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Lowest energy band function for magnetic steps

Wafaa Assaad and Ayman Kachmar

Abstract. We study the Schrödinger operator in the plane with a step magnetic field function.

The bottom of its spectrum is described by the infimum of the lowest eigenvalue band function,

for which we establish the existence and uniqueness of the non-degenerate minimum. We dis-

cuss the curvature effects on the localization properties of magnetic ground states, among other

applications.

1. Introduction

Families of 1D differential operators, dependent on a real parameter, naturally arise

within the large field/semi-classical asymptotics of the magnetic Laplacian [10, 11].

Studying the minimum of the ground state energy with respect to the parameter

defining the family is central in such problems. Ideally, one aspires to the existence

of a unique non-degenerate minimum, but neither this is always the case nor it is

easy to confirm such a behavior. So far, examples where the minimum is unique

and non-degenerate include the celebrated de Gennes model of harmonic oscillat-

ors on the half-axis (see [8, 11, 18] for a discussion in the context of superconduct-

ivity), the Montgomery model [15], higher order anharmonic oscillators [13], and

superconducting-normal interface operators [22]. Other interesting families of oper-

ators appear in [14]. Non-linear models are discussed in [7, 12, 16, 24]. In the present

paper, we consider the linear model of magnetic steps studied in [9,19] and prove the

uniqueness and non-degeneracy of the minimum.

1.1. The planar magnetic step operator

Let a 2 Œ�1;1/ n ¹0º. We define the self-adjoint magnetic Schrödinger operator on the

plane

La D @2
x2

C .@x1
C i�x2/

2; .x1; x2/ 2 R
2; (1)
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where � is a step function defined as follows:

�.x1; x2/ D 1RC
.x2/C a1R�

.x2/: (2)

The operator La is invariant with respect to translations in the x1-direction; there-

fore it can be fibered and reduced to a family of 1D Schrödinger operators on L2.R/,

haŒ��, after a Fourier transform along the x1-axis (see [19, 26]). The fiber operators

haŒ��, parametrized by � 2 R, are defined in Section 1.2.

We have the following link between the spectra of the operators La and haŒ��

(see [19] and [11, Section 4.3]):

sp
�

La

�

D
[

�2R

sp.haŒ��/: (3)

Consequently, the bottom of the spectrum of La, denoted by ˇa, can be computed by

minimizing the ground state energies of the fibered operators haŒ�� (see (10) below).

1.2. The lowest energy band function

Let a 2 Œ�1; 1/ n ¹0º. For all � 2 R, we introduce the operator

haŒ�� D � d2

d�2
C Va.�; �/;

with the potential Va.�; �/ D .� C �.�/�/2, where

�.�/ D 1RC
.�/C a1R�

.�/: (4)

The domain of haŒ�� is given by

Dom.haŒ��/ D
°

u 2 B1.R/W
�

� d2

d�2
C Va.�; �/

�

u 2 L2.R/
±

;

where the space Bn.I / is defined for a positive integer n and an open interval I � R

as follows:

Bn.I / D
°

u 2 L2.I /W � i d
ju

d� j
2 L2.I /; for all i; j 2 s.t. i C j � n

±

: (5)

The quadratic form associated to haŒ�� is

qaŒ��.u/ D
Z

R

�

ju0.�/j2 C Va.�; �/ju.t/j2
�

d� (6)
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defined on B1.R/. The operator haŒ�� is with compact resolvent. We introduce the

lowest eigenvalue of this operator (lowest band function)

�a.�/ D inf
u2B1.R/

u¤0

qaŒ��.u/

kuk2
L2.R/

: (7)

This is a simple eigenvalue, to which corresponds a unique positive L2-normalized

eigenfunction, 'a;� , i.e., satisfying (see [4, Proposition A.2])

'a;� > 0; .haŒ�� � �aŒ��/'a;� D 0;

Z

R

j'a;�.�/j2 d� D 1: (8)

Moreover, the above eigenvalue and eigenfunction depend smoothly on � (see [8,19]),

� 7! �a.�/ and � 7! 'a;� are in C1: (9)

We introduce the step constant (at a) as follows:

ˇa WD inf
�2R

�a.�/; (10)

along with the celebrated de Gennes constant

‚0 WD ˇ�1: (11)

Our main result is the following.

Theorem 1.1. Given a 2 .�1; 0/, there exists a unique �a 2 R such that

ˇa D �a.�a/:

Furthermore, the following holds:

1. �a < 0 and satisfies �00
a.�a/ > 0;

2. jaj‚0 < ˇa < ‚0;

3. the ground state �a WD 'a;�a
satisfies �0

a.0/ < 0 and

�a D �
q

ˇa C �
02
a .0/=�

2
a.0/:

Remark 1.2. 1. The existence of the minimum �a was known earlier [4, 19]. Our

contribution establishes the uniqueness of �a and that it is a non-degenerate minimum.

These new properties were only conjectured in [19] based on numerical computations.

2. The case a D �1 is perfectly understood and can be reduced to the study of

the de Gennes model (family of harmonic oscillators on the half-axis with Neumann
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condition at the origin). In this case, we know the existence of the unique and non-

degenerate minimum ��1 D �
p
‚0, and that the ground state ��1 is an even function

with a vanishing derivative at the origin .�0
�1.0/ D 0).

3. Our comparison result ˇa < ‚0 is also new. It was conjectured in [4] based

on numerical computations.1 This comparison has an interesting application to the

existence of superconducting magnetic edge states (see Section 4.4).

4. The sign of �0
a.0/ has an important application too, namely in determining the

localization properties of ground states for the Schrödinger operator with magnetic

steps and in the large field asymptotics. That will be discussed in Section 4.3.

5. In the case a 2 .0; 1/, we have ˇa D a and �a.�/ does not achieve a minimum.

The proof of Theorem 1.1 follows the outline below.

• First, we establish the inequality ˇa <‚0 by constructing a test function involving

the ground state of a harmonic oscillator on the half-axis with Neumann condition

at the origin (see Proposition 3.1). Using the foregoing inequality and a connection

to a Robin problem on the half-axis, we establish in Proposition 3.2 the result on

the sign of the derivative of the positive ground state, �0
a.0/ < 0.

• Again, observing an interesting relation with a model Robin problem on the half-

axis, we compute �00
a.�a/ and prove that it is negative (see Proposition 3.3).

The rest of the paper is organized as follows. In Section 2, we recall a model prob-

lem of harmonic oscillators on the half-axis with Robin/Neumann condition at the

origin, which provides us with the main ingredients of the proof of Theorem 1.1 in

Section 3. Section 4 presents consequences of Theorem 1.1 on the large field/semi-

classical asymptotics of magnetic Schrödinger operators (Theorem 4.5) and on the

non-linear Ginzburg–Landau model of superconductivity (Section 4.4 and Figure 2).

2. The Robin model on the half line

We discuss in this section a model operator introduced in [21,23]. Let � and  be two

real parameters. We introduce the family of harmonic oscillators on RC,

HŒ; �� D � d2

d�2
C .� C �/2; (12)

with the following operator domain (accommodating functions satisfying the Robin

condition at the origin)

Dom.HŒ; ��/ D ¹u 2 B2.RC/W u0.0/ D u.0/º: (13)

1Many thanks to V. Bonnaillie-Noël for the numerical computations and [4, Figure 5].
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The quadratic form associated to HŒ; �� is

B1.RC/ 3 u 7! qŒ; ��.u/ D
Z

RC

�

ju0.�/j2 C j.� C �/u.�/j2
�

d� C  ju.0/j2:

The operator HŒ; �� is with compact resolvent, hence its spectrum is an increasing

sequence of eigenvalues �j .; �/, j 2 N
�. Furthermore, these eigenvalues are simple

(see [11, Section 3.2.1] for the argument). Consequently, we introduce the corres-

ponding orthonormal family of eigenfunctions u
j

;�
satisfying

u
j

;�
.0/ > 0: (14)

The condition in (14) determines the normalized eigenfunction uniquely, because

u
j

;�
.0/ 6D 0, otherwise it will vanish everywhere by Cauchy’s uniqueness theorem,

since .u
j

;�
/0.0/ D u

j

;�
.0/ and

� d2

d�2
u

j

;�
C .� C �/2u

j

;�
D �j .; �/u

j

;�
on RC:

The perturbation theory ensures that the functions

� 7! �j .; �/; � 7! u
j

;�
;  7! �j .; �/;  7! u

j

;�
(15)

are C1. The reader is referred to [25] (for general perturbation theory) and [11, The-

orem C.2.2]) for the application in the present context.

The first partial derivatives of the eigenvalues with respect to � and  are as follows

(see [21, 23])

@��
j .; �/ D .�j .; �/� �2 C 2/juj

;�
.0/j2; (16)

@�
j .; �/ D juj

;�
.0/j2: (17)

For  D 0 and j D 1, (16) will be crucial in the proof of Proposition 3.1 establishing

the spectral inequality ˇa <‚0. For  6D 0 and j � 2, both (16) and (17) will be used

in the proof of Proposition 3.3, devoted to the computation of �00
a.�a/.

Using the min-max principle, the lowest eigenvalue is defined as follows:

�.; �/ WD �1.; �/ D inf sp.HŒ; ��/ D inf
u2B1.R/

u¤0

qŒ; ��.u/

kuk2
L2.R/

: (18)

Note that the normalized ground state, u;� , does not change sign on RC, and hence

it is positive by our choice in (14).

For  2 R, we introduce the de Gennes function,

‚./ WD inf
�2R

�.; �/: (19)
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Theorem 2.1 ([8, 21]). The following statements hold.

1. For all � 2 R,  7! �.; �/ is increasing.

2. For all  2 R, lim�!�1 �.; �/ D 1 and lim�!C1 �.; �/ D C1.

3. For all  2 R, the function � 7! �.; �/ admits a unique minimum attained at

�./ WD �
p

‚./C 2: (20)

Furthermore, this minimum is non-degenerate, @2
�
�.; �.// > 0.

4. For all  2 R, �2 � ‚./ < 1.

The Neumann realization. The particular case where  D 0 corresponds to the Neu-

mann realization of the operator HŒ0; ��, denoted by HN Œ��, with the associated

quadratic form qN Œ�� D qŒ0; ��. The first eigenvalue of HN Œ�� is denoted by

�N .�/ D inf sp.HN Œ��/ D �.0; �/; (21)

with the corresponding positive L2-normalized eigenfunction uN
�

WD u0;� .

By a symmetry argument [4, 19], we get that the step constant ˇ�1 (in (10)) satis-

fies

‚0 WD ˇ�1 D ‚.0/: (22)

This universal value‚0 is often named the de Gennes constant in the literature [11,12]

and satisfies ‚0 2 .1
2
; 1/. Numerically (see [6]), one finds ‚0 � 0:59. Note that the

non-degenerate minimum �0 WD �.0/ of �N .�/ satisfies �0 D �
p
‚0.

3. The step model on the line

We analyse the band function �a.�/ introduced in (7) along with the positive normal-

ized ground state 'a;� .

Note that we are focusing on the interesting situation where a 2 .�1; 0/. As men-

tioned earlier, for a 2 .0; 1/, the minimum of �a.�/ is not achieved and the step

constant ˇa D a, see [4, 19]; while for a D �1, the case reduces to the de Gennes

model and ˇ�1 D ‚0.

3.1. Preliminaries

When a 2 .�1; 0/, it is known that a minimum �a exists and must be negative

(�a < 0) [4, Proposition A.7]. Our Theorem 1.1 sharpens this by establishing that

the minimum is unique and non-degenerate. To prove this, new comparison estimates

of the step constant ˇa are needed. These estimates improve the existing ones in the

literature [4, 19].
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The existence of a minimum is due to the behavior at infinity of the band function

�a.�/, namely,

lim
�!�1

�a.�/ D jaj and lim
�!C1

�a.�/ D C1;

and the following estimates on the step constant,

jaj‚0 < ˇa < jaj: (23)

Note that the lower bound (23) results from a simple comparison arguments using

the min-max principle (see [4, Proposition A.6]). Establishing the upper bound is

more tricky and relies on the construction of a trial state related to the Robin model

introduced in Section 2 (see e.g., [4, Theorem 2.6]). Finally, we recall the expression

for the derivative of �a.�/ established in [20] (see also [4, Proposition A.4]).

�0
a.�/ D

�

1 � 1

a

�

�

'0
a;�.0/

2 C .�a.�/� �2/'a;�.0/
2
�

: (24)

3.2. Comparison with the de Gennes constant

Proposition 3.1. Let a 2 .�1; 0/. For ˇa and‚0 as in (10) and (22) respectively, we

have

ˇa < ‚0:

Proof. If a 2 Œ�‚0; 0/, then (23) yields that ˇa < ‚0 and the conclusion of Proposi-

tion 3.1 follows in this particular case.

In the sequel, we fix a 2 .�1;�‚0/. For all � 2 R, we denote by u.�I �/ D uN
�
.�/

the positive ground state of the de Gennes model (corresponding to the eigenvalue

�N .�/ in (21)). We introduce the function g� on R as follows:

g�.�/ D
´

u.� I �/; if t � 0;

cu.� I �=
p

jaj/; if t < 0;
(25)

with c D c� WD u.0I �/=u.0I �=
p

jaj/ > 0 so that g�.0
�/ D g�.0

C/. We observe that

g� is in the form domain of the operator haŒ��. Performing an elementary scaling

argument, we get

qaŒ��.g�/ D �N .�/

Z

RC

jg�.t/j2 dt C jaj�N
� �

p

jaj

�

Z

R�

jg�.t/j2 dt

D �N .�/

Z

R

jg�.t/j2 dt C
�

jaj�N
� �

p

jaj

�

� �N .�/
�

Z

R�

jg�.t/j2 dt:
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We choose now � D �0 WD �
p
‚0 corresponding to‚0 in (22). We get �N .�0/D ‚0

and

qaŒ�0�.g�0
/ D ‚0

Z

R

jg�0
.�/j2 dt C f .jaj/

Z

R�

jg�0
.�/j2 d�;

where f .x/ WD x�N
�

�0p
x

�

�‚0, for x 2 .‚0; 1/. By the min-max principle

ˇa � qaŒ�0�.g�0
/

kg�0
k2

L2.R/

� ‚0 C f .jaj/

Z

R�

jg�0
.�/j2 d�

Z

R

jg�0
.�/j2 d�

:

To get that ˇa < ‚0, it suffices to prove that f .x/ < 0, for x 2 .‚0; 1/.

Let x 2 .‚0; 1/ and ˛ D �0p
x

2 .�1; �0/. By (16) (applied for j D 1 and  D 0),

we can write

f .x/ D x.�N .˛/ � ˛2/ D x
.�N /0.˛/

juN
˛ .0/j2

:

Since ˛ 2 .�1; �0/ and �N .�/ is monotone decreasing on the interval .�1; �0/, we

deduce that .�N /0.˛/ < 0 and eventually f .x/ < 0 as required.

3.3. Variation of the ground state near zero

We pick any �a 2 ��1
a .ˇa/ so that ˇa D �a.�a/, and denote by �a D 'a;�a

the pos-

itive normalized ground state for ˇa (suppressing the dependence of the ground state

on �a). We determine the sign of the derivative of �a at the origin, thereby yielding

that the ground state is a decreasing function in a neighbourhood of 0. This result will

be crucial in deriving the sign of some moments in Section 4.1 later.

Proposition 3.2. For all a 2 .�1; 0/ and �a 2 ��1
a .ˇa/, the positive normalized

ground state �a D 'a;�a
satisfies �0

a.0/ < 0.

Proof. The proof relies on a comparison argument involving the Robin model. Let

a D �0
a.0/=�a.0/. Since the ground state �a is positive, it suffices to prove that

a < 0. The eigenvalue equation haŒ�a��a D ˇa�a written on RC is

´

��00
a.�/C .� C �a/

2�a.�/ D ˇa�a.�/; t > 0;

�0
a.0/ D a�a.0/;

(26)

Consequently, �a is an eigenfunction of the Robin operatorHŒa; �a�, defined in (13),

with a corresponding eigenvalue ˇa. Using the min-max principle, we have

ˇa � �.a; �a/ (27)

where �.a; �a/ is defined in (18).
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If a � 0, then by Theorem 2.1, Proposition 3.1 and (22), we get

�.a; �a/ � �.0; �a/ D �N .�a/ � ‚0 > ˇa;

thereby contradicting (27). This proves that a < 0.

3.4. Uniqueness and non-degeneracy of the minimum

Now, we establish that the minimum of �a.�/ is unique and non-degenerate. The key

in our proof is a tricky connection with the Robin model.

Proposition 3.3. For all a 2 .�1; 0/, there exists �a < 0 such that

��1
a .ˇa/ D ¹�aº and �00

a.�a/ > 0;

where �a.�/ and ˇa are the eigenvalues introduced in (7) and (10) respectively.

Proof. First, note that ��1
a .ˇa/ � R� and is non-empty, by [4, Proposition A.7].

Hence, it suffices to prove that any negative critical point is a non-degenerate local

minimum.

Let � < 0 be a critical point of �a.�/ (i.e., �0
a.�/D 0). For all � 2 R, we introduce

.�/ D a.�/ WD '0
�;a.0/='�;a.0/; (28)

where '�;a is the positive normalized ground state of the operator haŒ��, which is now

an eigenfunction for the Robin problem

´

�'00
�;a
.�/C .� C �/2'�;a.�/ D �a.�/'�;a.�/; � > 0;

'0
�;a
.0/ D .�/'�;a.0/:

(29)

Using this for � D �, we can pick j D j.�/ 2 N such that �a.�/ D �j ..�/; �/, the

j -th min-max eigenvalue of HŒ.�/; ��. By the continuity of the involved functions

and the simplicity of the eigenvalue �j ..�/; �/, we can pick " D ".�/ > 0 such that

�a.�/ D �j ..�/; �/ for all � 2 .� � "; �C "/: (30)

Hence, by (16), (17), and differentiation in (30) with respect to � we get

�0
a.�/ D @��

j ..�/; �/

D
�

�j ..�/; �/� �2 C 2.�/
�

juj

.�/;�
.0/j2 C  0.�/juj

.�/;�
.0/j2: (31)

Since �0
a.�/ D 0, we infer from (24) and (30) that

�j ..�/; �/� �2 C .�/2 D �a.�/� �2 C .�/2 D
�

1� 1

a

��1 �0
a.�/

'�;a.0/2
D 0: (32)
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Inserting this into (31) after setting � D �, we get (thanks to (14))

 0.�/ D 0: (33)

This result will be used in the computation of �00
a.�/ below. In fact, differentiation

in (24) with respect to � yields

�00
a.�/ D

�

1 � 1

a

�

��

�a.�/� �2 C .�/2
�

@�'
2
�;a.0/

C
�

�0
a.�/� 2� C 2.�/@�.�/

�

'2
�;a.0/

�

:

Considering again � D �, we get

�00
a.�/ D 2

�1

a
� 1

�

�'2
�;a.0/:

In the above equation, we used (24), (32), and (33). Recall that we take � < 0 and

a 2 .�1; 0/, hence

�00
a.�/ > 0;

and this holds for any negative critical point, �, of �a.�/. This finishes the proof.

3.5. Proof of the main result

Theorem 1.1 now follows by collecting Propositions 3.3, 3.2, and 3.1.

4. Applications

4.1. Moments

Fix a 2 Œ�1; 0/ and consider ˇa as in (10), the ground state �a, and �a the unique

minimum of �a.�/ (see Theorem 1.1 and Remark 1.2). We can invert the operator

haŒ�a�� ˇa on the functions orthogonal to the ground state �a, thereby leading to the

introduction of the regularized resolvent (see e.g., [11, Lemma 3.2.9]):

Ra.u/ D
´

0 if u k �a;

.haŒ�a� � ˇa/
�1u if u ? �a:

(34)

The construction of certain trial states in Section 4.2 below requires inverting

haŒ�a� � ˇa on functions involving .�a C �.�/�/n�a.�/, for positive integers n, with

�.�/ introduced in (4). We are then lead to investigate the following moments

Mn.a/ D
C1
Z

�1

1

�.�/
.�a C �.�/�/nj�a.�/j2 d�;
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Proposition 4.1. For a 2 Œ�1; 0/, we have

M1.a/ D 0; (35)

M2.a/ D �1
2
ˇa

C1
Z

�1

1

�.t/
j�a.�/j2 d� C 1

4

�1

a
� 1

�

�a�a.0/�
0
a.0/; (36)

M3.a/ D 1

3

�1

a
� 1

�

�a�a.0/�
0
a.0/: (37)

Remark 4.2. 1 (Feynman–Hellmann). We have (see e.g., [4, (A.9)])

.�a C �.�/�/�a.�/ ? �a.�/ in L2.R/: (38)

Furthermore, sinceM1.a/D 0, we get 1
�.�/

.�a C �.�/�/�a ? �a. Combined together,

we see that

.�a C a�/�a ? �a in L2.R�/; .�a C �/�a ? �a in L2.RC/

which is consistent with (26), since by (24) and (16), �a is a critical point of the

corresponding Robin band function �j .a; �/.
2. As a consequence of Theorem 1.1, M3.a/ D 0 for a D �1, and it is negative

for �1 < a < 0, which is consistent with [5].

Proof. In an analogous manner to [5], we define the operator

L D haŒ�a� � ˇa D � d2

d�2
C .�a C �.�/�/2 � ˇa:

Pick an arbitrary smooth function on R n ¹0º and set v D 2p�0
a � p0�a. We check

that

Lv D
�

p.3/ � 4
�

.�a C ��/2 � ˇa

�

p0 � 4�.�a C ��/p
�

�a: (39)

Noting that L�a D 0, we obtain by an integration by parts,

C1
Z

�1

�aLv d� D ��a.0/v
0.0�/C �a.0/v

0.0C/C �0
a.0/v.0

�/ � �0
a.0/v.0

C/: (40)

By taking p D 1=�2, we getM1.a/D 0. Then, inserting p D 1
�2 .�a C �t/2 into (39),

we get (36). Finally, the choice p D 1
�2 .�a C �t/3 yields (37).
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4.2. A model operator in a weighted space

The effective operator haŒ��, which is the subject of study in Theorem 1.1, is not

suitable in the situation of a curved magnetic edge, encountered later in the subsequent

Section 4.3 (see also [2]). Understanding the influence of the edge’s geometry requires

a more complicated effective operator which we analyze in the present section. The

new effective operator involves the edge’s curvature as a parameter, and its ground

state energy can be accurately estimated, thanks to the result of Theorem 1.1 on the

uniqueness and non-degeneracy of the minimum.

We fix a 2 .�1; 0/, ı 2 .0; 1
12
/, M > 0 and h0 > 0 such that, for all h 2 .0; h0/,

Mh
1
2

�ı < 1
3

. In that way, for k 2 Œ�M;M�, we can introduce the positive function

ah D .1 � kh
1
2 �/ and the Hilbert space L2..�h�ı ; h�ı/I ah d�/ with the weighted

inner product

hu; vi D
h�ı
Z

�h�ı

u.�/v.�/.1� kh
1
2 �/ d�:

For � 2 R, we introduce the self-adjoint operator

Ha;�;k;h D � d2

d�2
C .�� C �/2 C kh

1
2 .1 � kh

1
2 �/�1@�

C 2kh
1
2 �

�

�� C � � kh
1
2 �
�2

2

�2

� kh
1
2��2.�� C �/C k2h�2 �

4

4
; (41)

where �.�/ is the function in (4). The domain of definition of this operator is

Dom.Ha;�;k;h/ D ¹u 2 H 2.�h�ı ; h�ı/W u.˙h�ı/ D 0º: (42)

The operator Ha;�;k;h is the Friedrichs extension in L2
�

.�h�ı ; h�ı/I ahd�
�

associ-

ated to the quadratic form qa;�;k;h defined by

qa;�;k;h.u/

D
h�ı
Z

�h�ı

�

ju0.�/j2 C .1C 2kh
1
2 �/

�

�� C � � kh
1
2 �
�2

2

�2

u2.�/
�

.1� kh
1
2 �/ d�:

The operator Ha;�;k;h is with compact resolvent. We denote by .�n.Ha;�;k;h//n�1 its

sequence of min-max eigenvalues.

By Theorem 1.1, �a.�/ has a unique minimum ˇa (attained at �a) which is non-

degenerate, and the moment M3.a/ in (37) is negative, thereby allowing us to derive

the following result on the ground state energy of Ha;�;k;h.
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Proposition 4.3. Let ˇa;k;h D inf
�2R

�1.Ha;�;k;h/. Then, as h ! 0C,

ˇa;k;h D ˇa C kM3.a/h
1
2 C O.h

3
4 /

uniformly with respect to k 2 Œ�M;M�.

Proof. We will present the outline of the proof to show the role of Theorem 1.1.

A similar approach was detailed in [17, Theorem 11.1]. By the min-max principle,

there exists C > 0 such that for all n � 1, � 2 R and h 2 .0; h0/,

j�n.Ha;�;k;h/ � �n.haŒ��/j � Ch
1
2 �2ı.1C �n.haŒ��//; (43)

where haŒ�� is the fiber operator in (1). Consequently, we may find a constant z.a/ > 0

such that

�1.Ha;�;k;h/ � ˇa C h
1
2 �2ı for j� � �aj � z.a/h

1
4 �ı : (44)

Note that (44) is a consequence of the fact that �a is a non-degenerate minimum of

�a.�/.
Now, we estimate �1.Ha;�;k;h/ for j� � �aj � z.a/h

1
4

�ı � 1. By (43), the sim-

plicity of the eigenvalues �n.haŒ��/ and the continuity of the function � 7! �n.haŒ��/,

we know that as h ! 0C

�1.Ha;�;k;h/ D ˇa C o.1/ and �2.Ha;�;k;h/ D �2.haŒ�a�/C o.1/;

with

�2.haŒ�a�/ > �1.haŒ�a�/ D ˇa: (45)

One may construct a formal eigen-pair .�
app

a;�;k;h
;f

app

a;�;k;h
/ of the operator Ha;�;k;h, with

�
app

a;�;k;h
D c0 C c1.� � �a/C c2.� � �a/

2 C c3h
1=2 (46a)

and

f
app

a;�;k;h
D u0 C .� � �a/u1 C .� � �a/

2u2 C h1=2u3: (46b)

Expanding Rh WD .Ha;�;k;h � �
app

a;�;k;h
/f

app

a;�;k;h
in powers of .� � �a/ and h1=2, one

can choose .ci ; ui /0�i�3 so that the coefficients of the h1=2 and the terms .� � �a/
j ,

j D 0; 1; 2, vanish. We choose

c0 D ˇa;

u0 D �a;

c1 D 0;

u1 D �2Rav1;
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v1 WD .�� C �a/�a ? �a;

c2 D 1 � 4

C1
Z

�1

.�� C �a/�aRaŒ.�� C �a/�a� dt;

u2 D Rav2;

v2 WD 4.�� C �a/RaŒ.�� C �a/�a�C .c2 � 1/�a ? �a;

c3 D kM3.a/;

u3 D Rav3;

v3 WD �k
�

@� C 1

�
.�� C �a/

3 � �2
a

�
.�� C �a/

�

�a C c3�a ? �a;

where Ra 2 L.L2.R// is the regularized resolvent introduced in (34). That the func-

tions v1; v2; v3 are orthogonal to �a is ensured by our choice of c1; c2; c3, the expres-

sions of the moments in Proposition 4.1, and the first item in Remark 4.2.

Eventually, using �.hı�/f
app

a;�;k;h
as a quasi-mode, with � a cut-off function intro-

duced to insure the Dirichlet condition at � D ˙h�ı , we get by the spectral theorem

and (45),

�1.Ha;�;k;h/ D c0 C c2.� � �a/
2 C c3h

1=2 C O.max.h1=2j� � �aj; j� � �aj3; h//:
(47)

Note that, for j� � �aj � z.a/h
1
4

�ı , we have

O.max.h1=2j� � �aj; j� � �aj3/; h/ D O.h3. 1
4 �ı//:

In order to minimize over � , we observe that the constant c2 can be expressed in the

form2

c2 D 1

2
�00

a.�a/;

hence c2 > 0 by Theorem 1.1. So, we get from (44) and (45),

inf
�2R

�1.Ha;�;k;h/ D c0 C c3h
1=2 C O.h3. 1

4
�ı//: (48)

To improve the error in (48), notice that, by (47), it is enough to minimize over

¹j� � �aj � h
1
4 º. This finishes the proof of Theorem 4.3.

Remark 4.4. The approximate eigen-pair .�
app

a;�;k;h
; f

app

a;�;k;h
/ in (46) does not depend

on the parameter ı introduced in (42). Moreover, we have, for j� � �aj < 1,

k.Ha;�;k;h � �app

a;�;k;h
/f

app

a;�;k;h
kL2.R/ D O.max.h1=2j� � �aj; j� � �aj3; h//:

2Using the Feynman–Hellmann formula �0
a.�/D h.�a C �.�/�/'a;� ; 'a;�i, see [4, (A.9)].
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P
P

2
1

Figure 1. The curve � splits R
2 into two regions, P�;1 and P�;2, and the domain � into two

domains �1 and �2.

4.3. Magnetic edge and semi-classical ground state energy

With the estimates of the ground state energy of the weighted operator of Section 4.2

in hand, we can study the edge states of a Dirichlet Laplace operator with a magnetic

step field, defined in what follows.

4.3.1. Magnetic edge, the domain and the operator. Consider a simple smooth

planar curve � � R2 that splits R2 into two disjoint unbounded open sets, P�;1 and

P�;2. We will refer to � as the magnetic edge, since we are going to consider magnetic

fields having a jump along � (see Figure 1).

Now, consider an open bounded simply connected subset � of R
2, with smooth

boundary @� of class C 1, and assume that

1. � intersects @� at two distinct points p and q, and the intersection is trans-

versal, i.e., T@� � T� ¤ 0 on ¹p; qº, where T@� and T� are respectively unit

tangent vectors of @� and �;

2. �1 WD �\ P�;1 6D ; and�2 WD �\ P�;2 6D ;.

Fix a 2 .�1; 0/. Let Fa 2H 1.�;R2/ be a magnetic potential with the corresponding

scalar magnetic field:

curl Fa D Ba WD 1�1
C a1�2

: (49)

We consider the Dirichlet realization of the self-adjoint operator in the domain�

Ph;a D �.hr � iFa/
2 D �h2�C ih.div Fa C Fa � r/C jFaj2;

with domain

Dom.Ph;a/ D ¹u 2 L2.�/W .hr � iFa/
ju 2 L2.�/; j 2 ¹1; 2º; uj@� D 0º;
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and quadratic form

qh;a.u/ D
Z

�

j.hr � iFa/uj2 dx .u 2 H 1
0 .�//: (50)

The bottom of the spectrum of this operator is introduced as follows

�1.Ph;a/ D inf
u2H 1

0
.�/n¹0º

qh;a.u/

kuk2
L2.�/

: (51)

4.3.2. Frenet coordinates near the magnetic edge. We now introduce the Frenet

coordinates near � . We refer the reader to [11, Appendix F] and [4] for a similar

setup.

Let s 7! M.s/ 2 � be the arc length parametrization of � such that

• �.s/ is the unit normal of � at the pointM.s/ pointing to P�;1;

• T .s/ is the unit tangent vector to � at the point M.s/, such that .T .s/; �.s// is a

direct frame, i.e., det.T .s/; �.s// D 1.

Now, we define the curvature k of � as follows T 0.s/D k.s/�.s/. For " > 0, we define

the transformation

ˆW R � .�"; "/ 3 .s; t/ 7! M.s/C t�.s/ 2 �" WD ¹x 2 R
2W dist.x; �/ < "º (52)

and pick " sufficiently small so that ˆ is a diffeomorphism.

4.3.3. Ground state energy and curvature of the magnetic edge. We introduce the

maximal curvature of � in � as follows

k�
max D max

xDˆ.s;0/2�\ x�
.k.s//: (53)

Theorem 4.5. There exist positive constants ca; Ca; ha such that the ground state

energy in (51) satisfies, for all h 2 .0; ha/,

�cah
5
3 � �1.Ph;a/ � .ˇahCM3.a/k

�
maxh

3
2 / � Cah

7
4 :

The proof of Theorem 4.5 can be obtained in a manner similar to that in [17,

Proposition 10.8] and [11, Theorem 8.3.2], using in particular the weighted operator

in Theorem 4.3, so we omit the details.

We mention two important inequalities that are useful to analyse the bound states

of Ph;a. The first inequality is

qh;a.u/ �
Z

�

�

Uh;a.x/ � O.R�2
0 h/

�

ju.x/j2 dx .u 2 H 1
0 .�//;
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where R0 > 1 is a fixed (arbitrary) constant and

Uh;a.x/ D
´

jajh if dist.x; �/ > R0h
1=2;

ˇah if dist.x; �/ < R0h
1=2:

The second inequality is

qh;a.u/ �
Z

�

�

U �
h;a.x/ � O.h

5
3 /

�

ju.x/j2 dx .u 2 H 1
0 .�//; (54)

where

U �
h;a.x/ D

´

jajh if dist.x; �/ > 2h
1
6 ;

ˇahCM3.a/�.s/h
3
2 if dist.x; �/ < 2h

1
6 and x D ˆ.s; t/:

4.4. Superconductivity along the magnetic edge

The new estimate ˇa < ‚0 in Theorem 1.1 gives a more precise description of the

nucleation of superconductivity in type-II superconductors subject to magnetic steps

fields with certain intensities, considered for instance in [4] (see also [1, 3]).

In the context of superconductivity, the set � introduced in Section 4.3 models

the horizontal cross section of a cylindrical superconductor, with a large character-

istic parameter � and submitted to the magnetic field HBa, where Ba is as in (49),

a 2 .�1; 0/, and the parameter H > 0 measures the intensity of the magnetic field.

The superconducting properties of the sample are described by the minimizing con-

figurations of the following Ginzburg–Landau (GL) energy functional:

E�;H . ;A/ D
Z

�

�

j.r � i�HA/ j2 � �2j j2 C �2

2
j j4

�

dx

C �2H 2

Z

�

j curl A � Baj2 dx; (55)

where  2 H 1.�I C/ is the order parameter, and A 2 H 1.�I R
2/ is the induced

magnetic field. For a fixed .�;H/, the infimum of the energy–the ground state energy–

is attained by a minimizer . GL;AGL/�;H .

In [4], the limit profile of j GLj4 is determined in the sense of distributions in the

regime where H D b� and � ! C1, with b > 1
jaj a fixed constant. More precisely,

the following convergence holds

�T
b

� * T
b in D

0.R2/; as � ! C1;
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where

C1
c .R2/ 3 ' 7! T

b
� .'/ D

Z

�

j GLj4' dx

and the limit distribution T
b is defined via three distributions related to the edges � ,

�1 D .@�1/ \ .@�/ and �2 D .@�2/ \ .@�/ as follows

C1
c .R2/ 3 ' 7! T

b.'/ D �2b� 1
2 .T b

� .'/C T
b

�1
.'/C T

b
�2
.'//;

with

T
b

� .'/ WD ea.b/

Z

�

' ds� ;

T
b

�1
.'/ D Esurf.b/

Z

�1

' ds T
b

�2
.'/ D jaj� 1

2Esurf.bjaj/
Z

�2

' ds:

The effective energies ea and Esurf correspond respectively to the contribution of the

magnetic edge � and the boundary @� (see [4, 7] for the precise definitions). They

have the following properties:

• ea.b/ D 0 if and only if b � 1=ˇa;

• Esurf.b/ D 0 if and only if b � 1=‚0.

Based on the results above, a detailed discussion on the distribution of superconduct-

ivity near � [ @� has been done in [4, Section 1.5]. This discussion mainly relies on

the order of the values jaj‚0, ˇa and ‚0. With the existing estimates in this paper

(and [4]), we have

jaj‚0 < ˇa < min.‚0; jaj/ for a 2 .�1; 0/:

Consequently, we observe that (see Figure 2 for illustration)

• T b D 0 for b � bc;3 WD 1
jaj‚0

;

• T
b

�1
D T

b
� D 0 and T

b
�2

6D 0 for bc;2 WD 1
ˇa

� b < bc;3;

• T
b

�1
D 0, T

b
�1

6D 0 and T
b

�2
6D 0 for bc;1 WD max. 1

jaj ;
1

‚0
/ � b < bc;2.
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Ba D 1 # # Ba D a

1

2

Ba D 1 # # Ba D a

1

2

Ba D 1 # # Ba D a

1

2

Figure 2. Superconductivity localization in the set � submitted to the magnetic field Ba, for

a 2 .�1; 0/, with intensityH D b�, where respectively b � bc;3 WD 1
jaj‚0

, bc;2 WD 1
ˇa

� b <

bc;3 and bc;1 WD max. 1
jaj
; 1

‚0
/ � b < bc;2. Only the grey regions carry superconductivity.
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