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Coverings preserving the bottom of the spectrum

Panagiotis Polymerakis

Abstract. We prove that if a Riemannian covering preserves the bottom of the spectrum of

a Schrödinger operator, which belongs to the discrete spectrum of the operator on the base

manifold, then the covering is amenable.

1. Introduction

The spectrum of the Laplacian on a Riemannian manifold is a natural isometric invari-

ant. However, its behavior under maps between Riemannian manifolds, which respect

the geometry of the manifolds to some extent, remains largely unclear. In this paper,

we study the behavior of the bottom (that is, the minimum) of the spectrum under

Riemannian coverings.

Let pW M2 ! M1 be a Riemannian covering, S1 D � C V a Schrödinger operator

on M1, with V smooth and bounded from below, and S2 D � C V ı p its lift on M2.

Then the bottoms of their spectra always satisfy the inequality �0.S1/ � �0.S2/

(cf. for instance [1, Theorem 1.1]). It is natural to examine when the equality holds.

Brooks [5] proved that if the underlying manifold is closed (that is, compact without

boundary), then a normal covering p preserves the bottom of the spectrum of the

Laplacian if and only if p is amenable.

This theorem motivated the study of the behavior of the bottom of the spectrum

under amenable coverings. Extending some former results [3, 7], it was proved in

[1] that amenable Riemannian coverings preserve the bottom of the spectrum of

Schrödinger operators, without any topological or geometric assumptions on the man-

ifolds. In [15], it was proved that if, in addition, M1 is complete, then the spectra of

the operators satisfy �.S1/ � �.S2/. If, in addition, the covering is infinite sheeted,

then �.S1/ � �ess.S2/, where �ess stands for the essential spectrum of the operator.

Although amenability of the covering is a natural assumption for the preservation

of the bottom of the spectrum, it is not clear to what extent it is optimal. In this direc-

tion, Brooks [7], and Roblin and Tapie [16], proved that under some quite restrictive
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assumptions, if the bottom of the spectrum of the Laplacian is preserved, then the cov-

ering is amenable. These assumptions involve the spectrum of fundamental domains

of the covering and, in particular, imply that the bottom of the spectrum of the Lapla-

cian on M1 belongs to its discrete spectrum (that is, the bottom is an isolated point

of the spectrum and, in particular, an eigenvalue). Moreover, in both results, the cov-

ering is assumed to be normal, with finitely generated deck transformations group.

Recently, in [2], these conditions were replaced with some more natural geometric

assumptions. More precisely, it was proved that if the manifolds are complete, without

boundary, with Ricci curvature bounded from below, V and grad V are bounded, the

bottom of the spectrum is preserved, and belongs to the discrete spectrum of S1, then

the covering is amenable. A question raised in [2] is whether the assumption on the

Ricci curvature is necessary. In this paper, we deal with this question and establish a

generalization of all the above results.

Initially, using the result of [2] we prove the following analogue of Brooks’ the-

orem [5], involving the bottom of the Neumann spectrum of the Laplacian on mani-

folds with (smooth) boundary.

Theorem 1.1. Let pW M2 ! M1 be a Riemannian covering, with M1 compact with

boundary. Then �N
0 .M2/ D 0 if and only if p is amenable.

The fact that amenable coverings preserve the bottom of the Neumann spectrum

was essentially established in [15]. The main point in the above theorem is the con-

verse implication, which is the first result providing amenability of a covering of

manifolds with boundary. This turns out to be quite useful in the study of arbitrary

Riemannian coverings. More precisely, as an application of this theorem, we prove

the following result.

Theorem 1.2. Let pW M2 ! M1 be a Riemannian covering. Let S1 be a Schrödinger

operator on M1, with �0.S1/ … �ess.S1/, and S2 its lift on M2. Then �0.S2/ D �0.S1/

if and only if p is amenable.

It is worth to point out that we do not impose any topological or geometric assump-

tions on the manifolds. Hence, Theorem 1.2 is more general than the results of [2, 7,

16], since their assumptions imply that �0.S1/ … �ess.S1/. Examining the optimal-

ity of the assumption �0.S1/ … �ess.S1/ in this theorem, we show that it cannot be

replaced with �0.S1/ being an eigenvalue.

There are plenty of examples of complete Riemannian manifolds for which the

bottom of the spectrum of the Laplacian belongs to its discrete spectrum. In [2], there

are such examples of geometrically finite hyperbolic manifolds, negatively pinched

manifolds of finite volume, and conformally compact manifolds. One may construct

examples of such manifolds (with possibly unbounded Ricci curvature) based on the

following observation. Consider a complete Riemannian manifold M such that the
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essential spectrum of the Laplacian does not contain zero. Then there exists a Rieman-

nian metric, which coincides with the original metric outside a compact domain, for

which the bottom of the spectrum of the Laplacian belongs to its discrete spectrum.

An important class of examples where Theorem 1.2 can be applied are coverings

of non-compact, complete manifolds with discrete spectrum (that is, the spectrum of

the Laplacian is discrete). There are many known sufficient conditions for the dis-

creteness of the spectrum, some of which may be found in [4, 10, 13]. It is worth to

point out that the product of two manifolds with discrete spectrum also has discrete

spectrum. In particular, so does the product of such a manifold with a closed manifold,

even after changing the Riemannian metric on a compact subset.

Let pW M2 ! M1 be a Riemannian covering, with M1 non-compact, complete,

with discrete spectrum. According to Theorem 1.2, we have �0.M2/ D �0.M1/ if

and only if p is amenable. Since we do not require the covering to be normal, the

results of [7, 16] cannot be applied in this case. Moreover, from [9, Theorem 3.1], it

follows that the Ricci curvature of M1 is not bounded from below. Hence, also the

result of [2] cannot be applied in this case.

Consider a complete Riemannian manifold which has a neighborhood of infinity

with amenable fundamental group (in the sense of Corollary 1.3 below). The follow-

ing application of Theorem 1.2 provides a complete description of the coverings of

such a manifold, which preserve the bottom of the spectrum of the Laplacian.

Corollary 1.3. Let pW M2 ! M1 be a Riemannian covering of complete manifolds,

S1 a Schrödinger operator on M1 and S2 its lift on M2. Assume that there exists a

compact domain K of M , such that the fundamental group of any connected compon-

ent of M X K is amenable. Then we have:

i. if �0.S1/ 2 �ess.S1/, then �0.S2/ D �0.S1/;

ii. if �0.S1/ … �ess.S1/, then �0.S2/ D �0.S1/ if and only if p is amenable.

For instance, this corollary can be applied if M1 is a surface with finitely generated

fundamental group. More generally, it can be applied if M1 is diffeomorphic to the

interior of a compact manifold N with boundary, such that any connected component

of @N has amenable fundamental group.

Since the manifolds in Theorem 1.2 may be non-complete, we obtain imme-

diately the corresponding result for Dirichlet spectra of Schrödinger operators on

manifolds with boundary. For sake of completeness, we also establish in Theorem 5.1

the corresponding result for the Neumann spectra, obtaining a generalization of The-

orem 1.1. In particular, we obtain analogues of Brooks’ result [5] for Schrödinger

operators on manifolds with boundary. Namely, it follows that a Riemannian cov-

ering of a compact manifold is amenable if and only if it preserves the bottom of

the Dirichlet/Neumann spectrum of some/any Schrödinger operator. In virtue of [15,
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Theorem 1.1], this is actually equivalent to the inclusion of the Dirichlet (Neumann)

spectrum of a Schrödinger operator on M1, in the Dirichlet (Neumann, respectively)

spectrum of its lift on M2. The corresponding statement for manifolds without bound-

ary has been established in [15, Theorem 1.5].

Finally, as another application of Theorem 1.1, we prove in Proposition 6.1 that

if an infinite sheeted Riemannian covering preserves the bottom of the spectrum of a

Schrödinger operator, then the bottom of the spectrum belongs to the essential spec-

trum of the operator on the covering space. This was observed for the Laplacian in [2].

For sake of completeness, we establish the analogous result for the Dirichlet and Neu-

mann spectra of Schrödinger operators on manifolds with boundary.

The paper is organized as follows. In Section 2, we give some preliminaries. In

Section 3, we present some properties of the spectrum of Schrödinger operators.

In Section 4, we study Riemannian coverings of compact manifolds and establish

Theorem 1.1. In Section 5, we study arbitrary Riemannian coverings and prove The-

orem 1.2 and the corresponding results for manifolds with boundary. In Section 6, we

show the aforementioned application of Theorem 1.1 for infinite sheeted coverings.

2. Preliminaries

We begin by recalling some definitions and standard facts from functional analysis,

which may be found, for instance, in [14] and [18, Appendix A].

Let LWD.L/ � H ! H be a self-adjoint operator on a separable Hilbert space H ,

over R or C. The spectrum of L is given by

�.L/ WD ¹� 2 RW .L � �/W D.L/ � H ! H is not invertibleº:

The essential spectrum of L is defined as

�ess.L/ WD ¹� 2 RW .L � �/W D.L/ � H ! H is not Fredholmº:

Recall that an operator is called Fredholm if its kernel is finite-dimensional and its

range is closed and of finite codimension. The discrete spectrum of L is given by

�d .L/ WD �.L/ X �ess.L/, and consists of isolated eigenvalues of L of finite multipli-

city.

The spectrum of a self-adjoint operator is a closed subset of R. If �.L/ is bounded

from below, then its minimum is called the bottom of the spectrum of L and is denoted

by �0.L/. The following characterization is due to Rayleigh.



Coverings preserving the bottom of the spectrum 997

Proposition 2.1. If �.L/ is bounded from below, then the bottom of the spectrum of

L is given by

�0.L/ D inf
v2D.L/X¹0º

hLv; viH

kvk2
H

:

Let T W D.T / � H ! H be a densely defined, symmetric linear operator. Assume

that T is bounded from below, that is, there exists c 2 R, such that

hT v; viH � ckvk2
H

; (1)

for all v 2 D.T /. Fix such a c 2 R (not necessarily the supremum of all c for which (1)

holds) and consider the inner product

hv1; v2iH1
WD hT v1; v2iH C .1 � c/hv1; v2iH

on D.T /. Let H1 be the completion of D.T / with respect this inner product. Then

H1 can be identified with a dense subspace of H , via a continuous injection. The

domain of the Friedrichs extension T .F / of T is given by

D.T .F // WD ¹v 2 H1W there exists v0 2 H such that

hv0; wiH D hv; wiH1
, for all w 2 H1º:

For v 2 D.T .F //, we define T .F /v WD v0 C .c � 1/v. Then T .F / is a self-adjoint

extension of T and is called the Friedrichs extension of T .

Proposition 2.2. The bottom of the spectrum of the Friedrichs extension of T is given

by

�0.T .F // D c � 1 C inf
v2H 0X¹0º

kvk2
H1

kvk2
H

;

where the infimum may be taken over any subspace H
0, with D.T / � H

0 � H1.

Proof. Given a non-zero v 2 D.T .F //, we have that

c � 1 C
kvk2

H1

kvk2
H

D hT .F /v; viH

kvk2
H

:

From Proposition 2.1, we obtain the asserted equality, where the infimum is taken

over all v 2 D.T .F // X ¹0º. From the definition of H1, it is easy to see that we obtain

the same infimum for v 2 D.T / X ¹0º and for v 2 H1 X ¹0º.
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2.1. Schrödinger operators

Throughout this paper, manifolds are assumed to be connected with not necessarily

connected, possibly empty, smooth boundary, unless otherwise stated. It is worth to

point out that the boundary of a manifold, if non-empty, is a closed subset, which

is a possibly non-connected, smooth hypersurface without boundary. In general, a

Riemannian manifold with non-empty boundary is isometric to a smoothly bounded,

closed domain of a Riemannian manifold without boundary of the same dimension.

Let M be a possibly non-connected Riemannian manifold. The Laplacian on M

is a differential operator depending on the Riemannian metric, defined by �f D
� div.grad f / for any f 2 C 1.M/. A Schrödinger operator on M is an operator

of the form S D � C V , where V W M ! R is smooth and bounded from below. On

the space C 1
c .M/ consider the inner product

hf; giHV .M / WD
Z

M

.hgrad f; grad gi C .V � infM V C 1/fg/;

where the integral is with respect to the volume element induced by the Riemannian

metric of M .

If M has empty boundary, let HV .M/ be the completion of C 1
c .M/ with respect

to this inner product. If M has non-empty boundary, let HV .M/ be the completion

of ¹f 2 C 1
c .M/W �.f / D 0 on @M º with respect to this inner product, where � is the

inward pointing normal to @M . It is clear that HV .M/ can be identified with a dense

subspace of L2.M/, via a continuous injection.

If M has empty boundary, we are interested in the Friedrichs extension of the

operator

S W C 1
c .M/ � L2.M/ ! L2.M/:

If M has non-empty boundary, we are interested in the Neumann extension of S , that

is, the Friedrichs extension of

S W ¹f 2 C 1
c .M/W �.f / D 0 on @M º � L2.M/ ! L2.M/:

In any of these cases, we denote this Friedrichs extension by SN and its domain

by D.SN /. It is worth to point out that the space HV .M/ plays the role of H1 in

the discussion of the Friedrichs extension in the beginning of this section (where we

consider the lower bound c WD infM V for the operator).

The spectrum and the essential spectrum of SN are denoted by �N .S/ and �N
ess.S/,

respectively, and their bottoms (that is, their minimums) by �N
0 .S/ and �

N;ess
0 .S/,

respectively. These sets and quantities for the Laplacian are denoted by �N .M/,

�N
ess.M/, and �N

0 .M/, �
N;ess
0 .M/, respectively. If M has empty boundary, we some-

times drop the superscript “N ” in the notation of the spectrum, the essential spectrum,

and their bottoms.
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If M has non-empty boundary, the Dirichlet extension SD of S is the Friedrichs

extension of the operator

S W ¹f 2 C 1
c .M/W f D 0 on @M º � L2.M/ ! L2.M/:

We denote by �D
0 .S/ the bottom of the spectrum of this operator. The bottom of the

spectrum of the Dirichlet extension of the Laplacian is denoted by �D
0 .M/. In virtue

of the next remark, Dirichlet extensions of Schrödinger operators are closely related

to Schrödinger operators on non-complete manifolds without boundary.

Remark 2.3. If M is a Riemannian manifold with non-empty boundary, then any f 2
C 1

c .M/ vanishing on @M can be approximated in H 1.M/ with smooth functions,

compactly supported in the interior of M . Therefore, if S is a Schrödinger operator

on M , then the Dirichlet extension of S coincides with the Friedrichs extension of S

viewed as an operator in the interior of M .

We end this section with some already known properties of the spectrum, that will

be used in the sequel. Since they will be used only for complete manifolds without

boundary, we do not state them in their most general forms.

The next proposition characterizes the bottom of the spectrum of a Schrödinger

operator as the maximum of its positive spectrum, and may be found in [8, The-

orem 7], [12, Theorem 1], and [17, Theorem 2.1].

Proposition 2.4. Let S be a Schrödinger operator on a complete Riemannian mani-

fold M without boundary. Then �0.S/ is the maximum of all � 2 R, such that there

exists a positive ' 2 C 1.M/, with S' D �'.

It is worth to point out that the positive functions involved in this proposition are

not required to be square-integrable. The next expression of the bottom of the essential

spectrum follows from the Decomposition Principle [10, Proposition 2.1].

Proposition 2.5 ([4, Proposition 3.2]). Let S be a Schrödinger operator on a com-

plete Riemannian manifold M without boundary. Let .Kn/n2N be an exhausting

sequence of M consisting of compact sets. Then the bottom of the essential spectrum

of S is given by

�ess
0 .S/ D lim

n
�0.S; M X Kn/;

where �0.S; M X Kn/ stands for the bottom of the spectrum of S on M X Kn.

2.2. Amenable coverings

In this section, we present the definition and some basic properties of amenable cov-

erings. A right action of a countable group � on a countable set X is called amenable

if there exists a �-invariant mean on L1.X/.
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Throughout the paper, manifolds are assumed to be connected, unless otherwise

stated. In particular, Riemannian coverings are assumed to be between connected

manifolds, unless otherwise stated. For reasons that will become clear in the sequel,

we must consider possibly non-connected covering spaces at some points.

Let pW M2 ! M1 be a Riemannian covering, with M2 possibly non-connected,

that is, M2 has countably many connected components and the restriction of p on

any component is a Riemannian covering over M1. It should be noticed that any point

of M1 has a neighborhood that is evenly covered with respect to the restriction of p

on any connected component of M2. Fix x 2 M ı
1 (that is, the interior of M1) and

consider the fundamental group �1.M1/ of M1 with base point x. For g 2 �1.M1/,

let 
g W Œ0; 1� ! M1 be a representative loop based at x. For y 2 p�1.x/, lift 
g to

a path Q
g , with Q
g.0/ D y. We define y � g WD Q
g.1/. In this way, we obtain a right

action of �1.M1/ on p�1.x/. The covering p is called amenable if this right action is

amenable.

This definition coincides with the definition presented in [1, 2, 15] in terms of the

right cosets of �1.M2/ in �1.M1/, when M2 is connected. However, this definition

allows us to extend the notion of amenable coverings in case M2 is non-connected.

For instance, consider a Riemannian covering pW M2 ! M1, where M2 has count-

ably many connected components M
.n/
2 , n 2 N. If the restriction pW M

.n/
2 ! M1 is

amenable, for some n 2 N, then the covering pW M2 ! M1 is amenable. Indeed, if

there exists a �1.M1/-invariant mean �n on L1.p�1.x/ \ M
.n/
2 /, for some n 2 N,

then the linear functional �W L1.p�1.x// ! R, defined by

�.f / WD �n.f j
p�1.x/\M

.n/
2

/;

for any f 2 L1.p�1.x//, is a �1.M1/-invariant mean on L1.p�1.x//. However, the

covering pW M2 ! M1 may be amenable, even when the restriction pW M
.n/
2 ! M1

is non-amenable, for any n 2 N.

The following characterization of amenable coverings follows from Følner’s cri-

terion (cf. [3, Section 2]).

Proposition 2.6. The covering p is amenable if and only if for any finite G � �1.M1/

and " > 0, there exists a finite F � p�1.x/, such that

#.F X Fg/ < "#.F /;

for all g 2 G.

In particular, the covering is amenable if and only if the right action of any finitely

generated subgroup of �1.M1/ on p�1.x/ is amenable. For a smoothly bounded,

compact and connected neighborhood K of x, we denote by i��1.K/ the image of

the fundamental group of K in �1.M1/.
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It is clear that pWp�1.K/ ! K is a Riemannian covering of manifolds with bound-

ary, where p�1.K/ is possibly non-connected. Then the covering pW p�1.K/ ! K is

amenable if and only if the right action of i��1.K/ on p�1.x/ is amenable, since this

action coincides with the action of �1.K/ on p�1.x/.

Proposition 2.7. The covering pW M2 ! M1 is amenable if and only if the covering

pW p�1.K/ ! K is amenable, for any smoothly bounded, compact and connected

neighborhood K of x.

Proof. From Proposition 2.6, it suffices to prove that, for any finite subset G of

�1.M1/, there exists a smoothly bounded, compact and connected neighborhood K

of x, such that G � i��1.K/. Let G be a finite subset of �1.M1/ and consider a rep-

resentative loop 
g W Œ0; 1� ! M ı
1 , for each g 2 G. Let C be the union of the images of

these loops and let U be a relatively compact, open neighborhood of C that does not

intersect the boundary of M (if non-empty). Consider � 2 C 1.M1/, with 0 � � � 1,

� D 1 in C and supp � � U . From Sard’s Theorem, it follows that for almost any

t 2 .0; 1/, the level set ¹� D tº is a smooth hypersurface of M1. Consider such a t ,

and the smoothly bounded, compact set K 0 WD ¹� � tº. Then for the connected com-

ponent K of K 0 containing x, we have G � i��1.K/.

2.3. Manifolds with Ricci curvature bounded from below

In this section we recall the main result of [2] and point out that its proof, with

some slight modifications, establishes this result for possibly non-connected cover-

ing spaces.

A non-connected Riemannian manifold M is complete if all of its connected com-

ponents are complete. The distance of points of different connected components of M

is considered to be infinite. In particular, any bounded subset of M is contained in a

connected component of M .

Theorem 2.8 ([2, Theorem 4.1]). Let pW M2 ! M1 be a Riemannian covering, with

M2 possibly non-connected. Assume that M1 is complete, without boundary, and with

Ricci curvature bounded from below. Let S1 WD � C V be a Schrödinger operator

on M1, with V and gradV bounded, and let S2 be its lift on M2. If �0.S2/ D �0.S1/ ¤
�ess

0 .S1/, then the covering is amenable.

We begin with some definitions and remarks from [2]. Let M be a possibly non-

connected Riemannian manifold without boundary. A positive ' 2 C 1.M/ satisfies

a Harnack estimate if there exists a constant c' � 1, such that

sup
B.x;r/

'2 � crC1
' inf

B.x;r/
'2;
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for all x 2 M and r > 0. Assume that M is complete, with Ricci curvature bounded

from below, and let S D � C V be a Schrödinger operator on M , with V and grad V

bounded. From [8, Theorem 6], if a positive function ' 2 C 1.M/ satisfies S' D �',

for some � 2 R, then ' satisfies a Harnack estimate (see also [2, Section 2.5]).

The modified Cheeger’s constant of M is defined as

h'.M/ WD inf
A

R

@A '2

R

A '2
;

where the infimum is taken over all bounded domains A of M with smooth boundary.

Lemma 2.9. Let M be a possibly non-connected, complete Riemannian manifold,

without boundary and with Ricci curvature bounded from below. Let ' 2 C 1.M/ be

a positive function, which satisfies a Harnack estimate. If h'.M/ D 0, then for any

"; r > 0, there exists a bounded open subset A of M , such that
Z

Ar XA

'2 < "

Z

A

'2;

where Ar WD ¹y 2 M W d.y; A/ < rº.

Proof. We may renormalize the Riemannian metric of M , so that RicM � 1 � m,

where m is the dimension of M . Since h'.M/ D 0, for any "; r > 0, there exists

a non-empty, bounded domain A of M satisfying the estimate [2, (3.2)]. Then A is

contained in a connected component of M (A being connected) and the arguments of

the proof of [2, Lemma 3.1] can be carried out in this connected component of M ,

establishing the asserted claim.

Lemma 2.10. In the setting of Theorem 2.8, there exists a compact set K � M1, such

that for any "; r > 0, there exists z 2 K and a bounded open subset A of M2, such

that

#.p�1.z/ \ .Ar X A// < "#.p�1.z/ \ A/:

Proof. Since �0.S1/ … �ess.S1/, from Proposition 2.5, there exists a compact

K � M1, such that �0.S1; M1 X K/ > �0.S1/. The proof is identical to the one

of [2, Lemma 4.5], taking into account that [2, Lemma 3.1] has been extended to

possibly non-connected manifolds in Lemma 2.9.

Proof of Theorem 2.8. Fix x 2 M1 and consider the fundamental group �1.M1/ with

base point x. Consider a compact set K � M1 as in Lemma 2.10, and let R > 0, such

that K � B.x; R/. Let " > 0 and G be a finite subset of �1.M1/. For each g 2 G,

consider a smooth representative loop 
g based at x, and let

r > max
g2G

`.
g/ C 2R;
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where `.�/ stands for the length of a curve. From Lemma 2.10, there exists z 2 K and

a bounded open subset A of M2, such that

#.p�1.z/ \ .Ar X A// < "#.p�1.z/ \ A/:

Consider a smooth path 
 W Œ0; 1� ! M1 from x to z, of length less than R. For

y 2 p�1.x/, lift 
 to a path Q
 W Œ0; 1� ! M2, with Q
.0/ D y, and define ˆ.y/ WD Q
.1/.

Then the map ˆW p�1.x/ ! p�1.z/ is bijective. Let F WD ˆ�1.p�1.z/ \ A/ and

consider y 2 F X Fg, for some g 2 G. Then ˆ.y/ 2 A and ˆ.y � g�1/ … A. Moreover,

we have

d.ˆ.y/; ˆ.y � g�1// � d.y; y � g�1/ C 2`.
/ � `.
g/ C 2R < r:

Therefore, ˆ.y � g�1/ 2 Ar X A. Since ˆ is bijective, it is clear that

#.F X Fg/ D #¹y � g�1W y 2 F X Fgº D #¹ˆ.y � g�1/W y 2 F X Fgº
� #.p�1.z/ \ .Ar X A// < "#.p�1.z/ \ A/ D "#.F /:

From Proposition 2.6, it follows that the covering is amenable.

3. Properties of the Neumann spectrum

In this section, we establish some properties of the Neumann spectrum that will be

used in the sequel. Let M be a possibly non-connected Riemannian manifold and S D
� C V a Schrödinger operator on M . It is worth to point out that we do not require

M to have non-empty boundary, which yields that the following results also hold

for manifolds without boundary (and most of them are already known in this case).

If M has non-empty boundary, we denote by � the inward pointing normal to @M .

Throughout this section, we denote by HV .M/ the space defined in Section 2.1

First, we establish some convenient expressions for the bottom of the Neumann

spectrum, and derive some straightforward applications to Riemannian coverings.

Proposition 3.1. Any compactly supported smooth function belongs to HV .M/.

Moreover, any compactly supported Lipschitz function is in HV .M/.

Proof. If M has empty boundary, then any compactly supported Lipschitz function f

belongs to H 1
0 .M/. Since V is smooth, it is easy to see that any such f also belongs

to HV .M/. Therefore, it remains to prove the proposition for manifolds with non-

empty boundary.

Let f 2 C 1
c .M/. Then there exists a compact K � @M and ı > 0, such that the

map ˆW K � Œ0; ı/ ! M , defined by ˆ.x; t/ WD expx.t�/, is a diffeomorphism onto
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its image Wı , and suppf \ Wı � W ı
ı

. For 0 < ı0 < ı, consider the Lipschitz function

fı0
, which is equal to f outside Wı0

, and fı0
.ˆ.x; t// D f .ˆ.x; ı0// in Wı0

. Let K1

be a compact neighborhood of ˆ.K � ¹ı0º/ and K2 a compact neighborhood of K1,

that does not intersect @M . Consider � 2 C 1
c .M/, with � D 1 in K1 and supp� � K2.

Since �fı0
is Lipschitz and compactly supported in the interior of M , it follows that

�fı0
2 HV .M/. Moreover, .1 � �/fı0

2 C 1
c .M/ and �.f / D 0 on @M . Therefore,

.1 � �/fı0
2 HV .M/, which yields that fı0

2 HV .M/. It is clear that fı0
! f in

HV .M/, as ı0 ! 0, and, in particular, f 2 HV .M/.

Let f be a compactly supported Lipschitz function on M . Consider a Riemannian

manifold N of the same dimension, without boundary, containing M (for instance,

glue cylinders along @M ). Extend f to a compactly supported Lipschitz function f 0

in N and let K be a smoothly bounded, compact neighborhood of supp f 0. Then

there exists .gn/n2N � C 1
c .N /, with supp gn � K and gn ! f 0 in H 1

0 .K/. Then

hn WD gnjM 2 C 1
c .M/ and from the first statement, it follows that hn 2 HV .M/. In

addition, we have that hn ! f in HV .M/, and, in particular, f 2 HV .M/.

For f 2 Lipc.M/ X ¹0º, the Rayleigh quotient of f with respect to S , is defined

as

RS.f / WD
R

M .k grad f k2 C Vf 2/
R

M f 2
:

Proposition 3.2. The bottom of the spectrum of SN is given by

�N
0 .S/ D inf

f 2C 1
c .M /X¹0º

RS.f / D inf
f 2Lipc.M /X¹0º

RS.f /:

Proof. It is clear that for any non-zero f 2 Lipc.M/, we have

RS .f / D infM V � 1 C
kf k2

HV .M /

kf k2
L2.M /

;

and the asserted equalities follow from Proposition 2.2.

Proposition 3.3. Let pW M2 ! M1 be a Riemannian covering, with M2 possibly non-

connected. Let S1 be a Schrödinger operator on M1 and consider its lift S2 on M2.

Then �N
0 .S1/ � �N

0 .S2/.

Proof. Let f 2 C 1
c .M2/ X ¹0º and consider its pushdown

g.z/ WD
�

X

y2p�1.z/

f .y/2
�1=2

on M1. Then g 2 Lipc.M1/, kgkL2.M1/ D kf kL2.M2/ and RS1
.g/ � RS2

.f /

(cf. [1, Section 4]). The statement follows from Proposition 3.2.
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Theorem 3.4. Let pW M2 ! M1 be a Riemannian covering. Let S1 be a Schrödinger

operator on M1 and consider its lift S2 on M2. If p is infinite sheeted and amenable,

then �N
0 .S1/ D �

N;ess
0 .S2/.

Proof. Follows from [15, Theorem 1.2] and Corollary 3.3.

Next, we study properties of eigenfunctions corresponding to the bottom of the

spectrum and minimizing sequences for the Rayleigh quotient of Schrödinger operat-

ors on connected Riemannian manifolds.

Proposition 3.5. Let S D � C V be a Schrödinger operator on a Riemannian man-

ifold M , and consider .fn/n2N � Lipc.M/, with kfnkL2.M / D 1 and RS.fn/ !
�N

0 .S/. If �N
0 .S/ … �N

ess.S/, then there exists a subsequence .fnk
/k2N , such that

fnk
! ' in L2.M/, for some �N

0 .S/-eigenfunction ' of SN .

Proof. From Proposition 3.1, there exists .f 0
n/n2N � C 1

c .M/ \ D.SN /, with

kf 0
nkL2.M / D 1 and kfn � f 0

nkHV .M / � 1=n;

for any n 2 N. Hence, RS .f 0
n/ ! �N

0 .S/ and it suffices to prove the asserted state-

ment for .f 0
n/n2N .

Since �N
0 .S/ is not in the essential spectrum, it is an isolated eigenvalue of finite

multiplicity. Let E be the eigenspace corresponding to �N
0 .S/, and gn be the pro-

jection of f 0
n on E with respect to the L2.M/-inner product, n 2 N. Since E is

finite-dimensional, after passing to a subsequence, we may assume that gn ! ' in

L2.M/, for some ' 2 E. Consider hn WD f 0
n � gn 2 D.SN /. Since hn is perpendic-

ular to E, from the spectral theorem (cf. for instance [19, Chapter 8]), it follows that

there exists c0 > 0, such that

khnk2
HV .M / � .1 � infM V /khnk2

L2.M /
D hSN hn; hniL2.M /

� .�N
0 .S/ C c0/khnk2

L2.M /
; (2)

for any n 2 N. It is clear that

hhn; gniHV .M / D hhn; SN gniL2.M / C .1 � infM V /hhn; gniL2.M /

D .�N
0 .S/ C 1 � infM V /hhn; gniL2.M / D 0:

Let " > 0. Then, for n sufficiently large, we have RS .fn/ � �N
0 .S/ C ", and thus

khnk2
HV .M / � .1 � infM V /khnk2

L2.M /

D .kf 0
nk2

HV .M / � .1 � infM V /kf 0
nk2

L2.M /
/

� .kgnk2
HV .M / � .1 � infM V /kgnk2

L2.M /
/
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� .�N
0 .S/ C "/kf 0

nk2
L2.M /

� �N
0 .S/kgnk2

L2.M /

D " C �N
0 .S/khnk2

L2.M /
:

From (2), this yields that hn ! 0 in L2.M/. Therefore, f 0
n ! ' in L2.M/.

Lemma 3.6. Let S be a Schrödinger operator on a (connected) Riemannian manifold

M and let ' 2 C 1.M/ X ¹0º be a non-negative function satisfying S' D �', for

some � 2 R. Then ' is positive in the interior of M . If, in addition, M has non-empty

boundary, and �.'/ D 0 on @M , then ' is positive on @M .

Proof. Since V is bounded from below, by adding a constant, we may suppose that V

is non-negative. Assume that there exists x in the interior of M such that '.x/ D 0.

Let ˆW U WD B.0; r/ ! M be an extensible coordinate system with ˆ.0/ D x, and

consider the uniformly elliptic operator

Lf WD � 1p
det g

m
X

i;j D1

@

@xi

�

gij
p

det g
@f

@xj

�

C Vf

on U . Then � WD ' ı ˆ 2 C 1. xU /, L� � 0 and �.0/ D 0. It follows from the

maximum principle (see for example [11, p. 333]) that � D 0 in U . Hence, the set

¹x 2 M ıW ' D 0º is open and closed in M ı. Bearing in mind that M is connected and

' is not identically zero, we conclude that ' is positive in M ı.

Suppose now that M has non-empty boundary and �.'/ D 0 on @M . Assume that

there exists x 2 @M , such that '.x/ D 0. Since �.'/ D 0 on @M and 'j@M attains

a minimum at x, it follows that grad '.x/ D 0. Consider an extensible coordinate

system ˆW U WD B.0; r/ \ H
m ! M , with ˆ.0/ D x, where m is the dimension of

M and Hm is the upper half-space of dimension m, and the differential operator L

on U as above. Then � WD ' ı ˆ is non-negative, smooth and satisfies L� � 0. Since

�.0/ D 0 < �.y/ for all y 2 U ı, and U satisfies the interior ball condition at the

origin, we derive from Hopf’s Lemma (cf. for instance [11, p. 330]) that

@�

@xm

.0/ ¤ 0;

which is a contradiction, since grad �.0/ D 0. We conclude that ' is positive on @M .

Proposition 3.7. Let M be a (connected) Riemannian manifold and S D � C V a

Schrödinger operator on M . If ' 2 D.SN / X ¹0º is a �N
0 .S/-eigenfunction of SN ,

then ' is smooth and nowhere vanishing. Moreover, if M has non-empty boundary,

then �.'/ D 0 on @M .
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Proof. Since ' 2 D.SN /, there exists .fn/n2N � C 1
c .M/, such that fn ! ' in

HV .M/. Clearly, jfnj is Lipschitz and compactly supported. From Proposition 3.1, it

follows that jfnj 2 HV .M/. From Rademacher’s theorem, jfnj is almost everywhere

differentiable. Therefore, we have k grad jfnjk D k grad fnk almost everywhere, and,

in particular, RS.jfnj/ D RS .fn/. Since .jfnj/n2N is bounded in HV .M/, it has a

weakly convergent subsequence in HV .M/. Since jfnj ! j'j in L2.M/, it follows

that j'j 2 HV .M/, and after passing to a subsequence, we have that jfnj * j'j in

HV .M/. Hence, RS.j'j/ D �N
0 .S/.

In particular, for any f 2 C 1
c .M/, the function t 7! RS.j'j C tf /, with jt j < ",

is differentiable and attains minimum for t D 0. This yields that
Z

M

.hgrad j'j; grad f i C V j'jf / D �N
0 .S/

Z

M

j'jf; (3)

for any f 2 C 1
c .M/. From elliptic regularity theory, it follows that j'j 2 C 1.M ı/

and S j'j D �N
0 .S/j'j in M ı. From Lemma 3.6, j'j is nowhere vanishing in the

interior of M , and so is '. If M has empty boundary, this completes the proof.

If M has non-empty boundary, then without loss of generality, we may assume

that ' is positive in the interior of M . Since ' 2 D.SN / and SN ' D �N
0 .S/', from

elliptic regularity theory, it follows that ' 2 C 1.M/. Moreover, from (3) we have

that
Z

@M

�.'/f D
Z

M

f S' �
Z

M

.hgrad '; grad f i C V'f / D 0;

for any f 2 C 1
c .M/. Therefore, �.'/ D 0 on @M , and from Lemma 3.6, it follows

that ' is positive on @M .

Proposition 3.8. Let S be a Schrödinger operator on a (connected) Riemannian man-

ifold M , with �N
0 .S/ … �N

ess.S/. Then for any compact K � M of positive measure,

we have

inf
f

RS .f / > �N
0 .S/;

where the infimum is taken over all non-zero f 2 Lipc.M/, with supp f \ K D ;.

Proof. Assume to the contrary that the assertion does not hold. Then there exists a

compact subset K of M of positive measure, such that for any n 2 N there exists

fn 2 Lipc.M/, with kfnkL2.M / D 1, suppfn \ K D ; and RS.fn/ ! �N
0 .S/. From

Proposition 3.5, after passing to a subsequence, we have that fn ! ' in L2.M/, for

some �N
0 .S/-eigenfunction ' of SN . Since k'kL2.M / D 1, from Proposition 3.7, it

follows that ' is nowhere vanishing in M . This is a contradiction, since

k' � fnk2
L2.M /

�
Z

K

'2 > 0;

while fn ! ' in L2.M/. This proves the asserted claim.
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We end this section with the notion of renormalized Schrödinger operators. This

notion was introduced for the Laplacian in [7] and for Schrödinger operators on mani-

folds without boundary in [15]. In the literature, such a transformation is also referred

to as Doob transform.

Let M be a possibly non-connected Riemannian manifold and S D � C V a

Schrödinger operator on M . Let ' 2 C 1.M/ be a positive function, satisfying S' D
�', for some � 2 R. If M has non-empty boundary, assume that �.'/ D 0 on @M .

Consider the space L2
'.M/ WD ¹Œv�W 'v 2 L2.M/º, where two measurable functions

are equivalent if they are almost everywhere equal, endowed with the inner product

hv1; v2iL2
'.M / WD

R

M v1v2'2. Then the map �' W L2
'.M/ ! L2.M/, defined by

�'v WD 'v, is an isometric isomorphism. In particular, L2
'.M/ is a separable

Hilbert space. The renormalization S' of S with respect to ' is defined by

S'v WD ��1
' .SN � �/.�'v/; for all v 2 D.S'/ WD ��1

' .D.SN //:

It is clear that S' WD.S'/WL2
'.M/ ! L2

'.M/ is self-adjoint and �.S'/ D �N .S/ � �.

For a non-zero f 2 Lipc.M/, the Rayleigh quotient of f with respect to S' is defined

as

RS'
.f / WD

R

M k grad f k2'2

R

M
f 2'2

:

Proposition 3.9 ([15, Proposition 7.3], [2, Section 2.1]). In the above situation, if M

has empty boundary, then the bottom of the spectrum of S' is given by

�0.S/ � � D �0.S'/ D inf
f 2C 1

c .M /X¹0º
RS'

.f / D inf
f 2Lipc.M /X¹0º

RS'
.f /:

Proposition 3.10. In the above situation, if M has non-empty boundary, then the

bottom of the spectrum of S' is given by

�N
0 .S/ � � D �0.S'/ D inf

f
RS'

.f /;

where the infimum is taken over all non-zero f 2 C 1
c .M/, with �.f / D 0 on @M .

Proof. Let f 2 C 1
c .M/ X ¹0º, with �.f / D 0 on @M . Since ' is smooth and

�.'/ D 0 on @M , it follows that f 2 D.S'/. It is easy to see that

S'f D �f � 2

'
hgrad '; grad f i:

Hence, we have

hS'f; f iL2
'.M / D

Z

M

.'2f�f � 2f 'hgrad f; grad 'i/
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D
Z

M

.hgrad.'2f /; grad f i � 2f 'hgrad f; grad 'i/ C
Z

@M

'2f �.f /

D
Z

M

k grad f k2'2;

where we used that �.f / D 0 on @M . In particular, we have that

RS'
.f / D

hS'f; f iL2
'.M /

kf k2

L2
'.M /

:

From Proposition 2.1, it follows that RS'
.f / � �0.S'/. From Proposition 2.2, there

exists .gn/n2N � C 1
c .M/ X ¹0º, with �.gn/ D 0 on @M and RS.gn/ ! �N

0 .S/.

Consider fn WD ��1
' gn. Then fn 2 C 1

c .M/, �.fn/ D 0 on @M , and RS'
.fn/ !

�0.S'/. This proves the asserted equality.

4. Coverings of compact manifolds

Throughout this section, for simplicity of notation, we denote by R.f / the Rayleigh

quotient of a Lipschitz function f with respect to the Laplacian. The aim of this sec-

tion is to prove Theorem 1.1. Since a part of it follows from Theorem 3.4, it remains

to prove the converse implication. For reasons that will become clear in the sequel,

we need to establish it also for non-connected covering spaces.

Theorem 4.1. Let pW M2 ! M1 be a Riemannian covering, with M1 compact with

non-empty boundary, and M2 possibly non-connected. If �N
0 .M2/ D 0, then p is

amenable.

Let �i be the inward pointing normal to @Mi , i D 1; 2. Since M1 is compact,

we readily see that @M1 is a closed, smooth hypersurface of M1 without boundary.

Hence, there exists ı > 0, such that the map ˆW @M1 � Œ0; 2ı/ ! M1, defined by

ˆ.x; t/ WD expx.t�1/, is a diffeomorphism onto its image. By definition, any point of

M1 has an evenly covered neighborhood with respect to the restriction of p on any

connected component of M2. Therefore, we may assume that ı is sufficiently small,

so that for any x 2 @M1 and y1; y2 2 p�1.x/, with y1 ¤ y2, we have d.y1; y2/ � 2ı.

It is worth to point out that we consider the distance of points of different connected

components of M2 to be infinite.

Lemma 4.2. The map ‰W @M2 � Œ0; ı/ ! M2, defined by ‰.y; t/ WD expy.t�2/, is a

diffeomorphism onto its image.

Proof. Since .p ı ‰/.y; t/ D ˆ.p.y/; t/, for any y 2 @M2 and t 2 Œ0; ı/, it is clear

that ‰ is a local diffeomorphism. So, it suffices to prove that it is injective. Consider
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y1;y2 2 @M2 and t1; t2 2 Œ0;ı/, such that ‰.y1; t1/D‰.y2; t2/ DW z. Then d.yi ;z/<ı,

i D 1; 2, which yields that d.y1; y2/ < 2ı. Moreover, it follows that ˆ.p.y1/; t1/ D
ˆ.p.y2/; t2/. Since ˆ is a diffeomorphism onto its image, this yields that t1 D t2,

p.y1/ D p.y2/, and, in particular, y1 D y2.

Lemma 4.3. There exists a Riemannian metric g0 on M1, such that ˆ restricted to

@M1 � Œ0; ı/ is an isometry onto its image.

Proof. Let gc be the push-forward of the product metric of @M1 � Œ0; 2ı/ via ˆ.

Denote by g the original Riemannian metric of M1. Consider a smooth � W Œ0; 2ı/ !
Œ0; 1�, with �.t/ D 1 for t � ı, and �.t/ D 0 for t � 3ı=2. Consider the function � 0 2
C 1.M1/, defined by � 0.ˆ.x; t// D �.t/ in ˆ.@M1 � Œ0; 2ı//, and � 0 D 0 otherwise.

Then the Riemannian metric

g0 WD � 0gc C .1 � � 0/g:

on M1 satisfies the desired property.

Consider M1 and M2 endowed with g0 and its lift, respectively. Since we have

.p ı ‰/.y; t/ D ˆ.p.y/; t/, for any y 2 @M2 and t 2 Œ0; ı/, it follows that ‰ restricted

on @M2 � Œ0; ı/ is a local isometry, with respect to the lift of g0. From Lemma 4.2,

this map is also injective, which yields that it is an isometry onto its image. Denote

by Ut the open set ‰.@M2 � Œ0; t//, and by Ct the closed set ‰.@M2 � ¹tº/.
Since g and g0 are uniformly equivalent, M1 being compact, we readily see that so

are their lifts on M2. Therefore, there exist c1; c2 > 0, such that for any f 2 C 1.M2/,

the norms of the gradients of f with respect to the lifts of g and g0, are related by

c1kgradgf kg � kgradg0f kg0 � c2kgradgf kg:

Moreover, there exists a positive, smooth V W M1 ! R, such that the volume elements

induced by the lifts of g and g0 satisfy

dVolg0

dVolg
D V ı p:

Therefore, for any non-zero f 2 C 1
c .M2/, the Rayleigh quotients of f with respect

to the Laplacians induced by the lifts of g and g0 satisfy

Rg0.f / D
R

M2
k gradg0 f k2

g0d Volg0

R

M2
f 2d Volg0

� c2
2

max V

min V
Rg.f /:

Since we assume that �N
0 .M2/ D 0 with respect to the lift of g, it follows from Pro-

position 3.2 that �N
0 .M2/ D 0 with respect to the lift of g0. From now on, we will be

working exclusively with g0 and its lift. In particular, it should be emphasized that the

Laplacian, gradients and integrals are with respect to g0 and its lift, from now on.
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Lemma 4.4. For any " > 0, there exists f 2 Lipc.M2/, smooth on M2 X Ct0 , for one

t0 2 .0; ı/, with f j@M2
non-zero, such that R.f / � " and

R

@M2
k grad f k2

R

@M2
f 2

� ":

Proof. Since �N
0 .M2/ D 0, from Proposition 3.2, there exists .fn/n2N � C 1

c .M2/,

with kfnkL2.M2/ D 1, such that R.fn/ ! 0. Assume that there exists " > 0, such

that, for any n 2 N and t 2 Œ0; ı/, we have
Z

Ct

k grad fnk2 > "

Z

Ct

f 2
n : (4)

Then
Z

Uı

k grad fnk2 > "

Z

Uı

f 2
n ;

which yields that
R

Uı
f 2

n ! 0 and
R

M2XUı
f 2

n ! 1. Let � 2 C 1.M1/, with �.x/ D 1

for d.x; @M1/ � ı, and �.x/ D 0 for d.x; @M1/ < ı=2. Let Q� 2 C 1.M2/ be the lift

of �. Then Q� D 0 in Uı=2 and Q� D 1 outside Uı . For gn WD Q�fn 2 C 1
c .M2/, we have

kgnk2
L2.M2/

D
Z

Uı

Q�2f 2
n C

Z

M2XUı

f 2
n ! 1;

and
Z

M2

k grad gnk2 � 2

Z

Uı

. Q�2k grad fnk2 C f 2
n k grad Q�k2/ C

Z

M2XUı

k grad fnk2 ! 0:

In particular, we have that R.gn/ ! 0. Since gn is supported in the interior of M2, for

any n 2 N, from Proposition 3.2 and Remark 2.3, it follows that �D
0 .M2/ D 0. This

is a contradiction, since, from Proposition 3.3 and Remark 2.3, we have �D
0 .M2/ �

�D
0 .M1/ > 0.

Hence, (4) cannot hold, that is, for any " > 0, there exists n 2 N and t 2 Œ0; ı/,

such that
Z

Ct

k grad fnk2 � "

Z

Ct

f 2
n : (5)

Let 0 < " < �D
0 .M2/ and consider fn 2 C 1

c .M2/, with kfnkL2.M2/ D 1, R.fn/ < ",

satisfying (5) for some t 2 Œ0; ı/. Let t0 be the minimum of all t 2 Œ0; ı/, for which (5)

holds. If t0 D 0, then fn is the desired function. Otherwise, define f 2 Cc.M2/ by

f D fn outside Ut0 , and f .‰.x; t// D fn.‰.x; t0// for t � t0. It is clear that f 2
Lipc.M/ and is smooth on M2 X Ct0 .
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Since R.fn/ < �D
0 .M2/, from Proposition 3.2 and Remark 2.3, it follows that fn

is not identically zero on Ut0 . Since R.fn/ < ", from the definition of t0, it follows

that fn is not identically zero on M2 X Ut0 . In particular, this yields that f is non-zero.

Since (5) holds for t D t0, we have

Z

@M2

k grad f k2 D
Z

Ct0

k grad.fnjCt0
/k2 � "

Z

Ct0

f 2
n D "

Z

@M2

f 2:

Furthermore, we have

R.f / D

R t0
0

R

Ct
k grad f k2 C

R

M2XUt0
k grad fnk2

R t0
0

R

Ct
f 2 C

R

M2XUt0
f 2

n

�
"

R t0
0

R

Ct
f 2 C

R

M2XUt0
k grad fnk2

R t0
0

R

Ct
f 2 C

R

M2XUt0
f 2

n

� max

²

";

R

M2XUt0
k grad fnk2

R

M2XUt0
f 2

n

³

: (6)

It is clear that

" > R.fn/ D

R t0
0

R

Ct
k grad fnk2 C

R

M2XUt0
k grad fnk2

R t0
0

R

Ct
f 2

n C
R

M2XUt0
f 2

n

� min

²

R t0
0

R

Ct
k grad fnk2

R t0
0

R

Ct
f 2

n

;

R

M2XUt0
k grad fnk2

R

M2XUt0
f 2

n

³

:

From the definition of t0, the first term is greater than ", which yields that the second

term is smaller than ". From (6), it follows that R.f / � ". Since " < �D
0 .M2/, from

Remark 2.3 and Proposition 3.2, it is clear that f cannot vanish identically on @M2.

Glue the cylinder @M1 � Œ0; C1/, with the product metric, along @M1, so that

@=@t is the outward pointing normal to @M1 (where M1 is endowed with g0). Denote

by N1 the obtained Riemannian manifold. The covering pW M2 ! M1 can be exten-

ded to a Riemannian covering pW N2 ! N1, where N2 is the Riemannian manifold

obtained by gluing @M2 � Œ0; C1/ along @M2 in the analogous way. Since the action

of the fundamental group on the fiber does not change after gluing cylinders along the

boundaries, we readily see that pW M2 ! M1 is amenable if and only if pW N2 ! N1

is amenable. Points in Ni X M ı
i will be written in the form .x; t/, with x 2 @Mi and

t � 0, i D 1; 2.
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Consider a positive smooth �W Œ0; C1/ ! R, with �.t/ D 1 for t � 1=2, and

�.t/ D e�t for t � 1. Let ' 2 C 1.N1/ be the square-integrable function defined by

' D 1 in M1, and '.x; t/ D �.t/ in N1 X M1. Consider the function V 2 C 1.N1/,

defined by V D 0 in M1, and V.x; t/ D �00.t/=�.t/ in N1 X M1. It is worth to point

out that, outside the compact set M1 [ .@M1 � Œ0; 1�/, we have that V D 1 and, in

particular, V is bounded from below. Consider the Schrödinger operator S1 D � C V

on N1 and its lift S2 on N2. It is clear that S1' D 0.

Remark 4.5. It is noteworthy that N1 is complete, without boundary and with Ricci

curvature bounded from below. Keeping in mind that V D 1 outside the compact set

M1 [ .@M1 � Œ0; 1�/, from Propositions 2.5 and 3.2, it follows that �ess
0 .S1/ � 1.

Moreover, it is clear that V and grad V are bounded.

Lemma 4.6. The function ' belongs to the domain of the Friedrichs extension of S1

and, in particular, �0.S1/ D 0.

Proof. For T > 0, consider the compactly supported Lipschitz function �T defined

by �T D 1 in M1, �T .x; t/ D 1 for t � T , �T .x; t/ D T C 1 � t for T � t � T C 1,

and �T .x; t/ D 0 for t � T . Then �T ' 2 H 1
0 .N1/, for any T > 0, and

k' � �T 'k2
L2.N1/

�
Z

@M1�ŒT;C1/

'2:

Moreover, we have

Z

N1

k grad.' � �T '/k2 � 2

Z

N1

..1 � �T /2k grad 'k2 C '2k grad.1 � �T /k2/

� 2

Z

@M1�ŒT;C1/

k grad 'k2 C 2

Z

@M1�ŒT;T C1�

'2:

It is straightforward to compute that '.x; t/ D k grad '.x; t/k D e�t for t � 1, which

yields that �T ' ! ' in H 1
0 .N1/, as T ! C1. Since V is bounded, it follows that

' 2 HV .N1/. Since S1' D 0, it is clear that ' is an eigenfunction of the Friedrichs

extension of S1, which yields that �0.S1/ � 0. From Proposition 2.4, since ' is pos-

itive, it follows that �0.S1/ D 0.

Denote by Q' the lift of ' on N2 and consider the renormalization S Q' of S2

with respect to Q'. Let f 2 Lipc.M2/, such that f restricted on @M2 is non-zero

and smooth, and hW Œ0; C1/ ! R be a compactly supported, smooth function, with

h.t/ D 1 for t � 1=2. Extend f in the glued ends @M2 � Œ0; C1/ by

f .x; t/ WD f .x/h.t/: (7)
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It is clear that f 2 Lipc.N2/, and, in the glued ends, we have

grad f .x; t/ D f .x/h0.t/
@

@t
C h.t/ grad f .x/:

In particular, it follows that

k grad f .x; t/k2 D f 2.x/h0.t/2 C h2.t/k grad f .x/k2;

which yields that

R

N2XM2
k grad f k2 Q'2

R

N2XM2
f 2 Q'2

D
R

@M2

R C1

0
k grad f k2 Q'2

R

@M2

R C1

0 f 2 Q'2

D
R

@M2
k grad f k2

R

@M2
f 2

C
R C1

0 .h0/2�2

R 1

0 h2�2
; (8)

where we used that in the glued ends @M2 � Œ0; C1/, we have Q'.x; t/ D �.t/.

Proposition 4.7. The renormalized operator S Q' satisfies �0.S Q'/ D 0, which yields

that �0.S2/ D �0.S1/.

Proof. Let " > 0. From Lemma 4.4, there exists f 2 Lipc.M2/, smooth on M2 X Ct0 ,

for one t0 2 .0; ı/, not vanishing identically on the boundary, such that
R

M2
k grad f k2

R

M2
f 2

<
"

2
and

R

@M2
k grad f k2

R

@M2
f 2

<
"

2
:

Let T >1 and consider a compactly supported, smooth hW Œ0;C1/ ! R, with h.t/D1

for t � T , h.t/ D 0 for t � T C 1, and jh0j � 2. Extend f 2 Lipc.M2/ to the compactly

supported f 2 Lipc.N2/ as in (7). Then

R C1

0 .h0/2�2

R C1

0 h2�2
� 4

R T C1

T e�2t dt
R T

1 e�2t dt
D 4

1 � e2

e2 � e2T
<

"

2
;

for some sufficiently large T . From (8), it follows that
R

N2XM2
k grad f k2 Q'2

R

N2XM2
f 2 Q'2

< ":

Hence, we have

RS Q'
.f / D

R

M2
k grad f k2 C

R

N2XM2
k grad f k2 Q'2

R

M2
f 2 C

R

N2XM2
f 2 Q'2

� max

²

R

M2
k grad f k2

R

M2
f 2

;

R

N2XM2
k grad f k2 Q'2

R

N2XM2
f 2 Q'2

³

< ":
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Since " > 0 is arbitrary, from Proposition 3.9, it follows that �0.S Q'/ D 0 and, in

particular, �0.S2/ D �0.S1/.

Proof of Theorem 4.1. Consider a Riemannian metric on M1 as in Lemma 4.3 and its

lift on M2. Glue cylinders along the boundaries and extend the covering pW M2 ! M1

to a Riemannian covering pW N2 ! N1 as above. From Remark 4.5, N1 is com-

plete, without boundary, and with Ricci curvature bounded from below. Consider the

Schrödinger operator S1 D � C V on N1, as above, and its lift S2 on N2. From

Remark 4.5, we have that V and grad V are bounded. From Lemma 4.6 and Proposi-

tion 4.7, we obtain that �0.S2/ D �0.S1/ D 0, and Remark 4.5 yields that �ess
0 .S1/ � 1.

From Theorem 2.8, it follows that the covering pW N2 ! N1 is amenable, and so is

the covering pW M2 ! M1.

Proof of Theorem 1.1. Follows from Theorems 4.1 and 3.4.

5. Arbitrary Riemannian coverings

In this section, we prove Theorem 1.2 and present some immediate consequences of

it. As stated in the Introduction, we establish the following more general version of

this theorem, involving manifolds with possibly non-empty boundary.

Theorem 5.1. Let pW M2 ! M1 be a Riemannian covering. Let S1 be a Schrödinger

operator on M1, with �N
0 .S1/ … �N

ess.S1/, and S2 its lift on M2. Then �N
0 .S2/ D

�N
0 .S1/ if and only if the covering is amenable.

The following lemma, which is a consequence of Theorem 4.1, is essential for the

proof of this theorem.

Lemma 5.2. Let pW M2 ! M1 be a non-amenable Riemannian covering. Let S1 be a

Schrödinger operator on M1, with �N
0 .S1/ being an eigenvalue of SN

1 , and S2 its lift

on M2. If �N
0 .S2/ D �N

0 .S1/, then there exists a smoothly bounded, compact domain

K � M1, and .fn/n2N � C 1
c .M2/, with kfnkL2.M2/ D 1, supp fn \ p�1.K/ D ;,

for any n 2 N, and RS2
.fn/ ! �N

0 .S2/.

Proof. If M1 has non-empty boundary, then we denote by �i the inward pointing

normal to @Mi , i D 1; 2. From Proposition 2.7, since pW M2 ! M1 is non-amenable,

there exists a smoothly bounded, compact domain K 0, with non-empty interior, such

that the covering pW p�1.K 0/ ! K 0 is non-amenable, where p�1.K 0/ may be non-

connected. From Theorem 4.1, it follows that �N
0 .p�1.K 0// > 0.

Since �N
0 .S1/ is an eigenvalue of SN

1 , from Proposition 3.7, there exists a positive

function ' 2 C 1.M1/, with S1' D �N
0 .S1/' and �1.'/ D 0 on @M1 (if non-empty).
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Consider the lift Q' of ' on M2 and the renormalization S Q' of S2 with respect to Q'.

Since �N
0 .S2/ D �N

0 .S1/, from Propositions 3.9 and 3.10, it follows that

0 D �0.S Q'/ D inf
f

R

M2
k grad f k2 Q'2

R

M2
f 2 Q'2

;

where the infimum is taken over all non-zero f 2 C 1
c .M2/, with �2.f / D 0 on @M2

(if non-empty). In particular, there exists .fn/n2N � C 1
c .M2/, with kfnkL2

Q'
.M2/ D 1,

RS Q'
.fn/ ! 0 and �2.fn/ D 0 on @M2 (if non-empty).

Since ' is smooth and positive and K 0 is compact, there exist c1; c2 > 0, such that

c1 � ' � c2 in K 0. From Proposition 3.2, it follows that

R

p�1.K0/ k grad f k2 Q'2

R

p�1.K0/ f 2 Q'2
� c2

1

c2
2

�N
0 .p�1.K 0// > 0;

for any f 2 C 1
c .p�1.K 0// X ¹0º. Since kfnkL2

Q'
.M2/ D 1 and RS Q'

.fn/ ! 0, it follows

that
Z

p�1.K0/

f 2
n Q'2 ! 0 and

Z

M2Xp�1.K0/

f 2
n Q'2 ! 1:

Let K � M ı
2 be a smoothly bounded, compact domain contained in the interior of K 0.

Let � 2 C 1
c .M1/, with � D 1 in a neighborhood of K and supp � � K 0 \ M ı

2 . Con-

sider the lift Q� of � on M2 and let gn WD .1 � Q�/fn 2 C 1
c .M2/. It is clear that if M1

has non-empty boundary, then �2.gn/ D 0 on @M2. Moreover, we have

kgnk2

L2
Q'
.M2/

D
Z

p�1.K0/

.1 � Q�/2f 2
n Q'2 C

Z

M2Xp�1.K0/

f 2
n Q'2 ! 1

and
Z

M2

k grad gnk2 Q'2 � 2

Z

p�1.K0/

.f 2
n k grad Q�k2 C .1 � Q�/2k grad fnk2/ Q'2

C
Z

M2Xp�1.K0/

k grad fnk2 Q'2 ! 0:

Therefore, RS Q'
.gn/ ! 0 and supp gn \ p�1.K/ D ;. We may normalize gn in

L2
Q'
.M/, so that kgnkL2

Q'
.M2/ D 1, for any n 2 N.

Consider hn WD Q'gn 2 C 1
c .M2/. If M2 has non-empty boundary, since �2. Q'/ D 0

and �2.gn/ D 0, it follows that �2.hn/ D 0 on @M2. It is apparent that khnkL2.M2/ D
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kgnkL2
Q'
.M2/ D 1. Moreover, from the definition of the renormalized Schrödinger oper-

ator, it is clear that

RS2
.hn/ D hS2hn; hniL2.M2/ D hS Q'gn; gniL2

Q'
.M2/ C �N

0 .S2/

D RS Q'
.gn/ C �N

0 .S2/ ! �N
0 .S2/;

which completes the proof.

Proof of Theorem 5.1. From Theorem 3.4, if the covering is infinite sheeted and amen-

able, then �N
0 .S1/ D �N

0 .S2/. If the covering is finite sheeted, then for f 2 C 1
c .M1/,

we have that f ı p 2 C 1
c .M2/, and the equality of the bottoms follows from Propos-

ition 3.2 and Corollary 3.3. Hence, it remains to prove the converse implication.

Assume to the contrary that the covering is non-amenable. Since

�N
0 .S2/ D �N

0 .S1/ … �N
ess.S1/;

from Lemma 5.2 there exists a smoothly bounded, compact domain K � M1, and

.fn/n2N � C 1
c .M2/, with kfnkL2.M2/ D 1, supp fn \ p�1.K/ D ;, for any n 2 N,

and RS2
.fn/ ! �N

0 .S2/. For n 2 N, consider the pushdown gn of fn, defined by

gn.z/ WD
�

X

y2p�1.z/

fn.y/2
�1=2

;

for any z 2 M1. Then gn 2 Lipc.M1/, kgnkL2.M1/ D 1 and RS1
.gn/ � RS2

.fn/,

for any n 2 N (cf. [1, Section 4]). From Proposition 3.2, since �N
0 .S2/ D �N

0 .S1/, it

follows that RS1
.gn/ ! �N

0 .S1/. From Proposition 3.8, since �N
0 .S1/ … �N

ess.S1/ and

supp gn \ K D ;, this is a contradiction. Hence, the covering is amenable.

Proof of Theorem 1.2. Follows from Theorem 5.1, since the manifolds involved may

have empty boundary.

Remark 5.3. In Theorem 1.2, the manifolds do not have to be complete. Therefore,

from Remark 2.3, we obtain the corresponding result for the Dirichlet spectrum of

Schrödinger operators on manifolds with boundary.

Corollary 5.4. Let pW M2 ! M1 be a Riemannian covering, with M1 compact. Then

the covering is amenable if and only if it preserves the bottom of the Dirichlet/Neu-

mann spectrum of some/any Schrödinger operator.

Proof. Follows from Theorem 5.1 and Remark 5.3, since the Dirichlet and the Neu-

mann spectrum of a Schrödinger operator on a compact manifold is discrete.

Proof of Corolary 1.3. The first statement follows from [15, Corollary 1.6], while the

second one follows immediately from Theorem 1.2.
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The next example shows that the assumption �0.S1/ … �ess.S1/ in Theorem 1.2

cannot be replaced with �0.S1/ being an eigenvalue of the Friedrichs extension of S1.

Example 5.5. Let M1 be a two-dimensional torus with a cusp attached, endowed

with a Riemannian metric, such that M1 is complete and outside a compact set, the

cusp is the surface of revolution generated by 1=t2, with t � 1. Since M1 has finite

volume, it follows that �0.M1/ D 0 and constant functions are �0.M1/-eigenfunctions

of the Friedrichs extension of the Laplacian on M1. Let x be a point of the torus and

consider the non-negative quantity

� WD � lim
r!C1

1

r
ln.Vol.M1/ � Vol.B.x; r/// � � lim

r!C1

1

r
ln

�

2�

C1
Z

rC1

1

t2
dt

�

D 0:

From [6, Theorem 1], it follows that �ess
0 .M1/ D 0. Consider the universal covering

pW M2 ! M1. Since �1.M1/ is the free group with two generators, it follows that

p is non-amenable. Since the fundamental group of the cusp is amenable, from [15,

Corollary 1.6], it follows that �0.M2/ D 0.

Remark 5.6. Let M be a complete Riemannian manifold without boundary, such

that �ess
0 .M/ > 0. Then there exists a conformal Riemannian metric, which coin-

cides with the original metric outside a compact subset of M , with respect to which

�0.M/ … �ess.M/. Indeed, for a non-zero f 2 C 1
c .M/, one may rescale the metric in

a compact neighborhood of supp f , so that its Rayleigh quotient becomes arbitrarily

small. From Proposition 3.2, this yields that �0.M/ becomes arbitrarily small. Since

this Riemannian metric coincides with the original outside a compact subset of M ,

from the Decomposition Principle [10, Proposition 2.1], it follows that the essential

spectrum remains the same.

Example 5.7. Let M D zM=� be an n-dimensional complete Riemannian manifold,

of finite volume and sectional curvature KM � �a2 < 0. Assume that M has finitely

many ends, each of which has a neighborhood of the form U D B=�� , where B is a

horoball in the simply connected covering space zM of M and �� � � is the stabilizer

of the center � of B . Then �0.M/ D 0 and �ess
0 .M/ � a2.n � 1/2=4 (cf. [2, Proof

of (1.5)]).

6. An application

The aim of this section is to prove the following proposition, which was established

for the Laplacian on manifolds without boundary in [2].
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Proposition 6.1. Let pW M2 ! M1 be an infinite sheeted Riemannian covering. If

�N
0 .S1/ D �N

0 .S2/, then �N
0 .S2/ 2 �N

ess.S2/.

The main point of this proposition is that the covering is not required to be normal

(or to have infinite deck transformations group), since in this case, according to [15,

Corollary 1.4], the spectrum of SN
2 coincides with its essential spectrum. It is worth to

point out that the manifolds in this proposition may have empty boundary. Moreover,

since they may be non-complete, from Remark 2.3, the analogous statement holds for

the Dirichlet spectrum of Schrödinger operators on manifolds with boundary.

Proposition 6.2. Let S D � C V be a Schrödinger operator on a Riemannian man-

ifold M and .fn/n2N � Lipc.M/, with kfnkL2.M / D 1 and RS.fn/ ! �N
0 .S/. If

�N
0 .S/ is not an eigenvalue of SN , then there exists a subsequence .fnk

/k2N , such

that fnk
* 0 in L2.M/.

Proof. From Proposition 3.1, there exists .f 0
n/ 2 C 1

c .M/ \ D.SN /, with

kf 0
nkL2.M / D 1 and kfn � f 0

nkHV .M / � 1=n;

for any n 2 N, where HV .M/ is the space defined in Section 2.1. It is clear that

RS.f 0
n/ ! �N

0 .S/ and it suffices to prove the statement for .f 0
n/n2N . From the Spec-

tral Theorem (cf. [19, Chapter 8]), there exists a measure space X , such that L2.M/ is

isometrically isomorphic to L2.X/, and under this identification, SN corresponds to a

multiplication operator with a measurable function f W X ! R; that is, an operator of

the form �f WD.�f / � L2.X/ ! L2.X/, with D.�f / WD ¹g 2 L2.X/Wfg 2 L2.X/º
and �f .g/ D fg, for any g 2 D.�f /. The spectrum of SN coincides with the essen-

tial range of f and, in particular, f � �N
0 .S/ almost everywhere.

Let .gn/n2N � D.�f / be the sequence corresponding to .f 0
n/n2N under this iden-

tification. Since kgnkL2.X/ D 1, after passing to a subsequence, we have that gn * g

in L2.X/, for some g 2 L2.X/. It is clear that
Z

X

.f � �N
0 .S//g2

n D h�f gn; gniL2.X/ � �N
0 .S/ D RS .f 0

n/ � �N
0 .S/ ! 0:

For " > 0, consider the measurable set A" WD ¹f � �N
0 .S/ C "º. It is elementary to

verify that
Z

A"

g2
n � 1

"

Z

A"

.f � �0.SN //g2
n ! 0:

Since gn * g in L2.X/, this yields that g D 0 almost everywhere in A". In particular,

g D 0 almost everywhere in X X f �1.¹�N
0 .S/º/, which yields that �f g D �N

0 .S/g.

Since �N
0 .S/ is not an eigenvalue of SN , it follows that g D 0. Therefore, gn * 0 in

L2.X/, which yields that f 0
n * 0 in L2.M/.
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Lemma 6.3. Let pW M2 ! M1 be a Riemannian covering. If �N
0 .S2/ D �N

0 .S1/ …
�N

ess.S2/, then �N
0 .S1/ is an eigenvalue of SN

1 .

Proof. Assume to the contrary that �N
0 .S1/ is not an eigenvalue of SN

1 . From Pro-

position 3.7, there exists a square-integrable, �N
0 .S2/-eigenfunction ' of SN

2 , which

is smooth and positive in M2. Without loss of generality, we may assume that

k'kL2.M2/ D 1. Since ' 2 HV ıp.M2/, there exists .fn/n2N � C 1
c .M2/, with

kfnkL2.M2/ D 1 and fn ! ' in HV ıp.M2/, where HV ıp.M2/ is the space defined

in Section 2.1. The latter property yields that RS2
.fn/ ! �N

0 .S2/.

Consider the pushdowns

gn.z/ WD
�

X

y2p�1.z/

fn.y/2
�1=2

:

on M1, with n 2 N. Then gn 2 Lipc.M1/, kgnkL2.M1/ D 1 and RS1
.gn/ � RS2

.fn/,

for any n 2 N (cf. [1, Section 4]). From Proposition 3.2, since �N
0 .S1/ D �N

0 .S2/,

it follows that RS1
.gn/ ! �N

0 .S1/. Since �N
0 .S1/ is not an eigenvalue of SN

1 , from

Proposition 6.2, after passing to a subsequence, we have that gn * 0 in L2.M1/.

Consider a non-negative �2 2 C 1
c .M2/ X ¹0º, and its pushdown �1 2 Lipc.M1/

on M1. Then

h�2; fniL2.M2/ D
Z

M1

X

y2p�1.z/

�2.y/fn.y/dz

�
Z

M1

�

X

y2p�1.z/

�2.y/2
�1=2�

X

y2p�1.z/

fn.y/2
�1=2

dz

D h�1; gniL2.M1/:

This is a contradiction, since h�1;gniL2.M1/ ! 0 and h�2;fniL2.M2/ !
R

M2
�2' > 0.

Therefore, �N
0 .S1/ is an eigenvalue of SN

1 .

Proof of Proposition 6.1. If the covering is amenable, then the claim follows from

Theorem 3.4. Hence, it remains to prove the statement for p non-amenable. Assume

to the contrary that �N
0 .S2/ … �N

ess.S2/. From Lemma 6.3, it follows that �N
0 .S1/

is an eigenvalue of SN
1 . Since �N

0 .S2/ D �N
0 .S1/, from Lemma 5.2, there exists a

compact set K � M1 with non-empty interior, and .fn/n2N � C 1
c .M2/ X ¹0º, such

that RS2
.fn/ ! �N

0 .S2/ and supp fn \ p�1.K/ D ;, for any n 2 N. From Pro-

position 3.8, since �N
0 .S2/ … �N

ess.S2/ and p�1.K/ contains compact sets of positive

measure, this is a contradiction.
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