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Cheeger estimates of Dirichlet-to-Neumann operators

on infinite subgraphs of graphs

Bobo Hua, Yan Huang, and Zuoqin Wang

Abstract. In this paper, we study the Dirichlet-to-Neumann operators on infinite subgraphs

of graphs. For an infinite subgraph, we prove Cheeger-type estimates for the bottom spectrum

of the Dirichlet-to-Neumann operator, and the higher order Cheeger estimates for higher order

eigenvalues of the Dirichlet-to-Neumann operator.

1. Introduction

Eigenvalue estimates are of interest in Riemannian geometry and mathematical phys-

ics. There are various eigenvalue estimates using geometric quantities. In this paper,

we focus on the isoperimetric-type estimate introduced by Cheeger [6], now called the

Cheeger estimate, which reveals a close relation between the first non-trivial eigen-

value of the Laplace-Beltrami operator on a closed manifold, and the isoperimetric

constant called Cheeger constant.
Let .M; g/ be a compact, connected, smooth Riemannian manifold with smooth

boundary @M . The Dirichlet-to-Neumann operator ƒ, called the DtN operator for

short, is defined as

ƒWH 1
2 .@M/ ! H� 1

2 .@M/;

f 7! ƒ.f / WD @uf

@n
;

where uf is the harmonic extension of f to M . The DtN operator ƒ is a first order

elliptic pseudo-differential operator [37, p. 37]. Since @M is compact, the spectrum of

ƒ is non-negative, discrete and unbounded [2, p. 95]. We refer to [21] for a survey of

the spectral properties of the DtN operators. The eigenvalue problem associated to the

DtN operatorƒ is also known as the Steklov problem. For the history of this problem,

cf. [28]. There are many results on the Steklov problem on Riemannian manifolds;

see, e.g., [9, 15–18, 24, 27].
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For the first non-trivial eigenvalue of the DtN operator, Jammes [27] introduced a

type of Cheeger constant,

hJ .M/ WD inf
��M

Vol.�/� 1
2

Vol.M /

Area.@� \ int.M//

Area.� \ @M/
;

where Area.�/ and Vol.�/ denote the Riemannian area (i.e., the .n� 1/-dim Hausdorff

measure) of the boundary, and the Riemannian volume, respectively. We call hJ .M/

the Jammes-type Cheeger constant and the subscript “J ” indicates the Jammes-type.

Let �2.M/ be the first non-trivial eigenvalue ofƒ. The Jammes-type Cheeger estimate

[27, Theorem 1] reads as

�2.M/ � 1

4
hN .M/hJ .M/; (1.1)

where hN .M/ is the Neumann Cheeger constant associated to the Neumann Lapla-

cian on M .

There are many interesting interactions between Riemannian geometry and dis-

crete analysis on graphs. Many methods initiated in Riemannian geometry have been

generalized to the discrete setting, and conversely some approaches found on graphs

may also be applied to Riemannian geometry. The Cheeger estimate was first general-

ized to graphs by Dodziuk [13] and Alon and Milman [1] independently. Miclo intro-

duced higher order Cheeger constants and conjectured related higher order Cheeger

estimates; see [11, 32]. The conjecture was proved by Lee, Gharan, and Tevisan [29]

via random partition methods on graphs. Then Miclo [33] and Funano [20] extended

the results to the Riemannian case and found some important applications.

Recently, the authors [26] defined the DtN operator on a finite subgraph of a graph,

and proved two Cheeger-type estimates for the first non-trivial eigenvalue of the DtN

operator: the Escobar-type Cheeger estimate following [15] and the Jammes-type

Cheeger estimate following [27]. Hassannezhad and Miclo [25] proved the Jammes-

type Cheeger estimate independently, and generalized it to higher order Cheeger estim-

ates for eigenvalues of the DtN operator in terms of higher order Cheeger–Steklov

constants. Their result is as follows. Consider a Markov process on a finite state space

U and a proper subset V of U; serving as the boundary, on which the DtN operator is

defined. Let �k be the k-th eigenvalue of the DtN operator. Hassannezhad and Miclo

[25, Theorem A] proved that there exists a universal constant c such that

�k � c

k6

&k

A
; for all 1 � k � ]V; (1.2)

where A is the largest absolute value of the diagonal elements of the irreducible

Markov generator and &k is the k-th order Cheeger–Steklov constant.
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Spectral theory for finite graphs has been extensively studied in the literature; see,

e.g., [3, 5, 7, 10]. For infinite graphs, there are also many results on the spectra of the

Laplacians; see [4,14,19,34–36]. Infinite graphs have many applications in geometric

group theory, probability theory, mathematical physics, etc. In this paper, we study the

DtN operators on infinite subgraphs of graphs. By the well-known exhaustion meth-

ods, see, e.g., [4], we construct the DtN operator on an infinite subgraph of an infinite

graph and prove Cheeger-type estimates for the bottom spectrum and higher order

Cheeger estimates for the higher order eigenvalues of the DtN operators following

[25, 27], which can be viewed as an extension of the results in [25, 26].

We recall some basic definitions on infinite graphs. Let V be a countable infinite

set and � be a symmetric weight function given by

�WV � V ! Œ0;1/;

.x; y/ 7! �xy D �yx:

This induces a graph structure G D .V; E/ with the set of vertices V and the set of

edges E such that ¹x; yº 2 E if and only if �xy > 0. Two vertices x; y satisfying

¹x; yº 2 E are called neighbors, denoted by x � y. We only consider locally finite

graphs, i.e. each vertex only has finitely many neighbors. We call the triple .V;E; �/

a weighted graph.
For an infinite graph, the exhaustion of the whole graph by finite subsets of ver-

tices is an important concept; see [4]. A sequence of subsets of vertices W D ¹Wi º1
iD1

is called an exhaustion of the infinite graph G D .V; E/, denoted by W " V , if it

satisfies

• W1 � W2 � � � � � Wi � � � � � V ,

• ]Wi < 1, for all i D 1; 2; : : : ;

• V D
S1

iD1Wi :

For any quantity � defined on finite subgraphs of V that is monotone, i.e. for any finite

subgraphs W � W 0 of V , one has �.W / � �.W 0/ (or �.W / � �.W 0/). The limit of

�.Wi/ is defined as

�.V / WD lim
i!1

�.Wi/: (1.3)

One can check that this limit exists in R [ ¹˙1º and does not depend on the choice

of the exhaustion.

Given�1; �2 � V , the set of edges between�1 and �2 is denoted by

E.�1; �2/ WD ¹¹x; yº 2 EW x 2 �1; y 2 �2º:
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For any subset� � V , there are two notions of boundary:

1. the edge boundary of � is defined as

@� WD E.�;�c/; where �c WD V n�I

2. the vertex boundary of � is defined as

ı� WD ¹x 2 �c W x � y for some y 2 �º:

We write x� WD � [ ı�: From now on, we only consider the graph structure .x�;
E.�; x�/; �/; still denoted by x� for simplicity, where the weight � is modified such

that �xy D 0 for any ¹x; yº 62 E.�; x�/, i.e. the edges between vertices in ı�;

E.ı�; ı�/, are removed. In this paper, we always assume x� is connected, unless

otherwise stated.

In what follows, for � � V; we regard x� as the graph� with its vertex boundary

ı� defined above, for which we may forget about the ambient graph .V; E; �/: We

introduce weights on the vertex set x� as

d.x/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

X

y2 x�

�xy ; x 2 �;

X

y2�

�xy ; x 2 ı�;

which extends to a measure d.�/ on subsets of x� by

d.A/ WD
X

x2A

d.x/; for all A � x�:

Given a vertex set F , we denote by R
F the set of all real-valued functions defined

on F . Let W � x� be a finite subset and ıW be the vertex boundary of W in x�: For

any f 2 RW \ı�, let uW
f

be the solution of the following equation:

8

ˆ

ˆ

<

ˆ

ˆ

:

�uW
f
.x/ D 0; x 2 W \�;

uW
f
.x/ D f .x/; x 2 W \ ı�;

uW
f
.x/ D 0; x 2 ıW;

(1.4)

where the Laplacian � is defined in (2.2). For the existence of the solution, see

Lemma 2.2. The third condition above stands for the Dirichlet boundary condition

on W .

Now, let us define the DtN operator for infinite subgraphs of a graph. Let `0.ı�/

denote the set of functions on ı� with finite support. For any f 2 `0.ı�/, we write

f D f C � f �, where f C WD max¹f; 0º and f � WD max¹�f; 0º. For any W " x�;
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let u
Wi

f C (u
Wi

f � resp.) be the solution of (1.4) with W and f replaced by Wi and f C

(f � resp.). Set

u
Wi

f
WD u

Wi

f C � uWi

f � :

Applying the well-known maximum principle, see, e.g., [22], we have

u
Wi

f ˙
� u

WiC1

f ˙
and juWi

f ˙
j � sup

x2ı�

jf .x/j:

Hence, the limit of u
Wi

f
exists and we set

uf WD lim
i!1

u
Wi

f
:

For any f 2 `0.ı�/, we define

ƒ.f / WD @uf

@n
;

where the operator @
@n

is defined in (2.3). From Lemma 3.6 and Proposition 3.1, ƒ is

a bounded symmetric linear operator on `0.ı�/, which can be uniquely extended to a

self-adjoint operator on `2.ı�/ (See Section 2 for its definition). We call the extension

to `2.ı�/ the DtN operator on � and still denote it by ƒ.

Remark 1.1. Our definition of the DtN operator is slightly different from that of

Hassannezhad and Miclo in [25]. In fact, the edges between vertices in ı�; i.e.,

E.ı�; ı�/, play no role in our definition, but they matter in Hassannezhad and

Miclo’s. There are no essential differences up to the fixed boundary information

E.ı�; ı�/: The geometric quantities for bounding the eigenvalues should be modi-

fied to fit the definitions, and the results are similar.

By the standard spectral theory [12, (4.5.1) on p. 88], for any k � 1, the k-th

eigenvalue of the DtN operator on � is equal to

�k.�/ WD inf
H�`0.ı�/;

dim HDk

sup
0¤f 2H

hƒ.f /; f iı�

hf; f iı�

; (1.5)

where h�; �iı� is the inner product on `2.ı�/ with respect to the measure d.�/ defined

in Section 2. For k D 1; �1.�/ is called the bottom spectrum of ƒ: If the number of

vertices in ı� is finite, we will prove that �1.�/D 0 if and only if x� is recurrent; see

Proposition 4.6.

By exhaustion methods, in order to obtain Cheeger-type estimates for �k.�/,

k � 1, we consider finite subsets of x�. Let W � x� be a finite subset. Then the

Cheeger-type constants of W are defined as follows.
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Definition 1.2. Let W � x� be a finite subset. The Jammes-type Cheeger constant of

W in x� is defined as

hJ .W / WD min
;¤A�W

�.@A/

d.A \ ı�/ :

We set hJ .W / D C1 if W \ ı� D ;. Similarly, the classical Cheeger constant of

W in x� is defined as

h.W / WD min
;¤A�W

�.@A/

d.A/
:

Remark 1.3. For any finite W � x�, one easily shows that

hJ .W / � h.W /: (1.6)

The DtN operator on W; denoted by ƒW , is defined as

ƒW W R
W \ı� ! R

W \ı�;

f 7! ƒW .f / WD
@uW

f

@n
;

where the operator @
@n

is defined in (2.3) and uW
f

is the solution of (1.4).

Let �k.W /, 1 � k � ].W \ ı�/, be the k-th eigenvalue of ƒW . Similar to (1.5),

�k.W / can be characterized as

�k.W / WD min
H�RW \ı�;

dim HDk

max
0¤f 2H

hƒW .f /; f iW \ı�

hf; f iW \ı�

: (1.7)

We obtain the following Jammes-type Cheeger estimate for �1.W /, the first non-

trivial eigenvalue of ƒW , which is an analog to (1.1) in the Riemannian case.

Theorem 1.4. For any finite subsetW � x� with W \ ı� ¤ ;, we have

h.W / � hJ .W /

2
� �1.W / � hJ .W /:

By Lemma 3.7, �k.W / is non-increasing whenW increases. Moreover, we obtain

an approximation relation between �k.�/ and ¹�k.Wi /º1
iD1 for any W " x�.

Proposition 1.5. For any W " x� and k � 1;

lim
W" x�

�k.W / D �k.�/:

As a corollary, we have the following estimate.

Corollary 1.6. For any k � 1;

�k.�/ � �k.x�/;

where �k.x�/ are eigenvalues of the normalized Laplacian on the graph x� D .x�;
E.�; x�/;�/:
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By Definition 1.2, hJ .W / and h.W / are non-increasing when W increases.

By (1.3), for any W " x�, the corresponding Cheeger constants for � can be defined

as

hJ .�/ WD lim
W" x�

hJ .W /; h.x�/ WD lim
W" x�

h.W /:

Hence, by Theorem 1.4 and Proposition 1.5, we have the following estimates for the

bottom spectrum �1.�/.

Theorem 1.7. Let � � V be an infinite subset. We have

h.x�/ � hJ .�/

2
� �1.�/ � hJ .�/:

Remark 1.8. Combining (1.6) with Theorem 1.7, we have

�1.�/ � 1

2
h2.x�/:

This can be also derived from the Cheeger estimate on x� [19] and Corollary 1.6 for

k D 1: In particular, this yields that if h.x�/ > 0; then �1.�/ > 0:

For any finite subsetW � x�withW \ ı�¤ ;, we denote by A.W / the collection

of all non-empty subsets ofW and Ak.W / the set of all disjoint k-tuples .A1; : : : ;Ak/

such thatAl 2 A.W /, for all l 2 Œk�, where Œk� WD ¹1; : : : ; kº, k 2 N. Following [25],

we define the higher order Cheeger-type constants for the DtN operator on W:

Definition 1.9. The k-th order Cheeger–Steklov constant for the DtN operator on W

is defined as

hk.W / WD min
.A1;:::;Ak/2Ak.W /

max
l2Œk�

hJ .Al /h.Al/:

Similarly, the k-th order Jammes-type Cheeger constant for W is defined as

hk
J .W / WD min

.A1;:::;Ak/2Ak.W /
max
l2Œk�

�.@Al /

d.Al \ ı�/
:

Following [25], as an intermediary step to obtain a Cheeger-type estimate for

higher order eigenvalues of the DtN operators, we prove a higher order Cheeger

estimate for the Dirichlet problem on finite graphs; see Theorem 5.11 in the paper.

Initiated by [25, Proposition 3], any k-th eigenvalue of the DtN operator on W can

be approximated by a sequence of k-th eigenvalues of Dirichlet Laplacians defined

in (6.1) and (6.2) with blowing-up weights; see Proposition 6.1. Hence, combining

Theorem 5.11 with Proposition 6.1, we obtain the following result.

Theorem 1.10. Let � � V be an infinite subset, and W be a finite subset W � x�
with W \ ı� ¤ ;: There exists a universal constant c > 0 such that

c

k6
hk.W / � �k.W / � 2hk

J .W /;

where �k.W / is the k-th eigenvalue of the DtN operator on W .
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By Definition 1.9, hk.W / and hk
J .W / are non-increasing when W increases.

Hence, the corresponding Cheeger constants for � can be defined as

hk.�/ WD lim
W" x�

hk.W /; hk
J .�/ WD lim

W" x�
hk

J .W /:

Finally, by exhaustion, the monotonicity of the higher order eigenvalues of the

DtN operators, see Lemma 3.7 in the paper, and the convergence of eigenvalues, see

Proposition 1.5, we have the following higher order Cheeger-type estimate for the

DtN operator on infinite graphs.

Theorem 1.11. Let � � V be an infinite subset. For any k 2 N, there exists a uni-
versal constant c > 0 such that

c

k6
hk.�/ � �k.�/ � 2hk

J .�/:

Remark 1.12. Hassannezhad and Miclo [25, Theorem B] defined the DtN operator

on a subset of a probability measure space .M;M; �/, endowed with a Markov ker-

nel P leaving � invariant, and proved the higher order Cheeger estimate. Our result

applies to general infinite graphs with possibly infinite total measure, which can be

regarded as an extension of Hassannezhad and Miclo’s result.

The paper is organized as follows. In Section 2, we recall some facts on graphs.

In Section 3, we study the spectra of the DtN operators on infinite subgraphs. In

Section 4, we prove the Jammes-type Cheeger estimate for the bottom spectrum of

the DtN operators. In Section 5, we obtain higher order Cheeger estimates for the

Dirichlet problems. In Section 6, we prove higher order Cheeger estimates for the

DtN operators on infinite subgraphs of graphs.

2. Preliminaries

Let .X; �/ be a discrete measure space, i.e., X is a countable discrete space equipped

with a measure �: For any A � X; we denote by `0.A/ the set of finitely supported

functions on A: For p 2 Œ1;1�; the space of `p summable functions on .X; �/ is

defined routinely. Given a function f 2 RX ; for p 2 Œ1;1/, we denote by

kf k`p D
�

X

x2X

jf .x/jp�.x/
�1=p

the `p norm of f: For p D 1;

kf k`1 D sup
x2X

jf .x/j:
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Let

`p.X; �/ WD ¹f 2 R
X W kf k`p < 1º

be the space of `p summable functions on .X; �/: In our setting, these definitions

apply to .�; d/ and .ı�; d/ for � � V in a graph .V;E; �/: The case for p D 2 is

of particular interest, as we have the Hilbert spaces `2.�;d/ and `2.ı�;d/ equipped

with standard inner products

hf; gi� D
X

x2�

f .x/g.x/d.x/; f; g 2 R
�;

h'; iı� D
X

x2ı�

'.x/ .x/d.x/; ';  2 R
ı�:

GivenW � x�; an associated quadratic form is defined as

DW .f; g/ D
X

eD¹x;yº2E.W; SW /

�xy.f .x/� f .y//.g.x/� g.y//; f; g 2 R
SW :

The Dirichlet energy of f 2 R
SW can be written as

DW .f / WD DW .f; f /: (2.1)

For any f 2 R
x�; the Laplacian of f is defined as

�f.x/ WD 1

d.x/

X

y2V Wy�x

�xy.f .y/� f .x//; x 2 �: (2.2)

For any f 2 R
x�, the outward normal derivative of f at z 2 ı� is defined as

@f

@n
.z/ WD 1

d.z/

X

x2�Wx�z

�zx.f .z/ � f .x//: (2.3)

For any finite subsetW � x�, the Dirichlet eigenvalue problem on W is defined as

´

�f.x/ D ��f .x/; x 2 W;
f .x/ D 0; x 2 ıW:

(2.4)

We denote by �k;D.W / the k-th eigenvalue of the above Dirichlet problem. Note that

�k;D is monotone, i.e. �k;D.W / � �k;D.W
0/ for W � W 0. For any W " x�, the k-th

eigenvalue of the normalized Laplacian on the graph x�D .x�;E.�; x�/;�/ is defined

as

�k.x�/ WD lim
i!1

�k;D.Wi /: (2.5)

We recall the following well-known results for the Laplace operators; see, e.g.,

[22] for their proofs.
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Lemma 2.1 (Green’s formula). For any finite subsetW � x� and any f; g 2 R
SW , we

have

h�f; giW D �DW .f; g/C
D@f

@n
; g

E

ıW
; (2.6)

where @f
@n

on ıW is defined similarly to (2.3) with � replaced by W:

Lemma 2.2. For any f 2 RW \ı�; there exists a unique function uW
f

2 R
SW satisfy-

ing (1.4).

We always denote by uW
f

the unique solution of (1.4) with the Dirichlet boundary

condition f in this paper. By Green’s formula, Lemma 2.1, we have the following

lemma.

Lemma 2.3. For any finite subsetW � x� withW \ ı�¤ ; and any f;g 2 R
W \ı�;

we have

DW .u
W
f ; uW

g / D
D@uW

f

@n
; g

E

W \ı�
:

3. DtN operators on infinite graphs

LetG D .V;E;�/ be an infinite graph,� � V is an infinite subset. Letƒ be the DtN

operator on � defined in the introduction.

Proposition 3.1. For any f; g 2 `0.ı�/;

hƒ.f /; gi D hf;ƒ.g/i:

Proof. For sufficiently large i such thatWi � supp.f / [ supp.g/; by Lemma 2.3,

D@u
Wi

f

@n
; g

E

ı�
D

D@u
Wi
g

@n
; f

E

ı�
:

Since f and g are of finite support, only finitely many summands are involved in the

above equation. By passing to the limit,

u
Wi

f
! uf ; uWi

g ! ug ; i ! 1;

we prove the proposition.

Let f 2 `0.ı�/: For any finite subsetW � x� with W \ ı� ¤ ;, set

L.f;W / WD ¹� 2 R
x� j supp.�/ � W and �jW \ı� D f º:
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We define the capacity of W with boundary condition f as

Cap.f;W / WD inf
�2L.f;W /

DW .�/:

Similarly, the capacity of x� with boundary condition f is defined as

Cap.f / WD inf
�2`0. x�/;�jı�Df

D�.�/:

For any W " x�; since f 2 `0.ı�/, there exists M 2 N
C, such that supp.f / �

Wi \ ı�, for all i > M . Note that L.f; Wi1/ � L.f; Wi2/, for any i1; i2 > M and

i1 < i2. Hence, by definition, Cap.f; Wi / is non-increasing when i > M . One can

verify that

Cap.f / D lim
i!1

Cap.f;Wi /: (3.1)

Lemma 3.2. Cap.f;W / D DW .u
W
f
/:

Proof. We have

Cap.f;W / D inf
�2L.f;W /

DW .�/

D inf
�2L.f;W /

DW \�.�/C
X

x2W \ı�

X

y2�nW

�xy.f .x/ � 0/2

D DW \�.u
W
f /C

X

x2W \ı�

X

y2�nW

�xyf
2.x/

D DW .u
W
f /:

The second last equality follows from the fact that the harmonic function uW
f

minim-

izes the Dirichlet energy among functions with the same boundary condition.

By Lemma 3.2 and 2.3, we have

Cap.f;W / D DW .u
W
f / D

D@uW
f

@n
; f

E

W \ı�
: (3.2)

Proposition 3.3. For any f 2 `0.ı�/, we have

Cap.f / D D�.uf / D hƒ.f /; f i:

Proof. For any W " x�; since f 2 `0.ı�/, there existsM 2 N, such that supp.f / �
Wi \ ı�, for all i > M . By (3.2),

Cap.f;Wi / D DWi
.u

Wi

f
/ D

D@u
Wi

f

@n
; f

E

Wi \ı�
:
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Letting i ! 1, by (3.1) we have

Cap.f / D lim
i!1

Cap.f;Wi / D lim
i!1

D@u
Wi

f

@n
; f

E

Wi \ı�
D

D@uf

@n
; f

E

ı�
; (3.3)

where the last equality follows from that u
Wi

f
converges to uf pointwise and f 2

`0.ı�/. By Fatou’s lemma,

D�.uf / � lim inf
i!1

DWi
.u

Wi

f
/ D lim inf

i!1
Cap.f;Wi / D Cap.f /: (3.4)

For any i > M ,

DWi
.uf � uWi

f
/ D DWi

.uf /CDWi
.u

Wi

f
/ � 2DWi

.uf ; u
Wi

f
/: (3.5)

By Green’s formula, Lemma 2.1, the last term in (3.5) can be written as

DWi
.uf ; u

Wi

f
/ D

D@uf

@n
; u

Wi

f
D

E

Wi \ı�
D

D@uf

@n
; f

E

ı�
D Cap.f /;

where the last equality follows from (3.3). Therefore, (3.5) implies that

0 � DWi
.uf � u

Wi

f
/ D DWi

.uf /C Cap.f;Wi / � 2Cap.f /;

i.e.

DWi
.uf / � 2Cap.f / � Cap.f;Wi /;

whence by letting i ! 1, we get

D�.uf / D lim
i!1

DWi
.uf / � 2Cap.f / � lim

i!1
Cap.f;Wi / D Cap.f /: (3.6)

Combining (3.4) with (3.6), we have

D�.uf / D Cap.f /: (3.7)

Then the proposition follows from (3.3) and (3.7).

The proof of the above proposition yields the following corollary.

Corollary 3.4. For any W " x� and f 2 `0.ı�/; we have

D�.uf / D lim
W" x�

DW .u
W
f /:

Combining (1.5) with Proposition 3.3, we have the following corollary.
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Corollary 3.5. We have

�k.�/ WD inf
H�`0.ı�/;

dim HDk

sup
0¤f 2H

hƒ.f /; f iı�

hf; f iı�

D inf
H�`0.ı�/;

dim HDk

sup
0¤f 2H

D�.uf /

hf; f iı�

D inf
H�`0.ı�/;

dim HDk

sup
0¤f 2H

Cap.f /

hf; f iı�

:

In the next lemma, we show that ƒ is a bounded operator on `0.ı�/:

Lemma 3.6. For any f 2 `0.ı�/; we have

kƒ.f /k`2.ı�/ � kf k`2.ı�/;

i.e. ƒ is a bounded linear operator on `0.ı�/.

Proof. We have













@uf

@n













2

`2.ı�/

D
X

x2ı�

ˇ

ˇ

ˇ

ˇ

1

d.x/

X

y2�

�xy.uf .x/� uf .y//

ˇ

ˇ

ˇ

ˇ

2

d.x/

�
X

x2ı�

X

y2�

�xy.uf .x/ � uf .y//
2

� D�.uf /:

For any f 2 `0.ı�/ and any finite subsetW � x�, we denote by

NfW .x/ D
´

f .x/; x 2 W \ ı�;

0; otherwise;

the zero extension of f jW \ı� to R
x�: By Corollary 3.4,

D�.uf / D lim
W" x�

DW .u
W
f /

D lim
W" x�

�

X

eD¹x;yº2E.W \�;W \�/

C
X

x2W \ı�

X

y2�nW

�

�xy.u
W
f .x/� uW

f .y//2

� lim
W" x�

�

DW \�. NfW /C
X

x2W \ı�

X

y2�nW

�xyf
2.x/

�

D lim
W" x�

�

X

x2W \ı�

f 2.x/
X

y2W \�

�xy C
X

x2W \ı�

X

y2�nW

�xyf
2.x/

�

D lim
W" x�

kf k`2.W \ı�/ D kf k`2.ı�/;
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where the inequality above follows from the fact that the harmonic function uW
f

min-

imizes the Dirichlet energy among functions with the same boundary condition, in

particular compared with NfW .

Hence, we have












@uf

@n













2

`2.ı�/

� kf k2
`2.ı�/

:

By the boundedness of ƒ on `0.ı�/ and the density of `0.ı�/ in `2.ı�/; ƒ can

be uniquely extended to a bounded self-adjoint operator on `2.ı�/:

For any finite subset W � x� with W \ ı� ¤ ;, we denote by �k.W / the k-th

eigenvalue of the DtN operatorƒW . By (1.7) and (3.2), �k.W /, 1 � k � ].W \ ı�/,
can be characterized as

�k.W / W D min
H�RW \ı�;

dim HDk

max
0¤f 2H

hƒW .f /; f iW \ı�

hf; f iı�

D min
H�RW \ı�;

dim HDk

max
0¤f 2H

Cap.f;W /

hf; f iW \ı�

D min
H�RW \ı�;

dim HDk

max
0¤f 2H

DW .u
W
f
/

hf; f iı�

: (3.8)

In order to give Cheeger estimates for infinite graphs, we need the following mono-

tonicity result.

Lemma 3.7. For any W " x�,

�k.Wi / � �k.WiC1/; for all i D 1; 2; : : : ;

where 1 � k � ].Wi \ ı�/.

Proof. For any i , by (3.8), one can chooseH � R
Wi \ı�, dimH D k, such that

�k.Wi / D max
0¤f 2H

Cap.f;Wi /

hf; f iWi \ı�

:

Then we have

�k.Wi / D max
0¤f 2H

Cap.f;Wi /

hf; f iWi \ı�

� max
0¤f 2H

Cap.f;WiC1/

hf; f iWiC1\ı�

� min
H 0�R

WiC1\ı�

dim H 0Dk

max
0¤f 2H 0

Cap.f;WiC1/

hf; f iWiC1\ı�

D �k.WiC1/:

Now, we are ready to prove the approximation result in Proposition 1.5.
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Proof of Proposition 1.5. For any i 2 N, by (3.8), chooseH � R
Wi \ı�, dimH D k,

such that

�k.Wi / D max
0¤f 2H

Cap.f;Wi /

hf; f iWi \ı�

:

Then by the monotonicity of Cap.f;Wi / and the definition of Cap.f /,

�k.Wi/ D max
0¤f 2H

Cap.f;Wi /

hf; f iWi \ı�

� max
0¤f 2H

Cap.f /

hf; f iWi \ı�

D max
0¤f 2H

D�.uf /

hf; f iı�

� inf
H 0�`0.ı�/
dim H 0Dk

sup
0¤f 2H 0

D�.uf /

hf; f iı�

D �k.�/;

The second last equality follows from Proposition 3.3. Hence,

lim
i!1

�k.Wi/ � �k.�/:

On the other hand, by Corollary 3.5, for any ">0, there existsH�`0.ı�/, dimHDk,

such that

�k.�/ � sup
0¤f 2H

D�.uf /

hf; f iı�

D max
0¤f 2H

D�.uf /

hf; f iı�

< �k.�/C ":

Since H is finite-dimensional, let ¹hlºk
lD1

be an orthonormal basis of H: We obtain

that there exists K 2 N, such that

supp.g/ � Wi \ ı�; for all i > K; g 2 H:

By (3.8), for sufficiently large i; there exists fi D
Pk

lD1 a
i
l
hl satisfying

P

l .a
i
l
/2 D 1

such that

�k.Wi / � max
0¤f 2H

DWi
.u

Wi

f
/

hf; f iı�

D
DWi

.u
Wi

fi
/

hfi ; fi iı�

D
P

1�l;s�k a
i
l
ai

sDWi
.u

Wi

hl
; u

Wi

hs
/

P

1�l;s�k a
i
l
ai

shhl ; hsiı�

:

By Corollary 3.4, using polarization, we get that for any 1 � l; s � k

lim
i!1

DWi
.u

Wi

hl
; u

Wi

hs
/ D D�.uhl

; uhs
/:

Moreover, by passing to a subsequence, still denoted by ai
l
;

lim
i!1

ai
l D bl ; for all 1 � l � k;

where
P

l.bl/
2 D 1: Set h1 D

P

l blhl : Hence, by h1 2 H;h1 ¤ 0;

lim
i!1

�k.Wi/ � D�.uh1
/

hh1; h1iı�

< �k.�/C ":
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Letting " ! 0, we have

lim
i!1

�k.Wi/ � �k.�/:

Hence, the proposition follows.

Now, we are ready to prove Corollary 1.6.

Proof of Corollary 1.6. By Proposition 1.5 and (2.5), it suffices to prove that for any

W " x�,

�k.W / � �k;D.W /;

where �k;D.W / is the k-th eigenvalue of the Dirichlet problem (2.4). Given any linear

subsetH � RW \ı�, we denote

zH WD span¹uW
f W f 2 H º:

By definition,

�k.W / D min
H�RW \ı�

dim HDk

max
0¤f 2H

P

eD¹x;yº2E.W; SW /�xy.u
W
f
.x/ � uW

f
.y//2

P

x2W \ı� f
2.x/d.x/

D min
H�RW \ı�

dim HDk

max
0¤g2 zH

P

eD¹x;yº2E.W; SW / �xy.g.x/� g.y//2
P

x2W \ı� g
2.x/d.x/

� min
H 0�RW

dim.H 0/Dk

max
0¤f 2H 0

P

eD¹x;yº2E.W; SW / �xy.f .x/� f .y//2
P

x2W f 2.x/d.x/
D �k;D.W /:

This proves the corollary.

Remark 3.8. Let � be a finite subset of V: By Corollary 1.6, �2.�/ � �2.x�/: Note

that for any finite graph with the normalized Laplacian, all eigenvalues are bounded

by 2: In particular, for the finite graph x�; �2.x�/ � 2: This implies that

�2.�/ � �2.x�/ � 1

2
�2

2.
x�/;

which is stronger than [26, Corollary 1.1].

4. Jammes-type Cheeger estimate for the bottom spectrum

Let .V; E; �/ be an infinite graph, � � V be an infinite subgraph and W � x� be

a finite subset with W \ ı� ¤ ;. Let 0 ¤ f 2 R
W \ı� be the first eigenfunction
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associated to the first eigenvalue �1.W /. For convenience, we write f for uW
f

in the

following. Without loss of generality, we may assume that f is non-negative, since

DW .jf j/ � DW .f /: By (3.2), we have

�1.W / D
P

eD¹x;yº2E.W; SW / �xy.f .y/� f .x//2
P

x2W \ı� f
2.x/d.x/

: (4.1)

Multiplying both the numerator and denominator of the fraction at the right-hand

side of (4.1) by
P

x2W f 2.x/d.x/ and setting

M

N
WD

P

x2W f 2.x/d.x/ �
P

eD¹x;yº2E.W; SW / �xy.f .y/ � f .x//2
P

x2W f 2.x/d.x/ �
P

x2W \ı� f
2.x/d.x/

;

we have

�1.W / D M

N
:

We need the following lemmas to prove Theorem 1.4; see [26] for the proofs.

Lemma 4.1 ([26, Lemma 5.2]).

M � 1

2

�

X

eD¹x;yº2E.W; SW /

�xy jf 2.x/� f 2.y/j
�2

:

Set t0 WD maxx2W ¹f .x/º. For any t > 0, set

St WD f �1.Œ
p
t ;C1// D ¹x 2 W W f 2.x/ � tº:

By the maximum principle, the maximizer of f cannot be only achieved in W \�,

hence St \ ı� ¤ ; for any t 2 .0; t0�. The following is the discrete co-area formula;

see [22, Lemma 3.3].

Lemma 4.2 ([26, Lemma 5.3]).

1
Z

0

�.@St /dt D
X

eD¹x;yº2E.W; SW /

�xy jf 2.x/� f 2.y/j:

Lemma 4.3 ([26, Lemma 5.4]).

1
Z

0

d.St /dt D
X

x2W

f 2.x/d.x/:

1
Z

0

d.St \ ı�/dt D
X

x2W \ı�

f 2.x/d.x/:
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Now, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. For the upper bound estimate, choose A � W that achieves

hJ .W /, i.e.,

hJ .W / D �.@A/

d.A \ ı�/ :

Set g D �A 2 R
SW ; i.e.,

g.x/ D
´

1; x 2 A;
0; x 2 SW n A:

Then we have

�1.W / �
DW .u

W
gjW \ı�

/

hg; giW \ı�

� DW .g/

hg; giW \ı�

D �.@A/

d.A \ ı�/
D hJ .W /;

where the second inequality due to the fact that harmonic function minimizes the

Dirichlet energy among the functions with fixed boundary condition.

For the lower bound estimate, combining Lemma 4.1, Lemma 4.2 with Lemma 4.3,

we have

�1.W / � 1

2

R 1
0 �.@St /dt �

R 1
0 �.@St /dt

P

x2W f 2.x/d.x/ �
P

x2W \ı� f
2.x/d.x/

� 1

2

R 1
0 h.W /d.St /dt �

R 1
0 hJ .W /d.St \ ı�/dt

P

x2W f 2.x/d.x/ �
P

x2W \ı� f
2.x/d.x/

D h.W /hJ .W /

2
:

The theorem follows from the above estimates.

Finally, we are ready to prove Theorem 1.7.

Proof of Theorem 1.7. For the upper bound estimate, by Proposition 1.5 and The-

orem 1.4,

�1.�/ D lim
W" x�

�1.W / � lim
W" x�

hJ .W / D hJ .�/:

Similarly, we have the lower bound estimate

�1.�/ D lim
W" x�

�1.W / � lim
W" x�

h.W / � hJ .W /

2
D h.x�/ � hJ .�/

2
:

Hence, we complete the proof of the theorem.

At the end of this section, we give a necessary and sufficient condition for the

positivity of �1.�/ for an infinite subgraph� with finite vertex boundary.
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Definition 4.4. Let .V; E; �/ be an infinite graph. For any finite subset F � V , we

define

CapF .V / WD inf
�2`0.V /;�jF D1

DV .�/:

In order to obtain the sufficient condition for the positivity of �1.�/, we need the

following criterion for an infinite graph to be recurrent; see, e.g., [38, Theorem 2.12].

Lemma 4.5. An infinite graph .x�;E.�; x�/; �/ is recurrent if and only if we have
CapF .

x�/ D 0 for any finite subset F � x�.

Then we have the following result.

Proposition 4.6. If � is a subgraph of G D .V;E/ and ]ı� < 1. Then �1.�/ D 0

if and only if x� D .x�;E.�; x�// is recurrent.

Proof. For the case that � is a finite subgraph of G; then the Steklov eigenvalues

defined in the introduction reduce to those on finite subgraphs defined in [25, 26]. In

this case, �1.�/ D 0: Moreover, since x� is finite, it is recurrent.

Now, we consider the case that� is an infinite subgraph of G:

For the “if” part. If x� is recurrent, then CapF .
x�/D 0 for any finite subsetF � x�.

Choosing F D ı�, we have

0 D Capı�.
x�/ D Cap.�ı�/:

Hence, by Corollary 3.5, �1.�/ D 0.

For the “only if” part. If �1.�/D0, then there exist ¹fi º1
iD0�Rı�, kfi k`2.ı�/D1,

such that

D�.ufi
/ ! 0; i ! 1:

Hence, there exist a subsequence ¹fij º1
j D1 and f1 such that

fij ! f1; j ! 1

and

kf1k`2.ı�/ D 1:

Moreover, by the exhaustion method and the maximum principle on finite set, one can

show that

ufij
! uf1

; j ! 1:

Then by the lower semi-continuity,

D�.uf1
/ � lim

j !1
D�.ufij

/ D 0:

Hence, uf1
D const. This implies that Capı�.x�/ D 0 and x� is recurrent.
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�
@�

Figure 1

We give an example with positive bottom spectrum for the DtN operator.

Example 4.7. Consider the graph in Figure 1 with unit edge weight. Let � be a part

of the homogeneous tree with degree three and ]ı� D 1. By calculation, hJ .�/ D 1,

h.�/ D 1
3

, and �1.�/ D 1
2
: See the related discussions in Remark 1.8.

Remark 4.8. We consider the case that x� is not connected. Suppose that ]ı� < 1:

By the proof of Proposition 4.6, �1 D � � � D �k D 0 < �kC1 if and only if the number

of the recurrent connected components x� D .x�;E.�; x�// containing ı� is k: Note

that finite connected components are always recurrent.

5. Higher order Cheeger estimates for the Dirichlet eigenvalue

problems

Higher order Cheeger estimates for the Laplace operator on finite graphs (without

boundary condition) have been proved in [29]. In this section, we prove higher order

Cheeger estimates for the eigenvalues of the Dirichlet Laplacian problem on finite

graphs with boundary. We remark that the steps of the proof in this section are the

same as in the case of finite graphs without boundary.

Let V be a countable set of vertices, and

�WV � V ! Œ0;1/; ¹x; yº 7! �xy D �yx
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be a symmetric weight function. Instead of the vertex measure d.�/ defined in the

introduction, we introduce a general measure �.�/ on V;

�WV ! .0;1/;

x 7! �.x/:

This induces a (general) weighted graph structureGD .V;�;�/. For any f 2 l2.V;�/,
the Laplacian on .V; �; �/ is defined as

��
� .f /.x/ WD 1

�.x/

X

y2V

�xy.f .y/� f .x//; for all x 2 V:

LetW �V be a finite subset. Consider the following Dirichlet eigenvalue problem

´

�
�
� .f /.x/ D ��f .x/; x 2 W;

f .x/ D 0; x 2 ıW:
(5.1)

We denote by ��
k;D

.W / the k-th eigenvalue of the above Dirichlet problem. For any

subset A � W , the associated first Dirichlet eigenvalue can be characterized as

��
1;D.A/ WD inf

²

DA.f /

hf; f iA
W 0 ¤ f 2 R

SW and f .x/ D 0; for all x 2 SW n A
³

;

where h�; �iA is the inner product with respect to the measure �.�/.
Set N WD ]W . For any k 2 ŒN �, define

�k.W / WD min
.A1;:::;Ak /2Ak.W /

max
l2Œk�

��
1;D.Al/: (5.2)

Let f1;f2; : : : ;fk be the first k orthonormal eigenfunctions of the Dirichlet eigen-

value problem (5.1). Consider the following mapping

F WW ! R
k;

x 7! .f1.x/; f2.x/; : : : ; fk.x//:
(5.3)

We denote by k � k the Euclidean norm of vectors in Rk . By the Rayleigh quotient

characterization of ��
k;D

.W /;

P

eD¹x;yº2E.W; SW / �xykF.x/ � F.y/k2

P

x2W �.x/kF.x/k2

D
Pk

`D1

P

eD¹x;yº2E.W; xW / �xy.f`.x/ � f`.y//
2

Pk
`D1

P

x2W �.x/f 2
`
.x/

D
Pk

`D1 �
�
`;D
.W /

P

x2W �.x/f 2
`
.x/

Pk
`D1

P

x2W �.x/f 2
`
.x/

� ��
k;D.W /;
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where the second equality follows from the definition of ��
`;D
.W / and the inequality

follows from the monotonicity of ¹��
`;D

ºk
`D1

in `: We denote by zSF the support set

of F , i.e.,
zSF WD ¹x 2 W WF.x/ ¤ 0º:

Consider the map induced by F

zF W zSF 7! S
k�1; x 7! F.x/

kF.x/k :

We define a pseudo-metric d zF on W: For any x; y 2 zSF , it is defined as

d zF .x; y/ WD












F.x/

kF.x/k � F.y/

kF.y/k













:

For x;y 2W with F.x/DF.y/D 0; set d zF .x;y/D 0: Put d zF .x;y/D 1; otherwise.

The goal is to “localize” F on k disjoint subsets Ti to produce functions‰i WV !
Rk with disjoint support, each with small Rayleigh quotient. For that purpose, we

need that F jTi
captures a large fraction of the `2 mass of F: Then by the vari-

ational principle, the Rayleigh quotient of ‰i bounds the first Dirichlet eigenvalue

��
1;D.supp‰i / and the result follows.

5.1. Spreading lemma and localization lemma

In order to find k disjoint subsets Ti ; each with large `2 mass of F , one needs that the

`2 mass of F is sufficiently well-spread. This follows from the so-called spreading
lemma. Let F be the map defined in (5.3).

Definition 5.1. For any r > 0, ı > 0, F is called .r; ı/-spreading, if for any subset

S � W with diam.S \ zSF ; d zF / � r , one has

X

x2S

�.x/kF.x/k2 � ı
X

x2W

�.x/kF.x/k2:

Following [29, Lemma 3.2], one can prove the following spreading lemma.

Lemma 5.2. If 0 < r < 1 and S � W is a subset satisfying diam.S \ zSF ; d zF / � r ,
then we have

X

x2S

�.x/kF.x/k2 � 1

k.1� r2/

X

x2W

�.x/kF.x/k2:

Remark 5.3. By Definition 5.1, the map F is .r; 1
k.1�r2/

/-spreading.
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For the map F and a subset S; we want to localize F near S; i.e. construct a

function supported on a small-neighborhood S; which retains the `2 mass of F on S;

and which has controlled Dirichlet energy. This is done by the so-called localization
lemma using cut-off functions. The "-neighborhood of S � zSF with respect to d zF is

defined as

N".S; d zF / WD ¹x 2 W W d zF .x; S/ < "º:

For any subset S � W , we define the cut-off function

�.x/ D

8

<

:

0; if F.x/ D 0;

max
°

0; 1 �
d zF .x; S \ zSF /

"

±

; otherwise.
(5.4)

The so-called localization of F on the subset S is defined as

‰ WD � � F WW 7! R
k: (5.5)

It is obvious that ‰jS D F jS and supp.‰/ � N".S \ zSF ; d zF /. One can prove the

following localization lemma; see [29, Lemma 3.3].

Lemma 5.4. For 0 < " < 2, let ‰ be the localization defined in (5.5). Then for any
e D ¹x; yº 2 E.W; SW /, we have

k‰.x/ �‰.y/k �
�

1C 2

"

�

kF.x/ � F.y/k: (5.6)

5.2. Some results on random partitions

The goal of the section is to partition . zSF ; d zF / into well-separated subsets Ti ; which

retains a large fraction of the `2 mass of F: This is done by the random partition tech-

nique. Random partition theory was firstly developed in theoretical computer science

and has many important applications in pure mathematics; see [23, 29–31].

Let .X;d/ be a metric space. For any x 2X , r > 0;we denote byB.x; r/ WD ¹y 2
X W d.y; x/ � rº the ball of radius r centered at x: The metric doubling constant �X

of .X; d/ is defined as

�X WD inf
°

c 2 NW for all x 2 X; r > 0;
there exist x1; : : : ; xc 2 X; such that B.x; r/ �

c
[

iD1

B
�

xi ;
r

2

�±

:

The metric doubling dimension of .X; d/ is defined as

dimd .X/ WD log2 �X :
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A Borel measure � on .X; d/ is called a doubling measure if there exists a finite

number C� such that for any x 2 X; r > 0,

0 < �.B.x; r// � C��
�

B
�

x;
r

2

��

< C1:

Similarly, the measure doubling dimension is defined as

dim�.X/ WD log2.C�/:

The two doubling dimensions are related by the following lemma; see [8, p. 67].

Lemma 5.5. If a metric space .X; d/ has a doubling measure �, then

dimd .X/ � 4 dim�.X/:

One can check that d.x; y/ WD kx � yk is a metric on S
k�1 and we have the

following property.

Proposition 5.6 ([30, Corollary 3.12]). For the metric space .Sk�1; d/, we have

• diam.Sk�1; d/ D 2I
• dimd .S

k�1/ � 4.k � 1/ log2 �:

A partition of .X; d/ is a map P WX ! 2X , such that P.x/ is the unique set in

¹Si ºm
iD1 that contains x, where Si \ Sj D ;, for all i ¤ j , and X D [m

iD1Si . We

denote by P .X/ the collection of partitions of .X; d/.

Definition 5.7 (Random partition). Let .X; d/ be a finite or countable metric space.

Any probability distribution $ on P .X/ is called a random partition of .X; d/:

We denote by supp.$/ WD ¹P 2 P .X/W$.P / ¤ 0º the support set of random

partition$ . The existence of nice random partition is given in the following theorem;

see [23, 30] and [31, Theorem 2.4].

Theorem 5.8. Let .X; d/ be a finite metric subspace of .Y; d/. Then for any r > 0,
ı 2 .0; 1/ there exists a random partition $; such that

• for any P 2 supp.$/, any set S in the partition P , one has diam.S/ � r;

• for any x, one has P$ ŒB.x;
r
˛
/ � P.x/� � 1 � ı, where ˛ D 32 dimd .Y /

ı
:

Remark 5.9. A random partition obtained in the above theorem is called an .r; ˛;

1 � ı/-padded random partition.

The following result was proved by [29, Lemma 3.5] and [31, Lemma 6.2]. This

yields the well separated subsets Ti ;which retains a large fraction of the `2 mass of F:
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Lemma 5.10. Let 0 < r < 1, ˛ > 0, k 2 N. Suppose that F is .r; 1
k
.1C 1

8k
//-spread-

ing, and there exists an .r; ˛; 1 � 1
4k
/-padded random partition on . zSF ; d zF /, then

there exist k non-empty disjoint subsets T1; T2; : : : ; Tk � zSF such that

• d zF .Ti ; Tj / � 2 r
˛

, for all 1 � i ¤ j � kI
•

P

x2Ti
�.x/kF.x/k2 � 1

2k

P

x2W �.x/kF.x/k2; for all 1 � i � k:

5.3. The main result of the section

Combining the previous results, we prove the higher order Cheeger estimates for

eigenvalues of the Dirichlet Laplacian on finite graphs with boundary, which is import-

ant for our application; see, e.g., [25, Theorem 5].

Theorem 5.11. Let .V;�; �/ be a weighted graph andW � V be a finite subset. For
the Dirichlet eigenvalue problem (5.1) on W , we have

��
k;D.W / � c

k6
�k.W /;

where �k.W / is defined in (5.2).

The proof strategy is as follows. For the map F; by the random partition theorem

and the spreading lemma, we have well separated subsets Ti ; which retains a large

fraction of the `2 mass of F I see Lemma 5.10. Using cut-off functions on Ti ; we

obtain localized function ‰i supported on the small-neighborhood of Ti with con-

trolled Dirichlet energy; see Lemma 5.4. Then applying the variational principle of

��
1;D for ‰i ; we get the desired estimate.

Proof of Theorem 5.11. For the completeness, we give the proof here. Choosing r D
1

3
p

k
, F is .r; 1

k
.1C 1

8k
//-spreading by Lemma 5.2. If we further take ı D 1

4k
, then

zSF has an .r; ˛; 1 � 1
4k
/-padded random partition by Theorem 5.8 with

˛ D 128k dimd .S
k�1/:

From Proposition 5.6, we know that ˛ � 128Ck.k � 1/, where C D 4 log2 � . Then

by Lemma 5.10, we can find k disjoint subsets T1; T2; : : : ; Tk � zSF , such that

• d zF .Ti ; Tj / � 2 r
˛

� 2

3
p

k

1
128C k.k�1/

; for all 1 � i ¤ j � kI

•
P

x2Ti
�.x/kF.x/k2 � 1

2k

P

x2W �.x/kF.x/k2; for all 1 � i � k:

Let ¹�i ºk
iD1 be k cut-off functions defined as in (5.4), where S is replaced by Ti

and " D 1

3
p

k

1
128C k.k�1/

. Similar to (5.5), we obtain k localizations of F satisfying

‰i jTi
D F jTi

; for all � i � k;

supp.‰i/ \ supp.‰j / D ;; for all 1 � i ¤ j � k:
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Applying Lemma 5.4, for any 1 � i � k; we have

P

eD¹x;yº2E.W; SW /�xyk‰i .x/ �‰i .y/k2

P

x2supp.‰i / �.x/k‰i.x/k2

�
.1C 2

"
/2

P

eD¹x;yº2E.W; SW / �xykF.x/ � F.y/k2

1
2k

P

x2W �.x/kF.x/k2

D 2k.1C 768C
p
kk.k � 1//2

P

eD¹x;yº2E.W; SW / �xykF.x/ � F.y/k2

P

x2W �.x/kF.x/k2

� 2 � .786C /2k6��
k;D.W /:

Write ‰i.x/ D . 1
i .x/; 

2
i .x/; : : : ;  

k
i .x//: Hence, for any 1 � i � k; there exists a

coordinate index ai 2 ¹1; 2; : : : ; kº such that  
ai

i is not identically zero and

P

eD¹x;yº2E.W; SW /�xy j ai

i .x/ �  ai

i .y/j2
P

x2W �.x/j ai

i .x/j2
� ck6��

k;D.W /;

where c D 2 � .786C /2. Set Ai WD supp. 
ai

i /; for any 1 � i � k: Then we have

.A1; A2; : : : ; Ak/ 2 Ak.W / and for any 1 � i � k;

��
1;D.Ai/ � ck6��

k;D.W /:

Then by the definition of �k.W /; (5.2), we have

��
k;D.W / � c

k6
�k.W /:

6. Higher order Cheeger estimate for DtN operators

Let .V;E;�/ be an infinite graph and � � V be an infinite subset. For a finite subset

W � x� with W \ ı� ¤ ;; let �k.W / be the k-th eigenvalue of the DtN operator

on W .

Following the method proposed in [25], we prove higher order Cheeger estimates

for the DtN operators. For any r > 0, consider the following measure defined on x�:

m.r/
x D

´

d.x/; x 2 ı�;
1
r
d.x/; x 2 �:

For any f 2 R
x�, set

�.r/.f /.x/ WD 1

m
.r/
x

X

y2 x�

�xy.f .y/� f .x//; for all x 2 �: (6.1)
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For W � x�, W \ ı� ¤ ;, consider the following Dirichlet problem

´

��.r/.f /.x/ D �f .x/; x 2 W;
f .x/ D 0; x 2 ıW:

(6.2)

We denote by �
.r/

k;D
.W / the k-th eigenvalue of the above Dirichlet problem. Recall

thatN D ]W . Set P WD ].W \ ı�/: The following approximation result was proved

in [25, Proposition 3].

Proposition 6.1. For any k 2 ŒP � WD ¹1; 2; : : : ; P º, we have

lim
r!C1

�
.r/

k;D
.W / D �k.W /

and for any k 2 ŒN � n ŒP �,

lim
r!C1

�
.r/

k;D
.W / D C1:

Now, we are ready to prove Theorem 1.10.

Proof of Theorem 1.10. For the upper bound estimate, choose .A1; : : : ;Ak/2 Ak.W /

that achieves hk
J .W /. ConsiderH WD span¹�Al

W l 2 Œk�º � R
W . Then dimH D k and

H jW \ı� � R
W \ı�: Note that

DW .�Al
/

h�Al
; �Al

iW \ı�

D
P

eD¹x;yº2E.W; SW /�xy.�Al
.y/� �Al

.x//2

d.Al \ ı�/
D �.@Al/

d.Al \ ı�/ :

Hence, by (3.8) and a direct argument

�k.W / � 2max
l2Œk�

DW .u
W
�Al
/

h�Al
; �Al

iW \ı�

D 2max
l2Œk�

�.@Al/

d.Al \ ı�/ D 2hk
J .W /:

Next, we prove the lower bound estimate. For any k 2 ŒP �,

�k.W / D lim
r!C1

�
.r/

k;D
.W / � lim

r!C1
c

k6
min

.A1;:::;Ak/2Ak.W /
max
l2Œk�

�
.r/
1;D.Al/

D c

k6
min

.A1;:::;Ak/2Ak.W /
max
l2Œk�

lim
r!C1

�
.r/
1;D.Al/

D c

k6
min

.A1;:::;Ak/2Ak.W /
max
l2Œk�

�1.Al/

� c

k6
min

.A1;:::;Ak/2Ak.W /
max
l2Œk�

1

2
hJ .Al/h.Al/

D c0

k6
hk.W /;

the first inequality follows from Theorem 5.11.
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Finally, by Theorem 1.10 and Proposition 1.5, we can prove Theorem 1.11.

Proof of Theorem 1.11. For the upper bound estimate,

�k.�/ D lim
i!1

�k.Wi / � 2 lim
i!1

hk
J .Wi/ D 2hk

J .�/:

For the lower bound estimate,

�k.�/ D lim
i!1

�k.Wi / � lim
i!1

c

k6
hk.Wi/ D c

k6
hk.�/:

This proves the theorem.
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