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On the spectrum

of the periodic focusing Zakharov–Shabat operator

Gino Biondini, Jeffrey Oregero, and Alexander Tovbis

Abstract. The spectrum of the focusing Zakharov–Shabat operator on the circle is studied, and

its explicit dependence on the presence of a semiclassical parameter is also considered. Several

new results are obtained. In particular: (i) it is proved that the resolvent set is comprised of two

connected components; (ii) new bounds on the location of the Floquet and Dirichlet spectra are

obtained, some of which depend explicitly on the value of the semiclassical parameter; (iii) it is

proved that the spectrum localizes to a “cross” in the spectral plane in the semiclassical limit.

The results are illustrated by discussing several examples in which the spectrum is computed

analytically or numerically.

1. Introduction

In this work we investigate the spectrum of the non-self-adjoint Zakharov–Shabat

(ZS) scattering problem with a periodic potential. The ZS scattering problem is given

by the first-order coupled system of ordinary differential equations (ODEs) [1,22,50,

70]:

"v0 D .� i z�3 CQ.x//v; (1.1)

where v.xI z; "/ D .v1; v2/
T (the superscript T denoting matrix transpose), �3 D

diag.1;�1/ is the third Pauli matrix, Q.x/ is the matrix-valued function

Q.x/ D
�

0 q.x/

�q.x/ 0

�
; (1.2)

z 2 C is the spectral parameter, prime denotes differentiation with respect to the inde-

pendent variable (here x), overbar denotes complex conjugation, and 0 < " � 1 is the

semiclassical parameter. Unless stated otherwise, throughout this work, the “poten-

tial” qW R ! C is a complex-valued function with minimal period L, i.e.,

q.x C L/ D q.x/; for all x 2 R: (1.3)
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Unless stated otherwise, we assume q 2 L1.R/, the space of essentially bounded

Lebesgue measurable functions with essential supremum norm. We say a function

v.xI z; "/ is solution of equation (1.1) if it is locally absolutely continuous, i.e., if

v 2 ACloc.R/, and the equality (1.1) holds almost everywhere (cf. A.1).

The main motivation for studying (1.1) derives from its role in the analysis of the

focusing nonlinear Schrödinger (NLS) equation on the circle, which is given by

i "@t C "2@2
x C 2j j2 D 0; (1.4)

where  W R � RC ! C is the slowly-varying complex envelope of a quasi-mono-

chromatic, weakly dispersive nonlinear wave packet, and the physical meaning of the

variables depends on the context. (E.g., in nonlinear fiber optics, t represents propaga-

tion distance while x is a retarded time.) In general, the parameter " quantifies the

relative strength of dispersion compared to nonlinearity. (In the quantum-mechanical

setting, " is also proportional to Planck’s constant „.)

Specifically, it was shown by Zakharov and Shabat in 1972 that (1.1) makes up

the first half of the Lax pair for the focusing NLS equation [70]. This observation is

the key to solving the initial value problem for (1.4) by means of the inverse scat-

tering method. The solution  .x; t I "/ of (1.4) with initial data  .x; 0I "/ WD q.x/

is constructed by computing suitable scattering data generated by the potential q.x/

in (1.1). Time evolution according to (1.4) corresponds to an isospectral deformation

of the potential in (1.1), and the time evolution of the scattering data can be computed

trivially in certain cases. This allows one to obtain the solution  .x; t I "/ of (1.4) by

solving an inverse scattering problem, i.e., by reconstructing the potential of the ZS

scattering problem from the knowledge of the time-evolved scattering data. As a res-

ult, analysis of ZS systems such as (1.1) has become an active area of research (e.g.,

see [5–7, 16, 25, 29, 30, 35, 36, 40, 44, 47, 56, 62, 63]) and a natural starting point in the

study of solutions to the focusing NLS equation.

Importantly, (1.1) and (1.4) depend on the semiclassical parameter ". Letting " # 0
in (1.4) is referred to as the “semiclassical limit” since it allows one to establish a con-

nection between quantum and classical mechanics [45,46]. Similar phenomena occur

in physical applications when dispersive effects are weak compared to nonlinear ones.

These situations, referred to as small dispersion limits, can produce a wide variety of

physical effects such as supercontinuum generation, dispersive shocks and wave tur-

bulence, to name a few (e.g., see [2, 15, 19, 52, 53, 59, 67–69] and references therein).

Semiclassical, or small dispersion, limits are also of mathematical interest. Solutions

to equations such as focusing NLS have rich structure which becomes more evident

as the semiclassical parameter tends to zero. As a result, much effort has been devoted

to the analysis of integrable nonlinear evolution equations in the semiclassical limit

(e.g., see [4, 11–13, 20, 32, 34, 37–39, 41, 48, 49, 65, 66] and references therein).
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Since (1.1) is a non-self-adjoint eigenvalue problem, its spectrum is in general

quite complicated. Much of the research in this area has been devoted to studying (1.1)

with zero-background potentials, or more precisely, q 2 L1.R/, i.e., Lebesgue integ-

rable. In 1974, Satsuma and Yajima proved that if q.x/ D A sech x with A 2 R,

then (1.1) has purely imaginary point spectrum [56]. Moreover, whenA 2 N there are

precisely 2A eigenvalues located at z D ˙ i.n � 1=2/, n D 1; : : : ; A. More recently,

one of the authors and S. Venakides extended these results to a one-parameter fam-

ily of potentials of the form q.xI "/ D sech x exp.iS.x/="/, where S 0.x/ D � tanh x

with � 2 R [63]. More generally, Klaus and Shaw proved that all real, piecewise-

smooth, single-lobe potentials with zero background have purely imaginary point

spectrum [35, 36]. Here, the term single-lobe means q.x/ is nondecreasing when

x < 0, and is nonincreasing when x > 0. Recently, one of the authors and X.-D. Luo

generalized the Klaus–Shaw result to real, single-lobe potentials on non-zero back-

ground, that is, q.x/ ! q0 as jxj ! 1 and q.x/ > q0 for all x 2 R [5]. Consid-

erable work has also been devoted to potentials with rapid phase variations, namely,

q.xI "/ D A.x/ exp.iS.x/="/, where A.x/ and S.x/ are both real. Careful numerical

experiments by Bronski showed that, in the semiclassical limit, the point spectrum

can accumulate on a “Y-shaped” set of curves in the spectral plane, and the number

of eigenvalues scales like O.1="/ as " # 0 [7]. Also, bounds on the point spectrum

were derived by Deift, Venakides, and Zhou under the assumptions A.x/ ! 0, and

S 0.x/ ! 0 as jxj ! 1 [7]. (For details of the proof, see the work by DiFranco and

Miller [14].) Later, Miller put forth a formal WKB based asymptotic analysis [47].

Moreover, one of the authors and S. Venakides used the idea of the semiclassical limit

of the scattering transform to derive spectral information of various potentials [64]. In

particular, the Y-shaped spectral curve from [7] was confirmed there. The semiclas-

sical limit of solutions to the focusing NLS equation generated by zero-background

potentials was then studied in [4, 20, 32, 34, 41, 65]. Even so, there are still many

important open questions.

Many studies have been devoted to analyzing the spectrum of (1.1) with poten-

tials in L1.R/. Many works have also been devoted to studying the spectrum of Hill

operators with complex potentials (e.g. see [16, 26, 54, 55, 57, 58, 61] and references

therein). However, less is known for the non-self-adjoint ZS system (1.1) with a peri-

odic potential. Some localization results corresponding to (anti)periodic eigenvalues

of (1.1) were obtained in [16, 40], and “gap estimates” in weighted Sobolev spaces

were obtained in [16, 29, 30]. The spectrum was also rigorously studied in [27, 28,

44, 62], where, among other results, asymptotic statements as z ! 1 were obtained.

Moreover, for real-analytic periodic potentials, it was shown in [25] that the set of

periodic eigenvalues was discrete and clustered on the real and imaginary axes of the

spectral variable in the limit " # 0.
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The semiclassical limit of (1.1) with real periodic potentials was recently studied

by two of the authors using a formal WKB approach, and numerical simulations [6].

This work is partly motivated by that study. The main results of the present work are

several statements about the spectrum of (1.1), both in general and in the semiclas-

sical limit. Specifically, the work is organized as follows. We begin in Section 2 by

briefly recalling various preliminary notions concerning the spectral problem (1.1). In

Section 3 we present various general properties of the spectrum, several of which are

new to the best of our knowledge. For example, we show that the resolvent set of (1.1)

with a periodic potential is comprised of two connected components, in contrast with

the case of Hill’s equation, whose resolvent set is path connected. In Section 4 we

show that, under fairly general assumptions on the potential, the spectrum localizes

to a subset of the real and imaginary axes of the spectral variable in the limit " # 0,

thus putting the asymptotic and numerical results of [6] into a rigorous mathemat-

ical setting. In Section 5 we discuss some further properties acquired by the spectrum

when the potential is real and/or symmetric. The proofs of all results discussed in Sec-

tions 3, 4, and 5 are given in Section 6. In Section 7, specific examples are analyzed

exactly and via careful numerical simulations, and we comment on the similarities

between the periodic problem and the infinite line problem when 0 < " � 1. Various

details about the numerical simulations and some of the calculations are relegated to

the appendices.

2. Preliminaries

Equation (1.1) is equivalent to the eigenvalue problem

L
"v D zv; (2.1)

where

L
" WD i �3."@x �Q/; (2.2)

is a one-dimensional Dirac operator acting in L2.R;C2/ with dense domain H 1.R;

C2/, and Q is given by (1.2). Here H 1 is the Sobolev space of square integrable

functions with square integrable first derivative. (For a brief discussion on notation

and function spaces see A.1.)

Regarding the inverse spectral method for the focusing NLS equation on the circle,

one is concerned with the Lax spectrum of the operator L", namely, the set of z 2
C for which a non-trivial solution of (1.1) exists which is bounded for all x 2 R.

Specifically, the Lax spectrum – or, simply, the spectrum – is defined as

†Lax WD ¹z 2 CW there exists v 6� 0 2 ACloc.R/

s.t. L
"v D zv and supx2R kv.xI z; "/k < 1º: (2.3)
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It is well known that †Lax is purely continuous, that is, essential without any eigen-

values and empty residual spectrum [9, 27, 31, 54, 55]. Likewise, consider the oper-

ator (2.2), now acting in L2.Œ0;L�;C2/ with dense domainH 1.Œ0;L�;C2/. Then, for

each � 2 R, the associated Floquet spectrum is defined as

†� WD ¹z 2 CW there exists v 6� 0 2 H 1.Œ0; L�;C2/

s.t. L
"v D zv and v.LI z; "/ D ei �L v.0I z; "/º: (2.4)

Importantly, � D 2n�=L corresponds to the periodic spectrum, and � D .2n� 1/�=L
corresponds to the antiperiodic spectrum, where n 2 Z. Any z 2†� will be referred to

as an eigenvalue of (2.1), and the corresponding v.xI z; "/ as a Floquet eigenfunction.

Clearly, the eigenvalues depend on ", i.e., z D z."/.

Basic properties of the Lax spectrum that follow from the theory of linear homo-

geneous ODEs with periodic coefficients are reviewed next to introduce some relevant

concepts and to set the notation.

Theorem 2.1 (Floquet, [8, 23]). Consider the system of linear homogeneous ODEs
given by

y0 D A.x/y; (2.5)

where A 2 L1
loc.R/ is a n � n matrix-valued function such that A.x C L/ D A.x/.

Then, any fundamental matrix solution Y.x/ of (2.5) can be written in the Floquet
normal form

Y.x/ D ‰.x/eRx; (2.6)

where ‰.x C L/ D ‰.x/, ‰ is nonsingular, and R is a constant matrix.

Without loss of generality, one can take R to be in Jordan normal form. Since

‰.x/ is locally absolutely continuous and periodic, the behavior of solutions as x !
˙1 is determined by the eigenvalues, called Floquet exponents, of the matrix R. In

particular, (i) if the Floquet exponent has non-zero real part then the solution grows

exponentially as x ! 1, or as x ! �1; (ii) if the Floquet exponent has zero real

part, but R has non-trivial Jordan blocks then the solution is algebraically growing;

(iii) otherwise the Floquet exponent is purely imaginary and the solution remains

bounded for all x 2 R;

By Theorem 2.1, all Floquet eigenfunctions of the ZS system (1.1) have the form

v.xI z; "/ D ei �x w.xI z; "/; (2.7)

where w.x C LI z; "/ D w.xI z; "/, and � D �."/ 2 R is the quasi-momentum. More

generally, one has the so-called normal solutions, that is, solutions of (1.1) such that

v.x C LI z; "/ D �v.xI z; "/; (2.8)
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and � D �."/ is the Floquet multiplier. Thus, a solution of (1.1) is bounded for all

x 2 R if and only if j� j D 1 in which case one has � D ei �L. Moreover, the Floquet

multipliers are the eigenvalues of a monodromy matrix, which is defined as

Y.x C LI z; "/ D Y.xI z; "/M.zI "/; (2.9)

where Y.xI z; "/ is any fundamental matrix solution of (1.1). Let ˆ WD ˆ.xI z; "/ be

the principal matrix solution of (1.1), that is, the solution of (1.1) normalized so that

ˆ.0I z; "/ � I, where I is the 2 � 2 identity matrix. Since all monodromy matrices

are similar, for the remainder of this work we fix

M.zI "/ D ˆ.LI z; "/: (2.10)

Note also that the well-known symmetries of solutions of (1.1) imply

M. NzI "/ D �2M.zI "/�2; (2.11)

where �2 is the second Pauli matrix (cf. A.1). In turn, (2.11) implies M.zI "/ can be

written as

M.zI "/ D
�
c.zI "/ �s. NzI "/
s.zI "/ c. NzI "/

�
; (2.12)

where, by (2.10), c.zI "/ and s.zI "/ are the components at x D L of the solution

v.xI z; "/ of (1.1) equaling .1; 0/T at x D 0. Also, since (1.1) is traceless, it follows

from Abel’s formula that detM.zI"/� 1. Hence, the eigenvalues ofM.zI"/ are given

by roots of the quadratic equation �2 � .2�"/� C 1 D 0, where we introduced the

Floquet discriminant

�" WD �".z/ D 1

2
trM.zI "/; (2.13)

and “tr” is the matrix trace. Thus, (1.1) has bounded solutions if and only if the fol-

lowing two conditions are simultaneously satisfied:

Im�".z/ D 0; (2.14a)

�1 � Re�".z/ � 1: (2.14b)

(Here “Re” and “Im” denote the real and imaginary components of a complex func-

tion, respectively.) Thus, one gets the following equivalent representation of the Lax

spectrum, namely,

†Lax D ¹z 2 CW�".z/ 2 Œ�1; 1�º: (2.15)

Note (2.12) and (2.13) immediately imply �" is real-valued along the real z-axis.

Further, recall the following:

Lemma 2.2 (Entire, [42, 44]). The Floquet discriminant�".z/ is entire.
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Hence,�" satisfies the Schwarz reflection principle, i.e., �". Nz/ D �".z/.

Additionally, the Floquet spectrum (2.4) has the equivalent representation (see [43]

for further details)

†� D ¹z 2 CW�".z/ D cos.�L/; � 2 Rº: (2.16)

Clearly, for � 2 R one has †�C2�=L D †� . Importantly, the above arguments show

that

†Lax D
[

�2Œ0;2�=L/

†� ; (2.17)

where the eigenfunctions of (2.4) extend naturally to R. That is, the Lax spectrum

is the union of all Floquet spectra. (Note however that the terminology used in the

literature varies somewhat.)

Recall that L
" is isospectral with respect to time deformations of the potential

that obey the NLS equation (1.4). Thus, †� and †Lax, and therefore also �", are all

conserved with respect to the flow of the NLS equation (1.4).

Also recall that for the defocusing NLS equation [i.e., (1.4) with a negative sign

in front of the nonlinear term], the corresponding Zakharov–Shabat spectral problem

[i.e., (1.1) with the entry �q.x/ inQ.x/ replaced with q.x/] is self-adjoint, and there-

fore the spectrum is confined to the real z-axis. In that case, for periodic potentials the

real z-axis decomposes into a (possibly infinite) number of spectral bands [8, 17, 43].

Thus, in the self-adjoint case, knowing the periodic/antiperiodic spectrum and their

geometric multiplicities is enough to completely characterize the Lax spectrum.

In contrast, the focusing NLS equation corresponds to the non-self-adjoint case,

for which there is no restriction on the location of the spectral bands in the complex

plane (apart from constraints such as the Schwarz symmetry). This greatly complic-

ates the analysis; and implies the entire Floquet spectrum is relevant. Nonetheless,

one can still introduce the concept of spectral bands and gaps like with self-adjoint

problems, as discussed in Section 3.

Importantly, the inverse spectral theory for (1.1) also involves the Dirichlet spec-

trum. The Dirichlet spectrum is defined as

†Dir.xo/ WD ¹� 2 CW there exists v 6� 0 2 H 1.Œxo; xo C L�;C2/

s.t. L
"v D �v and v 2 BCDir.xo/º; (2.18)

where “BCDir.xo/” are Dirichlet boundary conditions (BCs) with base point xo, i.e.,

v1.xoI �; "/C v2.xoI �; "/ D 0; (2.19a)

v1.xo C LI �; "/C v2.xo C LI �; "/ D 0: (2.19b)
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Any value � 2 †Dir.xo/ will be referred to as a Dirichlet eigenvalue of (2.1). Simil-

arly to the Floquet spectrum, one can define †Dir.xo/ as the zero set of an analytic

function. Consider the following modified fundamental matrix solution of (1.1):

ẑ .xI z; "/ D ˆ.xI z; "/C; C D 1p
2

��1 i

1 i

�
: (2.20)

The monodromy matrix zM ".z/ associated with ẑ is zM ".z/ D C�1M.zI "/C . Then,

it follows easily that (see A.3 for details)

†Dir.0/ D ¹� 2 CW zM "
21.�/ D 0º; (2.21)

where the subscript “21” denotes the second row first column entry of the corres-

ponding matrix. Unlike the Floquet spectrum, however, the Dirichlet spectrum is

dependent on the base point xo. Similarly,†Dir.xo/ is not conserved by the flow of the

NLS equation (1.4). Indeed, the Dirichlet spectrum provides angle information in the

“action–angle” formalism of an integrable system. Moreover, Floquet and Dirichlet

spectra together comprise the set of scattering data from which one can reconstruct

the potential (1.3). Namely, one has the following:

Theorem 2.3 (Trace formulae, [44]). Let ¹znºn2Z be the sequence of periodic and
antiperiodic eigenvalues, ¹�n.xo/ºn2Z the sequences of Dirichlet eigenvalues, and
¹y�n.xo/ºn2Z the sequences of auxiliary Dirichlet eigenvalues, defined respectively as
follows:

�2
".zn/� 1 D 0; yM "

21.�nI xo/ D 0; {M "
21.

y�nI xo/ D 0; (2.22)

where yM ".zI xo/ and {M ".zI xo/ are respectively the modified monodromy matrices
zM ".z/ associated with the translated potentials q.xo C x/ and i q.xo C x/. Then,

q.x/ � q.x/ D 2
X

j 2Z

.z2j C z2j C1 � 2�j .x//; (2.23a)

q.x/C q.x/ D �2 i
X

j 2Z

.z2j C z2j C1 � 2y�j .x//: (2.23b)

The numbering of the eigenvalues in (2.23) is such that, for jj j sufficiently large,

take z2j C1 D Nz2j and the �j and y�j are the Dirichlet eigenvalues associated with z2j

and z2j C1 (cf. Theorem 3.14 and [16, 29]).

3. General properties of the spectrum

In this section we discuss some general properties of the Lax spectrum. Some of the

results below were known, but here are proven for a broader class of potentials. Other
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results are new to the best of our knowledge. In this section we assume " > 0 is fixed.

Proofs of all the results in this section are given in Section 6.1.

Owing to (2.14a), the Lax spectrum (2.3) is located along the contour lines

� WD ¹z 2 CW Im�".z/ D 0º: (3.1)

Moreover, � is the union of an at most countable set of regular analytic curves �n in

the complex z-plane [27], each starting from infinity and ending at infinity:

� D
[

n2Z

�n: (3.2)

(The precise details of the map n 7! �n are not important for the present purposes.)

Definition 3.1. A spectral band is a maximally connected regular analytic arc along

�n determined by (2.14b). Each finite portion of �n where j Re�"j > 1 and which is

delimited by a band on either side is called a spectral gap.

With the above definition, one can talk about bands and gaps along each �n as

in a self-adjoint problem. The difference is of course that the bands and gaps are not

restricted to lie along the real z-axis as they would be in a self-adjoint problem, but lie

instead along arcs of �n. Moreover, different curves �i ¤ �j (and therefore different

spectral bands) can intersect at saddle points of �". Figure 1 provides a schematic

illustration of the Lax spectrum. Note that two curves in � can intersect at most once,

as a result of the following:

Lemma 3.2. The set � , and thus the Lax spectrum †Lax, cannot contain any closed
curves in the finite z-plane.

The equivalent statement to Lemma 3.2 for non-self-adjoint Sturm–Liouville oper-

ators is well known [54,55]. As in the self-adjoint case, the band edges still correspond

to the periodic and antiperiodic eigenvalues. More precisely, for �".z/ D 1, the cor-

responding eigenfunctions are periodic with period L, while for �".z/ D �1, the

corresponding eigenfunctions are antiperiodic (i.e., 2L-periodic). As with Hill’s equa-

tion, some of the spectral gaps might be closed, in which case, for the purposes of this

work, we will count two adjacent bands along a single �n as a single one. On the

other hand, two intersecting spectral bands lying on different curves �i ¤ �j will be

counted as separate. Given this convention, we say q is a finite-band potential if its

Lax spectrum is composed of finitely many spectral bands.

We note that the terminology “finite-gap potential” is much more common in the

literature, especially in the context of special solutions of infinite-dimensional integ-

rable systems (e.g., see [3]). In the self-adjoint case, every finite-gap potential is also

a finite-band potential and vice versa, so the two concepts are equivalent. However,

this is not true in the non-self-adjoint case.
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Re z Re z

Im z Im z

Im D0
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Figure 1. Left. Schematic illustration of the Lax spectrum of the focusing Zakharov–Shabat

scattering problem with a generic periodic potential. Right. Schematic illustation of the Lax

spectrum of the focusing Zakharov–Shabat scattering problem with a real, even, or odd periodic

potential. In these cases elements of the Floquet spectrum come in quartets, i.e., ¹z; Nz;�z;�Nzº
(see Lemma 5.1).

The following property is well known, but a proof of it is provided in Section 6.1

for convenience:

Lemma 3.3 (Infinite band, [24, 42, 44]). The real z-axis is an infinitely long spectral
band; that is, R � †Lax.

A key to characterize many properties of the spectrum is the asymptotic behavior

of the Floquet discriminant as z ! 1.

Lemma 3.4. If q 2 L1.R/, then for each fixed " > 0 the Floquet discriminant �"

has the following asymptotic behavior:

�".z/ D
´

1
2

e� i zL=".1C e2 i zL=" Co.1//; z ! 1; Im z � 0;

1
2

e� i zL=".1C e2 i zL=" CO.1= Im z//; Im z ! 1; Im z > 0:
(3.3)

If q0 2 L1.Œ0; L�/, then for each fixed " > 0

�".z/ D 1

2
e� i zL="

�
1C e2 i zL=" C 1

2 i z"
.1 � e2 i zL="/kqk2

2o
�1
z

��
;

z ! 1; Im z � 0: (3.4)

Moreover,

�".z/D cos.zL="/� 1

2z"
sin.zL="/kqk2

2 C o
�eL Im z

z

�
; z ! 1; Imz � 0: (3.5)
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If, additionally, q0 2 L1.R/, then,

�".z/ D 1

2
e� i zL="

�
1C e2 i zL=" C 1

2 i z"
.1 � e2 i zL="/kqk2

2 C o
� 1

.Im z/2

��
;

Im z ! 1; Im z > 0: (3.6)

Further, by differentiating (1.1) with respect to z one also has the following:

Lemma 3.5. If q 2 L1.R/, then for each fixed " > 0

�0
".z/ D �L

"
sin.zL="/C eL Im z=" o.1/; z ! 1; Im z � 0: (3.7)

If, additionally, q0 2 L1.Œ0; L�/, then for each fixed " > 0

�0
".z/ D �L

"
sin.zL="/ � L

2z"2
cos.zL="/kqk2

2 C o
�eL Im z

z

�
;

z ! 1; Im z � 0: (3.8)

Note the asymptotic behavior for Im z < 0 follows from the Schwarz reflection

principle. Expansions similar to those in Lemma 3.4 were given in [27, 44], but were

obtained under the assumptions that the potential is twice differentiable. Lemmas 3.4

and 3.5 extend the validity of the corresponding results to potentials in L1.R/. Lem-

mas 2.2 and 3.4 also immediately imply:

Corollary 3.6. If q 2 L1.R/, the Floquet discriminant �".z/ has an essential sin-
gularity at infinity.

The fact that �" is entire has a further consequence. Recall (2.16), which says

that the Floquet spectrum for a given value of � 2 R is the set of z 2 C for which

�".z/ D cos.�L/. Then one easily gets:

Lemma 3.7. For each � 2 R, the corresponding Floquet spectrum†� is discrete.

Similarly, by (2.21) one has that †Dir.xo/ is also discrete. Next, we derive an

upper bound on the imaginary component of points in the spectrum.

Lemma 3.8. Let q 2 L1.R/. Then, for all z 2 †Lax,

j Im zj � kqk1: (3.9)

Moreover, for all � 2 †Dir.xo/,

j Im �j � kqk1: (3.10)

The proof of Lemma 3.8 actually yields a stronger estimate: for all z 2 †Lax,

j Im zj � j Rehqv2; v1ij=.kv1k2kv2k2/; (3.11)
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where v.xI z; "/ D .v1; v2/
T is an associated Floquet eigenfunction of the ZS prob-

lem (1.1), and h�; �i is the L2.Œ0; L�/ inner product (cf. A.1). Inequality (3.9) refines

the bound obtained in Theorem 4.2 in [27]. Importantly, there exists potentials such

that estimate (3.9) is sharp (see Section 7.1 for an example).

Next, Lemma 3.4 leads to the following result:

Lemma 3.9. Let q 2 L1.R/. Then for each fixed " > 0 the Floquet discriminant
�".z/ has infinitely many simple real zeros, and at most finitely many nonreal zeros.
The same is true for the zeros of �0

".z/.

In turn, Lemma 3.2, combined with Lemma 3.4 provides the key to proving the

next result. Recall that the resolvent set of an operator is the complement of its spec-

trum. Thus, we give the following definition:

�Lax WD C n†Lax: (3.12)

Theorem 3.10. Let q 2 L1.R/. Then the resolvent set �Lax is comprised of two con-
nected components.

Importantly, Theorem 3.10 should be compared to that for Hill’s equation, whose

resolvent set is connected [54, 55].

By Lemma 2.2 and Corollary 3.6, one gets that�" is entire as a function of z with

an essential singularity at infinity. It then follows from Picard’s theorem that�" takes

on every value infinitely many times with at most one exception. The following result,

which is a consequence of Lemma 3.9, clarifies that the lone exception (if one exists)

cannot be a value corresponding to the Lax spectrum:

Theorem 3.11. Let q 2 L1.R/. Then, for every � 2 R the Floquet spectrum †� is
countably infinite.

Next, we turn our attention to the number of spectral bands. As discussed above,

adjacent bands belonging to the same contour �n with a degenerate gap are counted

as a single one (and therefore the real axis counts as a single infinitely long band), but

bands belonging to different contours �i ¤ �j (which can intersect at most once) are

counted as separate. Note that a degenerate gap occurs at a multiple point, i.e., a point

zm
n 2 C such that�2

".z
m
n / D 1, and �0

".z
m
n / D 0. Thus, a multiple point is a periodic,

or antiperiodic, eigenvalue that is also a critical point of the Floquet discriminant. An

important distinction is that in the self-adjoint case necessarily�00
" .z

m
n / ¤ 0, while in

the non-self-adjoint case one may have higher order zeros.

Recall that, if the number of spectral bands is finite, we call q a finite-band poten-
tial. Equivalently, q is a finite-band potential if the number of points zc

n 2 R such that

�0
".z

c
n/ D 0, and �".z

c
n/ 2 .�1; 1/ is finite.
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Next, let RN denote the rectangle with vertices ˙N ˙ i kqk1 where N 2 N. An

important consequence of Lemmas 3.8 and 3.9 is the following:

Theorem 3.12. Let q 2 L1.R/ and fix " > 0. Then, q is a finite-band potential if and
only if there exists N D N.qI "/ 2 N such that .†Lax n R/ � RN .

As a special case, Theorem 3.12 implies that, if the Lax spectrum is contained in

the “cross” R [ i R, the potential is finite-band. Importantly, one can show that, if all

periodic and antiperiodic eigenvalues are in R [ i R, that is enough to conclude that

the potential is finite-band. Specifically:

Theorem 3.13. Let q 2 L1.R/ and suppose

†�=L [†2�=L � R [ i R; (3.13)

that is, the periodic/antiperiodic spectrum is only real and purely imaginary. Then q
is a finite-band potential.

Note that the converse of Theorem 3.13 does not hold. That is, there are finite-band

potentials whose periodic and antiperiodic eigenvalues are not only real or imagin-

ary. (For example, any Galilean transformation of a potential obviously preserves its

finite-band nature, but shifts the Lax spectrum horizontally, and therefore moves any

imaginary eigenvalues off the imaginary z-axis.) Nonetheless, Theorem 3.13 will be

relevant in Section 5, where we study potentials whose spectrum possesses additional

symmetries.

Next, we discuss the asymptotic distribution of bands as z ! 1. For this purpose,

following [44], we introduce the concept of “spine,” defined as a spectral band that

intersects the real axis transversally and does not intersect any other band. Recall that

any intersection point between two or more bands is a saddle point (or critical point)

of the discriminant, that is, a point zc
n 2 C such that�0

".z
c
n/ D 0.

Theorem 3.14. For any q 2 L1.R/ and each fixed " > 0, there exists some N D
N.qI "/ 2 N, such that all but finitely many bands of the Lax spectrum are spines
located outside RN . Moreover,

i. for each of these spines, there exists n 2 Z such that the intersection point
between the spine and the real axis is o.1/-close to the point n�"=L as
n ! ˙1;

ii. only one spine can be o.1/-close to n�"=L as n ! ˙1.

Further, if q0 2 L1.Œ0; L�/, the intersection point is O.1=z/-close.
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Re z Re z

Im z Im z

qkL1.R/

qkL1.R/

qkL1.R/

qkL1.R/

N.q/ N.q/ N.q/ N.q/

Figure 2. Left. Schematic diagram of the spectrum for a finite-band potential. Right. Schematic

diagram of the spectrum for an infinite-band potential.

Related asymptotic results were given in [16, 27, 44]. As a consequence of The-

orem 3.14, we have that the potential q 2 L1.R/ is a finite-band potential if and only

if there exists N 2 N such that †Lax contains no spines outside RN . An illustration

of Theorem 3.14 is given in Figure 2.

Theorem 3.14 has an important consequence. Since a spectral gap is delimited by

the presence of a spectral band on either side of it, the number of gaps associated

to any given potential is always finite, since for any potential there is a finite region

of the complex plane outside of which all bands are spines (for which there are no

associated gaps), and the number of spectral bands (and therefore gaps) inside any

finite region of the complex plane is always finite (as a consequence of the fact that

�".z/ is entire). In other words, for the focusing Zakharov–Shabat operator on the

circle, every potential is a finite-gap potential (cf. [28]). This situation is in marked

contrast with the case of the spectral problem for the Hill operator and that for the

self-adjoint Zakharov–Shabat operator, for which finite-gap potentials are a special

subset. In contrast, for the focusing Zakharov–Shabat operator the only meaningful

distinction is that between finite-band and infinite-band potentials (cf. [28]). The key

distinction is the existence of finitely many (as opposed to infinitely many) simple

periodic/antiperiodic eigenvalues, which defines a Riemann surface of finite-genus [3,

27, 28].

4. Properties of the spectrum in the semiclassical limit

In this section we describe the Lax spectrum in the semiclassical limit for complex-

valued potentials that do not depend on " (see Section 7 for a discussion regarding

potentials that depend on " via a “fast phase.”). Before we do so, however, we dis-
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j Im zjD
kq0kL1.R/

2j Re zj

j Im zjDkqkL1.R/ j Im zjDkqkL1.R/
Im z Im z

Re z Re z

0<"<1

j ImzjD
"kq0kL1.R/

2j Re zj
j ImzjD

kq0kL1.R/

2j Re zj

Figure 3. Left. Bounds on the Lax spectrum for " D 1 (dark red). Right. Bounds on the Lax

spectrum when 0 < " < 1 (dark red).

cuss further rigorous bounds on the location of the Lax spectrum under fairly weak

assumptions on the potential.

Lemma 4.1. Suppose q0 2 L1.R/. If z 2 †Lax, then

j Re zjj Im zj � "

2
kq0k1: (4.1)

The proof of Lemma 4.1 actually yields the stronger estimate

j Re zjj Im zj � "

2
j Imhq0v2; v1ij=.kv1k2kv2k2/; (4.2)

where v.xI z; "/ D .v1; v2/
T is an associated Floquet eigenfunction of the ZS sys-

tem (1.1), and h�; �i denotes the L2.Œ0;L�/ inner product (cf. A.1). Thus, if z 2 †Lax,

then Lemmas 3.8 and 4.1 together give the bound

j Im zj � min

²
kqk1;

"kq0k1

2j Re zj

³
: (4.3)

Theorem 4.2. Suppose q0 2 L1.R/. Then

†Lax � ƒ".q/; (4.4)

where

ƒ".q/ WD ¹z 2 CW j Im zj � kqk1º \
°
z 2 CW j Re zjj Im zj � "

2
kq0k1

±
: (4.5)

That is, the Lax spectrum is contained in the setƒ".q/ depending explicitly on ",

the semiclassical parameter. The regionƒ".q/ is shown in dark red in Figure 3.
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Theorem 4.2 complements the localization result of [16] for the periodic and anti-

periodic eigenvalues. Moreover, the results in Lemmas 3.8 and 4.1 apply to the entire

Lax spectrum, not just the periodic and antiperiodic eigenvalues.

Also, recall that cardinality results for the periodic, antiperiodic, and Dirichlet

eigenvalues were obtained in [29, 30, 44]. Namely, there exists N D N.q/ 2 N such

that in the disc D.0I .N � 1=2/�=L/ there are exactly 2N � 2 periodic eigenval-

ues, 2N antiperiodic eigenvalues, and 2N � 1 Dirichlet eigenvalues. Importantly, for

q 2 H 1.Œ0;L�/ one can get an explicit estimate for N D N.q/ (see [44] for details).

Theorem 4.2 allows one to strengthen those results. For brevity, we let " D 1 in The-

orem 4.3 and Corollary 4.4.

Theorem 4.3. Suppose q0 2 L1.R/ and " D 1. Consider the sets

…Lax.q/ WD ƒ".q/ \D.0I .N � 1=2/�=L/; (4.6a)

…Dir.q/ WD .R � iŒ�kqk1; kqk1�/ \D.0I .N � 1=2/�=L/: (4.6b)

The set …Lax.q/ contains exactly 2N � 2 periodic eigenvalues and 2N antiperiodic
eigenvalues. The set …Dir.q/ contains exactly 2N � 1 Dirichlet eigenvalues.

A consequence of Lemma 3.4 and Lemma 4.1 is the following:

Corollary 4.4. Fix � 2 R. Suppose q0 2 L1.R/ and " D 1. Then the Floquet eigen-
values ¹zn.�/ºn2Z can be partially ordered such that Re zn.�/ ! ˙1 as n ! ˙1.
Moreover,

Im zn.�/ D O.1=Re zn.�//; as n ! ˙1; Re z ¤ 0; (4.7)

We now turn to the semiclassical limit. Theorem 4.2 allows us to give a rigorous

characterization of the Lax spectrum as " # 0. This is important since for certain initial

data the focusing NLS equation on the circle appears to admit a coherent structure in

the semiclassical limit [6]. Note that spectral confinement to the real and imaginary

axes together with the fact that the real z-axis is an infinitely long band implies that

all nonlinear excitations emerging from the input have zero velocity.

Corollary 4.5. Suppose q0 2 L1.R/. Define

†1 WD R [ iŒ�kqk1; kqk1�: (4.8)

Moreover, let Nı.†1/ be a ı-neighborhood of †1. Then for any ı > 0,

†Lax � Nı.†1/; (4.9)

for all sufficiently small values of ". That is, for any ı > 0 there exists an "� > 0 such
that (4.9) holds for all 0 < " � "�.
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Im z

Re z

Im z

Re z

j Im zjDkqkL1.R/
j ImzjD

"kq0kL1.R/

2j Re zj
j ImzjD

kq0kL1.R/

2j Re zj

Nı.†1/

Figure 4. Left. The ı-neighborhood of †1 (light gray). Right. Bounds on the Lax spectrum

for 0 < " � "� (dark red) with the ı-neighborhood of †1 (light gray).

Corollary 4.5 is a direct consequence of Theorem 4.2. Moreover, Corollary 4.5

corroborates and puts on a rigorous footing the numerical results of [6]. Roughly

speaking, one can interpret Corollary 4.5 as saying that the Lax spectrum of L" “con-

verges” to †1 in the limit " # 0. Note, however, that in general the semiclassical

limit is a singular limit. This is why it is necessary to state the result in a more indirect

way. (It was also shown in [6] through numerical and asymptotic calculations that the

number of bands is O.1="/ as " # 0. However, no rigorous proof of this result exists

to the best of our knowledge.) An illustration of the ı-neighborhoodNı.†1/ and its

relation to the Lax spectrum is given in Figure 4. The proof of Theorem 4.5 and of all

results in this section is given in Section 6.2.

5. Properties of the spectrum for real or symmetric potentials

In addition to Schwarz symmetry, the Lax spectrum acquires additional symmetries

when the potential in (1.1) is itself symmetric. In particular, if the potential q is real

then it follows that the monodromy matrix satisfies

M.�NzI "/ D M.zI "/: (5.1)

Next, we list some additional symmetries of the monodromy matrix when the poten-

tial is symmetric. These symmetries are easily deduced from the symmetries of the

ZS system (1.1) (cf. A.2). Suppose that the potential satisfies a generalized reflec-

tion symmetry, that is, there exists � 2 R such that q.�x/ D e2 i � q.x/ for all x � 0.

(Obviously for � D 0 mod� , and � D �=2 mod� one has the cases of even and

odd potentials, respectively.) Then, one gets

M.�NzI "/�1 D .cos ��1 C sin ��2/M.zI "/.cos ��1 C sin ��2/; (5.2)

where �1 and �2 are the first and second Pauli matrices, respectively (cf. A.1).
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If the potential in (1.1) is PT-symmetric, that is, if q.�x/ D q.x/, then it follows

that the monodromy matrix satisfies

M. NzI "/�1 D �3M.zI "/�3: (5.3)

Using the above symmetries, for odd real, or even real potentials we obtain

M.zI "/ D
�
c.zI "/ ˙s.zI "/
s.zI "/ .1˙ s2.zI "//=c.zI "/

�
; (5.4)

where c D M11.zI "/ 6� 0, and s D M21.zI "/, and where the “+” sign holds for odd

real potentials and the “�” sign for even real potentials. Using the above symmetries,

we get the following:

Lemma 5.1. Let the potential q satisfy at least one of the following conditions:
(a) it is real; (b) it is even; (c) it is odd. Then, †Lax is symmetric with respect to
the imaginary z-axis, and � includes the Im z-axis, cf. (3.1).

Next, using Lemma 5.1 we get the following:

Theorem 5.2. Let the potential q satisfy at least one of the following conditions:
(a) it is real; (b) it is even; (c) it is odd. If the periodic and antiperiodic spectra are
real and purely imaginary only, then the entire Lax spectrum is contained within the
real and imaginary axes, that is, †Lax � †1 � R [ i R, cf. (4.8).

Further, by assuming the potential is real, or symmetric one is able to obtain

stronger bounds on the Dirichlet and Floquet spectra:

Lemma 5.3. Suppose q0 2 L1.R/. Moreover, let the potential q satisfy at least one
of the following conditions: (a) it is real; (b) it is odd; (c) it is PT-symmetric. If � 2
†Dir.0/, then

j Re �jj Im �j � "

2
kq0k1: (5.5)

Importantly, for q real, the result holds more generally for � 2 †Dir.xo/. That is,

the bound (5.5) is independent of the base point xo when q is real.

Theorem 5.4. Assume q0 2 L1.R/. Let the potential q satisfy at least one of the
following conditions: (a) it is real; (b) it is odd; (c) it is PT-symmetric. Then,

†Dir.0/ � ƒ".q/; (5.6)

where

ƒ".q/ WD ¹� 2 CW j Im �j � kqk1º \
°
� 2 CW j Re �jj Im �j � "

2
kq0k1

±
: (5.7)
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Thus, for these classes of potentials the Dirichlet spectrum localizes to the real and

imaginary axes in the semiclassical limit. An interesting open question is whether the

bound obtained in Lemma 5.3 holds more generally for complex-valued potentials.

These results should be compared to those pertaining to the Lax spectrum. Finally,

we have the following interesting bound:

Lemma 5.5. Let q be real, strictly positive, and suppose that q0 2 L1.R/. Then,

j Im zj � "

2
k.ln q/0k1; (5.8)

for all z 2 †Lax n i R. Moreover,

j Im �j � "

2
k.ln q/0k1; (5.9)

for all � 2 †Dir.xo/ n i R.

Thus, for strictly positive real potentials Im z.�I "/ (resp. Im �."/) is uniformly

O."/ as " # 0 for non-purely imaginary z 2†Lax (resp. � 2†Dir.xo/). (Note by phase

invariance this result can easily be extended to strictly negative potentials as well.)

This result provides strong justification of the WKB analysis employed by two of

the authors in [6]. Moreover, Lemma 5.5 is the analogue for periodic potentials of

the classic results about purely imaginary discrete eigenvalues for potentials on the

line [5, 35]. Finally, localization along the imaginary axis of the spectral variable as

in Lemma 5.5 together with the WKB results obtained in [6] find application in the

study of soliton and breather gases in focusing nonlinear media (see [18]).

When the potential in the ZS system (1.1) is real, one can map (1.1) to a non-self-

adjoint Hill’s equation. Specifically, the invertible change of variables

y˙.xI�; "/ D v1.xI z; "/˙ i v2.xI z; "/ (5.10)

maps (1.1) into linear second-order ODEs

.�"2@2
x CW˙.xI "//y˙ D �y˙; (5.11)

which are of course the celebrated Hill’s equation, with spectral parameter � WD z2

and complex potentials

W˙.xI "/ WD �q2.x/� i "q0.x/: (5.12)

Because W˙.xI "/ are not real, in general the eigenvalue problems (5.11) are non-

self-adjoint. Note however that, when q is real and even, the potentials in (5.12) are

PT-symmetric, i.e., invariant under the combined action of space reflections and com-

plex conjugation [21]. So, the results above for real and even potentials also serve as a
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further study of spectral problems for the Hill operator with a PT-symmetric potential.

Note, estimate (3.9) gives Re� � �kqk2
1, and the estimate (4.1) gives Im� D O."/

as " # 0 in (5.11). Theorem 5.2 implies that, even though real potentials are associated

with a Hill operator with a complex potential, if the periodic and antiperiodic Floquet

eigenvalues are all real or purely imaginary, then the corresponding non-self-adjoint

Hill equation (5.11) has a purely real spectrum. Moreover, this implies that W˙ is

a finite-band potential (recall that for the ZS system the real z-axis is an infinitely

long band). Hence, if q 2 L1.R/, then along the real �-axis the spectral bands and

gaps are confined to the interval Œ�kqk2
1; 0/, followed by one infinitely long spec-

tral band along the interval Œ0;1/. Note however the thesis of Theorem 5.2 is not
true if the potential is not real or even or odd, because in that case the spectrum pos-

sesses no left-right symmetry. The proofs of all the results in this section are given in

Section 6.3.

6. Proofs

6.1. Proofs: General properties of the spectrum

We refer the reader to A.1 for definitions.

Proof of Lemma 3.2. By Lemma 2.2,�".z/ is an entire function differing from a con-

stant. Thus, Im�".z/ is harmonic. By the maximum principle the set � cannot contain

any closed curve. Further, along any spectral band we have Im�".z/D 0. Hence,†Lax

contains no closed bands in the finite complex z-plane.

Proof of Lemma 3.3. By (2.12), �".z/ 2 R along the real z-axis, and

jc.zI "/j2 C js.zI "/j2 � 1:

Further, along the real z-axis �".z/ D Re c.zI "/. Thus,

j�".z/j � .1� js.zI "/j2/1=2 � 1:

Hence, R � †Lax.

In order to prove Lemma 3.4, we need two intermediate results. Recall that one

can write

M.zI "/ D ˆ.LI z; "/; (6.1)

whereˆ.xIz;"/ is the principal matrix solution of (1.1). Thus, (2.13) implies�".z/D
1
2

trˆ.LI z; "/. Accordingly, Lemma 3.4 is a consequence of the asymptotic behavior

of ˆ.xI z; "/ as z ! 1. Introducing the change of dependent variable

�.xI z; "/ WD ˆ.xI z; "/ ei zx�3="; (6.2)

as well as the notation �ij for i; j D 1; 2 to denote matrix entries, we next prove:
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Lemma 6.1. Let q 2 L1.Œ0; L�/, and let Im z � 0. Then, for each fixed " > 0

j�11.xI z; "/ � 1j � eM Lkqk2
1

2" Im z
; Im z > 0; (6.3a)

where M D .L="/2kqk1. Moreover,

�11.xI z; "/ D 1C o.1/; z ! 1; Im z � 0; (6.3b)

uniformly for x 2 Œ0; L�. If q0 2 L1.Œ0; L�/, then for each fixed " > 0

�11.xI z; "/ D 1C 1

2 i z"

xZ

0

jq.y/j2 dy C o.1=z/; z ! 1; Im z � 0: (6.4)

If, additionally, q0 2 L1.Œ0; L�/, then,

�11.xI z; "/ D 1C 1

2 i z"

xZ

0

jq.y/j2 d y CO.1=.Im z/2/; Im z ! 1; Im z > 0:

(6.5)

Proof of Lemma 6.1. Using (6.2), it follows that � D .�ij / satisfies the following

system of ODEs:

"�0 D � i zŒ�3; ��CQ.x/�; (6.6)

where Œ�3;�� WD �3����3. Thus,� satisfies the matrix Volterra linear integral equa-

tion

�.xI z; "/ D I C
xZ

0

e� i z.x�y/�3="Q.y/�.yI z; "/ ei z.x�y/�3=" dy=": (6.7)

Explicitly, (6.7) yields coupled integral equations for the individual entries of�.xIz;"/.
In particular,

�11.xI z; "/ D 1C
xZ

0

q.y/�21.yI z; "/ dy="; (6.8a)

�21.xI z; "/ D �
xZ

0

e2 i z.x�y/=" q.y/�11.yI z; "/ dy="; (6.8b)

with similar equations for �12.xI z; "/ and �22.xI z; "/. Eliminating �21, one then

obtains

�11.xI z; "/ D 1CK.�11/.xI z; "/; (6.9a)
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where

K.f /.xI z; "/ WD
xZ

0

k.x; t I z; "/f .t/ d t="; (6.9b)

k.x; t I z; "/ WD �q.t/
xZ

t

e2 i z.y�t/=" q.y/ dy="; x > t: (6.9c)

Note that, for all x 2 Œ0;L� and t 2 Œ0;x�, jk.x; t Iz;"/j �Lkqk2
1=". Then, introducing

the Neumann series

�11.xI z; "/ D
1X

nD0

�
.n/
11 .xI z; "/; (6.10a)

�
.0/
11 D 1; �

.nC1/
11 .xI z; "/ D K.�

.n/
11 / D KnC1.�

.0/
11 /; (6.10b)

we have the bound

jKn.f /.xI z; "/j �
xZ

0

jk.x; t1I z; "/j � � �
tn�1Z

0

jk.tn�1; tnI z; "/jjf .tn/j d tn � � � d t1="
n

� Mn

nŠ
kf k1;

where M WD .L
"
/2kqk2

1. Hence, the series is absolutely convergent, and

sup
x2Œ0;L�;Im z�0

j�11.xI z; "/j �
1X

nD0

jKn.1/.xI z; "/j � eM ; (6.11)

since �
.0/
11 � 1. Next, from (6.8b) and (6.11) we immediately have j�21.xI z; "/j �

eM kqk1=.2 Im z/ for all z such that Im z > 0. Thus, using (6.8a) one gets (6.3a).

Next, we consider the case z ! 1 while Im z remains bounded. The Riemann–

Lebesgue lemma applied to (6.9c) implies that, for all x 2 Œ0;L� and t 2 Œ0; x�, k.x; t;
z; "/ D o.1/ as z ! 1 from Im z � 0. Moreover, it is straightforward to show that,

as in [17], q 2 L1.Œ0; L�/ is sufficient to ensure that the o symbol is uniform with

respect to x 2 Œ0;L�. (E.g., this can be done by approximating q in (6.9c) with smooth

functions, which are dense in L1.Œ0;L�/.) Note that [17] considers a Sturm–Liouville

problem, which involves not only q but also q0, and absolute continuity of q implies

the existence of q0 2L1.Œ0;L�/. Here, q 2L1.Œ0;L�/ implies q 2L1.Œ0;L�/. Together

with the uniform boundedness of �11 for Im z � 0, this gives

jK.�11/.xI z; "/j � eM

xZ

0

jk.x; t I z; "/j d t=" D o.1/; z ! 1; Im z � 0: (6.12)
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Thus,�11.xIz;"/D 1C o.1/ as z! 1 from Imz� 0, i.e., (6.3b). In turn, using (6.8b)

and recalling (6.11) one gets immediately

�21.xI z; "/ D o.1/; z ! 1; Im z � 0: (6.13)

Now, assume additionally that q0 2L1.Œ0;L�/. From (6.6), it follows�0
11 D q.x/�21=".

Then, integrate (6.8b) by parts:

�21.xI z; "/ D 1

2 i z
.q.x/�11.xI z; "/ � e2 i zx=" q.0//

� 1

2 i z

xZ

0

e2 i z.x�y/=".q.y/�11.yI z; "//0 dy; (6.14)

where �11.0I z; "/ � 1. This implies, for q0 2 L1.Œ0; L�/,

�21.xI z; "/ D 1

2 i z

�
q.x/�11.xI z; "/ � e2 i zx=" q.0/

�

CO
� 1

.Im z/2

�
; Im z ! 1; Im z > 0: (6.15)

Plugging (6.15) into (6.8a) gives (6.5). Finally, note, by (6.13), and since �0
11 is pro-

portional to �21, it follows that �0
11.xI z; "/ D o.1/ as z ! 1 from Im z � 0. Hence,

by (6.14) one gets

�21.xI z; "/ D 1

2 i z

�
q.x/�11.xI z; "/ � e2 i zx=" q.0/

�

C o
�1
z

�
; z ! 1; Im z � 0: (6.16)

Plugging (6.16) into (6.8a) gives (6.4).

Next, since �22.xI z; "/ is unbounded as Im z ! 1 from Im z > 0 we make a

further change of variables, namely,

. Q�12; Q�22/
T WD e2 i zx=".�12; �22/

T ; (6.17)

and examine the asymptotic behavior of Q�22.xI z; "/ as z ! 1 from Im z � 0.

Lemma 6.2. Let q 2 L1.Œ0; L�/, and let Im z � 0. Then, for each fixed " > 0,

j Q�22.xI z; "/ � e2 i zx=" j � eM Lkqk2
1

2" Im z
; Im z > 0; (6.18a)

where M D .L="/2kqk2
1. Moreover,

Q�22.xI z; "/ D e2 i zx=" Co.1/; z ! 1; Im z � 0; (6.18b)
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uniformly for x 2 Œ0; L�. If q0 2 L1.Œ0; L�/, then, for each fixed " > 0,

Q�22.xIz;"/D e2 i zx=" �e2 i zx="

2 i z"

xZ

0

jq.y/j2 dyC o
�1
z

�
; z ! 1; Imz � 0: (6.19)

If, additionally, q0 2 L1.Œ0; L�/, then,

Q�22.xI z; "/ D e2 i zx=" �e2 i zx="

2 i z"

xZ

0

jq.y/j2 dy

CO
� 1

.Im z/2

�
; Im z ! 1; Im z > 0: (6.20)

Proof of Lemma 6.2. Using (6.7) and (6.17), we have

Q�12.xI z; "/ D
xZ

0

q.y/ Q�22.yI z; "/ dy="; (6.21a)

Q�22.xI z; "/ D e2 i zx=" �
xZ

0

e2 i z.x�y/=" q.y/ Q�12.yI z; "/ dy=": (6.21b)

Eliminating Q�12, one then obtains

Q�22.xI z; "/ D e2 i zx=" CG. Q�22/.xI z; "/; (6.22a)

where

G.f /.xI z; "/ WD
xZ

0

g.x; t I z; "/f .t/ d t="; (6.22b)

g.x; t I z; "/ WD �q.t/
xZ

t

e2 i z.x�y/=" q.y/ dy="; x > t: (6.22c)

Note that, for all x 2 Œ0;L� and t 2 Œ0;x�, jg.x; t Iz;"/j �Lkqk2
1=". Then, introducing

the Neumann series

Q�22.xI z; "/ D
1X

nD0

Q�.n/
22 .xI z; "/; (6.23a)

Q�.0/
22 D e2 i zx="; Q�.nC1/

22 .xI z; "/ D G. Q�.n/
22 / D GnC1. Q�.0/

22 /; (6.23b)
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we have the bound

jGn.f /.xI z; "/j �
xZ

0

jg.x; t1I z; "/j � � �
tn�1Z

0

jg.tn�1; tnI z; "/jjf .tn/j d tn � � � d t1="
n

� Mn

nŠ
kf k1;

where M WD .L="/2kqk2
1. For Im z � 0, it follows j e2 i zx=" j � 1 so Q�22.xI z; "/ DP1

nD0G
n.e2 i zx="/ is absolutely convergent, and

sup
x2Œ0;L�;Im z�0

j Q�22.xI z; "/j �
1X

nD0

jGn.e2 i zx="/.xI z; "/j � eM : (6.24)

From (6.21a) and (6.24), we have j Q�12.xI z; "/j � eM Lkqk1=". Using (6.21b), one

gets (6.18a).

Next, we consider the case z ! 1 while Im z remains bounded. The Riemann–

Lebesgue lemma applied to (6.22c) implies that, for all x 2 Œ0; L� and t 2 Œ0; x�,

g.x; t I z; "/ D o.1/; z ! 1; Im z � 0:

Together with the uniform boundedness of Q�22 for Im z � 0, this gives

jG. Q�22/.xI z; "/j � eM

xZ

0

jg.x; t I z; "/j d t D o.1/; z ! 1; Im z � 0: (6.25)

Thus, Q�22.xI z; "/ D e2 i zx=" Co.1/ as z ! 1 from Im z � 0, i.e., (6.18b). Inserting

this expression into (6.21a) then yields, by the Riemann–Lebesgue lemma,

Q�12.xI z; "/ D
xZ

0

q.y/.e2 i zy=" Co.1// dy=" D o.1/; z ! 1; Im z � 0: (6.26)

Now, assume additionally that q0 2L1.Œ0;L�/. From (6.6) it follows Q�0
12 D q.x/ Q�22=".

Then, integrate (6.21b) by parts:

Q�22.xI z; "/ D e2 i zx=" C 1

2 i z
q.x/ Q�12.xI z; "/

� 1

2 i z

xZ

0

e2 i z.x�y/=".q.y/ Q�12.xI z; "//0 dy; (6.27)
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where Q�12.0I z; "/ � 0. Expanding the derivative, using (6.21a), and q0 2 L1.Œ0;L�/

gives

Q�22.xI z; "/ D e2 i zx=" � 1

2 i z

xZ

0

e2 i z.x�y/=" q.y/ Q�0
12.yI z; "/ dy

CO
� 1

.Im z/2

�
; (6.28)

as Im z ! 1 from Im z > 0. Then, using Q�0
12 D q.x/.e2 i zx=" CO.1= Im z// as

Im z ! 1 gives (6.20). Moreover, Q�0
12 D q.x/.e2 i zx=" Co.1// as z ! 1 from

Im z � 0. Hence, using (6.27) one gets

Q�22.xI z; "/ D e2 i zx=" C 1

2 i z
q.x/ Q�12.xI z; "/ � e2 i zx="

2 i z

xZ

0

jq.y/j2 dy="

C o
�1
z

�
; (6.29)

as z ! 1 from Im z � 0. Using (6.26) gives (6.19).

We are now ready to prove Lemma 3.4.

Proof of Lemma 3.4. Now that we have the asymptotic behavior of �11, and Q�22,

Lemma 3.4 follows by expressing�" as

�".z/ D 1

2
trˆ.LI z; "/ D 1

2
e� i zL=".�11.LI z; "/C Q�22.LI z; "//;

and combining the above results using the relevant function spaces.

Proof of Lemma 3.5. One of the consequences of Lemmas 6.1 and 6.2 is that the nor-

malized matrix fundamental solutionˆ.xIz;"/, introduced right above equation (2.9),

has the asymptotics

ˆ.xI z; "/ D .I C o.1// e� i zx�3="; as z ! 1; (6.30)

from Im z � 0 and bounded, and for each fixed " > 0.

To prove the remaining formula (3.7), we start with the equation

@zˆ.xI z; "/ D � iˆ.xI z; "/
Z x

0

ˆ�1.yI z; "/�3ˆ.yI z; "/ dy; (6.31)

obtained by differentiating (1.1) (with v replaced by ˆ) with respect to z and then

solving the resulting nonhomogeneous ODE for @zˆ. Equation (3.7) follows after

substituting (6.30) into (6.31). A further consequence of Lemmas 6.1 and 6.2 is that
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if q0 2 L1.Œ0;L�/, then the normalized matrix fundamental solutionˆ.xI z; "/ has the

asymptotics

ˆ.xI z; "/ D
�
I C 1

2 i z
�3

xZ

0

jq.y/j2 dy="C 1

2 i z
�3.Q.x/� e�2 i zx�3="Q.0//

C o
�1
z

��
e� i zx�3=";

(6.32)

as z ! 1 from Im z � 0 and bounded, and for each fixed " > 0. Then, substitut-

ing (6.32) into (6.31) gives

@zˆ.xI z; "/ D
�

� i
x

"
�3 � x

2"2z

xZ

0

jq.y/j2 d y

�
e� i zx�3="

C x

2"z

�
e� i zx�3="Q.0/C ei zx�3="Q.x/

�
C o

�eL Im z

z

�
; (6.33)

as z ! 1 from Im z � 0. Finally, (3.8) is given by �0
".z/ D 1

2
tr @zˆ.LI z; "/.

Proof of Corollary 3.6. From Lemmas 2.2 and 3.4, we know �" is an entire function

differing from a constant. Thus, �" must have either a pole, or an essential singu-

larity at infinity. Suppose �" has a pole at infinity. Then, it must be a polynomial.

This implies there exists an integer n � 1 such that �".z/ D O.zn/ as z ! 1. By

Lemma 3.4, one has�".z/DO.eL Im z/ as Im z ! 1 which is a contradiction. Thus,

�" must have an essential singularity at infinity.

Proof of Lemma 3.7. Fix �o 2 R. Define f".z/ WD�".z/� cos.�oL/. By Lemma 2.2,

f" is an entire function of z. Further, using (2.16) one gets†�o
D ¹z 2 CWf".z/D 0º.

Hence, †�o
is the set of zeros of an entire function. Thus, the Floquet spectrum is

discrete.

Proof of Lemma 3.8. Let z 2 †Lax. This implies v 2 L1.R/ is a non-trivial solution

of (1.1) bounded for all x 2 R. By Floquet’s theorem, v D ei �x w, where w.x C LI
z;"/D w.xIz;"/, and � 2 R. Plugging this expression for v into (1.1) gives a modified

scattering problem, namely,

i "w0 D
�
z C "� i q.x/

� i q.x/ �z C "�

�
w: (6.34)

Write (6.34) in component form:

i "w0
1 � i q.x/w2 D .z C "�/w1; (6.35a)

i "w0
2 C i q.x/w1 D .�z C "�/w2: (6.35b)
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Multiply (6.35a) by xw1 and take the complex conjugate. This gives two equations

which we integrate over a full period. Thus, we arrive at the integrated expressions

i

LZ

0

q.x/ xw1w2 d x D � i "hw1; w
0
1i � .z C "�/hw1; w1i; (6.36a)

i

LZ

0

q.x/w1 xw2 d x D i "hw1; w
0
1i C . Nz C "�/hw1; w1i; (6.36b)

where h�; �i is the L2.Œ0;L�/ inner product of a scalar function (cf. A.1), and boundary

terms vanish since w1.xCLI z; "/ D w1.xI z; "/. Adding (6.36a) to (6.36b), one gets

� Im zkw1k2
2 D Rehqw2; w1i: (6.37)

Similarly, multiply (6.35b) by xw2, take the complex conjugate, and integrate. Thus,

we have the integrated expressions

i

LZ

0

q.x/w1 xw2 d x D i "hw2; w
0
2i C .�z C "�/hw2; w2i; (6.38a)

i

LZ

0

q.x/ xw1w2 d x D � i "hw2; w
0
2i C . Nz � "�/hw2; w2i; (6.38b)

where again boundary terms vanish sincew2.xCLIz;"/Dw2.xIz;"/. Adding (6.38a)

and (6.38b), one gets

� Im zkw2k2
2 D Rehqw2; w1i: (6.39)

Equating (6.37) and (6.39), we conclude

z 2 †Lax n R H) kw1k2 D kw2k2: (6.40)

Thus, the Cauchy–Schwarz inequality implies

0 < j Im zjkw2k2
2 � jhqw2; w1ij � kqk1kw2k2

2:

Hence, one gets (3.9).

Next, let � 2 †Dir.xo/. Without loss of generality, take xo D 0. Note that the

Dirichlet boundary conditions (2.19) imply

jv1.LI �; "/j2 � jv1.0I �; "/j2 D jv2.LI �; "/j2 � jv2.0I �; "/j2: (6.41)

Write (1.1) in component form:

i "v0
1 � i q.x/v2 D �v1; (6.42a)

i "v0
2 C i q.x/v1 D ��v2: (6.42b)
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Multiply (6.42a) by Nv1 and take the complex conjugate. This gives two equations

which we integrate over a full period. Thus, we arrive at the integrated expressions

i

LZ

0

q.x/ Nv1v2 d x

D i ".jv1.LI �; "/j2 � jv1.0I �; "/j2/ � i "hv1; v
0
1i � �kv1k2

2; (6.43a)

and

i

LZ

0

q.x/v1 Nv2 d x D i "hv1; v
0
1i C �kv1k2

2: (6.43b)

Adding (6.43a) to (6.43b), one gets

LZ

0

q.x/ Nv1v2 C q.x/v1 Nv2 d x

D ".jv1.LI �; "/j2 � jv1.0I �; "/j2/ � 2 Im �kv1k2
2: (6.44)

Similarly, multiply (6.42b) by Nv2 and take the complex conjugate. This gives two

equations which we integrate over a full period. Then, add to get

LZ

0

q.x/ Nv1v2 C q.x/v1 Nv2 d x

D �".jv2.LI �; "/j2 � jv2.0I �; "/j2/ � 2 Im �kv2k2
2: (6.45)

Adding (6.44) to (6.45) gives

� Im �hv; vi D
LZ

0

q.x/ Nv1v2 C q.x/v1 Nv2 d x; (6.46)

where hv; vi is the L2.Œ0; L�;C2/ inner product of a two-component vector function

(cf. A.1). Thus, since 2jv1jjv2j � jv1j2 C jv2j2, it follows

j Im �jkvk2
2 � kqk1

LZ

0

j Nv1v2j C jv1 Nv2j d x � kqk1kvk2
2:

Hence, one gets (3.10).

In the following proofs we use the fact that one can rewrite (3.3) as

�".z/ D cos.zL="/C o.1/; z ! 1; 0 � Im z � kqk1; (6.47)

for each fixed " > 0, and that �". Nz/ D �".z/.
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Lemma 6.3. Let Rn denote the rectangular region with vertices ˙n�"
L

˙ i kqk1,
where n 2 N, and " > 0 is fixed. Define Rk;n WD Rk n Rn where k 2 N with k > n.
Then, for k; n sufficiently large, the functions �".z/ and cos.zL="/ have the same
number of zeros inside Rk;n.

Proof of Lemma 6.3. Let us fix some arbitrary ı 2 .0; 1/ such that ı < sinh.kqk1/

and assume that k; n 2 N are so large that, according to (6.47)

j�".z/ � cos.zL="/j � ı; z 2 @Rk;n; (6.48)

where @Rk;n is the boundary ofRk;n. Then, using j cos.xC iy/j2 D cos2 xC sinh2 y,

we see that j cos.zL="/j � 1, and j cos.zL="/j � sinh.kqk1/ on the vertical and the

horizontal sides of @Rk;n, respectively. Thus, by inequality (6.48),

0 < j�".z/ � cos.zL="/j < j cos.zL="/j; z 2 @Rk;n: (6.49)

We now apply Rouché’s theorem (cf. [60]) for g.z/ WD�".z/� cos.zL="/ and f .z/ WD
cos.zL="/ to complete the argument.

Proof of Lemma 3.9. By Lemma 3.8, all zeros of �".z/ are confined to S WD ¹z 2 CW
j Im zj � kqk1º (cf. (2.15)). Take ı 2 .0; 1/ as in Lemma 6.3 and choose M > 0 so

large that the inequality (6.48) holds for all z 2 S such that j Re zj > M . Denote by

SM the set of such z. To prove the lemma, we first prove that �".z/ has infinitely

many real zeros and then show that it has no complex (non-real) zeros in SM .

Consider the points zn D n�"=L and znC1 D .nC 1/�"=L, n 2 N, where, say,

zn > M . The remaining case z�n < �M can be worked out similarly. Since �".z/

is real on R, (6.48) shows that �".zn/�".znC1/ < 0 and, thus, there exists a zero of

�".z/ on .zn; znC1/. Thus, there are infinitely many zeros of �".z/ on R.

We can now use Lemma 6.3 to show that there is exactly one zero of�".z/ on the

rectangle Rn;nC1 and, as it was just shown above this zero is real. Thus, there are no

non-real zeros in SM and we have completed the proof about the zeros of �".z/. In

view of (3.7), the proof of zeros of �0
".z/ is similar.

Proof of Theorem 3.10. Consider the set � WDH n†Lax, where H WD¹z2CW Im z>0º
is the upper half-plane. Since †Lax is Schwarz symmetric, and R � †Lax (cf.

Lemma 3.3), one gets �Lax D � [ N�. To prove the result it is only necessary to show

that � is connected. First, by Lemma 3.2 no spectral band can be closed in the finite

z-plane. Next, we show that the only spectral band extending to infinity is the real

z-axis. Suppose to the contrary that there exists a band extending to infinity and inter-

secting the real z-axis at most once. By Lemma 3.8 and (6.47), it is sufficient to

assume the band is confined to ¹z 2 CWRez� 0; 0� Imz� kqk1º. Recall that along a
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spectral band one necessarily has Im�" � 0. Fix ı 2 .0; 1/ such that ı < sinh.kqk1/.

Then, there exists N D N.qI "/ > 0 such that

j Re�".z/ � cos.Re zL="/ cosh.Im zL="/j < ı; (6.50)

for all Re z > N . Let n 2 N be such that N < n�"=L. As in Lemma 3.9, it then

follows that there exists a zero of �".z/ for Re z 2 .n�"=L; .nC 1/�"=L/. Further,

by assumption, Im z D 0 for at most one point on the band. This implies that �" has

infinitely many complex zeros which contradicts Lemma 3.9. Thus, we have shown

that the real z-axis is the only spectral band extending to infinity. Hence, the set � is

connected which completes the proof.

Proof of Theorem 3.11. Recall that �".z/ is real-valued along the real z-axis.

By Lemma 3.9, there exists a sequence ¹znº of simple real zeros of �" for jnj
sufficiently large. Suppose that zk�1 and zk are two consecutive zeros such that

�0
".zk�1/ > 0, and�0

".zk/ < 0. Then, by Rolle’s theorem, there exists zc
k

2 .zk�1; zk/

such that�0
".z

c
k
/D0. Moreover, ¹zc

nº are simple zeros of �0
" by Lemma 3.9. Also, by

Lemma 3.3, necessarily 0 < �".z
c
k
/ � 1. Suppose �".z

c
k
/ < 1. Since Re�" is har-

monic, it follows that zc
k

is a saddle point; and a band emanates from zc
k

into the

complex plane along a steepest ascent curve. Further, Im�" � 0 along this steep-

est ascent curve. Thus, by Theorem 3.10 and continuity, there must exist a band edge

along this steepest ascent curve at which one gets�".z
C
k
/D 1. Otherwise,�".z

c
k
/D 1

(i.e., zc
k

is a double point) and no further analysis is required. Next,�0
".zk/ < 0 implies

�0
".zkC1/ > 0. In this case, �1��".z

c
kC1

/ < 0, and the argument is completely ana-

logous to that above. Finally, by Theorem 3.14 the bands emanating from the real

z-axis do not intersect; and by Lemma 3.7 the Floquet spectrum is discrete. This

completes the proof.

Proof of Theorem 3.12. Suppose q is a finite-band potential. Recall z 2 †Lax implies

j Im zj � kqk1 (cf. Lemma 3.8). By Theorem 3.10, the real z-axis is the only band

extending to infinity. So, there are finitely many bands and each band (except R) is

bounded. Thus, †Lax n R is bounded and the result follows trivially. Next, let N D
N.qI "/ > 0 be such that .†Lax n R/ � RN . Suppose †Lax is comprised of infinitely

many bands. Then, infinitely many periodic eigenvalues (which correspond to band

edges) exist in the closure of RN . This implies the set of periodic eigenvalues must

have a finite limit point which is a contradiction (cf. Lemma 3.7).

Proof of Theorem 3.13. Recall that the periodic and antiperiodic Floquet eigenval-

ues correspond to the band edges of †Lax. Suppose that there exist infinitely many

spectral bands. Then, by Theorem 3.12, .†Lax n R/ \ RN ¤ ; for any N > 0. This

implies that there exist infinitely many periodic, or antiperiodic, eigenvalues along

the imaginary z-axis which is a contradiction. The contradiction follows from the
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fact that the Floquet eigenvalues are discrete with no finite accumulation points, and

j Im zj � kqk1.

Proof of Theorem 3.14. Let 
j denote a generic spectral band. Two possibilities arise:

either 
j has a periodic and an antiperiodic endpoint; or both of its endpoints are

periodic (or antiperiodic). If one endpoint is periodic and the other is antiperiodic,

�".z/D 0 at some point on 
j . Conversely, if both endpoints are periodic or antiperi-

odic, there is a point on 
j , where�0
".z/D 0. In either case, according to Lemma 3.9,

there can be no more than finitely many such bands that do not intersect R. In order

to prove that these bands are actually spines, it remains to show that, as z ! 1, these

bands cannot intersect any other bands. So, let 
j be such a band, which intersects R

at some point zo. Then �0
".zo/ D 0. Again, by Lemma 3.9 there can only be finitely

many such bands that have more than one point where �0
".z/ D 0 (since the number

of complex zeros of �0
" is finite). Hence, there can be only finitely many bands that,

in addition to R, also intersects some other band. Thus, we proved that all but finitely

many bands are the spines. Moreover, by Lemma 3.5 �0
".z/ D �L sin.zL="/=" C

o.1/ as z! 1 from j Imzj � kqk1. Thus, spines are o.1/-close to n�"=L for jnj 2 N

sufficiently large. That this is the only o.1/-close spine follows from Rouché’s the-

orem. This completes the proof.

6.2. Proofs: Semiclassical limit

Proof of Lemma 4.1. Let z 2†Lax be such that j Im zj > 0, and j Re zj > 0. Again, we

can write v D ei �x w, where w.x C LI z; "/ D w.xI z; "/, and � 2 R. Plugging this

expression for v into (1.1) gives the modified ZS system (6.34). Multiply (6.35a) by

xw0
1 and integrate by parts:

i "kw0
1k2

2 C i

LZ

0

.q.x/w2/
0 xw1 d x D .z C "�/hw1; w

0
1i: (6.51)

The complex conjugate to (6.51) is

� i "kw0
1k2

2 � i

LZ

0

.q.x/ xw2/
0w1 d x D . Nz C "�/hw0

1; w1i: (6.52)

Integrate the right-hand side of (6.52) by parts, then add to (6.51) and multiply by "

getting

2 i " Imhq0w2; w1i

D 2 Im zhw1; "w
0
1i C

LZ

0

�
q.x/w1." xw0

2/ � q.x/ xw1."w
0
2/

�
d x: (6.53)
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Using (6.35a), one gets

2 Im zhw1; "w
0
1i

D 2 Im zhw1; qw2i C 2 i Im z. Nz C "�/kw2k2
2: (6.54)

Further, from (6.35b) and recalling equations (6.37), and (6.39), one gets

LZ

0

�
q.x/w1." xw0

2/ � q.x/ xw1."w
0
2/

�
d x

D 2 i Im z Imhqw2; w1i � 2 i Im z."� � Re z/kw2k2
2: (6.55)

Substitute (6.54) and (6.55) into (6.53) and simplify to get

4 i Im z Re zkw2k2
2 D 2 i " Imhq0w2; w1i (6.56)

Applying the Cauchy–Schwarz inequality gives

0 < 2j Re zjj Im zjkw2k2
2 � "jhq0w2; w1ij � "kq0k1kw2k2

2:

Hence, one gets (4.1).

Proof of Theorem 4.2. This result follows immediately from Lemmas 3.8 and 4.1.

Proof of Theorem 4.3. This result follows from the cardinality results found in [29,

30] together with Lemmas 3.8 and 4.1.

Proof of Corollary 4.4. Fix � 2 R. Denote the corresponding countably infinite set

of eigenvalues by ¹zn.�/ºn2N . Without loss of generality, assume that Re z > 0 and

Im � 0. By Lemma 2.2 and (2.16), it follows that in any neighborhood of infinity †�

is infinite. Further, †� \D.0I r/ is finite for any r > 0, where

D.0I r/ WD ¹z 2 CW jzj � rº:

This implies that infinity is the only accumulation point of †� , and that, due to

Lemma 3.8, there exists a partially ordered increasing sequence ¹Re zn.�/ºn2N such

that Re zn.�/ ! 1 as n ! 1. Finally, that Im zn.�/ D O.1=Re zn.�// now follows

easily from Lemma 4.1.

It now remains to show that Lemmas 3.8 and 4.1 together imply Corollary 4.5.

Proof of Corollary 4.5. Fix ı > 0. Consider the ı-neighborhood defined by Nı.†1/.

Without loss of generality, assume that Im z > 0, and that j Re zj > 0. Next, consider

the curve in the spectral plane defined by j Im zj D min
®
kqk1 ; "kq0k1=2j Re zj

¯

which bounds the set ƒ".q/. Then, it is easily seen that there exists "� > 0 such that

ƒ"�.q/�Nı.†1/. Thus, if z 2†Lax, then z 2Nı.†1/whenever 0 < "� "�. Hence,

†Lax \ .C nNı.†1// D ; which completes the proof.
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6.3. Proofs: Real or symmetric potentials

Proof of Lemma 5.1. Let v.xI z; "/ be a bounded solution of the ZS system (1.1).

Then, (A.7) establishes the z 7! Nz symmetry of the spectrum. Similarly, (A.8) and (A.9)

establish the z 7! �Nz symmetry in the spectrum when the potential is real, even,

or odd. Suppose that the potential is real. By (A.8), it follows that the monodromy

matrix satisfies the symmetry (5.1). Then, noting z D �Nz if and only if z D i �, we

have trM.zI "/ is real-valued for z 2 i R. Similarly, using (A.9), one gets the sym-

metry (5.2). Thus, if the potential is even (� D 0 mod�), or odd (� D �=2 mod�),

then we have trM.zI "/ is real-valued for z 2 i R. Finally, recalling that �".z/ D
trM.zI "/=2 it follows that when q is real, even, or odd one gets i R � � .

Proof of Theorem 5.2. Let z˙
n be a periodic, or antiperiodic eigenvalue, respectively.

This implies Im�".z
˙
n / D 0, and j Re�".z

˙
n /j D 1. By assumption, z˙

n 2 R [ i R.

Further, z˙
n belongs to †Lax. Suppose z˙

n 2 
j , where 
j is a band that leaves the

real, or imaginary axis. By analyticity of �".z/, we need consider only two cases.

First, suppose there exists another point z˙
k

¤ z˙
n along the spectral band such that

j Re�".z
˙
k
/j D 1. Then, z˙

k
2 R [ i R., Since the real and imaginary z-axes are

contours such that Im�".z/ D 0, we get a closed curve in the set � , which is a

contradiction (see Lemmas 3.2 and 5.1). Second, suppose j Re�".z/j < 1 for all z 2

j . It then follows that 
j extends to infinity. By Theorem 3.10, the only element of

†Lax which has this property is the real z-axis. Again, we have a contradiction. Hence,

†Lax � †1 � R [ i R.

Proof of Lemma 5.3. Let � 2 †Dir.0/. Without loss of generality, assume Im � > 0,

and Re � > 0. Recall that the Dirichlet boundary conditions (2.19) imply

jv1.LI �; "/j2 � jv1.0I �; "/j2 D jv2.LI �; "/j2 � jv2.0I �; "/j2: (6.57)

Further, the hypotheses imply Im q.0/ D 0. Write (1.1) in component form,

i "v0
1 � i q.x/v2 D �v1; (6.58a)

i "v0
2 C i q.x/v1 D ��v2: (6.58b)

Multiply (6.58a) by Nv0
1 and integrate by parts:

i "kv0
1k2

2 � i q.0/
�
v1.L/v2.L/ � v1.0/v2.0/

�
C i

LZ

0

.q.x/v2/
0 Nv1 d x D �hv1; v

0
1i:

(6.59)

Then, using the boundary conditions, one can write

i "kv0
1k2

2 C i q.0/
�
jv1.L/j2 � jv1.0/j2

�
C i

LZ

0

.q.x/v2/
0 Nv1 d x D �hv1; v

0
1i: (6.60)
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Take the complex conjugate and add to (6.59):

i

LZ

0

.q.x/v2/
0 Nv1 � .q.x/ Nv2/

0v1 d x D �hv1; v
0
1i C �hv0

1; v1i: (6.61)

Note that

�hv0
1; v1i D �

�
jv1.L/j2 � jv1.0/j2

�
� �hv1; v

0
1i: (6.62)

Let ˛.�/ WD i "�.jv1.L/j2 � jv1.0/j2/. Then, using (6.61) and (6.62), one gets

˛.�/C "

LZ

0

q0.x/ Nv1v2 � q0.x/v1 Nv2 d x

D .2" Im �/hv1; v
0
1i C "

LZ

0

q.x/v1 Nv0
2 � q.x/ Nv1v

0
2 d x; (6.63)

where we multiplied through by ". Using (6.58b), one then gets

"

LZ

0

q.x/v1 Nv0
2 � q.x/ Nv1v

0
2 d x

D .�2 i Re �/Rehqv2; v1i C .2 i Im �/ Imhqv2; v1i: (6.64)

Then, using (6.44), we get

.�2 i Re �/Rehqv2; v1i D � i Re �
�
".jv1.L/j2 � jv1.0/j2/� .2 Im �/kv1k2

2

�
: (6.65)

Further, by (6.58a)

.2" Im�/hv1;v
0
1i D .2 Im�/

LZ

0

q.x/v1 Nv2 dxC 2
�
iRe� Im�C .Im�/2

�
kv1k2

2: (6.66)

Finally, using (6.64) and (6.66) and simplifying gives

˛.�/C .2 i "/ Imhq0v2; v1i
D � i "�

�
jv1.L/j2 � jv1.0/j2

�
C .4 i Re � Im �/kv1k2

2: (6.67)

Next, we complete the same series of calculations using (6.58b). First, multiply (6.58b)

by Nv0
2 and integrate by parts.

i "kv0
2k2

2 C i q.0/
�
v1.L/v2.L/ � v1.0/v2.0/

�
� i

LZ

0

.q.x/v1/
0 Nv2 d x

D ��hv2; v
0
2i: (6.68)
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Then, using the boundary conditions, one can write

i "kv2k2
2 � i q.0/

�
jv2.L/j2 � jv2.0/j2

�
� i

LZ

0

.q.x/v1/
0 Nv2 d x D ��hv2; v

0
2i: (6.69)

Take the complex conjugate and add

i

LZ

0

.q.x/ Nv1/
0v2 � .q.x/v1/

0 Nv2 d x D ��hv2; v
0
2i � �hv0

2; v2i: (6.70)

Note that

��hv2; v
0
2i D ��

�
jv2.L/j2 � jv2.0/j2

�
C �hv0

2; v2i: (6.71)

Let ˇ.�/ WD � i "�.jv2.L/j2 � jv2.0/j2/. Then, using (6.70) and (6.71), one gets

ˇ.�/C "

LZ

0

q0.x/ Nv1v2 � q0.x/v1 Nv2 d x

D .2" Im �/hv0
2; v2i C "

LZ

0

q.x/v0
1 Nv2 � q.x/ Nv0

1v2 d x; (6.72)

where we multiplied through by ". Using (6.58a) and (6.45) one then gets

.2 i/ Imhv0
1; qv2i D i Re �

�
".jv1.L/j2 � jv1.0/j2/C .2 Im �/kv2k2

2

�

C .2 i Im �/ Imhv1; qv2i: (6.73)

Further, by (6.58b)

.2" Im �/hv0
2; v2i D .�2 Im z/hv1; qv2i C 2

�
i Re � Im � � .Im �/2

�
kv2k2

2: (6.74)

Finally, using (6.73) and (6.74) and simplifying gives

ˇ.�/C "

LZ

0

q0.x/ Nv1v2 � q0.x/v1 Nv2 d x

D i "�
�
jv1.L/j2 � jv1.0/j2

�
C .4 i Re � Im �/kv2k2

2: (6.75)

Add (6.75) to (6.67) to get

2"

LZ

0

q0.x/ Nv1v2 � q0.x/v1 Nv2 d x D 4 i Re � Im �

LZ

0

jv1j2 C jv2j2 d x: (6.76)
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Noting 2jv1jjv2j � jv1j2 C jv2j2, one gets

4j Re �jj Im �jkvk2
2 D 2"

ˇ̌
ˇ̌

LZ

0

q0.x/ Nv1v2 � q0.x/v1 Nv2 d x

ˇ̌
ˇ̌

� 2"kq0k1

LZ

0

j Nv1v2j C jv1 Nv2j d x

� 2"kq0k1kvk2
2;

which in turn yields the desired result.

Proof of Theorem 5.4. This result follows from Lemmas 3.8 and 5.3.

Proof of Lemma 5.5. We take an approach analogous to the one first employed by

Klaus and Shaw for single-lobe potentials decaying as x ! ˙1. Let z 2 †Lax n i R.

This implies the solution v 6� 0 2 L1.R/. By Floquet’s theorem, v D ei �x w, where

w.x C LI z; "/ D w.xI z; "/ and � 2 R. Plugging this expression for v.xI z; "/ into

the ZS system gives (6.35) with q.x/ D q.x/. Multiply (6.35a) by xw2, and (6.35b) by

xw1. Then, subtract and integrate over the period to get the expression

i "

LZ

0

w0
1 xw2 � xw1w

0
2 d x � i

LZ

0

q.x/.jw1j2 C jw2j2/ d x

D 2z Rehw1; w2i C 2 i "� Imhw1; w2i: (6.77)

Note that, due to periodicity, integration by parts gives

LZ

0

w0
1 xw2 � xw1w

0
2 d x D

LZ

0

xw0
1w2 �w1 xw0

2 d x: (6.78)

Hence,
LZ

0

w0
1 xw2 � xw1w

0
2 d x D

LZ

0

w0
1 xw2 � xw1w

0
2 d x; (6.79)

and it follows that the left-hand side of (6.77) is purely imaginary. Thus,

.Re z/Rehw1; w2i D 0:

By assumption, Re z > 0 which implies Rehw1; w2i D 0. Next, multiply (6.35a) by

xw1 and write as

xw1w2 D "w0
1 xw1

q.x/
C i.z C "�/

jw1j2
q.x/

: (6.80)
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Take the complex conjugate of (6.80), add, and integrate over the period:

2Rehw1; w2i D "

LZ

0

.w1 xw1/
0

q.x/
d x � 2 Im z

LZ

0

jw1j2
q.x/

d x

D "

LZ

0

jw1j2q0.x/

q2.x/
d x � 2 Im z

LZ

0

jw1j2
q.x/

d x

Note that, since q.x/ > 0, it follows easily that

LZ

0

jw1j2
q.x/

d x � minx2Œ0;L�

° 1

q.x/

±
kw1k2

2 > 0: (6.81)

Finally, since Rehw1; w2i D 0 one gets

j Im zj
LZ

0

jw1j2
q.x/

d x D
ˇ̌
ˇ̌ "
2

LZ

0

jw1j2q0.x/

q2.x/
d x

ˇ̌
ˇ̌ � "

2
k.ln q/0k1

LZ

0

jw1j2
q.x/

d x; (6.82)

which gives (5.8).

Next, without loss of generality assume xo D 0. Let � 2 †Dir.0/ n i R. Write the

ZS system in component form as in (6.58). Multiply (6.58a) by Nv2, and (6.58b) by Nv1.

Subtract and integrate over the period to get the expression

i "

LZ

0

v0
1 Nv2 � Nv1v

0
2 d x � i

LZ

0

q.x/.jv1j2 C jv2j2/ dx D 2� Rehv1; v2i: (6.83)

Then, note integration by parts gives

LZ

0

v0
1 Nv2 � Nv1v

0
2 d x D

LZ

0

Nv0
1v2 � v1 Nv0

2 d x; (6.84)

where since v.xI z; "/ is an eigenfunction corresponding to Dirichlet BCs (2.19) it

follows

.v1 Nv2 � Nv1v2/jL0 D �jv2.L/j2 C jv1.L/j2 C jv2.0/j2 � jv1.0/j2 D 0: (6.85)

Hence,
LZ

0

v0
1 Nv2 � Nv1v

0
2 d x D

LZ

0

v0
1 Nv2 � Nv1v

0
2 d x; (6.86)

and it follows that the left-hand side of (6.83) is purely imaginary. The rest of the

argument is identical to that above for the Lax spectrum. This completes the proof.
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7. Examples

In this section we illustrate the results of the previous sections by considering certain

interesting classes of periodic potentials and by computing their Lax spectrum analyt-

ically, or numerically using Floquet–Hill’s method [10]. (We refer the reader to A.6

for some details on Floquet–Hill’s method.) All results were checked for numerical

convergence.

7.1. Plane wave potentials

As our first example, we consider a potential whose spectrum can be computed exactly

(see A.4 for details). Namely, we consider the plane wave potential

q.x/ D A ei Vx ; (7.1)

where A 2 R is constant amplitude, and V 2 R is the wave number.

When V D 0, we get a constant background. In this case,

†Lax D R [ iŒ�A;A�; (7.2)

When V ¤ 0 and L D 2�=jV j, the Lax spectrum is given by

†Lax D R [ Œ�"V=2 � iA; �"V=2C iA�: (7.3)

Thus, the Lax spectrum is composed of two bands in the complex plane, as shown

in Figure 5. Note that in this case the number of bands is not proportional to 1=" as

" # 0. Indeed, there are only two spectral bands for any " > 0. Also, for any " > 0 and

V ¤ 0, there are no spectral bands on the imaginary axis. It is only in the limit " # 0
that the complex band becomes purely imaginary.

7.2. Piecewise continuous potentials

As a second example, we look at whether the assumptions in Theorem 4.5 are neces-

sary or merely sufficient. To this end, suppose that the potential is only piecewise

smooth. That is, q and q0 have finite left and right limits for all x, and finitely many

jump discontinuities on any bounded interval. Specifically, we consider the 2-periodic

extension of the signum function

q.x/ D sgn.x/ WD
´

C1 if x > 0;

�1 if x < 0;
(7.4)

where x 2 Œ�1; 1/. In this case, the potential has a jump discontinuity, and therefore

the hypotheses of Lemma 4.1 are not satisfied.
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Figure 5. Lax spectrum for the potential q.x/ D ei x with minimal period L D 2� (blue).

Contours � D ¹z 2 CW Im�".z/ D 0º (black dashed). The curve which bounds the imaginary

component of elements in the spectrum j Im zj D min¹kqk1; "kq0k1=2j Re zjº (red dashed).

Left. " D 1. Right. " D 0:2.
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Figure 6. Left. Same as Figure 5 but for the periodic potential q.x/ D sgn.x/ with L D 2, and

" D 0:019. Right. Convergence of eigenvalues to †1 as " # 0 for “sgn” potential. Numerical

computation of max�2Œ0;2�=L/ j Re z.�/jj Im z.�/j as " # 0 (red triangles). Least-squares fit

through the data points (light green dashed).

On the other hand, the analytically calculated Floquet discriminant is given

by (A.32), and the numerically computed Lax spectrum of the ZS system (1.1) for

the potential (7.4) is shown in Figure 6. In this example, the Floquet eigenvalues arise

in symmetric quartets due to the symmetry of the potential (7.4) (specifically, odd and

real).

In this case, one could consider a bound on the imaginary component of the eigen-

value similar to (4.3), but obtained using the numerically calculated eigenvalues at

" D 1, and then examine (numerically) how the spectrum changes as a function of ".

The numerical results indicate that, while the spectrum is still confined to a region

of the complex plane similar to (4.5), the size of the region is no longer simply pro-
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Figure 7. Numerically computed Lax spectrum for the periodic potential q.x/ D e� sin2 x

(blue). The curve which bounds the imaginary component of the eigenvalue j Im zj D
min¹kqk1; "kq0k1=2j Re zjº (dark red dashed). Left. Semiclassical parameter " D 1. Right.

Semiclassical parameter " D 0:079.

portional to ". Indeed, a numerical study shown in Figure 6 (right) suggests that one

has max�2Œ0;2�=L/ j Re z.�/jj Im z.�/j D O."˛/ as " # 0, with ˛ D 0:784 < 1 (see

Figure 6). (Whereas, if the potential satisfied the hypotheses of Corollary 4.5, one

would have ˛ D 1.) Nonetheless, the numerical results clearly indicate that the spec-

trum tends to the real and imaginary axes in the limit " # 0. An interesting future

direction would be to find ˛ rigorously for piecewise continuous potentials. Similar

results are also obtained for potentials with steps of arbitrary magnitude (owing to the

invariant properties of the scattering problem under scaling transformations) as well

as for potentials with asymmetric steps (e.g., q.x/ D 0 for x < 0 and q.x/ D 1 for

x > 0). A detailed discussion is omitted for brevity.

7.3. Real-valued periodic single-lobe potentials

Next, we consider a periodic analogue of the Klaus and Shaw single-lobe poten-

tials [35]. Specifically, we take the potential q to be the L-periodic extension of a

real-valued continuously differentiable function on the interval .�L=2;L=2/. We fur-

ther assume: (i) q.x/� 0 for all x 2 R, (ii) q.�x/D q.x/, and (iii) q.x/ is increasing

on Œ�L=2; 0/ and is decreasing on .0; L=2�. In particular, below we consider two

examples:

q.x/D e� sin2 x ; LD �; (7.5a)

q.x/D dn.xIm/; LD 2K.m/; (7.5b)

where dn.xIm/ is a Jacobi elliptic function,m2 .0;1/ the corresponding elliptic para-

meter, and K.m/ the complete elliptic integral of the first kind (see [51] for details).

Moreover, when m D 1 the problem reduces to that studied in [56].
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Figure 8. Same as Figure 7, but for the periodic potential q.x/ D dn.xIm/, where m D 0:6.
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Figures 7 and 8 show the results of numerical computations of the Lax spectrum

of the ZS system (1.1) for the two potentials in (7.5). The results clearly demonstrate

that, in the case of periodic single-lobe potentials, there exists complex Floquet eigen-

values of (1.1) off of the imaginary axis. This is in contrast to single-lobe potentials

decaying as x ! ˙1, whose eigenvalues were proven to be only real and purely

imaginary, both for potentials with zero BCs [35] and for potentials with symmetric

non-zero BCs [5]. In contrast, Figures 7 and 8 show that, in the periodic case, the

confinement to the real and imaginary axes does not hold in general. Indeed, it would

be surprising if such a feature were present in the periodic case as this would form a

large class of finite-band potentials by Theorem 3.13. Another interesting feature of

the spectrum for single-lobe periodic potentials is the formation of spectral bands and

gaps along the intervals ˙.iqmin; i qmax/ of the spectral plane. Using WKB approxim-

ation, it was shown formally in [6] that the number of spectral bands in this interval

is O.1="/ as " # 0. Another interesting question is whether spines can occur along

the imaginary axis for single-lobe periodic potentials. The numerical results suggest

that the Lax spectrum is purely imaginary outside of a neighborhood of the real z-

axis. This property was shown to hold in the limit " # 0 (see Theorem 5.5) where the

neighborhood was proportional to ".

7.4. Periodic potentials with rapid phase variations

Here we let the potential depend on the semiclassical parameter, that is, q D q.xI "/.
In particular, we consider a periodic potential with rapidly varying phase, i.e.,

q.xI "/ D A.x/ ei S.x/="; (7.6)

where A.x/ and S.x/ are continuously differentiable real functions independent of ".
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Figure 9. Same as Figure 7 but for the periodic potential q.xI "/ D ei cos.2x/=". Left. " D 0:22.

Right. " D 0:019.

Re z

1:0 1:00:5 0:50:0

Re z

1:0 1:00:5 0:50:0

1:00

1:00

0:75

0:75

0:50

0:50

0:00

Im
z

0:25

0:25

1:00

1:00

0:75

0:75

0:50

0:50

0:00

Im
z

0:25

0:25

Figure 10. Same as Figure 7 but for the periodic potential q.xI "/ D dn.xIm/ ei 2 dn.xIm/=",

where m D 0:88. Left. " D 0:2. Right. " D 0:03.

Specifically, we consider the following two potentials:

q.xI "/D ei cos.2x/="; LD �; (7.7a)

q.xI "/D dn.xIm/ e2 i dn.xIm/="; LD 2K.m/: (7.7b)

Importantly, the bound (4.3) still holds. The key difference from the previous cases,

however, is that now kq0k1 D O.1="/ as " # 0. Hence, one does not expect The-

orem 4.5 to hold for potentials of the form (7.7). Moreover, using turning point curves

and ideas of Deift, Venakides, and Zhou (see [14] for details) one expects that sharper

bounds beyond what is available in (4.3) can be obtained. This is an interesting dir-

ection for future work. Indeed, the results of numerical computations of the spectrum

produced by the potentials (7.7), and depicted in Figures 9 and 10, show that there

are complex spectral bands off of the real and imaginary axes that persist in the limit

" # 0. Importantly, the numerical results are still consistent with the inequality (4.3).

More interestingly, the spectrum appears to accumulate on a set of well-defined curves
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in the complex plane as " # 0. This is qualitatively the same Y-shaped curve observed

in [7] for the zero-background potential q.xI "/ D sech.2x/ ei sech.2x/=" on the infinite

line. This is another example in which the differences in the spectrum due to different

choices of boundary conditions seem to become negligible in the semiclassical limit

of the focusing problem.

Appendix

A.1. Definitions

At various points in this work, we make use of the Pauli matrices which are defined

as

�1 WD
�
0 1

1 0

�
; �2 WD

�
0 � i

i 0

�
; �3 WD

�
1 0

0 �1

�
: (A.1)

Next, we discuss the normed linear spaces used throughout the work. Let g be a

Lebesgue measurable function. Then, the essential supremum is defined as

kgk1 WD inf¹C Wm.¹x 2 RW jg.x/j > C º/ D 0º; (A.2)

where Œm� is the Lebesgue measure. Note we always identify functions equal almost

everywhere “a.e.” with respect to Lebesgue measure. Specifically, f � g if

m.¹x 2 RWf .x/ ¤ g.x/º/ D 0. Thus, a Lebesque-measurable function is in L1.R/

if it is bounded a.e. [m]. If g 2 L1.R/ is periodic, one easily gets g 2 L1
loc.R/, that

is, g is Lebesgue integrable on compact subsets of the real numbers.

Also, we define the inner product

hf; gi WD
LZ

0

f .x/g.x/ d x; (A.3)

where f , g are scalar Lebesgue measurable functions. This gives

kf k2 WD
p

hf; f i D
� LZ

0

jf .x/j2 d x
�1=2

; (A.4)

and L2.Œ0;L�/ is the space of scalar Lebesgue measurable functions which are square

integrable, that is, kf k2 < 1. Similarly, we define the inner product

hf; gi WD
LZ

0

f1.x/g1.x/C f2.x/g2.x/ d x; (A.5)



On the spectrum of the periodic focusing Zakharov–Shabat operator 983

where f, g are two-component Lebesgue measurable vector functions. This gives

kfk2 WD
p

hf; fi D
� LZ

0

jf1.x/j2 C jf2.x/j2 d x

�1=2

; (A.6)

and L2.Œ0;L�;C2/ is the space of two-component vector functions which are square

integrable, that is, kfk2 < 1.

Finally, a function f W Œa; b� ! C is absolutely continuous on Œa; b� if, for all

� > 0, there exists ı > 0 such that, whenever a finite sequence of pairwise disjoint sub-

intervals Œak; bk� of Œa; b� satisfies
P

k jbk � akj < ı, then
P

k jf .bk/� f .ak/j < �.

The collection of such functions is denoted AC.Œa; b�/. Importantly, f 2 AC.Œa; b�/

implies f 0 exists a.e Œm�, and f 0 is Lebesgue integrable. A function f 2 ACloc.R/ if

it is absolutely continuous on compact subsets of the real axis.

A.2. Symmetries of the ZS scattering problem

Recall next some symmetries of the solutions of (1.1), all of which are easily verified

by direct computation. Let Y.xI z; "/ be a fundamental matrix solution of the ZS

scattering problem (1.1). Then, another solution of (1.1) is

zY.xI z; "/ D i �2Y.xI Nz; "/: (A.7)

Moreover, if the potential is real, a further solution of (1.1) is given by

zY.r/.xI z; "/ D Y.xI �Nz; "/: (A.8)

Alternatively, suppose the potential satisfies a generalized reflection symmetry, that

is, q.�x/ D e2 i � q.x/ for all x � 0, for some � 2 R. (Obviously, for � D 0, and

� D �=2 one has the cases of even and odd potentials, respectively.) Then, another

solution of (1.1) is given by

zY.g/.xI z; "/ D .cos ��1 C sin ��2/Y.�x;�Nz; "/: (A.9)

Finally, if the potential is PT-symmetric, i.e., if q.�x/ D q.x/, then another solution

of (1.1) is given by
zY.pt/.xI z; "/ D �3Y.�xI Nz; "/: (A.10)

A.3. Comparison between various definitions of Dirichlet spectrum

In this section we show how to connect the Dirichlet spectrum to the zeros of an

analytic function. Recall the Dirichlet BCs:

v1.0I �; "/C v2.0I �; "/ D 0; v1.LI �; "/C v2.LI �; "/ D 0; (A.11)
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where ¹�nº denote Dirichlet eigenvalues and xo D 0 without loss of generality. Let

v.xI z; "/ D ˆ.xI z; "/c.zI "/, where, as before, ˆ is a fundamental matrix solution

of (1.1) normalized so thatˆ.0Iz;"/� I, and c.zI"/D .c1; c2/
T . Clearly, v.0Iz;"/D

c.zI "/. If � 2 †Dir.0/ and v.xI �; "/ is the eigenfunction associated to �, by the first

of (A.11), one can write

v.LI �; "/ D M.�I "/c.�I "/ D v1.0I �; "/
�
M11 �M12

M21 �M22

�
; (A.12)

whereM.zI "/ D ˆ.LI z; "/ is the monodromy matrix associated with ˆ, as per (2.9)

and (2.10). Using the second of (A.11), we then have

.M11 �M12 CM21 �M22/jzD� D 0: (A.13)

Now, using the modified fundamental matrix solution ẑ defined in (2.20), recall that

the associated monodromy matrix is zM ".z/ D C�1M.zI "/C . One therefore gets

zM "
21.�/ D i

2
.M11 �M12 CM21 �M22/jzD� D 0: (A.14)

Hence, � 2 †Dir.0/ if and only if zM "
21.�/ D 0, in agreement with (2.21).

Note that some authors define the Dirichlet spectrum via slightly different bound-

ary conditions, namely,

v1.0I �; "/ � v2.0I �; "/ D 0; v1.LI �; "/ � v2.LI �; "/ D 0; (A.15)

(see [16, 29, 30]). Using similar arguments as above, with these BCs one gets

.M11 �M21 CM12 �M22/jzD� D 0: (A.16)

We then introduce the modified fundamental matrix solution M̂ .xIz;"/Dˆ.xIz;"/ MC ,

where

MC D 1p
2

�
i �1
i 1

�
: (A.17)

For the associated monodromy matrix MM ".z/ D MC�1M.zI "/ MC , one gets

MM "
21.�/ D � i

2
.M11 �M21 CM12 �M22/jzD� D 0: (A.18)

Hence, with either choice of BCs, one can relate the Dirichlet spectrum to the zeros of

an analytic function which is the row 2 column 1 element of a modified monodromy

matrix. The trace formulae (2.23a) and (2.23b) use definition (A.11). The Dirichlet

eigenvalues obey certain ODEs (called Dubrovin equations) with respect to xo and

t [24, 42].

Importantly, it is straightforward to see that the bounds obtained for the Dirichlet

spectrum are independent of which choice of boundary conditions is used.
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A.4. Floquet discriminant for constant and plane wave potentials

Here we calculate the Lax spectrum for plane wave potentials, namely, q.x/ given

by (7.1). In this case, the ZS system (1.1) is given by

"v0 D
� � i z A ei Vx

�A e� i Vx i z

�
v: (A.19)

As a special case, when V D 0 we obtain a constant background potential. In this

case, (A.19) is a constant-coefficient differential equation, and it is easy to obtain a

fundamental matrix solution as

Y.xI z; "/ D
�
I � iA

z � � �1

�
ei �x�3="; (A.20)

where I is the 2 � 2 identity matrix, �2 D A2 C z2, and the Pauli matrices �1 and �3

are as in (A.1). A simple calculation then yields a monodromy matrix (2.9) as

M.zI "/ D ei �L�3="; (A.21)

and hence,

�".z/ D cos.�L="/: (A.22)

It follows that z 2†Lax if and only if � 2 R. Thus, for a constant background potential

one gets

†Lax D R [ Œ� iA; iA�: (A.23)

Additionally, using the similarity transformation (2.20) one gets

zM "
21.z/ D

�z � iA

2�

�
sin.�L="/: (A.24)

It then follows that the Dirichlet spectrum is the set of zeros of the analytic func-

tion (A.24).

When V ¤ 0, (A.19) is not constant-coefficient. Nonetheless, the substitution v D
ei Vx�3=2 u transforms (A.19) to the constant-coefficient system

"u0 D
�� i.z C "V=2/ A

�A i.z C "V=2/

�
u: (A.25)

As before, we obtain a fundamental matrix solution, namely,

Y.xI z; "/ D ei Vx�3=2
�
I � iA

z � � C "V=2
�1

�
ei �x�3="; (A.26)

where �2 D A2 C .z C "V=2/2. Simple calculations then yield a monodromy matrix

M.zI "/ D
�
cos.VL=2/C sin.VL=2/

�
� i.z C "V=2/�3 � iA�2

��
ei �L�3="; (A.27)
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and hence,

�".z/ D cos.VL=2/ cos.�L="/C z C "V=2

�
sin.VL=2/ sin.�L="/: (A.28)

TakeLD 2�=jV j. Then (A.28) simplifies to�".z/D � cos.2��="V /. It follows that

z 2 †Lax if and only if � 2 R. Then, the Lax spectrum for a plane wave potential is

given by (7.3) (see Figure 5).

A.5. Floquet discriminant for piecewise constant potentials

As one last example, we calculate the trace of the monodromy matrix for q.x/ D
A sgn.x/, where A > 0 is a constant, and “sgn” is given by (7.4). In this case, the ZS

system (1.1) is given by

"v0 D
� � i z A sgn.x/

�A sgn.x/ i z

�
v: (A.29)

Solving the above system on the intervals Œ�L=2; 0/, and Œ0;L=2/, and imposing the

normalization ˆ.0I z; "/ � I, one finds the matrix solution

ˆ.xI z; "/ D � � z

2�

�
I � iA

z � �
�1

�
ei �x�3="

�
I C iA

z � � �1

�
; (A.30)

where �2 D A2 C z2. It follows that

M.zI "/ D ˆ�1.�L=2I z; "/ˆ.L=2I z; "/; (A.31)

and, hence,

�".z/ D 1

�2
.A2 C z2 cos.�L="//: (A.32)

A.6. Floquet–Hill’s method

Here we provide some details regarding the numerical calculations of the Lax spec-

trum in the main text. Recall that the Zakharov–Shabat scattering problem is given by

the first-order system of ODEs (1.1). Further, recall that we can rewrite (1.1) in the

form of an eigenvalue problem (2.1). Since (2.1) is non-self-adjoint, when comput-

ing its spectrum numerically one needs an approach capable of accurately calculating

eigenvalues in a large region of the complex plane. One such approach is Floquet–

Hill’s method (see [10] for more details). The method is particularly well-suited for

calculating the eigenvalues of linear operators with periodic coefficients, and provides

a global approximation of the spectrum.
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Recall that Floquet’s theorem 2.1 implies that any bounded solution of (1.1) is

necessarily of the form

v.xI z; "/ D ei �x w.xI z; "/; (A.33)

where w.x C LI z; "/ D w.xI z; "/ and � 2 Œ0; 2�=L/. Plugging (A.33) into the ZS

system (1.1) yields the modified eigenvalue problem

i�3.".@x C i �/ �Q/w D zw: (A.34)

The key point is that the modified eigenvalue problem acts on periodic functions.

Therefore, one can expand (A.34) using a discrete Fourier transform (DFT):

1L
"
�;N OwN D zN OwN ; (A.35)

where

1L
"
�;N WD

��".k C �/ � i T

� i ST ".k C �/

�

2N �2N

: (A.36)

Moreover, k D diag.kn/ with n 2 ¹�N
2
; : : : ; N

2
� 1º is a diagonal matrix of Fourier

modes such that kn D 2n�=L, and T is a N � N Toeplitz matrix representing the

convolution operator generated by the DFT of cqw.

Floquet–Hill’s method then approximates the Floquet spectrum by numerically

computing the eigenvalues of the matrix (A.36). Indeed, fix � 2 Œ0; 2�=L/. Then

choosing a truncation N D 2j of the number of Fourier modes of the eigenfunction

w.xI z; "/ results in a matrix system of dimension 2N . Moreover, zN are approxima-

tions in the sense that all zN 2 †.1L"
�;N / ! z 2 †� as N ! 1. By taking an evenly

spaced sequence �i 2 Œ0; 2�=L/ one approximates the entire Lax spectrum, i.e.,

lim
N !1

[

�2Œ0;2�=L/

†.1L"
�;N / D †Lax: (A.37)

(For details on convergence, see [33].) Numerical accuracy of the approximation is

determined by the number of Fourier modes used in the truncation, and on the method

used to compute the eigenvalues of the matrix (A.36). The resolution of the spectral

bands is determined by how fine we partition the interval � 2 Œ0; 2�=L/. All compu-

tations in the main text were checked for numerical convergence.
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