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Eigenvalue estimates for the one-particle density matrix

Alexander V. Sobolev

Abstract. It is shown that the eigenvalues �k ; k D 1; 2; : : : ; of the one-particle density matrix
satisfy the bound �k � Ck�8=3 with a positive constant C .

1. Introduction

Consider on L2.R3N / the Schrödinger operator

H D

N
X

kD1

�

��k �
Z

jxkj

�

C
X

1�j <k�N

1

jxj � xkj
; (1.1)

describing an atom withN electrons with coordinates x D .x1; x2; : : : ; xN /; xk 2 R3,
k D 1; 2; : : : ; N , and a nucleus with charge Z > 0. The notation �k is used for
the Laplacian with respect to the variable xk . The operator H acts on the Hilbert
space L

2.R3N / and it is self-adjoint on the domain D.H/ D H
2.R3N /, since the

potential in (1.1) is an infinitesimal perturbation relative to the unperturbed operator
�� D �

P

k �k , see, e.g., [17, Theorem X.16]. Note that we do not need to assume
that the particles are fermions, i.e., that the underlying Hilbert space consists of anti-
symmetric L2-functions. Our results are not sensitive to such assumptions. Let  D

 .x/, x D .Ox; xN /, Ox D .x1; x2; : : : ; xN �1/, be an eigenfunction of the operator H
with an eigenvalueE 2 R, i.e.,  2 D.H/ and

.H �E/ D 0:

We define the one-particle density matrix as the function


.x; y/ D

Z

R3N �3

 .Ox; x/ .Ox; y/ d Ox; .x; y/ 2 R
3 � R

3: (1.2)
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We do not discuss the importance of this object for multi-particle quantum mechanics
and refer to [5,15,16] for details. Our focus is on spectral properties of the self-adjoint
non-negative operator � with the kernel 
.x;y/, which we call the one-electron dens-

ity operator. Note that the operator � is represented as a product � D ‰�‰ where
‰WL2.R3/! L

2.R3N �3/ is the operator with the kernel .Ox;x/. Since 2 L
2.R3N /,

the operator ‰ is Hilbert–Schmidt, and hence � is trace class. Our objective is to
investigate the decay of the eigenvalues �k.�/ > 0, k D 1; 2; : : : ; of the non-negative
operator � , labelled in descending order counting multiplicity. The significance of
such information for quantum mechanical computations is discussed in the paper [11].
In particular, it is shown in [11] that � has infinite rank. The discussion of the case
N D 2 in [4, Sections III and IV] suggests that �k.�/ should decay as k�8=3. Our res-
ults justify this observation for arbitrary number N of particles. We obtain the bound
�k.�/ D O.k�8=3/, k D 1; 2; : : : under the condition that  decays exponentially as
jxj ! 1:

j .x/j . e�~0 jxj1 ; x 2 R
3N : (1.3)

Here ~0 > 0 is a constant, and the notation “.” means that the left-hand side is
bounded from above by the right-hand side times some positive constant whose pre-
cise value is of no importance for us. This notation is used throughout the paper.
Notice that instead of the standard Euclidean norm jxj in (1.3) we have the `1-norm
which we denote by jxj1. This choice seems to be more convenient for computa-
tions in the proof. For the discrete eigenvalues, i.e., the ones below the bottom of the
essential spectrum of H , the bound (1.3) follows from [7]. The exponential decay
for eigenvalues away from the thresholds, including embedded ones, was studied in
[6, 12]. For more references and detailed discussion we quote [18].

The main result of the paper is contained in the following theorem.

Theorem 1.1. Suppose that the eigenfunction  satisfies the bound (1.3). Let the

function 
.x; y/, .x; y/ 2 R
3 � R

3, be defined by (1.2). Then the eigenvalues �k.�/;

k D 1; 2; : : : ; of the operator � satisfy the estimate

0 < �k.�/ . k� 8
3 ; k D 1; 2; : : : ; (1.4)

with an implicit positive constant independent of k.

Remark 1.2. (1) The bound (1.4) is sharp. This is confirmed by the asymptotic for-
mula for the eigenvalues �k.�/ which is proved in a [19]. In fact, Theorem 1.1 or,
more precisely, Theorem 3.1 can be regarded as a preparation for the asymptotic for-
mula in [19].

(2) Theorem 1.1 extends to the case of a molecule with several nuclei whose
positions are fixed. The modifications are straightforward.
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(3) If the function  is symmetric or anti-symmetric, then the kernelN
.x; y/ D

N
.y; x/ coincides with the standard definition of the one-particle density, see, e.g.,
[15]. It is clear that the complex conjugation does not affect the bound (1.4).

In the case of a function  without any symmetry properties, the standard defin-
ition of the one-particle density matrix is different from (1.2). For example, under
the simplifying assumption N D 3 the complex conjugate of the one-particle density
matrix is given by

Z

R3�R3

 .x; s; t/ .y; s; t/ ds dt C

Z

R3�R3

 .s; x; t/ .s; y; t/ ds dt

C

Z

R
3�R

3

 .s; t; x/ .s; t; y/ ds dt:

The operator with this kernel satisfies the bound of the form (1.4) if each of the com-
ponents does, see (2.4). The same conclusion holds for general N . Thus, taking the
simplified definition (1.2) does not restrict generality of Theorem 1.1.

(4) Questions about decay of eigenvalues can be also asked for the n-particle
density matrix with 1 � n � N � 1, see [16, Section 3.1.5] for the definition. It is
the author’s believe that methods similar to the ones employed in the current paper
should lead to some estimates of the eigenvalues, but it is difficult to predict their form
without careful analysis, which is beyond the scope of the paper.

The strategy of the proof is quite straightforward: by virtue of the factorization
� D ‰�‰, mentioned a few lines earlier, we have �k.�/ D sk.‰/

2; k D 1; 2; : : : ;

where sk.‰/ are the singular values (s-values) of the operator‰. It is well known that
the rate of decay of singular values for integral operators depends on the smoothness
of their kernels, and the appropriate estimates via suitable Sobolev norms can be found
in the monograph [2] by M. S. Birman and M. Z. Solomyak. The regularity of  has
been well studied in the literature. To begin with, according to the classical elliptic
theory, due to the analyticity of the Coulomb potential jxj�1 for x 6D 0, the function
 is real analytic away from the particle coalescence points. A more challenging
problem is to understand the behaviour of  at the coalescence points. The first result
in this direction belongs to T. Kato [14], who showed that the function  is Lipschitz.
More detailed information on  at the coalescence points was obtained, e.g., in [8,
9, 13], and in the recent paper [10] by S. Fournais and T. Ø. Sørensen. The results
of [2, 10] are of crucial importance for the proof of Theorem 1.1. A combination of
the efficient bounds for the derivatives of the function  obtained in [10], and the
estimates for the singular values in [2], leads to the bound sk.‰/ . k�4=3, and hence
to (1.4).
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The plan of the paper is as follows. In Section 2 we list the facts that serve as
ingredients of the proof. Although our aim is to prove the bound sk.‰/ . k�4=3, in
Section 3 in Theorem 3.1 we state a bound for the operator‰ with weights which will
be useful in the study of the spectral asymptotics for‰. The rest of Section 3 provides
some preliminary estimates for auxiliary integral operators. These estimates are put
together in Section 4 to complete the proof of Theorems 3.1 and 1.1.

We conclude the introduction with some general notational conventions.

Coordinates. As mentioned earlier, we use the following standard notation for the
coordinates: x D .x1; x2; : : : ; xN /, where xj 2 R

3, j D 1; 2; : : : ;N . The vector x is
usually represented in the form x D .Ox; xN / with Ox D .x1; x2; : : : ; xN �1/ 2 R3N �3.
In order to write formulas in a more compact and unified way, we sometimes use the
notation x0 D 0.

In the space R
d ; d � 1; the notation jxj stands for the Euclidean norm, whereas

jxj1 denotes the `1-norm.

Indicators. For any setƒ� R
d we denote by 1ƒ its indicator function (or indicator).

Derivatives. Let N0 D N [ ¹0º. If x D .x0; x00; x000/ 2 R
3 andm D .m0;m00;m000/ 2

N
3
0 , then the derivative @m

x is defined in the standard way:

@m
x D @m0

x0 @
m00

x00 @
m000

x000 :

Bounds. As explained earlier, for two non-negative numbers (or functions) X and
Y depending on some parameters, we write X . Y (or Y & X ) if X � CY with
some positive constant C independent of those parameters. To avoid confusion we
may comment on the nature of (implicit) constants in the bounds.

2. Ingredients of the proof

In this section we list three ingredients of the proof of the main Theorem 1.1.

2.1. Regularity of the eigenfunction

We need some efficient bounds for the derivatives of the eigenfunction away from the
coalescence points, obtained by S. Fournais and T. Ø. Sørensen in [10]. Let

d.Ox; x/ D min¹jxj; jx � xj j; j D 1; 2; : : : ; N � 1º:

The following proposition is a consequence of [10, Corollary 1.3]:
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Proposition 2.1. Assume that  satisfies (1.3). Then for all multi-indices m 2 N
3
0 ,

jmj1 � 1, we have

j@m
x  .Ox; x/j . d.Ox; x/1�le�~l jxj1 ; l D jmj1; (2.1)

with some ~l > 0.

The precise values of the constants ~l > 0 are insignificant for us, and therefore
we may assume that

~0 D ~1 � ~2 � � � � > 0: (2.2)

Let us rewrite the bounds (2.1) using the notation x0 D 0. With this convention, we
have

d.Ox; x/ D min¹jx � xj j; j D 0; 1; 2; : : : ; N � 1º

and

d.Ox; x/�1 �
X

0�j �N �1

jx � xj j�1:

Therefore, (1.3) and (2.1) imply that

j@m
x  .Ox; x/j . e�~l jxj1

�

1C
X

0�j �N �1

jx � xj j1�l
�

; l D jmj1; (2.3)

for all m 2 N3
0 .

Remark. (1) To elaborate on Remark 1.2(2) we should say that Proposition 2.1
also holds in the case of several nuclei, which allows one to extend Theorem 1.1
to molecules.

(2) As indicated earlier, the bounds (2.1) play the main part in the proof of (1.4).
In fact, Theorem 1.1 can be recast as follows: the bound (1.4) holds for the operator
� with kernel (1.2) if  is a function that satisfies the bounds (1.3) and (2.1).

2.2. Compact operators

Our main reference for compact operators is the book [3]. Let H and G be separable
Hilbert spaces. Let T WH ! G be a compact operator. If H D G and T D T � � 0, then
�k.T /, k D 1; 2; : : : ; denote the positive eigenvalues of T numbered in descending
order counting multiplicity. For arbitrary spaces H , G and compact T , by sk.T / > 0,
k D 1; 2; : : : ; we denote the singular values of T defined by sk.T /2 D �k.T

�T / D

�k.T T
�/. Note the useful inequality

s2k.T1 C T2/ � s2k�1.T1 C T2/ � sk.T1/C sk.T2/; (2.4)
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which holds for any two compact T1; T2, see [3, formula (11.1.14)]. We classify
compact operators by the rate of decay of their singular values. If sk.T / . k�1=p;

k D 1; 2; : : : ; with some p > 0, then we say that T 2 Sp;1 and denote

kT kp;1 D sup
k

k
1
p sk.T /: (2.5)

The class Sp;1 is a complete linear space with the quasi-norm kT kp;1, see [3, Sec-
tion 11.6]. For p 2 .0; 1/ the quasi-norm satisfies the following “triangle” inequality
for operators Tj 2 Sp;1, j D 1; 2; : : : W










X

j

Tj










p

p;1
� .1 � p/�1

X

j

kTj kp
p;1; (2.6)

see [1, Lemmata 7.5 and 7.6], [2, Section 1] and references therein. For the case p > 1
see [3, Section 11.6], but we do not need it in what follows.

For T 2 Sp;1 the following number is finite:

Gp.T / D .lim sup
k!1

k
1
p sk.T //

p; (2.7)

and it clearly satisfies the inequality

Gp.T / � kT kp
p;1: (2.8)

More precisely, let S
ı
p;1 � Sp;1 be the closed subspace of all operators R 2 Sp;1

with Gp.R/ D 0. As explained in [3, Theorem 11.6.10],

Gp.T / D inf
R2S

ı
p;1

kT CRkp
p;1: (2.9)

The functional Gp.T /, p < 1, also satisfies the inequality of the type (2.6):

Lemma 2.2. Suppose that Tj 2 Sp;1, j D 1; 2; : : : ; with some p < 1 and that

X

j

kTj kp
p;1 < 1: (2.10)

Then

Gp

�

X

j

Tj

�

� .1 � p/�1
X

j

Gp.Tj /: (2.11)

Proof. By (2.6) the operator T D
P

j Tj belongs to Sp;1, so that the left-hand side
is finite. Furthermore, due to (2.8) and to the condition (2.10) the right-hand side
of (2.11) is finite as well. Fix an " > 0 and pick N such that

1
X

j DN C1

kTj kp
p;1 < ":
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Then by (2.9) and (2.6), for any Rj 2 S
ı
p;1, j D 1; 2; : : : ; N , we have the estimate

Gp.T / �









N
X

j D1

.Tj CRj /C

1
X

j DN C1

Tj










p

p

� .1 � p/�1
�

N
X

j D1

kTj CRj kp
p;1 C "

�

:

Minimizing the right-hand side overRj ; j D 1;2; : : : ;N , by (2.9) we get the estimate

Gp.T / � .1� p/�1
�

N
X

j D1

Gp.Tj /C "
�

� .1 � p/�1
�

1
X

j D1

Gp.Tj /C "
�

:

Since " > 0 is arbitrary, we obtain (2.11).

2.3. Singular values of integral operators

The final ingredient of the proof is the result due to M. S. Birman and M. Z. Solomyak,
investigating the membership of integral operators in the class Sp;1 with some
p > 0. For estimates of the singular values we rely on [2, Proposition 2.1], see also
[3, Theorem 11.8.4], which we state here in a form convenient for our purposes. Let
C D .0; 1/d � Rd ; d � 1, be the unit cube.

Proposition 2.3. Let TbaW L2.C/ ! L
2.Rn/, be the integral operator of the form

.Tbau/.t/ D b.t/

Z

C

T .t; x/a.x/u.x/ dx;

where a 2 L
2.C/, b 2 L

2
loc.R

n/, and the kernel T .t; x/, t 2 R
n, x 2 C , is such that

T .t; �/ 2 H
l.C/ with some l D 1; 2; : : : ; 2l > d , a.e. t 2 R

n. Then

sk.Tba/ . k� 1
2

� l
d

� Z

Rn

kT .t; �/k2
Hlb.t/j

2 dt

�
1
2

kak
L2.C/; k D 1; 2; : : : ;

with some implicit constant independent of the kernel T , weights a;b and the index k.

In other words, Tba 2 Sq;1 with

1

q
D
1

2
C
l

d
;

and

kTbakq;1 .

� Z

Rn

kT .t; �/k2
Hlb.t/j

2 dt

�
1
2

kak
L2.C/:
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It is straightforward to check that if one replaces the cube C with its translate Cn D

C C n; n 2 Zd , then the bounds of Proposition 2.3 still hold with implicit constants
independent of n.

3. Preliminary estimates

3.1. The weighted operator ‰

Represent the operator � as the product � D ‰�‰, where ‰W L2.R3/ ! L
2.R3N �3/

is defined by

.‰u/.Ox/ D

Z

R3

 .Ox; x/u.x/dx; u 2 L
2.R3/:

Since  2 L
2.R3N /, this operator is Hilbert–Schmidt. As explained in the Introduc-

tion, in order to prove (1.4) it suffices to show that sk.‰/ . k�4=3, k D 1; 2; : : : ; i.e.,
that ‰ 2 S3=4;1. For future use, we obtain an estimate for the operator b‰a with
weights a and b. In order to describe these weights, denote Cn D .0; 1/3 C n, n 2 Z3.
Let ~l > 0 be the constants in the exponential bounds (1.3) and (2.1). We assume that
the weight a 2 L

2
loc.R

3/ is such that

S .l/
q .a/ D

h

X

n2Z3

e�q~l jnj1kak
q

L2.Cn/

i
1
q

< 1; q D
3

4
; (3.1)

and that b 2 L
1.R3N �3/, so that

M .l/.b/ D

� Z

R3N �3

jb.Ox/j2e�2~1 j Oxj1d Ox

#
1
2

< 1; for all l D 1; 2; : : : : (3.2)

Recall that the functional Gp is defined in (2.7). Our objective is to prove the following
theorem.

Theorem 3.1. Let b 2 L
1.R3N �3/ and let a 2 L

2
loc.R

3/ be such that S
.4/

3=4
.a/ < 1.

Then b‰a 2 S3=4;1 and

kb‰ak3=4;1 . kbkL1S
.3/

3=4
.a/; (3.3)

G3=4.b‰a/ . .M .4/.b/S
.4/

3=4
.a//

3
4 : (3.4)

For aD 1 and b D 1 this theorem implies that sk.‰/. k�4=3, and hence �k.�/D

sk.‰/
2 . k�8=3, thereby proving Theorem 1.1.
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The plan of the proof is as follows. We study first the operators ‰n D ‰1Cn
,

n 2 Z3. For each fixed n the operator ‰n is split in the sum of several operators
depending on two parameters: ı > 0 and " > 0, whose singular values are estimated
in different ways. None of these estimates is sharp, but in the end, when collecting all
the estimates together in Section 4, we get the sharp bound (3.4) by making a clever
choice of the parameters ı and ".

For convenience we introduce the notation

Int.T /W L2.R3/ ! L
2.R3N �3/

for the integral operator with the kernel T .Ox; x/. Whenever we consider the operators
b Int.�/1Cn

a with weights a; b, the constants in all the bounds are independent on the
weights or on the parameter n 2 Z

3.
Recall also that we use the notation x0 D 0. The symbol

P

j (resp.
Q

j ) assumes
summation (resp. product) over all j D 0; 1; : : : ; N � 1.

3.2. Partition of ‰n: step 1

The first step is to estimate the contribution of the domain on which the variables xj ,
j D 0; 1; 2; : : : ; N � 1; are close to each other. Fix a ı > 0 and denote

�.ı/ D
\

0�l<s�N �1

¹Ox 2 R
3N �3W jxl � xsj > 4ıº:

The indicator of this set is denoted by �.ı/, i.e.,

�.ı/.Ox/ D 1�.ı/.Ox/ D
Y

0�l<s�N �1

1¹jxl �xs j>4ıº.Ox/: (3.5)

Represent  as follows:

 D  
.ı/
1 C  

.ı/
2 ; (3.6a)

 
.ı/
1 .Ox; x/ D  .Ox; x/�.ı/.Ox/; (3.6b)

 
.ı/
2 .Ox; x/ D  .Ox; x/�  

.ı/
1 .Ox; x/ D  .Ox; x/.1� �.ı/.Ox//: (3.6c)

It follows from (2.3) that

j@m
x  

.ı/
2 .Ox; x/j

. e�~jmj1
jxj1

�

1C
X

j

jx � xj j1�jmj1
�

X

0�l<s�N �1

1¹jxl �xs j<4ıº.Ox/; (3.7)

for allm 2 N
3
0 , with an implicit constant independent of ı > 0. The operator Int. .ı/

2 /

is considered with the weight b D 1 and arbitrary a 2 L
2.Cn/.
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In the next lemma and further on we use the straightforward inequality

max
x2Cn

e�~l jxj1 � e3~1e�~1j Oxj1e�~1jnj1 : (3.8)

Lemma 3.2. The operator Int. .ı/
2 /a1Cn

belongs to S6=7;1 and

k Int. .ı/
2 /a1Cn

k6=7;1 . e�~2 jnj1ı
3
2 kak

L2.Cn/; (3.9)

for all n 2 Z
3 and all ı > 0.

Proof. According to (3.7) and (3.8),  .ı/
2 .Ox; �/ 2 H

2.Cn/ for a.e. Ox 2 R
3N �3 and

e2~2 j Oxj1k 
.ı/
2 .Ox; �/k2

H2

. e�2~2 jnj1
X

0�l<s�N �1

1¹jxl �xs j<4ıº.Ox/

Z

Cn

�

1C
X

0�j �N �1

jx � xj j�2
�

dx

. e�2~2 jnj1
X

0�l<s�N �1

1¹jxl �xs j<4ıº.Ox/:

Using Proposition 2.3 with l D 2; d D 3 (so that 2l > d ), we get that the operator on
the left-hand side of (3.9) belongs to Sq;1 with q D 6=7 and

k Int. .ı/
2 /a1Cn

k6=7;1

.

� Z

R3N �3

k 
.ı/
2 .Ox; �/k2

H2 d Ox

�
1
2

kak
L2.Cn/

. e�~2 jnj1

� Z

R3N �3

e�2~2j Oxj1
X

0�l<s�N �1

1¹jxl �xs j<4ıº.Ox/ d Ox

�
1
2

:jak
L2.Cn/

. e�~2 jnj1ı
3
2 kak

L2.Cn/;

which gives (3.9).

To study the kernel  .ı/
1 , we separate the contribution from the values of x that

are “far” from xj ’s, j D 0; 1; : : : ; N � 1. Let � 2 C
1
0 .R/ be a function such that

0 � � � 1 and

�.t/ D 0; if jt j > 2;

�.t/ D 1; if jt j < 1:

Denote �.t/ D 1 � �.t/. Observe that for any � > 0,

j@m
x �.jxj��1/j . 1¹jxj<2�º C ��jmj11¹�<jxj<2�º . ��jmj11¹jxj<2�º; (3.10a)

j@m
x �.jxj��1/j . 1¹jxj>�º C ��jmj11¹�<jxj<2�º . ��jmj11¹jxj>�º; (3.10b)
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for all m 2 N
3
0 . Consequently,

ˇ

ˇ@m
x �.jxj��1/j . jxj�jmj11¹jxj<2�º; (3.11a)

j@m
x �.jxj��1/j . jxj�jmj11¹jxj>�º; (3.11b)

uniformly in � > 0, for all m 2 N3
0 .

In what follows we consider separately the following components of  .ı/
1 :

 
.ı/
1 D  

.ı/
11 C  

.ı/
12 ; (3.12a)

 
.ı/
11 .Ox; x/ D

X

j

�.jx � xj jı�1/ 
.ı/
1 .Ox; x/; (3.12b)

 
.ı/
12 .Ox; x/ D

�

1 �
X

j

�
�

jx � xj jı�1
��

 
.ı/
1 .Ox; x/: (3.12c)

In view of the definition of �.ı/, see (3.5), we have

Œ1�
X

j

�.jx � xj jı�1/��.ı/.Ox/ D
Y

j

�.jx � xj jı�1/�.ı/.Ox/;

so that

 
.ı/
12 .Ox; x/ D  

.ı/
1 .Ox; x/

Y

j

�.jx � xj jı�1/:

Estimate the derivatives of this function. First observe that in view of (3.11) we have
ˇ

ˇ

ˇ@m
x

Y

j

�.jx � xj jı�1/
ˇ

ˇ

ˇ .

�

X

j

jx � xj j�jmj1
�

Y

j

1¹jx�xj j>ıº.Ox; x/; m 2 N
3
0 :

Together with (2.3) this gives

j@m
x  

.ı/
12 .Ox; x/j . e�~jmj1

jxj1
X

j

jx � xj j�jmj11¹jx�xj j>ıº.Ox; x/; m 2 N
3
0 ; (3.13)

uniformly in ı > 0.

Lemma 3.3. For any l � 2 the operator Int. .ı/
12 /a1Cn

belongs to Sq;1 with

1

q
D
1

2
C
l

3
; (3.14)

and

k Int. .ı/
12 /a1Cn

kq;1 . e�~l jnj1ı�lC 3
2 kak

L2.Cn/; (3.15)

for all ı 2 .0; ı0�, with an implicit constant depending on l and ı0 only.
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Proof. According to (3.13),  .ı/
12 .Ox; �/ 2 H

l .Cn/ for a.e. Ox 2 R
3N �3 with an arbitrary

l � 1 and for l � 2 we have

e2~l j Oxj1 k 
.ı/
12 .Ox; �/k

2
Hl . e�2~l jnj1

Z

Cn

�

1C
X

j

jx � xj j�2l
1¹jx�xj j>ıº.Ox; x/

�

dx

. e�2~l jnj1.1C ı�2lC3/ . e�2~l jnj1ı�2lC3:

Now, the bound (3.15) follows from Proposition 2.3 with d D 3 and b.Ox/ D 1.

3.3. Partition of ‰n: step 2

It is important to note that the right-hand side of inequality (3.13) contains the factor
jx � xj j�jmj1 instead of jx � xj j1�jmj1 that is present in (2.3). This is a consequence
of the fact that the bound (2.1) holds for jmj1 � 1, but not for m D 0. As we will see
later on, in spite of this loss of one power of jx � xj j, the estimate (3.15) is sufficient
for derivation of the sharp bounds (3.3) and (3.4). However, when considering the
term  

.ı/
11 in (3.12) the bound by jx � xj j�jmj1 is not enough, and we need to have the

factor jx � xj j1�jmj1 , just as in (2.3). To achieve this we have to “correct” the kernel
 

.ı/
11 with the help of the auxiliary kernel

�.ı/.Ox; x/ D
X

j

�.jx � xj jı�1/ 
.ı/
1 .Ox; xj /:

As the next lemma shows, the kernel �.ı/ has properties similar to those of  .ı/
12 .

Lemma 3.4. For any l � 2 the operator Int.�.ı//a1Cn
belongs to Sq;1 with the para-

meter q defined in (3.14), and

k Int.�.ı//a1Cn
kq;1 . e�~l jnj1ı�lC 3

2 kak
L2.Cn/; (3.16)

for all ı 2 .0; ı0�.

Proof. Using (3.8) and (3.10) we get

j@m
x �

.ı/.Ox; x/j . ı�jmj1e�~l jnj1�~1j Oxj1
X

j

1¹jx�xj j<2ıº.Ox; x/; m 2 N
3
0 ; jmj1 � l:

Therefore, �.ı/.Ox; �/ 2 H
l .Cn/ for a.e. Ox 2 R

3N �3 with an arbitrary l � 1 and for l � 2

we have

e2~1j Oxj1 k�.ı/.Ox; �/k2
Hl . e�2~l jnj1

Z

Cn

�

1C ı�2l
X

j

1¹jx�xj j<2ıº.Ox; x/
�

dx

. e�2~l jnj1.1C ı�2lC3/ . e�2~l jnj1ı�2lC3:

Now, the required bound follows from Proposition 2.3 with d D 3 and b.Ox/ D 1.
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Let us now investigate the “corrected” kernel  .ı/
11 , and consider instead of it the

kernel

�.ı/ D  
.ı/
11 � �.ı/ D

X

j

�
.ı/
j ; (3.17a)

�
.ı/
j .Ox; x/ D �.jx � xj jı�1/. 

.ı/
1 .Ox; x/�  

.ı/
1 .Ox; xj //: (3.17b)

Before proceeding to the next step of the construction, we estimate the difference
 

.ı/
1 .Ox; x/�  

.ı/
1 .Ox; xj /. It follows from (2.1) with jmj1 D 1 that

j 
.ı/
1 .Ox; x/�  

.ı/
1 .Ox; xj /j � jx � xj j max

t2Œ0;1�
jrx 

.ı/
1 .Ox; txj C .1� t/x/j

. jx � xj je�~1 jxj1�.ı/.Ox/: (3.18)

In order to estimate the derivatives of this difference, we make the following observa-
tion. By the definition of � , we have jx � xj j<2ı on the support of �.ı/

j . Furthermore,
the balls ¹x 2 R

3W jx � xj j < 2ıº � R
3, j D 0; 1; : : : ; N � 1, are pairwise disjoint

since Ox 2 �.ı/. As a consequence,

d.Ox; x/ D jx � xj j; if jx � xj j < 2ı; Ox 2 �.ı/:

Consequently, the bound (2.1) together with (3.18) lead to

j@m
x . 

.ı/
1 .Ox; x/�  

.ı/
1 .Ox; xj //j

. jx � xj j1�jmj1e�~jmj1
jxj1�.ı/.Ox/; if jx � xj j < 2ı; (3.19)

for all m 2 N
3
0 . Here we have also used our convention that ~0 D ~1, see (2.2).

Now, return to the functions �.ı/
j , see (3.17). The �.ı/

j .Ox; x/ is again partitioned
in the sum of two new kernels. At this (last) stage of the partition we introduce a new
parameter " � ı=2. With this choice of " we have �.t"�1/ D �.t"�1/�.tı�1/, so that

�
.ı/
j D �

.ı;"/
j C ˇ

.ı;"/
j ; j D 0; 1; 2; : : : ; N � 1;

with

�
.ı;"/
j .Ox; x/ D �.jx � xj j"�1/. 

.ı/
1 .Ox; x/�  

.ı/
1 .Ox; xj //;

ˇ
.ı;"/
j .Ox; x/ D �.jx � xj jı�1/�.jx � xj j"�1/. 

.ı/
1 .Ox; x/�  

.ı/
1 .Ox; xj //:

Therefore

�.ı/ D �.ı;"/ C ˇ.ı;"/; where �.ı;"/ D
X

j

�
.ı;"/
j ; ˇ.ı;"/ D

X

j

ˇ
.ı;"/
j : (3.20)

In the next lemma we introduce a weight b 2 L
1.R3N �3/. Recall that under this

condition the integralM .l/.b/ defined in (3.2) is finite for all l � 1.
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Lemma 3.5. Let a 2 L
2.Cn/ and b 2 L

1.R3N �3/. Then b Int.�.ı;"//a1Cn
2 S6=7;1

and

kb Int.�.ı;"//a1Cn
k6=7;1 . e�~2jnj1"

1
2M .2/.b/kak

L2.Cn/; (3.21)

for all " 2 .0; 1� and ı 2 Œ2"; 2�.

Proof. According to (2.6), it suffices to prove (3.21) for each j D 0; 1; : : : ; N � 1;

individually. It follows from (3.11) that

j@m
x �.jx � xj j"�1/j . jx � xj j�jmj11¹jx�xj j<2"º.Ox; x/;

uniformly in " > 0; ı > 2", for all m 2 N
3
0 . Together with (3.19) this implies that

j@m
x �

.ı;"/
j .Ox; x/j . jx � xj j1�jmj1e�~l jxj1 1¹jx�xj j<2"º.Ox; x/;

for all m 2 N
3
0 , jmj1 � l . Thus, �.ı;"/

j .Ox; �/ 2 H
2.Cn/ for a.e. Ox 2 R

3N �3 and

e2~2j Oxj1 k�
.ı;"/
j .Ox; �/k2

H2 . e�2~2jnj1

Z

Cn

.1C jx � xj j�2/1¹jx�xj j<2"º dx

. e�2~2jnj1."3 C "/ . e�2~2jnj1":

It follows from Proposition 2.3 with l D 2; d D 3 that b Int.�.ı;"/
j /a1Cn

2 S6=7;1 and

kb Int.�.ı;"/
j /a1Cn

k6=7;1

. e�~2jnj1

� Z

R3N �3

jb.Ox/j2k�
.ı;"/
j .Ox; �/k2

H2e
�2~2 j Oxj1 d Ox

�
1
2

kak
L2.Cn/

. e�~2jnj1"
1
2M .2/.b/kak

L2.Cn/:

This completes the proof of (3.21).

Lemma 3.6. Let a 2 L
2.Cn/ and b 2 L

1.R3N �3/. Then for any l � 3 the operator

b Int.ˇ.ı;"//a1Cn
belongs to Sq;1 with the parameter q defined in (3.14), and

kb Int.ˇ.ı;"//a1Cn
kq;1 . e�~l jnj1"�lC 5

2M .l/.b/kak
L2.Cn/; (3.22)

for all " 2 .0; 1� and ı 2 Œ2"; 2�.

Proof. As in the previous lemma, due to (2.6), it suffices to prove (3.22) for each
j D 0; 1; : : : ; N � 1; individually. It follows from (3.11) that

j@m
x .�.jx � xj jı�1/�.jx � xj j"�1//j . jx � xj j�jmj11¹"<jx�xj j<2ıº.Ox; x/;
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uniformly in " > 0; ı > 2", for all m 2 N
3
0 . Together with (3.19) this implies that

j@m
x ˇ

.ı;"/
j .Ox; x/j . jx � xj j1�jmj1e�~1 jxj11¹jx�xj j>"º.Ox; x/;

for all m 2 N
3
0 , jmj1 � l . Thus, ˇ.ı;"/

j .Ox; �/ 2 H
l .Cn/ for a.e. Ox 2 R

3N �3 with an
arbitrary l � 1, and for l � 3 we have

e2~l j Oxj1 kˇ
.ı;"/
j .Ox; �/k2

Hl . e�2~l jnj1

Z

Cn

.1C jx � xj j2�2l/1¹jx�xj j>"ºdx

. e�2~l jnj1.1C "5�2l/ . e�2~l jnj1"5�2l :

Using Proposition 2.3 with d D 3 and arbitrary l � 3, we get that b Int.ˇ.ı;"/
j /a1Cn

2

Sq;1 and

kb Int.ˇ.ı;"/
j /a1Cn

kq;1

. e�~l jnj1

� Z

R3N �3

jb.Ox/j2kˇ
.ı;"/
j .Ox; �/k2

Hl e
�2~1j Oxj1 d Ox

�
1
2

kak
L2.Cn/

. e�~l jnj1"�lC 5
2M .l/.b/kak

L2.Cn/:

This completes the proof of (3.22).

4. Proof of Theorems 3.1 and 1.1

Her we put together the estimates obtained in the previous section to complete the
proof of Theorem 3.1. Recall again that the quantities S .l/

q .a/ andM .l/.b/ are defined
in (3.1) and (3.2) respectively.

Lemma 4.1. Suppose that b 2 L
1.R3N �3/ and a 2 L

2.Cn/. Then b‰na 2 S3=4;1

and

kb‰nak3=4;1 . e�~3 jnj1kbkL1kak
L2.C/; (4.1)

G3=4.b‰na/ . .e�~4jnj1M .4/.b/kak
L2.Cn//

3
4 ; (4.2)

for all n 2 Z3.

Proof. Now, we can put together all the estimates for the singular numbers, obtained
above. Without loss of generality assume that kbkL1 � 1 and kak

L2.C/ � 1.
By (3.6), (3.12), (3.17), and (3.20) we have

 D �.ı;"/ C ˇ.ı;"/ C �.ı/ C  
.ı/
12 C  

.ı/
2 :
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According to (3.9), (3.21), and the inequality (2.6),

kb Int.�.ı;"/ C  
.ı/
2 /a1Cn

k
6=7

6=7;1

� 7.kb Int.�.ı;"//a1Cn
k

6=7

6=7;1
C k Int. .ı/

2 /a1Cn
k

6=7

6=7;1
/

. e�6~2jnj1=7."
1
2M .2/.b/C ı

3
2 /6=7;

so that, by definition (2.5),

sk.b Int.�.ı;"/ C  
.ı/
2 /a1Cn

/

. e�~2 jnj1."
1
2M .2/.b/C ı

3
2 / k� 7

6 ; k D 1; 2; : : : : (4.3)

Similarly, using (3.15), (3.16) and (3.22) with one and the same l � 3, we obtain that

kb Int.ˇ.ı;"/ C �.ı/ C  
.ı/
12 /a1Cn

kq;1 . e�~l jnj1."�lC 5
2M .l/.b/C ı�lC 3

2 /;

with 1=q D 1=2C l=3 and hence,

sk.b Int
�

ˇ.ı;"/ C �.ı/ C  
.ı/
12

�

a1Cn
/

. e�~l jnj1."�lC 5
2M .l/.b/C ı�lC 3

2 /k� 1
2

� l
3 ; k D 1; 2; : : : : (4.4)

Due to (2.4) and (2.2), combining (4.3) and (4.4), we get the estimate

s2k.b‰na/ � s2k�1.b‰na/

. e�~l jnj1 Œ."
1
2M .l/.b/C ı

3
2 /k� 7

6 C ."�lC 5
2M .l/.b/C ı�lC 3

2 /k� 1
2

� l
3 �; (4.5)

where we have used that M .2/.b/ � M .l/.b/. Rewrite the expression in the square
brackets, gathering the terms containing " and ı in two different groups:

�

"
1
2M .l/.b/k� 7

6 C "�lC 5
2M .l/.b/k� 1

2
� l

3

�

C .ı
3
2 k� 7

6 C ı�lC 3
2k� 1

2
� l

3 /

D "
1
2M .l/.b/k� 7

6 .1C "�lC2k
2�l

3 /C ı
3
2 k� 7

6 .1C ı�lk
2�l

3 /:

Since " 2 .0; 1� and ı 2 Œ2"; 2� are arbitrary, we can pick " D "k D k�1=3 and ı D

ık D 2k2=.3l/�1=3, so that the condition ı 2 Œ2"; 2� is satisfied for all k D 1; 2; : : : ;

and

"�lC2k
2�l

3 D 1; "
1
2k� 7

6 D k� 4
3 ;

ı�lk
2�l

3 D 2�l ; ı
3
2k� 7

6 D 2
3
2 k

1
l

� 5
3 :

Thus, the bound (4.5) rewrites as

s2k.b‰na/ � s2k�1.b‰na/ . e�~l jnj1.M .l/.b/k� 4
3 C k

1
l

� 5
3 /: (4.6)
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Using the boundM .l/.b/ . kbkL1 � 1, and taking l D 3 we conclude that

sk.b‰na/ . e�~3jnj1k� 4
3 :

This leads to (4.1).
In order to obtain (4.2), we use (4.6) to write

lim sup
k!1

k
4
3 sk.b‰na/ . e�~l jnj1 lim sup

k!1

.M .l/.b/C k
1
l

� 1
3 /:

Taking l D 4 we ensure that the second term in the brackets tends to zero. Therefore,

lim sup
k!1

k
4
3 sk.b‰na/ . e�~4jnj1M .4/.b/:

Applying definition (2.7), we arrive at (4.2).

Proof of Theorems 3.1 and 1.1. Since ‰ D
P

n2Z3 ‰n, we have, by (2.6) and (4.1),

kb‰ak
3=4

3=4;1
� 4

X

n2Z3

kb‰nak
3=4

3=4;1

. kbk
3
4

L1

X

n2Z
3

e� 3
4

~3jnj1kak
3
4

L2.Cn/
D kbk

3
4

L1.S
.3/

3=4
.a//

3
4 < 1:

This proves (3.3).
To prove (3.4) we use Lemma 2.2. According to (2.11) and (4.2),

G3=4.b‰a/ � 4
X

n2Z3

G3=4.b‰na/

. .M .4/.b//
3
4

X

n2Z3

e� 3
4

~4jnj1kak
3
4

L2.Cn/
D .M .4/.b//

3
4 .S

.4/

3=4
.a//

3
4 < 1:

This completes the proof of Theorem 3.1.
Using (3.3) with a.x/D 1 and b.Ox/D 1we get k‰k3=4;1 <1, which implies that

sk.‰/ . k�4=3, and hence �k.�/ D sk.‰/
2 . k�8=3. This proves Theorem 1.1.
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