

5.3. The Lp-boundedness of the wave operators on the line

Proof of Theorem 4.1. We first prepare some results. Let us denote by H1 the

HamiltonianHA;B;V with the matrices given in (4.6) withƒ D 0; and with the poten-

tial V identically zero. Note that

H0;R D UH1U�: (5.49)

By Theorem 5.6, the wave operators W˙.H1; H0/ exist and are complete. Then,

by [36, Proposition 3], the wave operatorsW˙.H0;H1/ also exists and are complete,

and, furthermore,

W˙.H0;H1/ D W˙.H1;H0/
�: (5.50)

Then, by Theorem 3.1, the wave operatorsW˙.H0;H1/; restricted toL2.RC;C2n/\
Lp.RC;C2n/; 1 < p < 1; extend uniquely to bounded operators in Lp.RC;C2n/;

1 < p < 1: Further, by the chain rule, see [36, Proposition 2],

W˙.H;H1/ D W˙.H;H0/W˙.H0;H1/: (5.51)
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Hence, asW˙.H;H0/ andW˙.H0;H1/; restricted toL2.RC;C2n/\Lp.RC;C2n/;

1 <p <1; extend uniquely to bounded operators inLp.RC;C2n/;1 < p <1; it fol-

lows that also W˙.H;H1/; restricted to L2.RC;C2n/\ Lp.RC;C2n/; 1 < p < 1;

extend uniquely to bounded operators in Lp.RC;C2n/; 1 < p < 1: Finally, by (4.2)

and (5.49),

W˙.HR;H0;R/ D UW˙.H;H1/U
�; (5.52)

and, as U is bounded from Lp.RC;C2n/ into Lp.R;Cn/; and U� is bounded from

Lp.R;Cn/ into Lp.RC;C2n/; 1 � p � 1; we have that W˙.HR; H0;R/ restric-

ted to L2.R;Cn/ \ Lp.R;Cn/; 1 < p < 1; extend uniquely to bounded operators

in Lp.R;Cn/; 1 < p < 1: By duality, the adjoint wave operators W˙.HR; H0;R/
�

extend uniquely to bounded operators in Lp.R;Cn/; 1 < p < 1:

We now proceed to prove that the wave operators W˙.HR; H0;R/ are bounded

in L1.R;Cn/ and in L1.R;Cn/; as stated in Theorem 4.2. We first prepare some

results.

Let us denote by A1; B1 the matrices (4.6) with ƒ D 0: Then, H1 D HA1;B1;0:

Let zA1; zB1 be the matrices related to A1; B1 as in (5.3), (5.4), and (5.5) for some

invertible matrices T1;1; T2;1 and some unitary matrix M1: Hence,

A1 D M1
zA1T1;1M

�
1T2;1; B1 D M1

zB1T1;1M
�
1T2;1:

To simplify the notation, we set zH1 WD H zA1; zB1;0: Applying (5.9) to H1 and zH1 we

obtain

H1 D M1
zH1M

�
1: (5.53)

Let us denote by F˙
1 ; respectively zF˙

1 ; the generalized Fourier maps for H1 and for
zH1 defined in (5.20). Then, by (5.53), we get (see [9, (4.3.35)])

F˙
1 D M1

zF˙
1 M

�
1: (5.54)

By (5.26), (5.50), (5.51), and as F0 D F
�
0 D F �1

0 ; W˙.H; H1/ D
�
F˙��

F˙
1 ; and

using (5.54) we prove

W˙.H;H1/ D .F˙/�M1
zF˙

1 M
�
1: (5.55)

To use (5.55) to study the boundedness of the wave operators, we need to compute

explicitly the unitary matrix M1: For this purpose, we first introduce the following

unit vectors in C
2n:

Y .j / WD
�
0; : : : ;

1p
2
; 0; 0 : : : ;� 1p

2
; 0; : : : ; 0

�T

; j D 1; : : : ; n; (5.56)
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with components that take the value 1p
2

at the component j ; the value � 1p
2

at the

component j C n; 1 � j � n; and all the other components are zero. Further, we

define the following unit vectors in C
2n:

Y .j / WD
�
0; : : : ;

1p
2
; 0; 0 : : : ;

1p
2
; 0; : : : ; 0

�T

; j D nC 1; : : : ; 2n; (5.57)

with components that take the value 1p
2

at the component j � n; the value 1p
2

at the

component j; nC 1 � j � 2n; and all the other components are zero.

Proposition 5.9. Let A1; B1 be the matrices (4.6) with ƒ D 0; and let zA1; zB1 be the

matrices related to A1; B1 as in (5.3), (5.4), and (5.5) for some invertible matrices

T1;1; T2;1 and some unitary matrix M1:

1. We have

zA1 D
²
0n 0n

0n �In

³
: (5.58)

2. We have

zB1 D
²�In 0n

0n 0n

³
: (5.59)

3. The boundary conditions (5.4) are given by

Yj .0/ D 0; j D 1; : : : ; n; Y 0
j .0/ D 0; j D nC 1; : : : ; 2n: (5.60)

That is to say, the first n components of Y satisfy the Dirichlet boundary con-

dition, and the last n components fulfill the Neumann boundary condition.

4. The unitary matrix M1 is given by

M1 D ¹Y .1/Y .2/ : : : Y .2n/º: (5.61)

5. The invertible matrices T1;1 and T2;1 are given by

T1;1 D
²�In 0n

0n iIn

³
; (5.62)

T2;1 D
²�In iIn

In iIn

³
: (5.63)

Proof. We use the notation of the proof of [9, Proposition 3.4.5]. We denote E WDq
A

�
1A1 C B

�
1B1 and U WD .B1 � iA1/E

�2.B
�
1 � iA�

1/: Then, by (4.6) and a simple

computation, we get

U D
²
0 �In

�In 0

³
:
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It is easily verified that the Y .j /; j D 1; : : : ; n; are eigenvectors of U with eigen-

values 1, and that the vectors Y .j /; j D n C 1; : : : ; 2n; are eigenvectors of U with

eigenvalue �1. Then, the columns of M1 are an orthonormal system of eigenvectos of

U and, in consequence, M1 diagonalizes U; as required in [9, (3.4.39)]; M
�
1UM1 D

diag¹1; : : : ; 1;�1; : : : ;�1º is the matrix with the first n diagonal entries equal to 1,

the second n diagonal entries equal to �1, and all other entries equal to 0. This proves

that (4) is satisfied. Using the notation [9, (3.4.41)], with P D I2n, we get M
�
1UM1 D

diag¹e2�1 ; : : : ; e2i�2n º D diag¹1; : : : ;1;�1; : : : ;�1º; 0 < �j ��; j D 1; : : : ;2n: Then,

�1 D �2 D � � � D �n D �; and �nC1 D �nC2 D � � � D �2n D �=2; and (1)–(3) hold.

That (5) holds is immediate, since, by the definition of T1;1 and T2;1 in [9, p. 103], we

have T1;1 WD . zB1 C i zA1/
�1 and T2;1 WD B1 C iA1:

Let us denote Q C
1 .k; x/ WD Q 1.�k; x/ and Q �

1 .k; x/ WD Q 1.k; x/;where Q 1.k; x/

is the physical solution of zH1: By [9, (4.3.6) and (4.3.7)],

Q ˙
1 .k; x/ D ¹˙2i sin kx; : : : ;˙2i sin kx; 2 cos kx; : : : ; 2 coskxº (5.64)

is the diagonal matrix with the first n diagonal components equal to ˙2i sin kx and

the last n diagonal components equal to 2 coskx: Further, by [9, (4.3.8)],

.zF˙
1 Y /.k/ D

r
1

2�

1Z

0

Q ˙
1 .k; x/

�Y.x/ dx: (5.65)

By (5.64) and (5.65),

.zF˙
1 Y /.k/ D R.˙.F EoddYC/.k/; .F EevenY�/.k//

T : (5.66)

We denote

W˙;M1
.H;H1/ WD M

�
1W˙.H;H1/M1; (5.67)

SM1
.k/ WD M

�
1S.k/M1; k 2 R: (5.68)

and

S1;M1
WD M

�
1S1M1; k 2 R: (5.69)

Using (5.19), (5.22), (5.55), and (5.66)–(5.69) we prove

.W˙;M1
.H;H1/Y /.x/ WD

6X

j D1

J
.j /
˙ .x/; (5.70)

where

J
.1/
˙ .x/ WD 1p

2�

Z

R

e˙ikx�RC.k/
�
˙.F EoddYC/.k/; .F EevenY�/.k/

�T
dk; (5.71)
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J
.2/
˙ .x/ WD 1p

2�
M

�
1

1Z

x

dzK.x; z/M1

�
Z

R

e˙ikz�RC.k/
�
˙.F EoddYC/.k/; .F EevenY�/.k/

�T
dk:

(5.72)

J
.3/
˙ .x/ WD 1p

2�

Z

R

e�ikx�RC.k/S1;M1

�
˙.F EoddYC/.k/; .F EevenY�/.k/

�T
dk;

(5.73)

J
.4/
˙ .x/ WD 1p

2�

1Z

x

dz M
�
1K.x; z/M1

�
Z

R

e�ikz�RC.k/S1;M1

�
˙.F EoddYC/.k/; .F EevenY�/.k/

�T
dk;

(5.74)

J
.5/
˙ .x/ WD 1p

2�

Z

R

e�ikx�RC.k/.SM1
.�k/ � S1;M1

/

�
�
˙.F EoddYC/.k/; .F EevenY�/.k/

�T
dk; (5.75)

J
.6/
˙ .x/ WD

1Z

x

dz M
�
1K.x; z/M1

1p
2�

�
Z

R

e�ikz�RC.k/.SM1
.�k/ � S1;M1

/

�
�
˙.F EoddYC/.k/; .F EevenY�/.k/

�T
dk: (5.76)

We denote

P˙;M1
.x/ WD M

�
1P˙.x/M1; (5.77)

where P˙ is defined in (3.7).

Theorem 5.10. Suppose that V fulfills (1.3), that V 2 L1

 .R

C;M2n/; 
 >
5
2

, that the

constant matrices A;B are given by (4.6) with ƒ D 0; and that

S.0/ D S1 D
²
0n In

In 0n

³
; (5.78)

where 0n and In are, respectively, the n� n zero matrix and the n� n identity matrix.

Then, for all Y 2 L2.RC;C2n/, we have

W˙.H;H1/Y D Y C K.K/Y C M1RQ.P˙;M1
/
�
�Eodd.M

�
1Y /C;Eeven.M

�
1Y /�

�T
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C K.K/M1RQ.P˙;M1
/
�
�Eodd.M

�
1Y /C;Eeven.M

�
1Y /�

�T
:

(5.79)

The wave operators W˙.H; H1/ and W˙.H; H1/
� restricted to L2.RC; C2n/ \

L1.RC; C2n/, respectively to L2.RC; C2n/ \ L1.RC; C2n/; extend to bounded

operators onL1.RC;C2n/ and to bounded operators onL1.RC;C2n/: The 2n� 2n
matrix valued functionK.x;y/;x;y 2 R

C, is defined in (5.12). Moreover, the 2n� 2n
matrix valued function P˙;M1

.x/ is defined in (5.77). The scattering matrix S.k/;

k 2 R; is defined in (5.15) and the quantity S1 in (5.16).

Proof of Theorem 5.10. By (5.61), (5.68), (5.69), and (5.78),

SM1
.0/ D S1;M1

D
²�In 0n

0n In

³
: (5.80)

Then, by (5.70)–(5.77), and (5.80),

W˙;M1
.H;H1/Y D Y C M

�
1K.K/M1Y C RQ.P˙;M1

/.�EoddYC;EevenY�/
T

C M
�
1K.K/M1RQ.P˙;M1

/.�EoddYC;EevenY�/
T : (5.81)

Equation (5.79) follows from (5.67) and (5.81). By (5.77),

kP˙;M1
kL1.R;M2n/ D kP˙kL1.R;M2n/: (5.82)

As we already proved in the proof of Theorem 3.2 that P˙ 2 L1.R;M2n/, it follows

from (5.82) that P˙;M1
2 L1.R;M2n/:Hence,Q.P˙;M1

/ is bounded in L1.R;C2n/

and in L1.R; C
2n/: We already proved in the proof Theorem 3.2 that K.K/

is bounded in L1.RC; C2n/ and in L1.RC; C2n/ and that R is bounded from

L1.R;C2n/ into L1.RC;C2n/ and from L1.R;C2n/ into L1.RC;C2n/: Clearly,

Eeven is bounded from L1.R;C C
2n/ into L1.R;C2n/ and from L1.RC;C2n/ into

L1.R;C2n/: Moreover, it is clear that Eodd is also bounded from L1.R;C C
2n/ into

L1.R;C2n/ and from L1.RC;C2n/ into L1.R;C2n/: Then, by (5.79) the wave

operators W˙.H;H1/ extend to bounded operators on L1.RC;C2n/ and to bounded

operators on L1.RC;C2n/: By (5.81) and taking the adjoints, we obtain

W
�

˙;M1
.H;H1/Y D Y C M

�
1K.K/�M1Y

C
�
�E

�
odd.Q.P˙;M1

/�R
�Y /C;E

�
even.Q.P˙;M1

/�R
�Y /�

�

C
�
�E

�
odd.Q.P˙;M1

/�R
�
M

�
1K.K/�M1Y /C;

E
�
even.Q.P˙;M1

/�R
�
M

�
1K.K/�M1Y /�

�
: (5.83)

We saw in the proof of Theorem (3.2) that K.K/� is bounded in L1.RC;C2n/ and

in L1.RC;C2n/: The fact that E
�
even and E

�
odd are bounded from L1.R;C2n/ into
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L1.RC;C2n/ and from L1.R;C2n/ into L1.RC;C2n/; and that R
� is bounded

from L1.RC;C2n/ into L1.R;C2n/ and from L1.RC;C2n/ into L1.R;C2n/ fol-

lows immediately. Further, as kP �

˙;M1
kL1.R;M2n/ D kP˙;M1

kL1.R;M2n/ and since we

already proved that P˙;M1
2 L1.RC;M2n/; we obtain, P

�

˙;M1
2 L1.RC;M2n/; and

then, as

Q.P˙;M1
/�Y.x/ D

1Z

�1

P
�

˙;M1
.y � x/Y.y/ dy;

it follows that Q˙.PM1
/� is bounded in L1.R;C2n/ and in L1.R;C2n/: Finally,

it follows from (5.83) that the wave operators W
�

˙;M1
.H; H1/ extend to bounded

operators onL1.RC;C2n/ and to bounded operators onL1.RC;C2n/; and by (5.67)

this also holds for the wave operatorsW
�

˙.H;H1/:

Using the unitary transformation U given in (4.1), we obtain our result on the

boundedness of the wave operators on the line, from Theorem 5.10. However, since

Theorem 5.10 involves both S.0/ and S1; we first introduce some concepts from

the stationary scattering theory of matrix Schrödinger operators on the line that we

quote from [6]. Under the assumption that V 2 L1
1.R;C

n/; the Jost solution from the

left fl .k; x/; x 2 R, k 2 CC; is the n � n matrix-valued solution to the Schrödinger

equation on the line

� d2

dx2
Y.x/C V.x/Y.x/ D k2Y.x/; x 2 R; (5.84)

that satisfies

fl .k; x/ D eikx ŒIn C o.1/�; f 0
l .k; x/ D eikx ŒikIn C o.1/�; x ! 1: (5.85)

Further, for k 2 R n ¹0º; fl .k; x/ fulfills

fl .k; x/ D al.k/e
ikx C bl.k/e

�ikx C o.1/; x ! �1: (5.86)

Similarly, the Jost solution from the right fr .k; x/; x 2 R, k 2 CC; is the n � n

matrix-valued solution to the Schrödinger equation (5.84) such that

fr .k; x/ D e�ikxŒIn C o.1/�; f 0
r .k; x/ D e�ikxŒ�ikIn C o.1/�; x ! �1:

(5.87)

Moreover, for k 2 R n ¹0º; fr .k; x/ fulfills

fr .k; x/ D ar.k/e
�ikx C br.k/e

ikx C o.1/; x ! 1: (5.88)

The transmission coefficient from the left Tl .k/ and the transmission coefficient from

the right Tr.k/ are defined by

Tl .k/ WD 1

al .k/
; Tr .k/ WD 1

ar.k/
: (5.89)
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The reflection coefficient from the left L.k/ and the reflection coefficient from the

right R.k/ are given by

L.k/ WD bl .k/

al.k/
; R.k/ WD br.k/

ar.k/
: (5.90)

The physical solution from the left ‰l .k; x/ is defined as

‰l.k; x/ WD Tl .k/fl.k; x/: (5.91)

Then, ‰l.k; x/ satisfies

‰l.k; x/ D
´
T .k/eikx C o.1/; x ! 1;

eikx C e�ikxL.k/C o.1/; x ! �1:
(5.92)

The physical solution from the left corresponds to a scattering process where a particle

is incident from the left with unit amplitude; it is reflected with amplitude L.k/ and

it is transmitted with amplitude Tl.k/: Similarly, the physical solution from the right

‰r.k; x/ is defined as

‰r.k; x/ WD Tr.k/fr.k; x/: (5.93)

Hence, ‰r.k; x/ satisfies

‰r.k; x/ D
´
e�ikx C eikxR.k/C o.1/ x ! 1;

Tr.k/e
�ikx C o.1/ x ! �1:

(5.94)

The physical solution from the right corresponds to a scattering process where a

particle is incident from the right with unit amplitude; it is reflected with amplitude

R.k/ and it is transmitted with amplitude Tr.k/:

The scattering matrix on the line SR.k/ is defined as follows:

SR.k/ WD
²
Tl .k/ R.k/

L.k/ Tr.k/

³
: (5.95)

Using our results, we can directly define the physical solutions from the left and from

the right from the physical solution‰.k;x/; k 2 R n ¹0º; given in (5.19), by means of

our unitary transformation U, given in (4.1). We proceed as follows. Let us denote by

‰.1/.k; x/ the 2n� nmatrix with the first n columns of‰.k; x/ and let‰.2/.k; x/ be

the 2n � n matrix with the second n columns of ‰.k; x/: Then, by (5.10) and (5.19),

¹U‰.1/ºij D
´
e�ikxıi;j C eikx¹Sºi;j .k/C o.1/; x ! 1; 1 � i; j � n;

e�ikx¹SºnCi;j .k/C o.1/; x ! �1; 1 � i; j � n:

(5.96)
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Further, by (5.94) and (5.96), for 1 � i; j � n; we define

¹‰r .k; x/ºi;j WD ¹U‰.1/ºij ; (5.97a)

¹Tr ºi;j .k/ WD ¹SºnCi;j .k/; (5.97b)

Ri;j .k/ WD ¹Sºi;j .k/: (5.97c)

Moreover,

¹U‰.2/ºij D
´
eikx¹Sºi;nCj .k/C o.1/; x ! 1; 1 � i; j � n;

eikxıi;j C e�ikx¹SºnCi;nCj .k/C o.1/; x ! 1; 1 � i; j � n:

(5.98)

Then, by (5.92) and (5.98), for 1 � i; j � n, we define

¹‰l .k; x/ºi;j WD ¹U‰.2/ºij ; (5.99a)

¹Tlºi;j .k/ WD ¹Sºi;nCj .k/: (5.99b)

Li;j .k/ WD ¹SºnCi;nCj .k/: (5.99c)

Moreover, by (5.97), (5.99), for 1 � i; j � n, we can directly define the scattering

matrix on the line from the scattering matrix on the half line as follows:

SR.k/ WD
²
Tl.k/ R.k/

L.k/ Tr.k/

³
; (5.100a)

where

¹Trºi;j .k/ WD ¹SºnCi;j .k/; (5.100b)

¹Rºi;j .k/ WD ¹Sºi;j .k/; (5.100c)

¹Tlºi;j .k/ WD ¹Sºi;nCj .k/; (5.100d)

¹Lºi;j .k/ WD ¹SºnCi;nCj .k/: (5.100e)

Note that, by (5.100),

S.0/ D S1 D
²
0n In

In 0n

³
() SR.0/ D SR;1 D

²
In 0n

0n In

³
; (5.101)

where we denote

SR;1 D lim
jkj!1

SR.k/: (5.102)

Proof of Theorem 4.2. By (4.2) and (5.49),

W˙.HR;H0;R/ D UW˙.H;H1/U
�: (5.103)

Then, the theorem follows from Theorem 5.10 and (5.101).
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A. The scattering matrix for potentials in L1

.RC; Mn/; 2 � 
 � 3

In this appendix we always assume that V 2 L1

 .R

C;Mn/; 2 � 
 � 3: By the defini-

tion of S.k/ in (5.15) and by [9, Proposition 3.2.4, Theorems 3.81 and 3.9.15], S.k/

is differentiable for k 2 R; with continuous derivative for k 2 R n ¹0º; provided that

V 2 L1
2.R

C/: We denote by PS.k/ the derivative of S.k/: Moreover, by [9, The-

orem 3.10.6],

S.k/ � S1 D O
� 1

jkj
�
; jkj ! 1: (A.1)

We now consider the high-energy behavior of the derivative of S.k/:

Proposition A.1. Suppose that (1.3) is satisfied, that V 2 L1
2.R

C/; and that the con-

stant matrices A;B satisfy (1.5), and (1.6). Then

PS.k/ D O
� 1

jkj
�
; jkj ! 1: (A.2)

Proof. By [9, Proposition 3.9.1], Pm.k; x/ and Pm0.k; x/ exist for x 2 Œ0;1/ and k 2
CC; they are analytic in k 2 C

C and continuous in k 2 CC for each x 2 Œ0;1/; and

they are continuous in x 2 Œ0;1/ for each k 2 CC: Moreover, by [9, (3.2.30)],

m.k; 0/ D I CO
� 1

jkj
�
; k ! 1 in CC: (A.3)

Further, by [9, (3.9.3), (3.94), (3.9.15), and (3.9.17)] and (A.3),

Pm.k; 0/ D O
� 1

jkj
�
; Pm0.k; 0/ D O.1/; k ! 1 in CC: (A.4)

By (5.11),

PJ.k/ D � Pm.�k; 0/�B � im.�k; 0/�AC ik Pm.�k; 0/�AC Pm0.�k; 0/�A; k 2 R:

(A.5)

Then, by (A.3)–(A.5),

PJ.k/ D O.1/ACO
� 1

jkj
�
; jkj ! 1 in R: (A.6)

Further, by (5.15),

PS.k/ D
� PJ.�k/J0.�k/�1

��
J0.�k/J0.k/

�1
��
J0.k/J.k/

�1
�

C
�
J.�k/J0.�k/�1

��
J0.�k/J0.k/

�1
��
J0.k/J.k/

�1
�

�
� PJ.k/J0.k/

�1
��
J0.k/J.k/

�1
�
: (A.7)
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By (A.6) and [9, (3.7.11) and (3.7.12)],

PJ.�k/J0.�k/�1 D O
� 1

jkj
�
; jkj ! 1 in R: (A.8)

Moreover, by [9, (3.6.3) (3.7.3), and (3.7.4)],

J0.�k/J0.k/
�1 D O.1/; k ! 1 in C: (A.9)

Further, by [9, (3.10.17) and (3.10.18)],

J.k/J0.k/
�1 D I CO

� 1

jkj
�
; J0.k/J.k/

�1 D I CO
� 1

jkj
�
; k ! 1 in CC:

(A.10)

Finally, by (A.7)–(A.10), we obtain

PS.k/ D O
� 1

jkj
�
; jkj ! 1:

We now study the low-energy behavior of PS.k/:

Proposition A.2. suppose that (1.3) holds and that the constant matrices A; B sat-

isfy (1.5), and (1.6).Then

a. in the generic case where J.0/ is invertible, if V 2 L1
2.R

C/;

PS.k/ D O.1/; jkj ! 0I (A.11)

b. in the exceptional case where J.0/ is not invertible, if V 2L1

 .R

C/;2� 
 � 3;

PS.k/ D O.jkj
�3/; jkj ! 0: (A.12)

Proof. As in [9], we denote m.k; x/ WD e�ikxf .k; x/: Note that m.0; x/ D f .0; x/:

By [9, (3.2.13), (3.2.14), (3.2.15), and (3.2.16)] and since

jez � 1j � C
jzj

1C jzj ; z 2 C; (A.13)

we have

jm.k; x/j � C; k 2 CC; x 2 R
C; (A.14)

provided that V 2 L1
1.R

C/: By [9, (3.9.15)],

j Pm.k; x/j � C; k 2 CC; x 2 R
C: (A.15)

By [9, (3.9.17)],

j Pm0.k; x/j � C; k 2 CC; x 2 R
C: (A.16)
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Further, by (A.14) and (A.15),

jm.k; x/�m.0; x/j � C minŒjkj; 1�; k 2 CC; x 2 R
C: (A.17)

Moreover, by [9, (3.9.239)],

S.k/ D S.0/C k PS.0/C o .jkj/ ; k ! 0: (A.18)

By (5.15),

PS.k/ D PJ.�k/J.k/�1 C J.�k/J.k/�1 PJ.k/J.k/�1

D PJ.�k/J.k/�1 � S.k/ PJ.k/J.k/�1: (A.19)

If J.0/ is invertible, (A.11) follows from Proposition 5.2, (A.5), (A.14), (A.15),

(A.16), and the first equality in (A.19). This proves item (a). Let us prove (b). By [9,

(3.9.3)],

Pm.k; x/ D Pm0.k; x/C 1

2ik

1Z

x

dy Œe2ik.y�x/ � 1�V .y/ Pm.k; y/; (A.20)

where

Pm0.k; x/ WD 1

2ik2

1Z

x

dy Œe�2ik.y�x/ � 1C 2ik.y � x/�e2ik.y�x/V.y/m.k; y/:

(A.21)

Further, taking the limit as k ! 0 in (A.20) and (A.21), and using (A.14) and (A.15),

we obtain

Pm.0; x/ D Pm0.0; x/C
1Z

x

dy .y � x/V.y/ Pm.0; y/; (A.22)

with

Pm0.0; x/ WD i

1Z

x

dy .y � x/2e2ik.y�x/V.y/m.0; y/: (A.23)

Note that

jez � 1 � zj � C
jzj2
1C jzj ; z 2 C (A.24)

and

jez � 1 � z � z2

2
j � C

jzj3
1C jzj ; z 2 C: (A.25)
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It follows from (A.13), (A.17), (A.21), (A.23), (A.24) and (A.25) that

j Pm0.k; x/� Pm0.0; x/j � C minŒjkj
�2; 1�; k 2 CC; x 2 R
C: (A.26)

By [9, (3.9.6) and (3.9.7)],

Pm.k; x/ D
1X

j D0

Pmj .k; x/; (A.27)

where

Pmj .k; x/ WD 1

2ik

1Z

x

dy Œe2ik.y�x/ � 1�V .y/ Pmj �1.k; x/; j � 1; (A.28)

and the series in (A.27) is uniformly convergent. Taking the limit as k ! 0 in (A.27)

and (A.28) we get

Pm.0; x/ D
1X

j D0

Pmj .0; x/; (A.29)

where

Pmj .0; x/ WD
1Z

x

dy.y � x/V.y/ Pmj �1.0; x/; j � 1: (A.30)

By (A.27) and (A.29),

Pm.k; x/� Pm.0; x/ D Pm0.k; x/� Pm0.0; x/C
1X

j D1

. Pmj .k; x/ � Pmj .0; x//; (A.31)

and, by (A.28) and (A.30), for j � 1;

Pmj .k; x/ � Pmj .0; x/ D
1Z

x

dyV.y/
� 1

2ik
Œe2ik.y�x/ � 1� Pmj �1.k; x/

� .y � x/ Pmj �1.0; x/
�
: (A.32)

By [9, (3.9.11)],

j Pm0.k; x/j � C; k 2 CC; x 2 R
C: (A.33)

Further, by [9, (3.9.12)],

j Pmj .k; x/j �
1Z

x

dyyjV.y/jj Pmj �1.k; y/j; j � 1; k 2 CC; x 2 R
C: (A.34)
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Then, by (A.24), and (A.32), for j � 1;

j Pmj .k; x/� Pmj .0; x/j � C

1Z

x

dy .1C y/2jV.y/jŒjkjj Pmj �1.k; y/j
C j Pmj �1.k; y/� Pmj �1.0; y/j�: (A.35)

Without loss of generality, we can take the constant C in (A.26), (A.33), and (A.35)

bigger or equal than one. Then, using (A.26), (A.33), (A.34), and (A.35), we prove by

mathematical induction that, for j � 0,

j Pmj .k; x/ � Pmj .0; x/j � minŒjkj
�2; 1�.j C 1/C j C1 1

j Š

� 1Z

x

dy.1C y/2jV.y/j
�j

;

(A.36)

for k 2 CC, x 2 RC, Then, by (A.31) and (A.36),

j Pm.k; x/� Pm.0; x/j

� C minŒjkj
�2; 1�eC
R 1

x dy .1Cy/2jV.y/j
�
1C C

1Z

x

dy .1C y/2jV.y/j
�

� C1 minŒjkj
�2; 1�; k 2 CC; x 2 R
C; (A.37)

for a constant C1:

Furthermore, taking the derivative with respect to k in both sides of [9, (3.2.7)]

we get

Pm0.k;x/D �2i
1Z

x

dy .y � x/e2ik.y�x/V.y/m.k;y/�
1Z

x

dy e2ik.y�x/V.y/ Pm.k;y/:

(A.38)

Taking the limit as k ! 0 in (A.38) and using (A.14) and (A.15), we obtain

Pm0.0; x/ D �2i
1Z

x

dy .y � x/V.y/m.0; y/�
1Z

x

dy V.y/ Pm.0; y/: (A.39)

By (A.13), (A.14), (A.15), (A.17), (A.37), (A.38), and (A.39), it follows that

j Pm0.k; x/� Pm0.0; x/j � C minŒjkj
�2; 1�; k 2 CC; x 2 R
C: (A.40)

Furthermore, by (A.5), (A.15), (A.17), (A.37), and (A.40),

PJ.k/� PJ.0/ D O.jkj
�2/; jkj ! 0 in R: (A.41)

By [9, (3.9.237)],

J.k/�1 D 1

k
M C E1 C o.1/; k ! 0 in CC; (A.42)
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where M and E1 are constant matrices. Then, by (A.18), the second equality in (A.19),

(A.41), and (A.42),

PS.k/ D 1

k
N CO.jkj
�3/; k ! 0; (A.43)

where

N WD PJ.0/M � S.0/ PJ.0/M: (A.44)

In the case 
 D 2; (A.43) gives us (A.12). When, 2 < 
 � 3; from (A.43) we obtain,

for " > 0;

S."/ D S.1/�
1Z

"

dk PS.k/ D S.1/C ln "N CO.1/; " # 0: (A.45)

However, (A.45) is compatible with (A.18) only if N D 0: Hence, by (A.43),

PS.k/ D O.jkj
�3/; k ! 0: (A.46)

This concludes the proof of (A.12).

The results above give us the following proposition:

Proposition A.3. Suppose that V fulfills (1.3) and that the constant matrices A; B

satisfy (1.5) and (1.6). Then, S.k/ � S1 2 H.1/.R;Mn/; provided that in the generic

case, where J.0/ is invertible, V 2 L1
2.R

C/; and in the exceptional case, where J.0/

is not invertible, V 2 L1

 .R

C/; 
 > 5
2
:

Proof. Since S.k/ is differentiable for k 2 R; with continuous derivative for k 2
R n ¹0º; and it satisfies (A.1) (A.2), (A.11), and (A.12), it follows that it belongs to

H.1/.RC;Mn/:
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