J. Spectr. Theory 12 (2022), 1155-1202 © 2023 European Mathematical Society
DOI 10.4171/I1ST/430 Published by EMS Press
This work is licensed under a CC BY 4.0 license

Edge states for second order elliptic operators in a channel

David Gontier

Abstract. We present a general framework to study edge states for second order elliptic operat-
ors in a half channel. We associate an integer valued index to some bulk materials, and we prove
that, for any junction between two such materials, localized states must appear at the boundary
whenever the indices differ.

1. Introduction and statement of the main results

Bulk-edge correspondence states that one can associate an integer valued index I €
Z to some bulk materials (represented here by Schrédinger (PDE) or Hill’s (ODE)
operators). When the material is cut, edge states appear at the boundary whenever
I # 0. In addition, it is believed that any junction between a left and a right material
having indices I; and I must also have edge states near the junction whenever
I # IRr. We prove this fact in this paper.

Since the original works of Hatsugai [24,25], most studies on bulk-edge corres-
pondence focused on tight-binding models (e.g., [3,22]), set on half-spaces. In these
tight-binding models, boundary conditions at the cut are quite simple to describe, and
it turns out that the index is independent of these boundary conditions. In the context
of continuous models, it is unclear that one can define an index which is indeed inde-
pendent of the chosen boundary conditions. In [20], we proved that it was the case in
a simple one-dimensional model for dislocations. We extend this work here, and give
a general framework to define the edge index for different self-adjoint extensions of
Schrodinger operators.

We consider two types of continuous models. In the first part, we study families
of Hill’s operator (ODE) set on C”, of the form

hy := —032, + Vi(x), actingon L*(R,C"),

where ¢ — V; is a continuous periodic family of bounded potentials, with values in
the set of n x n hermitian matrices. When ¢ is seen as the time variable, this equation
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models a Thouless pump [9,42]. In the case where V;(x) = V(x — t), the variable ¢
is interpreted as a dislocation parameter [16,20]. On the second part of the article, we
study its PDE version, that is families of Schrodinger’s operators of the form

H, = —A + V,(x,y), actingon L%(R x (0, 1)¢71,C).

Here, R x (0, l)d_1 is a tube in R¥, and we impose periodic boundary conditions
in the last (d — 1)-directions. Our setting also allows to treat two-dimensional PDE
operators of the form

H; = -9, + (—id, + 271)> + V(x.y). actingon L>(R x (0, 1),C),

where k := 2nt is interpreted as the Bloch quasi-momentum in the y-direction. Such
families of operators appear in the study of two-dimensional materials, once a Bloch
transform has been performed in the y-direction.

In these models, we interpret the bulk-edge index as the intersection of Lagrangian
planes on a boundary space #p. Roughly speaking, this space contains the values
(¥ (0), ¥'(0)) of the admissible wave-functions . In the context of Hill’s operators,
we take J, = C" x C”, while for Schridinger operators, #j, = H3/2(I') x H'/2(I"),
where I' := {0} x (0, 1)4~1 is the cut.

The link between edge states and Lagrangian planes was already mentioned, e.g.,
in [3] for discrete models (tight-binding approximation). Based on the recent develop-
ments on Lagrangian planes and second order elliptic operator by Howard, Latushkin
and Sukhtayev in a series on papers [28-30] (see [32] for older results in an ODE
setting), we extend the picture to the continuous case. This framework allows in
particular to treat the PDE setting following [33], based on the seminal work of BooB3-
Bavnbek and Furutani on infinite-dimensional Lagrangian planes [7, 8, 18].

Let us state our main results for Hill’s operators. They extend the previous works
[16,20] and shed a new light on the results by Briunlich, Graf, and Ortelli in [9].
Some of our results can already be found in the last article. However, the proofs in [9]
use the notion of frames of solutions. In the present article, we provide proofs which
do not rely on this notion, so that we can generalize them to the Schrodinger case,
where one cannot construct such frames of solutions.

Letn € N \ {0} be fixed, and let

Vi(x):=V(t,x):T' xR — §,, (1)

be a periodic family of matrix-valued bounded potentials (which are not necessarily
periodic in x). Here, T! ~ [0, 1] is the one-dimensional torus, and S, denotes the
set of n x n hermitian matrices. We assume that ¢ — V; is continuous from T! to
L*(R, §,). We consider the family of (bulk) Hill’s operators

hy :=—03>, +V; actingon L*(R,C").
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For E € R, we say that E is in the gap of the family (h,) if E ¢ o(h,) forallt € T!.
We also consider the family of (edge) Hill’s operators

h%t = —8)2” + V; acting on LZ(R’L,(C"),

with Dirichlet boundary conditions at x = 0. While E is not in the spectrum of the
bulk operator o (/,), it may belong to the spectrum of the edge operator h%,t. In this
case, the corresponding eigenstate is called an edge mode.

As t runs through T! & [0, 1], a spectral flow may appear for the family hﬁD’t. We
denote by Sf(hﬁj’t, E,T1) the net number of eigenvalues of hﬁD’t going downwards in
the gap where E lies. We define the index of (4;),c1 as this spectral flow:

I(h, E) := Sf(hf, . E.T).

Our main theorem is the following (see Theorem 32 for the proof in the Hill’s case,
and Theorem 44 for the one in the Schrodinger case).

Theorem 1 (Junctions between two channels). Let t +— Vg ; and t — Vi ; be two
continuous periodic families of bounded potentials on R. Let E € R be in the gap of
both corresponding (bulk) Hill’s operators (hy ;) and (hg ). Let y: R — [0, 1] be any
switch function, satisfying y(x) = 1 for x < —X and y(x) = 0 for x > X for some
X > 0, and let

hE = =32+ Vi () x(x) + Ve (x)(1 — x(x)).

Then

Sf(hY,E,T"Y = I(hrs, E) — I(hp ., E).

The operator /¥ is a domain wall operator. On the far left, we see the potential
V1 ¢, while, on the far right, we see Vg, so this operator models a junction between
a left potential and a right one. This theorem states that edge modes must appear at
the junction if the left and right indices differ.

Plan of the paper. In Section 2, we recall some basic facts on symplectic spaces
and self-adjoint extensions of operators. We then prove our results concerning Hill’s
operators in Section 3, and explain how to adapt the proofs for Schrodinger operators
in Section 4.

Notation of the paper. We write N := {1,2,3,...}and Ny :={0,1,2,3,...}. For
zoeCandr > 0,weset B(z,r) :={z € C:|z — z¢| < r} the open ball in the complex
plane.

For @ C R¢ an open set, we denote by L? (2, C) the usual Lebesgue spaces, and
by H? (€2, C) the Sobolev ones. The set H(£2, C) is the completion of C§°(€2, C)
for the H® norm.
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Let #; and J¢» be two Hilbert spaces. For a bounded operator A: #; — >, its
dual A* is the map from #, — J; so that

(XQ,A)Cl),}fZ = (A*XQ,Xl)ng for all x; € c](l, Xp € e}(z.

The operator A is unitary if A*A = Iz, and AA* = lg,.

For E a Banach space, we say that a map ¢t — v(¢) € E is continuously differen-
tiable if v’ (¢) is well defined in E for all ¢ (thatis ||v'(¢)||g < 00), and if ¢ > v/(¢) is
continuous.

2. First facts and notations

2.1. Lagrangian planes in complex Hilbert spaces

Let us first recall some facts on symplectic Banach/Hilbert spaces. In the original work
of Maslov [37], popularized by Arnol’d [1], the authors consider real Banach spaces
E. Following the recent developments, we present the theory for complex Banach
spaces.

2.1.1. Basics in symplectic spaces. Let £ be a complex Banach space. A symplectic
form on E is a non-degenerate continuous sesquilinear form w: E x E — C such that

w(x,y) =—w(y,x) forallx,y € E.
For £ a linear subspace of E, we denote by
{°:={x € E:w(x,y)=0forall y € {}.

The space £° is always closed. Such a subspace is called isotropic if £ C £°, co-
isotropic if £° C £, and Lagrangian if £ = £°. We also say that £ is a Lagrangian
plane in the latter case. The set of all Lagrangian planes of E, sometime called the
Lagrangian—Grassmannian, is denoted by A(E).

Example 2 (In R?"). In the real Hilbert space E = R" x R”", the canonical sym-
plectic form is given by (we write x = (x, x’), y = (v, )’), etc., the elements in
R” x R")

o(x,y) = (x,y)rr — (x', y)rn forallx,y € R” x R”,

When n = 1, the Lagrangian planes are all the one-dimensional linear subspaces
of R2. Conversely, if (RY, w) is a symplectic space, then N = 2 is even, and all
Lagrangian planes are of dimension #.
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Example 3 (In C2"). Similarly, in the complex Hilbert space C2", the canonical sym-
plectic form is given by (we write again z = (z, z) the elements in C" x C")

w(z1,22) := (21, 25)cn — (2], 22)cn forallzy,z, € C" x C”.

When n = 1 for instance, the Lagrangian planes are the one-dimensional linear spaces
L = Vectc (z) with z = (z, z’) satisfying the extra condition Zz’ € R. Up to a phase,
we may always assume z € R, in which case z’ € R as well. So, the Lagrangian planes
are the one-dimensional subspaces of C? of the form Vectc (z) with z € R2.

Example 4 (In C"). Another example is given by the symplectic form
®(z1,22) = 1(z1,22)cnv  forallzy,z; € CcN.

With this symplectic form, a vectorze C¥ is never isotropic, since &(z,z) =i||z > #0
for z # 0. In particular, (C", @) does not have Lagrangian subspaces.

We record the following result.

Lemma 5. If {; C {7 and £, C {5 are two isotropic subspaces with {1 + {y = E,
then €1 and £, are Lagrangians, and {1 @ £, = E.

Proof. Since {1 + {>,=E, we have {0} ={] N £5. In particular, £; N £, C L] N L£5={0}
aswell,so {1 @ €, = E.Letx € £{] C E, and write x = x; + x, with x; € £; and
X2 € 5. Since £ CL], we have xo =x — x1 € £] as well, so x, € €] N, CLTNL5={0}.
This proves that x = x; € {1, hence £ = £;. The proof for £ is similar. n

2.1.2. Lagrangian planes of Hilbert spaces and unitaries. In the case where £ =
Hp is a Hilbert space, with inner product (-, -) g, , for all x € 5, the map

Te:y > w(x,y)

is linear and bounded. So, by Riesz’ representation theorem, there exists v € 3 so
that T (y) = (v, y) %, . We denote by J *x := v this element. This defines an operator
J*: Hy — Hp, satisfying

o(x,y) = (J"x,y) 3, = (x,Jy)z, forallx,ye Hp.
In particular, since w is bounded, we have
19115, = (Jy, I¥)ae, = @(Jy, ) < CollIyl - |1,
so ||[Jy|| < Cyul|l¥|l, and J is a bounded operator. In addition, from the relation

w(x,y) = —o(y, x),
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we get that
<X, Jy)]fh = —(JX, )’)Jeh,

that is J = —J*. Finally, since w is not degenerate, we have Ker(J) = {0}.

Example 6. On C2” with the canonical symplectic form

w(x,y) = (x1,y2)c, — (X2, y1)cn,

0, I,
J = .
(_Hn On)

Later in the article, we will make the following Assumption A:

we have

Assumption A. J2 = —lg,.
In this case, J is bounded skew self-adjoint with J 2 — _T, and we have
Hp = Ker(J —1i) & Ker(J + 1). 2)

The hermitian form —iw is positive definite on Ker(J — i) and negative definite on
Ker(J + i). In addition, for all x € Ker(J —1i) and all y € Ker(J + i), we have

w02 =ilxl,. 00.0) ==ilyl, o) =0. )

The following result goes back to Leray in its seminar [34] (see also [7] and [8,
Lemmas 2 and 3]). We skip its proof for the sake of brevity.

Lemma 7. If Assumption A holds, then there is a one-to-one correspondence between
the Lagrangian planes £ of ¥} and the unitaries U from Ker(J — i) to Ker(J + 1),
with

{={x+ Ux:x € Ker(J —1)}.

Corollary 8. If dim Ker(J — i) # dim Ker(J + i), then there are no Lagrangian
planes. This happens for instance for the symplectic space (C", ®), with &(z,z') =
i(z, zYcn (see Example 4), for which we have Jz = iz, so Ker(J — i) = C" while
Ker(J + 1) = {0}.

The next lemma shows that the crossing of two Lagrangian planes can be read
from their respective unitaries (see, e.g., [8, Lemma 2]).

Lemma 9. Let {1 and {5 be two Lagrangian planes of A(Hp), with corresponding
unitaries Uy and U, from Ker(J —1) to Ker(J + i). Then there is a natural isomorph-
ism

Ker(Uz*Ul - HKer(J—i)) ~ L NLsy.
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Proof. 1If x~ € Ker(J —1i) is such that Uy U x~ = x~, then we have Ujx~ = Usx™
in Ker(J +1i),s0 x := x~ + Ujx~™ = x~ 4+ Upx™ isin £; N £5. Conversely, if x €
€1 N £y, then, writing x = x~ 4+ x1, wehave Ujx™ = Upx",s0 U;Ujx” =x". =

2.1.3. Another unitary. In Section 3.1 below, we will consider periodic paths of
Lagrangians £ (¢) and £,(¢), and define the Maslov index of the pair ({1, £). When
Hp is finite dimensional, we will prove that it equals the winding number of the
determinant of U, (t)U; (). Unfortunately, since U; and U, are not endomorphism,
we cannot split det(U, Uy ) into det(U;)/ det(U>). In this section, we present another
one-to-one correspondence between Lagrangian planes and other unitaries (which
will be endomorphisms). The results of this section are new to the best of our know-
ledge.

We now make the stronger assumption that #, is of the form K = H;1 x H>,
where J¢; and #, are two complex Hilbert spaces, and that, relative to this decom-
position, J is of the form

Assumption B. J = (9, ¥") for some (fixed) unitary V: #; — H,.

It implies J? = —lg,, so Assumption B is stronger assumption than Assump-
tion A. Furthermore, we can identify

. 1 . 1
Ker(J —1i) = (iv){r’fl, and Ker(J +1) = (_iV)Jé’l.
Defining the maps Q+: #; — Ker(J % i) by

1 X
O1(x):= E(?iVx) forall x € Hy,

with dual

x [ V1 _L Y%
Q:I:(yz)— ﬁ()ﬁﬂ:lV y2),

we can check that Q1+ Q% = Iker(k+i) and Q5 O+ = lg,, so O are unitaries. In
particular, if U is a unitary from Ker(J — i) to Ker(J + i), then

U:=03UQ_

is a unitary from #; to itself, hence an endomorphism. In what follows, we use
straight letters U for unitaries from Ker(J — i) — Ker(J + i), and curly letters U
for unitaries of J¢;. We therefore proved the following.

Lemma 10. [f Assumption B (hence Assumption A) holds, then there is a one-to-one
correspondence between the Lagrangian planes £ of (#1 x Ha, w) and the unitaries
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U of #;, with

e={( )+ (Liy Jusv el

In addition, if €1 and £, are two Lagrangian planes with corresponding unitaries U
and U, then there is a natural isomorphism

Ker(‘u;‘ul — HJ(I) ~ Kl N fz.

2.2. Self-adjoint extensions of Hill’s operators

We now review some basic facts on self-adjoint operators (see, e.g., [39, Chapter X.1]
for a complete introduction). We first recall some general definitions, and then focus
on second order elliptic operators. We show the connection with symplectic spaces
using the second Green’s identity.

2.2.1. Self-adjoint operators. Let J be a separable Hilbert space, and let A with
dense domain £y be any operator on J. In the sequel, we sometime write (A, Dy).
The adjoint of (A, D4) is denoted by (4™, Dy*).

For A a symmetric, hence closable, operator on #, we denote by (Amin, Omin)
its closure. The adjoint of (Apin, Dmin) is denoted by (Amax, Dmax ). Since A is sym-
metric, we have Apin C Amax (Amax 18 an extension of Any,). The operator Ay, is
self-adjoint if and only if Dy = Dmax. Otherwise, any self-adjoint extension of A
must be of the form (/T , !b) with

Amin CAC AmaXs

in the sense
Dmin C D C Dimax.

In particular, once Dy, and Diyax have been identified, the self-adjoint extensions are
simply given by domains D with Dhmin C Dc Dhmmax. and the operator A acts on this
domain via

Ax = Amaxx forall x € D.

We sometime write (A max, f)) instead of (/T , !/3) to insist that only the domain matters.

There are several ways to identify the self-adjoint extensions of A. The original
proof by von Neumann [43] uses the Cayley transform. As noticed in [39, Chapter X.1]
following [17], the connection with boundary values is not so clear in this approach.
Another approach can be found, e.g., in [7, Section 3.1], where the authors give a
correspondence between the self-adjoint extensions of A4 and the Lagrangian planes
of the abstract space Dmax/ Dmin, With the symplectic form

C()([X], [y]) = (X, Amaxy)Jf - <Amaxx7 y):?fv for all [X], [y] € o(Dmax/‘@min'

Again, the connection with boundary conditions is not so clear in this setting.
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Here, we follow [33] (see also [11]), which is specific to second order elliptic
operators. It uses the second Green’s identity.

2.2.2. Self-adjoint extensions of Hill’s operators on the semi-line. We first present
the theory in the case where A = h is a second order ODE (Hill’s operator). We
postpone the analysis for general second order elliptic operators to Section 4 below.

Letn € N andlet V:R — §, be a bounded potential with values in §,, the set of
n x n hermitian matrices. We consider the Hill’s operator

h:=—0%>,+V(x) actingon# := L*(R,C").

The bulk operator & with core domain C5° (R, C") is symmetric. Since the potential V'
is bounded, the operator / is essentially self-adjoint, with domain (see [31, Chapter 4])

D 1= Dpin = Dmax = H*(R, C™).
When restricting this operator to the half line, we obtain the edge operator
Wt = —3%, + V(x) acting on H* = L2(RT,C").
On the core C*° (RT,C™), it is symmetric, and its closure has domain

ot

min

= H2[R*,CM).

The adjoint of (hﬁ i)glm) is the operator (hfnax, !Dﬁlax) where hﬁmx = —8)26 L+ V(x)

min?
has domain
DF = H?>RT,C").
We have {Oﬁlin c D, s0 At is not essentially self-adjoint. This reflects the fact that

some boundary conditions must be chosen at x = 0. The particularity of second order
elliptic operators comes from the second Green’s identity.

Lemma 11 (second Green’s identity). For all ¢,y € {l)ﬁwx,
(. hba V) ger — (. V) gz = (6(0). 9 (0))cn — (#(0). ¥ (0))cn.
This suggests to introduce the boundary space
Hy :=C" xC"

with its canonical symplectic form w defined in Example 3. We also introduce the
map Tr: !Dﬁlax — J}, defined by

Tr(¢) := (¢(0).4'(0)) € H, forall ¢ € DF,,. )
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With these notations, the second Green’s identity reads

(@ 1 W) gor — (M. W) g8 = 0(Tr(9), Tr(y)) forall ¢,y € DE,..

We denote by || - || the graph norm of h*, that is
111G = Ipl5s + WihaxplGpe  forall g € Df,.

In the one-dimensional Hill setting, the graph norm is equivalent to the H2-norm.
Recall that a closed extension of 4* has a domain which is closed for this norm.

Lemma 12. The map Tr: (:z)};‘m, | - llg) = Hp is well defined, continuous and onto.

Proof. Since V is bounded, we have that the graph norm || - ||y is equivalent to the
usual H2(R*, C")-norm on Dfx = H2(R+, C™). Rellich embedding shows that

H?*[R*,C") = C'([0,00).C")

with continuous embedding. This implies that Tr is a bounded linear operator. Let
C,S € C®(R*,R) be two compactly supported smooth functions with C(0) =
S’(0) = 1 and C’(0) = S(0) = 0. Given an element (u,u’) € H3, we have (u,u’) =
Tr(y) for ¥ (x) ;= uC(x) + u'S(x) € DF.x, so Tr is onto. [

The next result shows that the self-adjoint extensions of 4# can be seen as Lag-
rangian planes of .

Theorem 13. Ler D* be a domain satisfying {Oﬁlin c D* c {l)ﬁlax, and let { =
Tr(D*). The adjoint domain of (hﬁlax, DY) satisfies (D*)* = Tr=1(£°).
In particular, (hﬁm, D) is a self-adjoint extension of h¥ if and only if

there exists £ € A(Hp) so that D¥ = Tr 1 (¢).

Proof. Since DF, C D c Df, and (Dha)* = DF, we have DF, c (D¥)*

!Dﬁlax as well. Let y9 € (!D”)* C !Dﬁlax . By definition of the adjoint, and the second
Green'’s identity, we have

0= (Yo, hr®) gex — (V0. ) gex = @(Tr(Yo), Tr(¢))  forall ¢ € DF.

We deduce that Tr(yg) € £°. So, Tr((D%)*) C £°, which implies (D¥)* c Tr='(£°).
Conversely, let Yo € Tr~!(£°). By definition of £° and the second Green’s identity,
we get

0 = o(Tr(Yo)., Tr(@)) = (Vo M ®) ger — (M Wo. @) gor  forall ¢ € D,

In particular, the map Ty,: D* — C defined by

TI/fo:(aZS = (Wo’hﬁlax@,;eﬁ = (h?naxwo’(p)z}fﬁ
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is bounded on DF with | Tyo¢llser < [hfaxollset |6l 5. So, o is in the adjoint
domain (D*)*. This proves as wanted that Tr=1(£°) C (D*)*, and finally Tr='(£°) =
(DH*.

Since Tr is onto, we have Tr(Tr~!(A4)) for all A C H,. On the other hand, if D*
defines a self-adjoint extension, then we have

DF =Tr 1(¢°), with £ := Tr(D¥).

We deduce that £ = Tr(D%) = Tr(Tr~'(£°)) = £°, hence £ is Lagrangian. Conversely,
if £ is Lagrangian, we can define the domain D := Tr™!(£). We then have Tr(D*%) =
Tr(Tr'(£)) = £ by surjectivity of Tr again. In particular, the dual domain satisfies
(OH* =Tr ' (£°) = Tr ' (¢) = D*, so (H,’flax, DH) is a self-adjoint extension. This
concludes the proof. ]

In what follows, we denote by (h*, £%) the self-adjoint extensions of ¥ with
domain Tr~! (£%).

Before we go on, let us give some examples of Lagrangian planes and their cor-
responding unitaries U for some usual self-adjoint extensions. In the Hill’s case, we
have Kp = H#H1 x H, with H; = H, = C”, with the canonical symplectic form. In
particular, the unitary V in Assumption B is V' = I, and the unitaries U: C* — C”
can be seen as elements of U(n).

Example 14 (Dirichlet and Neumann boundary conditions). The Dirichlet extension
of h¥ corresponds to the Lagrangian plane £p := {0} x C”, and the Neumann one
corresponds to £ := C” x {0}. To identify the corresponding unitary, we note that
(0,u’) € £p can be written as

0y (1 i, N\ /i,
(u/) - (1) (_5“ ) + (—i) (5” )
Comparing with Lemma 10, this gives the unitary Up := —1I,, € U(n). The proof for

Neumann boundary conditions is similar, and we find Uy := I,, € U(n).

Example 15 (Robin boundary conditions). Consider ® and IT two hermitian n X n
matrices so that

©*=0, N"=I, O =106, O+ Iisinvertible.
Let £ 11 be the subspace
Lo :={(Ox,TIx):x € C"} C Hp.
We claim that £ 1y is Lagrangian. Indeed, first we have

o((®x,Ilx), (Oy, Iy)) = (Ox, Iy)cr — (Ilx, Oy)cn
= (x,(6II -IB®)y) =0,
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sofe.m C EZ‘),H' On the other hand, let (z,z') € E‘é’n. We have

(z, Ix)cn = (z/,Ox)cn  forall x € C",
S0
(Mz —Oz',x)cn =0  forall x € C".

We deduce that Iz = ©z’. In particular, setting zo = (82 + I12)"1(©z + I1Z’), we
have z = @z and z’ = Tz, s0 (z,2") = (Ozp, [1z¢) € Lo 1. This proves that £ 11
is Lagrangian. This also proves that

lon ={(z,z/) e C" xC": Tz = B}.

We say that the corresponding self-adjoint extension has the (®, IT)-Robin boundary
condition, namely ¥ € H?>(R*,C"), if

Iy (0) = Oy/(0).

To identify the corresponding unitary, we remark that

(gj‘c) - (1)%(0 —ill)x + (_ﬁ)%(@ +ill)x.

Comparing with Lemma 10, we recognize the unitary
Uo.11 := (0 +ill)(® —ill)~! € Un).

Note that A := (® —iIl) is invertible, since A* A = ®2 4 12 is invertible. We recover
Dirichlet boundary condition with the pair (®, IT) = (0, [,,) and Neumann boundary
condition with (®, IT) = (I, 0).

2.3. The Lagrangian planes £*(E)

In the previous section, we linked the boundary conditions at x = 0 with the Lag-
rangian planes of the boundary space #;. We now focus on the Cauchy solutions
of Hyr = E. Since we are also interested in the behaviour at —oo, we introduce
FHE .= L2(R¥) and the maximal domains

Db .= H2(RE, CM).

max
The space !Dﬁmx considered previously corresponds to !Oﬁ,;{ . We also denote by

Trt: DR 5 g0,

max
the corresponding boundary trace operator

Tt () = (¥(0). y/(0)) forall y € DEE.
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Note that, due to the orientation of the line R, the second Green’s identity on the
left-side reads

(@, W) gpie — (B, ) gpr— = —(Tr™(¢), Tr— () forall ¢, ¥ € Df:~.
)
We now set

S*(E) :=Ker(htE — E) = {y € DEE: —y" + Vy = Evy),

max max *

and
(E(E) = {TrE(y): ¥ € ST(E)} C Hp. (6)

The solutions in §*(E) can be seen as the set of Cauchy solutions which are square
integrable at +00. Thanks to Cauchy’s theory for ODEs, elements ¥+ of S*(E) can
be reconstructed from their boundary values Tr* (%) € #.

Lemma 16. For the bulk operator h, we have that for all E € R,
dimKer(h — E) = dim({ 1T (E) N £~ (E)).
In particular, E is an eigenvalue of h if and only if ¢T(E) N £~ (E) # {0}.

Proof. We will provide a general proof later (see the proof of Lemma 38), which
works in the Schrédinger case. Let us give a short proof using Cauchy’s theory.

Let (u,u’) € £7(E) N £~ (E), and let ¥ be the Cauchy solution of —y" + Vi =
Ey with ¥(0) = u and ¥'(0) = u’. By uniqueness of the Cauchy solution, the
restriction of ¥ on R¥ is in $*(E). In particular, V¥ is square integrable in 400,
so ¥ € L2(R,C"™). Then, since V is bounded, ¥ = (E — V) is also in L?(R,C"),
and ¥ is in the domain H?(R, C"). As it satisfies (h — E)y = 0, it is an eigenvector
of h for the eigenvalue E. Conversely, if ¥ is such an eigenvector, then Tr(y) €
(Y(E)N L (E). [

One can therefore detect eigenvalues as the crossings of £17(E) and £~ (E). We
now prove that, when E is in the resolvent set of the bulk operator, we have instead
(T (E) @ ¢~ (E) = #p. Our proof only uses the fact that the bulk operator / is essen-
tially self-adjoint.

Theorem 17. For all E € R \ o (h), the sets {*(E) are Lagrangian planes of ¥y,
and
Hy =LT(E)® L (E).

This shows for instance that there are as many Cauchy’s solutions which decay
to 400 as solutions which decay to —oco (here, they both form subspaces of dimen-
sion n). This is somehow reminiscent of the Weyl’s criterion [46] (see also [35]).
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Again, we postpone the proof to the Schrodinger section (see the proof of The-
orem 39 below), as it is similar, but somehow looks more complex in the PDE setting.

Remark 18. In the proof given below, we use that h = —d2, + V is self-adjoint on
the whole line, and deduce that £* (E) and £~ (E) are both Lagrangian planes. Note
however that £1(E) is independent of VV on R™. So, £ (E) is a Lagrangian plane
whenever there exists an extension of V' on R™ for which the corresponding bulk
operator has E in its resolvent set.

Remark 19. The spaces £=(E) are not always Lagrangian planes. For instance, if
V:R — R is l-periodic, the spectrum of & := —92 . + V is composed of bands and
gaps. For E € o(h), the set of solutions of (7 — E) is two-dimensional, and spanned
by two quasi-periodic functions, hence the solutions never decay at +oo. So, for all
E €o(h),wehave {T(E) = (" (E) = 0.

At this point, we defined two types of Lagrangian planes for a given operator /.
First, we defined the planes £* representing the boundary conditions of a self-adjoint
extension of the edge Hamiltonian /#. Then, we defined the planes £ (E) as the set
of traces of Ker(hftnax — E).If Tr(y) € £T(E) N £*, then ¥ is in the domain of 4%, and
satisfies (h* — E)y = 0. So, ¥ is an eigenvector for the eigenvalue E. This proves
the following (compare with Lemma 16).

Lemma 20. Let E € R\ o(h), and consider a self-adjoint extension (h*, £%) of the
edge operator. Then

dimKer(h* — E) = dim(¢{T (E) N £¥).

This result is of particular importance, since we detect eigenvalues as the crossing
of two Lagrangian planes. The first one £ (E) only depends on bulk properties (e.g.,
on the potential /), while the second one £ only depends on the chosen boundary
conditions at the edge (and is usually independent of the choice of V).

If in addition Assumption B holds, then we can introduce U+ (E) and U the
unitaries corresponding to the Lagrangian planes £* (E) and I respectively, and we
have

dimKer(h* — E) = dim(¢(*(E) N £%) = dim((UH*UT(E) — 1).

Remark 21 (Scattering coefficients). Let us give an interpretation of the unitary
UT(E).For E ¢ o(h) and E > 0, waves cannot propagate in the medium at energy E.
Considering the half-medium —d2, + 1(x > 0)V(x), any incident wave coming from
the left of the form e**y with k := +/E and u € C" “must bounce back.” Accord-
ing to scattering theory, there is a unitary operator R(k) € U(n), called the reflection
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coefficient, so that there is a continuous solution ¥, (x) of
Vu(x) = ey + e **(R(k)u) forx <0,
(=02, + V(x)Yu(x) =0 for x > 0,

and v, (x) is square-integrable at +o0o (no transmission). This shows that ¥, Ig+ €
ST (E). Taking boundary values, we obtain

(I, + R(k)u L . - n
(ik(]l,, - R(k))u) LT(E) = {(i)x + (_i)‘u*(E)x-x eC } forall u € C".
This leads to the identity
1= R(Kk)  1—UH(E)
T+ R(K) 1+ UT(E)

= VE.

In other words, the Cayley transform of U™ (E) equals the one of the reflection coef-
ficient R(k), up to the multiplicative factor k.

3. Families of Hill’s operators

In the previous section, we exhibit the relationships between self-adjoint extensions,
Lagrangian planes, and unitaries. We now consider periodic families of these objects,
parameterized by ¢ € T!, namely hﬁ, K? and U?. For each such family, we define
an index, namely a spectral flow across E for the family hﬁ, a Maslov index for the
bifamily (¢ (E), €%) and a spectral flow across 1 for the family (UH* U (E). All
these objects are defined in the following sections, and we prove that they all coincide.

All these indices can be defined for continuous families. However, since the proofs
are simpler in the continuously differentiable case, we restrict ourselves to this case.
As these indices depend only on the homotopy class of the corresponding loops, sim-
ilar results hold in the continuous case.

3.1. Families of Lagrangians, and Maslov index

We first define the Maslov index of two families of Lagrangian spaces. This index
originates from the work of Maslov in [1,37]. In these works, the index was defined
for finite-dimensional real symplectic spaces (namely R?” in Example 2). A modern
approach can be found in [18], where the infinite-dimensional case is studied as well.
Here, we present a simple version of the theory, which is enough for our purpose.

Let (#p, w) be a symplectic Hilbert space (not necessarily finite dimensional).
We define a topology on the Lagrangian Grassmannian A (#) by setting

dist(£1,£2) := || Py — Pallop forall £y,£, € A(Hp),
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where P; and P, are the orthogonal projectors on £ and £, respectively. A family £(¢)
in A(Hp) is said continuous, continuously differentiable, etc., if the corresponding
family of projectors P(¢) is so in B(H}p).

3.1.1. Definition with quadratic crossing forms. Consider two continuously dif-
ferentiable families T! > ¢ +> £(¢) and T! >t > £5(¢). Let t* € T! be such that
£1(t*) N Ly(t*) # {0}. We define the sesquilinear form b on £1(t*) N £,(¢*) by

be, 4, (x,y) :=o(x, P{(t™)y) —w(x, Py(t*)y) forallx,y € £y(t*)NL2(t™). (7)
Lemma 22. The sesquilinear form by, ¢, is hermitian: by, ¢,(x,y) = by, 4,(7, X).
Proof. Let P, := Py(t). First, since Ran Py (t) = £1(¢) is isotropic for all ¢, we have

w(Pe(x), P(y)) =0 forallx,y € Hp, t €T,
Differentiating gives
o(P((x), P{(y) = ~0(P[(x). P(y)) = o(P((y). P{(x)).
Takingt = t* and x, y € £1(t*) N £2(t*), so that Py« (x) = x and P+ (y) = y gives
w(x, P/(y)) = w(y, P/(x)) forallx,y € £1(t*) N Ly(t¥).
A similar equality holds for P; = P»(t), which proves that by, ¢, is hermitian. ]

In particular, all eigenvalues of by, ¢, are real-valued. We say that ¢* is a regular
crossing if £1(t*) N £,(t*) is finite dimensional (say of dimension k € N), and if all
eigenvalues (i1, ..., ig) of b are non-null (so the corresponding quadratic form is
non-degenerate). For such crossings, we set

k
deg(*) = D san(u;).

Jj=1

The pair (£1(¢), £2(t)) is regular if all crossings are regular. For such pair, the Maslov
index is defined by

Mas({1, £, T') := Y deg(tM e

t* regular crossing

It is clear from the definition that Mas(£1, {2, T') = —Mas({,, £;, T'). This defini-
tion does not require Assumption A (nor Assumption B).
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3.1.2. Definition with the unitaries U. In the case where Assumption A holds, we
can relate the Maslov index to a spectral flow. Consider two continuously differenti-
able loops of Lagrangian £;(t) and £5(¢) from ¢ € T! to A(H}). Let Uy (¢) and U, (¢)
be the corresponding unitaries from Ker(J — i) to Ker(J + i). Then U; and U, are
continuously differentiable for the operator norm topology. From Lemma 9, we have
that forall ¢ € T,

dim Ker(Uz () * U1 (t) — Iker(s—i)) = dim(£1(r) N £a(1)).

In particular, if all crossings are regular, then dim(¢; N £,) = Ker(U, U, — 1) is finite
dimensional. Let #* € T! be such that the kernel is non-empty, of dimension k € N.
By usual perturbation theory for operators [31], there are k continuously differentiable
branches of eigenvalues of the unitary U, U; crossing 1 around ¢*. More specifically,
we have the following.

Lemma 23. Let U(t) be a periodic continuously differentiable family of unitaries,
and let t* € T be such that

dimKer(U(t*) — 1) =: k € N.

Then, there is € > 0, n > 0 and k continuously differentiable functions {01(t), ...,
O (1)) fromt € (t* —e,t* + &) toS! :={z € C:|z| = 1}, so that

o(U@) N B(L.n) = {61(1).....0(0)} N B(L, ).

The functions 6; are the branches of eigenvalues of U. We say that t* is a regular
crossing if k := dim Ker(U(t*) — 1) < oo, and if 9]’- (t*) #0forall 1 < j < k. Note
that since 6; has values in S', we have 9]’. (t*) € iR. The degree of t* is

k
deg(t*) := ) sgn(—if;(t*)).
j=1

This is the net number of eigenvalues crossing 1 in S! in the positive (counter-
clockwise) direction. Finally, if all crossings are regular, the spectral flow of U across
lis

Sf(U,1,T") := > degt*) e Z.

t* regular crossing

Lemma 24. Let £1(t) and £,(t) be two continuously differentiable families of Lag-
rangians in A(Hp), and let Uy(t) and U, (t) be the corresponding unitaries. Then,
t* € T is a regular crossing of (L1, {2) if and only if it is a regular crossing of
Uy Uy. If all crossings are regular, then

Mas(€y, €2, Ty) = SF(U, Uy, 1, TY).
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Proof. For the sake of simplicity, we assume that only £; depends on ¢. The proof is
similar in the general case. Let 1 * be a regular crossing point, and let

k :=dim(£1(t*) N £p) = dimKer(U, Uy (¢*) — 1).
Let 61, 6,,.. ., 0k be the branches of eigenvalues crossing 1 att = ¢* (see Lemma 23),
and let x{(¢), ..., x; (¢) be a corresponding continuously differentiable set of
orthonormal eigenfunctions in Ker(J — i). First, we have, forall 1 <i,j <k, and all
te(t*—st*+e),
(x; . [USUL(t) = 0;1x; ) 3¢, = O.

Differentiating and evaluating at £ = ¢* shows that
(xi, 0 [U; U1 — 0j]x; ) 30, + ([U3 Ur(t7) — 1]"x;7, (9,7 ) 3¢, = O.

Att = t*, we have Uy U, (t*)x; = x;, so U (t*)Upx; = x; as well, and the last
term vanishes. We get the Hellmann—Feynman equation

8ij0; (™) = (Uax;, (0:UDX} ) gey le=ex = (Urxi, (9: U)X} ) ey =1
On the other hand, we set
xj(t) == x; (1) + Ur(t)x; (t) € 1. 8)
We have x; € £, forall z, so Pix; = x; for all ¢. Differentiating gives
(0: P1)xj + P1(0:xj) = (0:x)).
Since Py (d;x;) € £, which is Lagrangian, we have w(x;, P1(9;x;)) = 0, so
w(x;, (0; P1)xj) = w(x;, 0:x;). 9)
In addition, differentiating (8) shows that
dex; = [1 + Ur](0:x;) + (0: Ur)x; .

Since xX; € Ker(J — i) for all ¢, we have (8,xj_) € Ker(J — i) as well, and the first

term is in £;. On the other hand, (9, Up)x; is in Ker(J + i). Combining with (9)
and (3), this gives

w(xi, (0: P1)xj) = w(xi, 0:xj) = o(x;, (0:Ur)x;) = o(Urx;, (9:Ur)x;).
Using that w(x, y) = (x, Jy) %, and that (3, U1)x;” € Ker(J + 1), we obtain, att =™,
and recalling the definition of b in (7),

b(xi,xj) = w(xi, (0: P1)x;) = w(Urx;, (0:U)x;) = (Urx;, J(9:Ur)x;)

= —i(U1x;, (0: U)X ), = 815 (D)0 ().
The sesquilinear form b is therefore diagonal in the (x1, ..., x;) basis, with corres-
ponding eigenvalues (—i@;). That concludes the proof. [
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3.1.3. Definition with the unitary U. In the case where the stronger Assumption B
holds, one has a similar result with the unitaries U instead of U. We state it without
proof, as it is similar to the previous one.

Lemma 25. [f (H#) = 1 X J2, w) satisfies Assumption B. Let £1(t) and £,(t) be two
continuously differentiable families of Lagrangian planes in A(Hp), and let U1 (t)
and U, (t) be the corresponding unitaries of . Then t* € T is a regular crossing
of (1, 4>) if and only if it is a regular crossing of U3 U. If all crossings are regular,
then,

Mas(ﬁl, fz, Tl) = Sf(u;ul, 1, Tl).

The importance of this lemma comes from the fact that, in the finite-dimensional
case (#1 ~ C™), the spectral flow of a periodic family U(z) € U(n) across 1 (or any
other point in S!) equals the winding number of det U (¢):

Sf(U,z € S', T') = Winding(det(U), T!).
In our case with U = U3 U, we have det(U3U;) = det(U;)/ det(U,), hence
Winding(det(U3U;), T') = Winding(det Uy, T 1) — Winding(det U,, T'!),

that is, the index splits.

Definition 26. For a periodic family of (finite-dimensional) Lagrangians £(¢) with
corresponding unitaries U(¢), we define the index

I(¢, T := Winding(det(U(¢)), T!) € Z.
We can reformulate Lemma 25 as

Mas(£1,£,, TY) = T(¢4,TY) — I(€,, TY). (10)

3.2. Families of Hill’s operators, spectral flow

We now focus on a periodic family of Hill’s operators (A;),cp1.Let T! 3 ¢ > V; be
a periodic family of potentials satisfying (1), and set

]’lt = —aix + Vt(X).

We assume that ¢ +— V; is continuously differentiable as a map from T'! to the Banach
space L°(R, §,,). Since T! is compact, V(z, x) is uniformly bounded. In particular,
as in Section 2.2.2, the operator /4, is essentially self-adjoint with fixed domain £ =
H?(R*,C") forallt € T!.
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The spectrum of the family (h;),c1 is the set

o(hi, TY) == Jo(hy).

teT!

It is the compact union of all spectra of (h,) fort € T!. Since ¢ +> o (h,) is continuous,
o(h;, T') is a closed set in R. The complement of o (h;, T!) is the resolvent set of
the family (h;) ;e1-

We now consider a corresponding family of edge self-adjoint operators, of the
form (hﬁ, Z?). We say that this family is continuous, continuously differentiable, etc.,
if the corresponding family of Lagrangian planes Zf is soin A(Hp).

Fix E € R in the resolvent set of (h;),cy1. As ¢ varies in T, the spectrum of the
bulk operator /; stays away from E. However, for the edge operators (hﬂ, Z?), some
eigenvalues may cross the energy E. If t* € T! is such that dim Ker(hg* —E)y=ke
N, then, as in Lemma 23, we can find ¢ > 0, n > 0 and k continuously differentiable
branches of eigenvalues A;(7) € R so that, fort € (t* —¢,t* + ¢),

o(hf) N B(E.n) = {A1(1)..... A (D)} N B(E. ).

Att =t*,wehave A{(t*) = --- = A (t*) = E. The crossing ¢ * is regularif)t} (t*) #
0 forall 1 < j < k. For such a crossing, we set

k
deg(t*) = ) sgn(X;(1*)).
j=1
We say that the energy E is a regular energy if all crossings at E are regular. For

such an energy, we define the spectral flow of (h?) across E as the net number of
eigenvalues crossing £ downwards (see [2,38,45]):

SEh{ E.TY =~ ) deg(t*) € Z.

t*regular crossing

The main result of this section is the following. Recall that the index I was defined
in Definition 26, and that we consider operators on the right half-space.

Theorem 27. Let (a,b) C R be any interval in R \ o (hy, T1). Then
* almost any E in (a,b) is a regular energy for (h?, Z?);

* for any regular energy E in (a, b), we have

Sf(hE, E, TY) = Mas(¢ (E), €8, Ty) = T(¢f(E), TY — 1(¢%, TY).
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Proof. The first part comes from Sard’s lemma, and can be proved as in [20, Lemma
I11.18].

Fix E a regular energy, let t* be a crossing point so that dim Ker(hf* —F) =
k € N,and let A1, ..., Ax be the corresponding branches of eigenvalues. The idea of
the proof is to follow the two families of branches (¢, A,(¢)) and (¢, E), describing
respectively E‘ﬁ and £ (E).

For the first branch, let ¥1(¢), ..., ¥ () be a continuously differentiable family
of #¥-orthonormal eigenvectors in

o =T (eh

so that
B (6) = (D)5 (0), (11)
and let
uj = Tr(y;)
so that

CH(E) N €5, = Spanfuy (1), ..., uy (1)},

Forallt € (t* —¢,t* + ¢), we have (recall that hg C himx)

(i (1), (B e — A ()5 (1)) gz = 0.
Differentiating and evaluating at ¢t = ¢* gives
(@), (ke e — BV ) gt lo=ee + (Wi, (b o — E)@007)) g le=ee
+ (Wi 00 (B e — AV g 1=ev = 0

#

The first term vanishes with (11). For the second term, we put the operator (/7. . —

E) on the other side using the second Green’s identity, and we get
(Wi, (hﬁ*,max - E)(atlﬁj»,}gﬂt:t* = a)(ui, 8tuj)|t=t* = a)(ui, (atptﬂ*)uj)h:t*-

For the last equality, we introduced P,ﬁ the projection on Eﬁ, and used an equality
similar to (9). This gives our first identity

Sij Ay () = (Y, 3t(h§,max)‘ﬂj).;eﬁ|t=t* + o, 3 (PHU;) 1=

Remark 28. In the case where the domain Ef = (% is independent of ¢, we recover
the Hellmann—Feynman identity (v, 3,(h§ — X)) gt |s=e+ = 0.
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For the second branch, let (¢1(¢), . . ., ¢x (t)) be a smooth family of linearly inde-
pendent functions in 8,7 (E), and so that, at t = t*, ¢; (t*) = I+ (t*). We set

vj = Tr(¢;),
so,att = t*,
v (1) = u; (t™).
This time, we have, forall t € (t* — ¢, t* + &),
(@1 (1} — EDty) = 0.
Differentiating and evaluating at t = ¢* gives as before
(¢ at(hf*’max)ﬁbj) = —o(v;, 0;vj) = —w(v;i, (0, P;)v;) = —o(u;, (3, P )uj).
Gathering the two identities shows that
8ij M (1) = (i, 00 (PPYuj) i=ev — (i, (30 P Yuj) =

We recognize the sesquilinear form b defined in (7). Actually, we proved that

Sij A (") = be‘},ejf (i, uj).

This form is therefore diagonal in the (u1, ..., u;) basis, and its eigenvalues are the
)L} (t*). Counting the number of positive/negative )L} (t*), and summing over all regu-
lar crossings gives as wanted

St(ht, E.T') = —Mas(¢}, £} (E). T') = Mas(¢; (E). €5, T")
= I(H(E). TYH — (¢, TY). -

Remark 29. When considering the operators on the left half line, Green’s formula
has a minus sign (see equation (5)). The proof is therefore similar up to a sign change,
and we get

SE(hY T, E, TY) = —Mas(¢; (E), 8, Ty) = T(¢", T") — I(; (E).TY).

3.3. Bulk/edge index

Theorem 27 states that the spectral flow of the edge operator h? can be seen as the
sum of two contributions: the quantity I (¢; (E), T') which only depends on the bulk
operator, and the quantity 7 (Eﬁ, T') which only depends on the choice of boundary
conditions, so on the nature of the edge. Should we choose the same boundary condi-
tions for all operators hﬁ, as it is usually the case, this spectral flow would only depend
on the bulk quantity.
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So, although the spectral flow is related to edge modes, we emphasize that the
index I (¢ (E),T") really is a bulk quantity! This motivates the following definition.

Definition 30 (Bulk/edge index). We define the bulk/edge index of the family of bulk
operators (h;),;cr1 at energy E ¢ o (h;) as the spectral flow of its (right) Dirichlet
edge restriction:

I(he, E) = SE(h¥ 5, E.TY).

Note that we also have I (h;, E) = Mas({] (E),{p,T') = I(¢](E), T") defined
in Definition 26. However, our definition of bulk/edge index does no rely on the notion
of winding number, as was the case for I (£, (E), T'). This definition will therefore
works in the infinite-dimensional PDE case, where there is no notion of winding num-
ber.

Lemma 31. When considering the left Dirichlet edge restriction, we have
I(h E) = —St(hE, E.TY) = I(6; (E), TY).
Proof. Since E ¢ o(h,) forallt € T!, Lemma 16 implies that
(HE)N L (E) = {0} forallt e T!.
So, the Lagrangian planes £; (E) and £; (E) never cross. In particular,
Mas (¢ (E), €7 (E), T') = 0,

and therefore
I(f(E), T") = I((; (E). T").

The proof then follows from the fact that I (h;, E) = I({; (E), T') and Remark 29.
[

In Remark 21, we linked the unitary U, (E) to the reflection coefficient R, (k)
with k = +/E. Since they have similar Cayley transform (up to a multiplicative pos-
itive constant), the winding of ¢ — U (E) equals the one of ¢ — R, (k). So, our
bulk/edge index is also the winding of the (determinant of the) reflection coefficient
R, (k). The equality

Winding(R, (k), T") = Sf(hf . E,T")

can be interpreted as a weak (or integrated) form of Levinson’s Theorem [41, The-
orem XI1.59] (see also [22, Theorem 6.11]).
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3.4. Applications

Let us give two applications of the previous theory. The first one shows that a spec-
tral flow must appear when modifying Robin boundary conditions. The second one
concerns the case of junctions between two Hill’s operators.

3.4.1. Robin boundary conditions. In the case n = 1, consider a fixed (independent
of ¢) bounded potential V;(x) = V(x). We consider the self-adjoint Robin operators
h? = —03%, + V on L?(R™), with the z-dependent domain

Dy = {y € HA(R¥):sin()y(0) — cos(r1)y(0) = O},

We have D;+1 = Dy, 50 H f is 1-periodic in . For ¢ = 0, we recover Dirichlet bound-

ary conditions, and for ¢ = % we recover Neumann boundary conditions, so Robin
boundary conditions interpolates between these two cases. The Lagrangian plane of

Hp = C x C corresponding to the extension Dy is

Zf = Vectc c9s(nt) CcCxC.
sin(rrt)

It is of the form E?{(@x, IMx):x € C} for ® = cos(xrt) and I1 = sin(rt). So, by the
results of Example 15, the corresponding unitary U(¢) € U(1) ~ S!,is

cos(wt) +isin(nt) 5,
cos(rt) —isin(rt)

U(t) =

We see that U(¢) winds once positively around S! as ¢ runs through T'!, that is,
I T = 1.
Using Theorem 27, and the fact that E:r (E) is independent of ¢, we obtain
St(h!, E,TY) = —1.

We deduce that there is a spectral flow of exactly 1 eigenvalue going upwards in all
spectral gaps of /. This includes the lower gap (—oo, info (h)).

3.4.2. Junction between two materials. We now consider a junction between a left
and a right potentials V7, ; and Vg ;, where ¢t — V1, ; and ¢ — Vg ; are two periodic
continuously differentiable families of potentials in L*°(R, §,). Take y a bounded
switch function, satisfying, for some X > 0,

x(x) =1,forall x < —X

and
x(x) =0 forallx > X.
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We consider the domain wall Hill’s operators
hf == =07, + V. (x) x(x) 4+ Ve (x)(1 = x(x)).

Let E € R be in the resolvent set of the bulk operators hg; and hy ; forall 1 € T!.
Again, some eigenvalues of ¥ might cross E as ¢ goes from 0 to 1, and we can define
a corresponding spectral flow Sf(h¥, E, T1).

Theorem 32 (Junctions between two channels). With the previous notation, let
(a,b) CR\ {o(hr:, THu o(hr:, ThHy.

Then,
» almostany E € (a, b) is a regular energy for h¥;

* for any such regular energy, we have
Sf(hY,E,T') = I(hrs E) — I(hp 4, E).
In particular, this spectral flow is independent of the switch y.
Proof. Let us denote by Zit (x0, E) the Lagrangian planes obtained with the potential
V() 1= Ve () x(x) + Ve, (x)(1 = x(x)),
and when the real line R is cut at the location xo € R. By Lemma 16, we have
dimKer(h* — E) = dim(ﬁzt(xo, E)n K;’t(xo, E)) forall xg € R.
Adapting the proof of Theorem 27 shows that
Sf(hY, E,T') = Mas(ﬁz,(xo, E), C, (x0, E), T
= I({,(x0. E).T") — I(£,,(x0. E). T").

Since V is uniformly (hence locally) bounded, all Cauchy solutions to —y" + Vi =
E+ are well defined and continuously differentiable on the whole line R. This implies
that the maps xo Eit(xo, E) are also continuous. In particular, since the index
depends only on the homotopy class of the loops, it is independent of x¢ € R. So

I(K;t(xO,E),Tl) = I(K;,(X, E), TH = I(E;’I(X, E),TY
= I(Z;,t(E)’ T! = I(h;,t’ E).
For the middle equality, we used that Z;’, (X, E) only involves the half space {x > X},

where we have V;*(x) = Vg (x). The proof for the left-hand side is similar, and the
result follows from our definition of the bulk/edge index and Lemma 31. ]
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4. The Schrodinger case

In this section, we focus on the PDE Schrodinger case. We chose to put this section
separately, since it introduces some technical details, and since the results are slightly
different.

4.1. Schrodinger operators on a tube
We consider systems defined on a d-dimensional cylinder of the form
Q:=RxT cR?,

where I' = (0, 1)1 is the (d — 1)-dimensional unit open square. A point in  is
denoted by x = (x,y) withx ¢ Randy € I'.

Let V: Q2 — R be a real-valued potential, which we assume to be bounded on 2.
We consider bulk Schrodinger operators H of the form

H:=—-A+V, actingon ¥ := L*(Q,C).

Again, we do not assume here that V' is periodic, but only that V' is bounded.
The operator H with core domain C§*(£2) is symmetric, and we have

Din = HA(2,C), and Dpax = HA(2.C).

This time, the bulk operator is not self-adjoint, and indeed, boundary conditions must
be chosen on the boundary of the tube 322 = R x dI".

4.1.1. The bulk Schriodinger operators. For the sake of simplicity, we consider
periodic boundary conditions. Our results hold for other boundary conditions, such as
Dirichlet or Neumann, but the construction of the domains are a bit more technical.
So, we rather see I" as the torus

[ :=T4!

so that
Q:=Rx T4,

With this definition, 2 has no boundaries: 02 = @, and we have Dyin = Dmax =
H?(2, C). The bulk operator H is now self-adjoint (corresponding to the periodic
self-adjoint extension).

Fork € Z4~!, we introduce the k-th Fourier mode ey (y) := ¢2¥Y . The elements
in # can be written in the partial Fourier form

fey) =) feexy), with [1f15 =D Il fljog <00 (12)

kezd—1 kezd4—1
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A function f € J# is in the bulk domain O := H?*(Q,C) if |[(—=A) f |5 < oo as
well, where

I=2)F 115 = D UA 2@y + @Ik Al 2gy) < 0
kezd—!

4.1.2. Edge Schrodinger operators on a tube. We now define the edge Schrodinger
operator

HY :=—A+V acting on L*(Q", C), where Q1 := R™ x T4,

This operator acts on the right half tube. We sometime write H* T for H* and define
H*¥%~ for the corresponding operator on the left half tube Q~ := R~ x T?~!. The
operator H* with core domain C§°(Q27) is symmetric, and we have

Df, = HA@*.C), and Dl =y € LAQ*,C): (A +V)y € LAR*.C),

max

where the expression (—A + V)Y must be understood in the distributional sense.
Again, we need to specify the boundary conditions at 9Q+ = {0} x T4,

We stress out that the inclusion H2(Q*,C) C {Oﬁlax is strict. This makes the PDE
setting more tedious to describe. In this section, we focus on domains D which are
included in H2(Q™, C) (this includes the Dirichlet and Neumann extensions). This
case is well suited to study junctions, and is much simpler than the general case (with
domains in !Dﬁmx). It can be studied as for the Hill’s case. We discuss the general
case of domains D* C :o};‘m later in Section 4.5. It is based on a regularized version
of Green’s identity, and is well suited to study half-systems. However, the general
setting is not appropriate to study junctions.

The key ingredient in the case D% ¢ H2(Q*, C) is the following.

Lemma 33. A function is in H*>(Q™, C) if and only if it is the restriction to Q% of
an element in the bulk domain © = H?*(Q, C).

Proof. This follows from the fact that there is an extension operator H2(QT) —
H?(2) which can be constructed with reflection operators, see e.g., [19, Theorem
7.25] or [36, Theorem 8.1]. These reflection operators keep the periodic properties in
the last (d — 1)-directions. [

4.2. Trace maps, and the boundary space #j

In order to express the second Green’s identity in this setting, we recall some basic
facts on the Dirichlet and Neumann trace operators.
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4.2.1. Boundary Sobolev-like spaces. Recall that I' = T4~ is the boundary of Q.
For s € R, we introduce the usual Hilbert spaces H*(I"), with inner product

(f.@)msay =Y, frgk(l + (4 [k])?),

kezd—1

where we introduced the Fourier coefficients

fi = / £(y)e? Y dy.
Td—l

We have L?(I") = H*=(y), and for s > 0, H~5(T") is the dual of H(I") for the
L2(T)-inner product. For s’ < s, we have HS(I") < H*'(I") with compact embed-
ding, and that H*(T") is dense in HS' ().

4.2.2. Dirichlet and Neumann trace operators. For v € C*®°(Q™), we introduce
the functions y 2 and y¥ v defined on T" by

GPYIy) =v(x =0yy), Ny)(y)=0y(x=0,y) forally eT.

Our definition differs from the usual one YNy = —d, (0, -), where the minus sign
comes from the outward normal direction of I' from the Q7 perspective. Our defini-
tion without the minus sign matches the one of the previous section. Finally, we define
the trace map

Tr(y) = Py vV o). (13)

It is classical that Tr can be extended as a bounded operator from H2(Q") to
H3/2(T") x H'/2(T") (see for instance [36, Theorem 8.3]). This suggests to introduce
the boundary space

J, = H3?>(T) x HY2(I).

The second Green'’s identity in the PDE case reads as follows.

Lemma 34 (Second Green’s formula). Forall ¢,y € H*>(Q),

(@ HE V) gor — (HEd W) ges = (P v¥ ) 2y — VN b v 2 W) L2

Introducing the symplectic form w on #}, defined by

o((f. 1), (g.8)) == (f. &2y — (. &) 2y forall (f, ), (g.8") € Hp,

the second Green’s identity takes the form

(@, HE V) gos — (HE 0 W) g8 = 0(Te(¢), Tr(y))  forall g,y € H2(Q).
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Remark 35. The symplectic Hilbert space (#}p, w) does not satisty Assumption A.
Introducing the map A: H'/2(T") — H?3/2(T") so that

(.82 = ([ Ag) g3 = (A* f.g) 1o forall f € HY*(T), g € H'*(T),

we have J = (_OA /})* ) but the operators A and A* are compact (hence J as well, and

J? #* —I g, ). In particular, we cannot consider the unitaries U nor U. Such situation,
called weak symplectic spaces, was studied in [8].

Lemma 36. The map Tr: (H*(Q7"), || - | g2) — Hp is well defined, continuous and
onto.

Proof. The fact that Tr is well defined and continuous follows from the continuity of
the trace maps. To prove that Tr is onto, one can adapt the proof of [36, Theorem 8.3].
We provide here an alternative short proof.

Let f € H¥2(I") and f' € HY?(I") with respective coefficients ( fi) and (f;).
Consider also a smooth cut-off function y(x) with y(x) =1for0<x <1/2, y(x)=0
forx > 2and [p4 2 =1.Weset yo = ., and, fork € Z471\ {0},

x(x) = x([k|x).

For all k, the function yx is smooth, compactly supported, with yx(x) = 1 for all
x < |k|/2. In addition, we have the scalings

1
/|xk|2=m, /Ixi(|2=|k|/|)(’|2, f|xi;|2=|k|3/ P
R+ R+ R+ R+ R+

We now consider the function ¥ defined on Q7 by

Wix.y) o= Y (fic + XA 1 (X)ex(y).

kezd4-1

The function ¥ is smooth with Tr(¥) = (f, f”). It remains to check that ¥ is in
H?(Q2™). We have for instance

=AW 00 < / S UAPKI Dl + AP + AP G

R+ kezd—!

2 3 2 2 2
S Y AP KP4 DAL S U 1m0 + 1 102
kezd—! kezd-1

where we used our previous scalings for yx. The L2—norms of the other derivatives
are controlled similarly. ]
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4.2.3. Self-adjointness and Lagrangian spaces. We now provide the counterparts
of our previous results in the Schrodinger case. First, we have the following result
(compare with Theorem 13).

Theorem 37. If D¥ C H2(Q™) is a domain so that (H,ﬁax, D¥) is self-adjoint, then
€ := Tr(D*) is a Lagrangian plane of Hp.

Proof. The proof follows the one of Theorem 13. First, the second Green’s identity
shows that

0= (y. H'¢) — (H*y., ¢) = o(Tr(y). Tr(¢)) forall ., ¢ € DF,

hence ¢ C £°. Conversely, if Yo € H?(Q™T) is such that Tr(v¢) € £°, then for all
¢ € D, we have

0 = o(Tr(Yo). Tr(9)) = (Yo, H¥¢) — (H o, ¢).

In particular, the map Ty,: ¢ > (¥, H¥¢) = (H*q, ¢) is bounded, with || Ty, llop <
||Hﬁwo||3m. So, ¥ € (D*)* = D¥. This proves that £° C Tr(D¥) C ¢, hence £ = £°
is Lagrangian. |

Theorem 37 is a much weaker statement than Theorem 13, but is still enough for
our purpose (in practice, the self-adjoint extensions are given). There is no longer
a one-to-one correspondence between Lagrangian planes and self-adjoint extensions.
One problem is that, for £ C J;, although Tr~!(£) is included in H?(Q¥), its closure
for the graph norm Tr™!(£) may no longer be included in H2(Q1). We refer to [6,
Example 4.22] for an example of such a situation.

The problem of recovering a function ¥ € D from its boundary value Tr(V) is
a well-known problem, often called boundary value problem, which has been extens-
ively studied in the literature. The modern tool for this problem is the notion of bound-
ary triples [4,5]. In the terminology of the community, we have, in the Hill’s case, that

(Hy, := C2", TrP Tr") is an ordinary boundary triple, while in the Schrodinger case,
(Hp = H320Q) x HY2(3Q), TrP, TrV) is a quasi-boundary triple [6]. Below in
Section 4.5, we prove a one-to-one correspondence between all self-adjoint exten-
sions and Lagrangian planes of another symplectic Hilbert space of the form Jr’?;, =
H~12(T") x H'Y2(T"). Unfortunately, this construction uses a regularization of the
Neumann trace, introduced by Vishik [44] and Grubb [23], and it is not well suited
for the study of junctions, as discussed in Section 4.5.

If D% ¢ H?(QV) is a self-adjoint domain, and if % = Tr(D¥) is the corres-
ponding Lagrangian plane, we denote by (H¥, ¢#) the self-adjoint extensions of H#
corresponding to this Lagrangian plane. Not all £# C A(JH}) define a self-adjoint
domain. As in the finite-dimensional case, we define

ST(E) :=Ker(H** — E)n H*(Q%), and (F(E) :=Tr(ST(E)). (14)

max
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The counterpart of Lemma 16 is the following.

Lemma 38. For the bulk operator H, we have
dimKer(H — E) = dim({T(E) N L™ (E)) forall E € R.
In particular, E is eigenvalue of H if and only if (T (E) N £~ (E) # {0}.

Proof. If Y € D satisfies (H — E)y = 0, then, by Lemma 33, its restrictions ¢+ :=
I+ arein H?(Q%). In addition, they satisfy (Hflax —E)yW*=0,s0y* e ST(E).
Taking traces shows that Tr* (¥ ) = Tr— (v™) € £H(E) N L~ (E).

Conversely, let y* € §*(E) be such that Tr™ (1) = Tr~ (¥ 7), and consider the
function i € J# defined by

Yt (x,y) forx >0,

V)= {w_(x,y) for x < 0.

It is unclear yet that v is regular enough (i.e., belongs to D = H?(R)). For f € D,
we have

(W, (H=E)f)se = (¥ Ip+(H — E) f)gor + (¥, Ir—(H — E) f ) 3¢~
= (W (HEE = E) D) g + (07 (HE = E) )
= o(Tr (¥ ), Tr" (f ) —(Tr (y7), Tr (f 7)) = 0.
So, Ty: f = (Y.Hf )3 = E(Y, f) is bounded on O. We first deduce that v is in

the domain D* = D. In addition, we have (H — E)y¥ = 0. So, ¥ is an eigenvector
for the eigenvalue E. ]

Theorem 39. Forall E € R\ o(H), the sets {¥(E) are Lagrangian planes of ¥y,
and

Hy, =LY (E)® L (E).
If E € o(H), the planes {*(E) may not be Lagrangian (see Remark 19).

Proof. We first claim that for any E € R, £*(E) are isotropic spaces. Let ¢, ¥ €
ST (E). By Green’s identity, we have

o(Tr(§). Tr(W)) = (¢, HE o V) gor — (HE V) gor = (0. EV) gor — (Ed.Y) gz = 0.

In the last equality, we used that E is real-valued. This proves that £ (E) C £T(E)°.
Similarly, we have £~ (E) C £~ (E)°.
We have (recall that # = L?(2,C"))

H=H"®IH", where H*E :={y € H:y =0onQF}.
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Let £ € R\ o(H), so that the bulk operator (H — FE) is invertible with
D=(H-E)y'x.
This gives a decomposition
D=DTe D", DT:=H-E)'H*,

and, since Tr is onto,
Hy = Tr(DT) + Tr(D7).

The elements ¥ € DT are such that (~A + V — E)y¥ = f, for some f € J with
support contained in 7. In particular, the restriction of ¥ to Q~, denoted by ¥,
is in H?(Q27) and satisfies (Hf{a; — E)Y~ =0o0nR™. So, ¥y~ € §7(E). Taking
boundary traces shows that

Tr(DT) C L7(E), and,similarly, Tr(D") C LT(E).
In particular, we have #;, = {1 (E) + £~ (E). We conclude with Lemma 5. [

Finally, the counterpart of Lemma 20 is the following. We skip the proof for the
sake of brevity.

Lemma40. If E € R\ o(H), then,
dimKer(H* — E) = dim({T(E) N £%).

In the finite-dimensional Hill’s case, for all extensions (h**, £%) and (h%~, £¥)
with the same Lagrangian plane £#, we have

O—ess(h) = O—ess(hﬁ’+) ) Uess(hﬁ’_)-

This is because boundary conditions always induce finite-dimensional (hence com-
pact) perturbations of the resolvents. In the Schrodinger case, we only have the inclu-
sion

Oess(H) C Oess(HH ) U o (HF),

which comes from the fact that Weyl sequences for H must escape to +00. How-
ever, the inclusion may be strict: in the infinite-dimensional case, there are self-
adjoint extensions of H* which can create essential spectrum. The corresponding
Weyl sequences localize near the cut. We give such an example below in Remark 49.

This makes bulk-boundary correspondence more subtle in the Schrodinger case:
different self-adjoint extensions may give different results. For the usual extensions
however, we prove that the result are independent of the choice (see the proof of
Theorem 44 below).
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4.2.4. Families of Schrodinger operators. We consider a family of Schrédinger
operators of the form

H; :=—A+V;, actingon #.

We assume that ¢ — V; is continuously differentiable from T to L (2, R). We also
consider a family of (self-adjoint extensions of) edge operators ( H. ﬁ, e’;‘).

Let E € R\ o(H;). We say that E is a regular energy if, for all t € T, the energy
E is not in the essential spectrum of H ,ﬁ . In particular, this implies

dimKer(H! — E) = dim(¢; (E) N £}) < o0.

In addition, we require all corresponding crossings to be regular.

Noticing that the definition of the Maslov index in Section 3.1 does not require
Assumption A, we can apply the first part of the proof of Theorem 27 to the Schro-
dinger case, and we obtain the following.

Theorem 41. Let (a,b) C R be such that, forallt € T?!,
(@.b)No(H) =0 and (a.b)Noes(H') = 0.

Then,
* almostany E € (a,b) is a regular energy;

* for such a regular energy, we have
Sf(H! E.T') = Mas(¢} (E). €4, T").

The proof is similar to the one of Theorem 27, by noticing that all crossings
involve finite-dimensional linear spaces. Since the symplectic space (K3, w) does
not satisfy Assumption A, it is unclear whether one can interpret this last index as a
spectral flow of unitaries. We postpone this question to Section 4.5 below.

4.3. Junctions for Schriodinger operators

In Section 3.4.2, we proved that the spectral flow for the junctions of two Hill’s oper-
ators is the difference between a right and a left contributions (the index splits). We
prove a similar result for Schrodinger operators.

4.3.1. Bulk/edge index. First we define our bulk/edge index. As in Definition 30, we
define it as the spectral flow for the corresponding Dirichlet edge operator.

Definition 42 (Bulk/edge index -bis). We define the bulk/edge index of the family
of bulk operators (H;),ct1 at energy E ¢ o(H;) as the spectral flow of its (right)
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Dirichlet edge restriction:

I(H, E):=Sf(HS E.TY).

Let us prove that this definition indeed makes sense, and in particular that Dirichlet
boundary conditions does not create essential spectrum. We set Zﬁ) ={0} x H 172 ¢
A(Hp) the Lagrangian plane corresponding to Dirichlet boundary conditions (that is
with domain H?(Q") N Hy (QT)).

Theorem 43. For all E ¢ o(H,), the spectral flow Sf(Hf”;, E, Ty is well defined.
In addition, we have

I(H, E)=SH(H}S, E,TY) = Mas((E(E). 6, TY) = —Sf(H}, E. T,

Proof. Let H; p := —A + V; be the operator acting on L?(2) ~ L2(Q~ U Q™), but
with Dirichlet boundary conditions at {0} x I'. Since V; is uniformly bounded, the
operators H; and H; p are uniformly bounded from below. Consider X € R such that
¥ < inf info(H;) and X < inf info(Hp,).
teT! teT!
Weset R, := (H; — X) ! and R:p:=(H;p— ¥)~1, which are both bounded oper-
ators. It is a standard result (see for instance [41, Theorem XI1.79] or [10]) that, for
some m € N, R}" — R;’f p is a compact (even trace-class) operator. In particular, for

allt € T!, we have
Uess(Ht) = Uess(Ht,D)-

Let (a, b) denote an essential gap of these operators, and let £ € (a, b) be a regular
energy for both operators. We see that a branch of eigenvalues of H; crosses the
energy E downwards if and only if a branch of eigenvalues of (H; — X)™™ crosses
(E — X)™™ upwards. So, we have

Sf(H;,E,T') = —Sf(R", (X — E)™", T")
and similarly for H; p. Since E ¢ o(H;), we have Sf(H,;, E, T!) = 0. Introducing
RY*(s) := Re +s(Ry'p — RY"),

we see that s = R} (s) is a continuous family of operators connecting R;" and R}"p,.
Since for all s € [0, 1], R}"(s) is a compact perturbation of R;, the essential gap does
not close as s varies. We deduce that the spectral flow of ¢ — R} (s) is independent
of s (see for instance [38, Proposition 3] or [21, Lemma 4]). So

SF(R™, (S — E)™, T') = S{(R"p. (S — E) ™, T"),
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which gives
0= Sf(H,, E,T') = Sf(H, p. E, T").

The operator H; p decouples the left and the right side, so E is an eigenvalue of H; p
if and only if it is an eigenvalue of either H; oy "p or H f - Actually, we have

St(Hp,. E.T') = Sf(HET. E.TY) + St(HE, E. T,
and the result follows. [ ]

4.3.2. Junction case. Let us consider two families of potentials V7, ; and Vg ;, con-
tinuously differentiable from T! to L*°(R2). For y: Q — [0, 1] a bounded switch
function with y(x,y) = 1 forx < —X and y(x,y) = 0 for x > X, we set

HY = —A+VX(x), with VX :=Vp 0+ Vg:(1—y).

As in Section 3.4.2, H) models a junction between a left and right potential.

We denote by Hy ; and Hp ; the corresponding left and right Hamiltonians. Let
E € R be in the resolvent set of both Hy ; and Hr, for all ¢ € T, so that the
Lagrangian planes FLEJ (E) and Kﬁ’t(E ) are well defined.

Theorem 44 (Junctions in the Schrodinger case). Let (a,b) C R be such that, for all
teTl,
(a,b)N (o (Hy,r) Uo(He L)) = 0.

Then, for all E € (a,b), we have
ST(HX,E,T') = Mas({ }(E), £ (E),T") = I(Hg,, E) — I(HL 4, E).
This number is independent of y and of E in the gap.

Proof. We first prove the result for yo(x) = 1(x < 0). Reasoning as in the proof of
Theorem 43, we obtain

Sf(H[®, E.T") = St(H/},. E.T")
= SE(H[GFY B TY + SE(H[GH BT,

Noticing that A Xo’ﬂ + only depends on the right part of the potential, while H; Xo’ﬁ’
depends on the left part, together with our definition of the bulk/edge index, we get

Sf(H}°,E,T"Y = I(Hg . E) — I(Hp .. E).

For a general switch function y, the function y — y¢ is compactly supported. In
particular,
Htx - HtXO = Vet = VR,)(X — x0)-
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is a compact perturbation of H° for all # € T. Again, by robustness of the spectral
flow with respect to compact perturbation, we obtain that

Sf(H},E, T') = Sf(H}°, E, T"),
which is independent of the switch y. ]

Remark 45 (Neumann boundary condition). We defined the bulk/edge index
I(H;, E) as the spectral flow of the Dirichlet boundary conditions (denoted by fip
here)

I(H; E) = SE(H™ " E. T").

One can wonder what happens if one takes another (fixed) boundary condition, say
Neumann (denoted by fi5). By [41, Theorem XI.80], R} — R’]’\}’t is also compact for
some m > 0, where Ry; := (Hy; — )~ is defined as Rp, but with Neumann
boundary conditions. Following the proof of Theorem 44, we obtain

SE(HY, E,T') = SE(HEY™ E.TY) + S{(H}Y™ E. T,

Taking Hj ; independent of ¢, dropping the notation R for Hp;, and using The-
orem 44 shows that

St(H!N Y E. TY) = St(HP T E, TY).

In other words, the bulk/edge index defined with Neumann boundary conditions equals
the one with Dirichlet boundary conditions.

This reasoning can be generalized for other boundary conditions, but not all of
them (as was the case in the finite-dimensional case), since some extensions might
create essential spectrum, as we already mentioned.

4.4. Two-dimensional materials

We now explain how to extend our results for the important case of two-dimensional
materials. We write X = (x,y) € R%. Let V:R? — R be a Z2-periodic bounded poten-
tial, and let b: R? — R be a bounded Z2-periodic magnetic field. A two-dimensional
material with potential V' and under the magnetic field b perpendicular to the plane is
usually modelled by a Schrédinger operator of the form

H := (—iV + A(x))? + V(x) acting on L2(R?),

where the magnetic vector potential A = (A4, A>)T satisfies 0, Ar — 0,41 = b(x).
In the case where b only depends on the x-direction b(x) = b(x) (this is the case for
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constant magnetic fields for instance), we can choose the gauge
X
A =(0,Ax))T, with A(x) := / b(t)dt.
0

The operator H then takes the form
92, + (=idy + A(x))* + V(x).

Since the operator H commutes with Z-translations in the y-direction, one can per-
form a partial Bloch transform [40] in this direction. One obtains the operators

H, = =%, + (—idy 4+ A(x) + 271)® + V(x),

where k := 2xt corresponds to the Bloch quasi-momentum in the y-direction. The
operators H, are essentially self-adjoint on L?(R x T!, C), with domain H?(R x
T, C). When these operators are cut, we get the operators

HY = =92+ (—idy + A(x) 4+ 271)> + V(x), actingon L>(R* x T', C).

These operators are not essentially self-adjoint, and the minimal/maximal domains
are respectively given by

o(l)ltflll’l = ‘Dr?nn - HOZ(QJ’_) and ‘Dr?lax = ‘Dr?lax - HZ(QJ’_)’
independent of 7. Although the kinetic operator now depends on ¢, it only twists the
functions in the direction parallel to the cut. In particular, the second Green’s identity
in Lemma 34 still holds:

(b, H) 200y — (Hip. ¥) 2oty = o(Tr ¢, Tr ) forall ¢,y € Df,.,

with the same Tr map and the same @ symplectic form as in the previous section
(independent of ¢).

In panicular all previous results stated for the operators H; # also hold for the
operators H. ¥, There is a slight abuse of notation concerning the spectral flow: the
family ¢ — H, is not periodic but quasi-periodic, in the sense that H {+1 1s unitary
equivalent to H,:

H~ t+1 = S *H~ ¢S,

with the unitary S defined by

(S/)(x,y) =™ f(x,y).
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A similar relation holds for the Dirichlet edge operator Ht D> smce the Dirichlet
domain is invariant by the S operator. The spectra o(H ¢) and o(H p) are still 1-peri-
odic, and we can again define the spectral flow of such quasi-periodic family of
operators as the number of eigenvalues going downwards in a gap. This allows to
define the bulk/edge index for the operators H;.

Let us consider a junction between two such materials, of the form

ngnct — _a)zcx + (_iay +Ajunct(x) —|—27Tl)2 4 Vjunct(x)7
where A1""(x) and V*"{(x) are so that

(AL VE), x < =X,

(Ajunct’ Vjunct) —
(AR VB x> X,

for some X > 0. Defining HL/R =02, + (—idy + AL R(x) 4+ 271)? + VL/R(x),
we can prove as before that, for all £ ¢ (O’(HtL) N O’(HtR)), we have

St(HM™ E, TY = I(HR, E)— I(HL . E).

We do not repeat the proof, as it is similar to the one of Theorem 44.

Example 46 (Landau Hamiltonian). Assume V' = 0, and b € R* is constant. We are
studying the Landau Hamiltonian

= —02, + (=idy + bx)* acting on L*(R?).

It is well known that H has a discrete (essential) spectrum o (H) = |b|(2Ng + 1).
Applying a Bloch transform (instead of the usual Fourier transform) in the y-direction
gives the operators

Hy = =02, + (=10, + bx + 271)> = =02, + ( idy + b(x + %)) :

which are all unitarily equivalent to H,—, up to the translation x — x + %. We
recognize a charge pumping phenomenon [42], where the system undergoes a trans-
lation in the x—direction of —27” as t goes fromOto 1. Let E € R\ o(H), and let

Ny (E) be the number of Landau bands below E, thatis N, (E) = fl (Ilg_l —1)]. Each

Landau band has a constant electronic density 7 15l 'in the sense that there are ‘b‘ elec-
trons per unit cell in each Landau band. So, as t goes from O to 1, the total charge
which is pumped below E is %Nb(E) X (—27”) = —sign(b)Np(E). Reasoning as

in [21,26,27], we deduce that

I(H,, E) = —sign(b)Ny(E) = —Slgn(b)’r (5' 1)}
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Let H* be the Landau operator on the half space L2(R* x R) with Dirichlet (or Neu-
mann) boundary condition at x = 0. The previous result shows that, for the family H ﬁ,
there is a spectral flow of N (E) eigenvalues going upwards (if » > 0) or downwards
(if b < 0) in the gap containing E, as ¢ goes from O to 1. In particular, all “bulk” gaps
of H* are filled with “edge” spectrum, a well-known result [12].

Let V(x, y) be a bounded external potential, Z-periodic in the y variable. For
s > 0, we denote by

H(s) := —02 4 (—idy + bx)* + sV(x, y).

This operator still commutes with Z-translations in the y-variable, so we can apply a
partial Bloch transform. For 59 > 0 small enough, E is in the resolvent set of H (s) for
all s € [0, s¢]. So, I (IZ (s), E) is independent of s (see proof of Theorem 43 above),
and I(E(S), E) = —sign(b)Np(E) as well, for all s € [0, so].

It would be interesting to relate our bulk/edge index I (FI ¢» E) to a bulk index of
the operator H (for instance to a Chern number or Chern marker), in the general case.

4.5. General self-adjoint extensions

In this section, we introduce another symplectic boundary space (37;,, @) and another
trace map Tr, which allows to treat the general case of self-adjoint extensions of Hnﬁnn
with domains D¥ C !Oﬁlax (not necessarily included in H?(QT)).

The main idea of the section is to use a Green’s identity involving a regularized
Neumann trace. This was first introduced by Vishik [44] and Grubb [23]. We skip
most of the proofs of this section, and refer to the monograph [4] for details. Similar
ideas have been used in the context of elliptic operators in [13] (see also [14, 15]).

4.5.1. The regularized Green’s formula. Recall that

D =y e L2(QT):(=A + V)y € L2(QH)).

max

For any E € R, we introduce the null space
S :=Ker(Df  —E)={y € D} :(-A+ V)Y = Ey).

The space S introduced in (14) is Sg = Sg N H2(Q™T).

Let H lﬁ) be the Dirichlet extension of (—A + V) on L2(QV), that is with domain
!DﬁD =H*(QT)NHj(QT),andlet TR\ U(Hﬁ) be a fixed energy in the resolvent
set of Hg. For v € fl)ﬁmx, we set

Yp = (Hj — %) (H]

max

- )y € HX(QT) N Hy(Q7F),
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and
Vzi= ¥ —¥p = (I - (Hj — D) (Hi — DHV.
By definition, we have the decomposition ¥ = ¥p + ¥x. In addition, we have
(Hjxi]ax - E)WE = 07
hence ¥y € §>5 This gives a decomposition
‘@glaxzi)ﬁD—i_g’ Vv =vYp + ¥s.

For Y = ¥p 4+ ¥x a smooth function, we define the regularized trace-map

Tr(y) == (YPv. vy yp).

The term “regularized” comes from the fact that only the yp part appears in the
Neumann trace. Since y?yp = 0, the Dirichlet trace is also y Py = yPyy.

Lemma 47. The map Tr can be extended as a bounded map from :oﬁm (equipped
with the graph norm) to the boundary space

J, = H™Y2(T) x HY2(I).

This extension Tr: Jl)ﬁlax — J?;, is surjective. The following Green’s identity holds: for
all ¢,y € {Oﬁlax, we have

(¢’Hnﬁlaxw> - (Hnﬁmx‘ﬁﬂ/f) = (VD¢vVN1//D>H—1/2,H1/2 - <VN¢D7VD1//>H1/2,H—1/2-

We refer to [4, Theorem 8.4.1] for the proof. Here, (-, ) y-1/2 g1/2 denotes the
duality product.
We introduce the symplectic form @: #p x Hp — C defined by

o((f. f1). (g.8")
=L gV u—12mi2 — [ &2 g2 foral (f. f').(g.8) € Hp.

One can check that (J?;;, @) is a symplectic Hilbert space. With this, the Green’s
identity takes the form

(@, H W) — (HE ¢, ¥) = &(Ti(¢), Te(v)) forall ¢,y € DF,.

Unlike the previous Tr map in (13), the Tr map now depends on the operator H,’flax
and on the choice of X.
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4.5.2. General self-adjoint extensions. Since the trace map Tr is continuous and
onto, one can repeat the arguments of Theorem 13. We obtain the following.

Theorem 48. Let D¥ be a domain satisfying !Dim C D C Dl andlet £ := Tr(D%).

Then the adjoint domain is (D¥)* = Tr—1(£°).
In particular, (Hliax, DY) is a self-adjoint extension if and only if

there exists £ € A(J?;,) so that D¥ = Tr~ ' (0).

This gives a one-to-one correspondence between all self-adjoint extensions of
(—A + V) on the half-tube L2(Q"), and the Lagrangian planes of (J?;,, D).

The symplectic space (J?;,, ) satisfies Assumption B (hence Assumption A).
Indeed, let V: H'/2(I'") — H~/2(I") be the map such that for all f € H'/?(I") and
all g € H~Y/2(I"), we have

(L& mizm—12 =LV &z = (VI & u-1/2. (15)

The existence of such map V' comes from Riesz’ Lemma, and we can check that V' is
unitary. This time, we have J = (_?,* K), \@ich satisfies Assumption B.

In particular, the Lagrangian planes of (#, @) are in one-to-one correspondence
with the unitaries U of H~1/2(T") with

E= ()7 + (L) rir el

As the Hilbert space H~'/?(T") is unitary equivalent to L2(I") and to H'/2(T"), one
has similar one-to-one correspondence replacing H~/2(I") by L2(I") or H/?(I").

4.5.3. The planes { (E). Let us now focus on the boundary traces of

Sg = Ker(H! — E).

ax
For E € R, we introduce the planes
UE) :=Tr(SE) C Hp.

Remark 49. The plane £p := {0} x H'/?(T") is Lagrangian, and corresponds to the
Dirichlet extension. However, the plane {5 := H~'/?(T") x {0} is Lagrangian, but
does not correspond to the Neumann extension. It rather corresponds to E(E = ).
The self-adjoint extension corresponding to the Lagrangian plane {5 has X as an
eigenvalue of infinite multiplicities (hence X is in its essential spectrum).

The counterpart of Theorem 39 is the following.

Theorem 50. Forall E € R\ oess(Hlﬁ)), E(E) is a Lagrangian plane of (%, D).
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Unlike Theorem 39, only the essential spectrum of H lﬁ) matters. This result is
independent of the value of V' on the left side Q27 (see Remark 18).
Proof. First, it is clear that {(E)is isotropic (see the proof of Theorem 39).

Case 1: E is in the resolvent set. Let us first prove the result for £ € R \ o (H g).
In this case, the proof follows the lines of [4, Proposition 8.4.4].

Let (f, /') € £(E), and let Y € Sg be such that Tr(yg) = (f, /). Write Y5 =
Yp + ¥y with yp € i)f) and Yy € :9; Applying (H,t]fwIX — F) shows that

0= (H) —E)Yp+ (S—E)Ys, hence yp = (E—S)(H)—E) 'ys.

So
vE = (4 (E—S)(H) - By DHys.

In particular, we have
f=vP¥e=yPys. and [ =yNyp = (E-D)yN(H - E) 'y, (16)
Recall that Tt is bijective from Dfhy to H~/2(T") x H'/2(T"), and set
Gs(f) =T '(£.0).

By decomposmg Gx(f) as Gs(f) = gp + gz, one must have yV (gp) = 0 with
gp € {O . This implies gp = 0 by the unique continuation pr1nc1ple so Gx(f) =
gz € Sx. In other words, Gy, is the map from H~1/2(T") to Sz so that y2 (Gx f) = f
(this map is called the y-field).

The first equation of (16) reads s = Gy f, and the second shows that

f'=M(E)f, with M(E):=(E-3)yN(H}, - E)"'Gs.

The map M(E): H=V/2(I") — H/2(T") is called the Weyl M -function.
Conversely, let f € H~Y/2(T"), and set f’ = M(E) f. By defining

vE = (1+ (E-Z)(H) - E)y )Gs f,

we can check that Y g € Sg and Tr(YE) = (f, f7). So, (f. /') € £(E). This proves
that
UE) = (L. M(E) [): [ € H'2(D)},
that is ZN(E) is the graph of the map M(E).
The map M (E) is a bounded operator from H~/2(I") to H'/2(T"). The fact that
1 (E) is isotropic is equivalent to the fact that M (E) is symmetric, in the sense

(fM(E)g) 12172 = (M(E) f,g) 12 g—1/2 forall f,g € H V().
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Now, let (g, g’) € ({(E))°. Forall f € H™1/2(T), we have

0=a((f.M(E)[f).(s.8) = (/& u-1/2 112 = (M(E) f. &) ir1/2 5112
Comparing with the previous line, this implies
(f(&' = M(E)g))g-1/2, g1/ =0 forall f € H™VA(I).
hence g’ = M(E)g, and (g, g') € {(E). So, {(E) = (Z(E))O as wanted.

Case 2: E is an eigenvalue of H lﬂ). . We now prove the result when E is an isolated
eigenvalue of H Iﬁ) of finite multiplicity, that is £ € o(H g) \ Oess (H f)). This case is
novel to the best of our knowledge.

As before, we consider Vg € Sk and set Tr(ye) = (f, f'). We decompose Vg
as Vg = ¥p + ¥y, and we get again

(HY — E)yyp = (E— S)ys.

This time, the operator (H g — E) is non-invertible. We consider the decomposition
L?*(QF) = K @ Kt with K := Ker(H]ﬁ) — E). We deduce first that ¥y € K+, and
then that

¥p = (E=S)(H}j - E)'¥s + Yk,

for some Yx € K. Here, (H f) — E)T denotes the pseudo-inverse of (H g —F). Itisa
bounded operator on L2(1), as E is an isolated eigenvalue. Taking boundary trace

shows that
f=vPy¥s and f'=ME)S+yNyk.
with
M(E) := (E - 2)yN(H} - E)'Gs.
‘We deduce that

UE) C{(/ M(E) f): f € yP Ky +{0.9yN ) vk € K}
Conversely, given f € y? K+ and yx € K, the function
Vs = (14 (E - I)(Hp — EY)Gx [ + &,

isin :S\E/ (we use here that (Hg — E)(Hlﬁ) —E)f = PIJ<-, where PIJ<- is the orthogonal
projection on K-+, and that Gy, f is in K1), and satisfies Tr(¥s) = (f, M(E) f) +
(0, YV Wk). So, we have the equality

UE) = {(fLM(E)f): f € YPK} +{0.yNyk): yx € K}
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From the isotropy of £( E), we deduce that the operator M (E) is symmetric on y? K+,

in the sense that

(L M(E)g)g—1/2, g2 = (M(E) f,8)g1/2,g—1/2 forall f, g € )/DKJ‘.

In addition, we also have
(fy"VK)g-12412 =0 forall f € yPK*, yx € K.

Since y P K+ is of codimension dim(K) in H~/2(I") while {y N yx: ¥k € K} is of
dimension dim(K), we deduce that if h € H'/2(T") satisfies ( f, hYg—1/2_g1/2 = 0 for
all f € yPKL, thenh = yNyg for some Yg € K.

Let us finally prove that E(E) is Lagrangian. Let (g, g’) € (E(E))°, and let Y, €
Dhx be such that Tr(yg) = (g, ¢'). We write ¥y = Vg + Vi with Yx = Pgig.
Taking Dirichlet trace shows that g = wag = )/DWIJ{- e yPKLt Weseth =g —
M(E)g. We have, forall f € yP KL,

0=a((f,M(E)f),(g.g)
= (. g/>H—1/2,H1/2 —(M(E) f. g)Hl/Z,H—l/2
=(f,8 —M(E)g)y-1/2, 51/
= (f M) u-1/2 172

We deduce that h = )/DWk for some Y3 € K, hence g’ = M(E)g + )/DW}{. So,
(g.g') € {(E), and ({(E))° = {(E) is Lagrangian. [

4.5.4. Concluding remarks. The use of the boundary trace Jz is suitable to study
Schrédinger operators on the half-tubes Q or Q. Indeed, one can detect that E is
an eigenvalue for a general self-extension (H*, D¥) as the crossing of the Lagrangian
planes { (E) and £¥ in 37;; In addition, given a family of self-adjoint operators para-
metrized by E?, one can compute the spectral flow of this family as the Maslov index
Mas(£(E), Eﬁ, T1). Since (:77;;, @) satisfies Assumption B (hence Assumption A), this
can be done using unitaries.

This setting is however not suitable to study the junction case, or more gener-
ally, to study operators on the whole tube 2. The reason is the following. Let us
consider the corresponding objects on the left tube 27. The trace operators Tr~ and
Trt depend on the left and right operators H f)’_ and H g’ + respectively. In particular,
they are unrelated! There is no analogue to Lemma 38 in this setting: the crossing
of {1 (E) and a (E) does not imply that E is an eigenvalue of the bulk operator H.
For instance, for E = 3, we have £+(Z) = {~(Z) = H~Y2(T") x {0}, but ¥ can be
in the resolvent set of H. This is the reason why we chose to work in the H?2(Q¥)
setting, and to use the trace operator Tr.
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