
J. Spectr. Theory 12 (2022), 1109–1153

DOI 10.4171/JST/415

© 2023 European Mathematical Society

Published by EMS Press

This work is licensed under a CC BY 4.0 license

On spatial conditioning of the spectrum

of discrete Random Schrödinger operators

Pierre Yves Gaudreau Lamarre, Promit Ghosal, and Yuchen Liao

Abstract. Consider a random Schrödinger-type operator of the form H WD �HX C V C � act-

ing on a general graph G D .V; E/, where HX is the generator of a Markov process X on G,

V is a deterministic potential with sufficient growth (so that H has a purely discrete spectrum),

and � is a random noise with at-most-exponential tails. We prove that the eigenvalue point

process of H is number rigid in the sense of Ghosh and Peres (2017); that is, the number of

eigenvalues in any bounded domain B � C is determined by the configuration of eigenvalues

outside of B . Our general setting allows to treat cases where X could be non-symmetric (hence

H is non-self-adjoint) and � has long-range dependence. Our strategy of proof consists of con-

trolling the variance of the trace of the semigroup e�tH using the Feynman–Kac formula.

1. Introduction

Let G D .V; E/ be a countably infinite connected graph with uniformly bounded

degrees and a distinguished vertex 0 2 V, which we call the root. For example, G

could be the integer lattice Zd , any semiregular tessellation/honeycomb of Rd that

includes the origin, or a much more general graph.

In this paper, we are interested in the spectral theory of random Schrödinger-type

operators of the form

Hf .v/ D �HXf .v/ C .V .v/ C �.v//f .v/; v 2 V; f WV ! R;

where we assume that

1. HX is the infinitesimal generator of some continuous-time Markov process X

on G (which need not be symmetric);

2. �WV ! R is a random noise (which may have long-range dependence);
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3. V WV ! R [ ¹1º is a deterministic potential with sufficient growth at infin-

ity (as measured by the size of V.v/ as v grows farther away from the root),

ensuring that H has a purely discrete spectrum.

More specifically, we are interested in studying the spatial conditioning of the spec-

trum of H , i.e., understanding the random configuration of the eigenvalues of H in

some domain B � C conditional on the configuration of eigenvalues outside of B .

As a first step in this direction, we establish that under general assumptions on HX ,

� , and V , the spectrum of H is number rigid in the sense of Ghosh and Peres [25];

that is, the number of eigenvalues of H in bounded domains B � C is a measurable

function of the configuration of the eigenvalues of H outside B (we point to Defini-

tion 3.3 for a precise definition). To the best of our knowledge, ours is the first work to

study the occurrence of such a phenomenon in the spectrum of random Schrödinger

operators acting on discrete spaces.

The spectral theory of differential operators (including non-self-adjoint operators;

e.g., [1, 6, 12–14, 18, 27, 32, 35]) is among the most prominent research programs in

mathematical physics; see, for instance, [26,42]. In particular, starting from the pion-

eering work of Anderson [4], the study of Schödinger operators perturbed by irregular

noise has attracted a lot of attention; we refer to [3,11] for general introductions to the

subject. A particularly active program in this direction is the work on Anderson loc-

alization, which concerns the appearance of pure point spectrum and eigenfunction

decay; see the survey articles [28, 31, 41] for more details.

In contrast to localization and similar questions, in this paper we investigate the

transport of spectral information from one region to another, whereby observing the

configuration of the eigenvalues of H in some domain D � C allows to recover

nontrivial information about the spectrum in the complement of D. Such questions of

spatial conditioning in general point processes have long been of interest due to their

natural applications in mathematics and physics; see, e.g., [5,29]. In recent years, there

has been a renewed interest in such investigations coming from the seminal work of

Ghosh and Peres [25] on rigidity and tolerance, culminating in a now active field of

research (e.g., [7–10, 20–23, 37]; see also [2]). In [34], we studied the occurrence of

number rigidity in the spectrum of a class of random Schrödinger operators on one-

dimensional continuous space. In this paper, we study a similar problem for discrete

random Schrödinger operators.

1.1. Organization

In the remainder of this introduction, we provide an outline of our main results and

proof strategy, we compare the results in this paper to previous investigations in a

similar vein, and we discuss a few natural open questions raised by our work.
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In Section 2, we provide a high-level outline of the proof of our main results.

We take this opportunity to explain how our technical assumptions arise from our

computations. In Section 3, we state our assumptions and main results in full details,

namely, Assumptions 3.8 and 3.12 and Theorems 3.16, 3.17, and 3.18. Then, we prove

Theorem 3.16 in Section 4, we prove Theorem 3.17 in Sections 5 and 6, and we prove

Theorem 3.18 in Section 7.

1.2. Outline of main results

Let d denote the graph distance on G. For every v 2 V, we use cn.v/, n � 0, to denote

the coordination sequence of v in G; that is, for every n 2 N, cn.v/ is the number of

vertices u 2 V such that d.u; v/ D n. Stated informally, our main result is as follows:

Theorem 1.1 (informal statement). Suppose that there exists d � 1 such that

sup
v2V

cn.v/ D O.nd�1/ as n ! 1: (1.1)

Under mild technical assumptions on the Markov process X and the noise � , there

exists a constant d=2 � ˛ � d (which, apart from d , depends on the the range of the

covariance in �) such that if V.v/ grows faster than d.0; v/˛ as d.0; v/ ! 1, then

the eigenvalue point process of H is number rigid.

See Theorems 3.16 and 3.17 for a formal statement. Our technical assumptions

are stated in Assumptions 3.8 and 3.12; roughly speaking, our assumptions are that

1. the jump rates of X (which may be site-dependent) are uniformly bounded;

2. the tails of � are not worse than exponential.

In particular, our assumptions allow for X to be non-symmetric (hence, the oper-

ator H need not be self-adjoint) and for � to have a variety of covariance structures,

including long-range dependence.

Remark 1.2. The constant d in (1.1), which quantifies the growth rate of the number

of vertices, can be thought of as the dimension of G (or, at least, an upper bound of

the dimension). To illustrate this, if G is for example Zd or a semiregular tessellation

of Rd , then it is easy to see that cnd�1 � cn.v/ � C nd�1 for some C; c > 0. More

generally, the constant d is closely related to the intrinsic dimension of G, which is

the minimal number k such that G can be embedded in Z
k . We refer to, e.g., [33, 36]

for more details.

Remark 1.3. In Theorem 3.18, we provide concrete examples showing that the

growth lower bound of d.0; v/˛ that we impose on V to get rigidity is the best gen-

eral sufficient condition that can be obtained with our proof method. The question of

whether or not this is actually necessary for rigidity is addressed in Section 1.4.1.
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1.3. Proof strategy and previous results

Our method to prove number rigidity follows the general scheme introduced by Ghosh

and Peres in [25]: Let X D
P

k2N
ı�k

be a point process on C. As per [25, The-

orem 6.1], for any bounded set B � C, if there exists a sequence of functions .fn/n2N

such that, as n ! 1,

1. fn ! 1 uniformly on B ,

2. the variance of the linear statistics
R

fn dX D
P

k2N
fn.�k/ vanish,

then X.B/ is measurable with respect to the configuration of X outside of B .

One of the main difficulties involved with carrying out the above program lies in

the computation of upper bounds for the variances of linear statistics VarŒ
R

f dX�. For

this reason, much of the previous literature on number rigidity exploits special proper-

ties that make the computations more manageable, such as determinantal/Pfaffian or

other integrable structure [7, 10, 20, 24, 25], translation invariance and hyperuniform-

ity [19, 23], and finite-dimensional approximations [39].

Among those works, the only result that is related to the spectrum of random

Schrödinger operators is the proof of rigidity of th Airy-2 point process in [7]. Thanks

to the work of Edelman, Ramírez, Rider, Sutton, and Virág [16, 38], this implies that

the spectrum of the stochastic Airy operator with parameter ˇ D 2 is number rigid.

Given that the method of proof in [7] relies crucially on special algebraic structure

only present in that one particular case, however, the result cannot be extended to

general Schrödinger operators.

More recently, in [34] we proposed to study number rigidity in the spectrum of

random Schrödinger operators using a new semigroup method: given that the expo-

nential functions en.z/ WD e�z=n converge uniformly to 1 on any bounded set as

n ! 1, in order to prove number rigidity of any point process, it suffices to prove

that VarŒ
R

en dX� ! 0 (though the requirement that
R

en dX is finite imposes strong

conditions on X). If X happens to be the eigenvalue point process of a random

Schrödinger operator H , then
R

en dX is the trace of the operator e�H=n. Thus, in

order to prove the number rigidity of the spectrum of any random Schrödinger oper-

ator H , it suffices to prove that

lim
t!0

VarŒTrŒe�tH �� D 0:

The reason why this is a particularly attractive strategy to prove number rigidity of

general random Schrödinger operators is that, thanks to the Feynman–Kac formula,

there exists an explicit probabilistic representation of the semigroup .e�tH /t>0 in

terms of elementary stochastic processes, making the variance VarŒTrŒe�tH �� amen-

able to computation.
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In [34], this strategy was used to prove number rigidity for a class of random

Schrödinger operators acting on one-dimensional continuous space (i.e., an interval

of the form I D .a;b/ with �1 � a < b � 1). In this paper, we apply the same meth-

odology to prove number rigidity for a general class of discrete random Schrödinger

operators.

Despite the fact that the general strategy of proof used in the present paper is the

same as [34], the differences between the two settings are such that virtually none of

the work carried out in [34] can be directly extended to the present paper. For example:

1. Since we consider operators acting on general graphs G, the treatment of the

geometry of the space on which our operators are defined requires a much more care-

ful analysis than that carried out in [34]. In particular (as per Remark 1.2), in this

paper we uncover that the dimension of the space plays an important role in the proof

of rigidity using the semigroup method.

2. In [34], we only consider Schrödinger operators whose kinetic energy operator

is the standard Laplacian and whose noise is a Gaussian process. As a result, the oper-

ators considered therein are all self-adjoint and upper bounds of VarŒTrŒe�tH �� can

mostly be reduced to the analysis of self-intersection local times of standard Brownian

motion. In contrast, in this paper we allow for much more general generators HX and

noises � . Most notably, the assumptions of this paper allow for non-self-adjoint oper-

ators, which increases the technical difficulties involved (e.g., Sections 5 and 6).

1.4. Future directions

Given that our main theorems apply to a very general class of operators, the results

of this paper provide substantial evidence of the universality of number rigidity in

discrete random Schrödinger operators. That being said, we feel that our results raise

a number of interesting follow-up questions. We now discuss three such directions.

1.4.1. New methods. It is natural to wonder if the growth condition V.v/ � d.0;v/˛

that we impose on the potential to get number rigidity is close to optimal. As we show

in Theorem 3.18, our main result is optimal in the sense that we can find concrete

examples of operators such that

lim inf
t!0

VarŒTrŒe�tH �� > 0 (1.2)

when V.v/ � d.0; v/˛. That being said, the vanishing of the variance of the trace of

the semigroup is only a sufficient condition for number rigidity, and, in fact, it was

observed in [34, Proposition 2.27] that there exists at least one random Schrödinger

operator whose spectrum is known to be number rigid and such that (1.2) holds. For

example, the following simple question appears to be outside the scope of the methods

used in this paper:
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Problem 1.4. Suppose that X is the simple symmetric random walk on G D Z
d , that

V.v/ D d.0; v/ı for some ı > 0, and that .�.v//v2Zd are i.i.d. standard Gaussians (or

any other simple distribution). Is the spectrum of H always number rigid in this case?

More specifically, given that cn.v/ � nd�1 on Z
d , our main theorem only implies

number rigidity in the above when ı > d=2. We expect that solving Problem 1.4

will require developing new methods to study number rigidity in random Schrödinger

operators.

1.4.2. The mechanism of rigidity. Our main result implies that for every bounded

measurable set B � C, there exists a deterministic function NB such that the identity

number of eigenvalues of H in B

D NB.configuration of eigenvalues of H outside B/

holds with probability one. That being said, the argument that we use to prove the

existence of NB gives little information on its exact form. In other words, the precise

nature of the mechanism that makes the number of eigenvalues in B a deterministic

function of the configuration on the outside remains largely unknown. In light of this,

an interesting future direction for investigation would be along the following lines:

Problem 1.5. Let B � C be a “simple” bounded subset of the complex plane (e.g.,

a closed or open ball). Does NB admit an explicit representation?

We point to Remark 6.4 for more details on the construction of NB .

1.4.3. Spatial conditioning beyond number rigidity. When the spectrum of H is

number rigid, we know that if we condition H on having a specific eigenvalue con-

figuration outside of a bounded set B , then the spectrum of H inside B is a point

process with a fixed total number of points. It would be interesting to see if more can

be learned about the conditional distribution of the eigenvalues in B . For instance, the

following problem (related to the notion of tolerance introduced in [25]) might be a

good starting point:

Problem 1.6. Suppose that, after conditioning on the outside configuration, H has

M 2 N random eigenvalues in some bounded set B � C. Let ƒ 2 CM be the random

vector whose components are the random eigenvalues of H in B (conditional on the

configuration outside B), taken in a uniformly random order. What is the support of

the probability distribution of ƒ on the set BM ?
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2. Proof outline

In this section, we present a sketch of the proof of our main theorem in two simple

special cases. We take this opportunity to explain how our technical assumptions arise

in our computations. For simplicity of exposition, we assume in this outline that G is

the integer lattice Zd (i.e., .u; v/ 2 E if and only if ku � vk1 D 1, where k � k1

denotes the usual `1 norm), X is the simple symmetric random walk on Z
d , and � is

a centered stationary Gaussian process with covariance function


.v/ WD EŒ�.v/�.0/�; v 2 Z
d :

As alluded to in the introduction (and proved in Section 6), to prove that the eigen-

value point process of H is number rigid, it suffices to show that the variance of

TrŒe�tH � vanishes as t ! 0. According to the Feynman–Kac formula, we have that

TrŒe�tH � D
X

v2Zd

EX

�

exp

�

t
Z

0

V.X.s// C �.X.s// ds

�

1¹X.t/DX.0/º

ˇ

ˇ

ˇ

ˇ

X.0/ D v

�

;

where EX means that we are only averaging with respect to the randomness in the

path of X , and we assume that X is independent of the noise � . In order to ensure

that e�tH is trace class (or even bounded) in the general case, we assume that G has

uniformly bounded degrees; see Section 6.1 for more details.

Our first step in the analysis of TrŒe�tH � is to note that if t is small, then the

probability that there exists some 0 � s � t such that X.s/ ¤ X.0/ is close to zero

(i.e., 1 � e�t � t). Thus, by working only with the complement of this event, we have

that

TrŒe�tH � �
X

v2Z
d

e�tV.v/�t�.v/: (2.1)

A rigorous version of this heuristic is carried out in the proof of Lemma 4.6. The latter

relies on controlling how far X can travel from its initial value X.0/ after a small time

(e.g., the tail bound (4.22)), which itself depends on the assumptions that the jump

rates of X are uniformly bounded.

Our second step is to identify the leading order asymptotics in the variance of the

expression on the right-hand side of (2.1). In the special case where � is a stationary
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Gaussian process with covariance 
 , an application of Tonelli’s theorem yields

VarŒ
X

v2Zd

e�tV.v/�t�.v/
i

D
X

u;v2Zd

e�tV.u/�tV.v/ CovŒe�t�.u/; e�t�.v/�

D
X

u;v2Zd

e�tV.u/�tV.v/et2
.0/.et2
.u�v/ � 1/

� t2
X

u;v2Zd

e�tV.u/�tV.v/
.u � v/; (2.2)

where the last line follows from a Taylor expansion. A bound of this type can be

achieved in the general case thanks to our assumption that the tails of � are not worse

than exponential. We refer to Proposition 4.2 for the general form of the variance

formula. See Lemmas 4.3 and 4.4 for quantitative bounds on the vanishing of the

covariance of the exponential random field e�t� as t ! 0 in terms of the strength of

the covariance of � .

Our third and final step is to identify conditions such that the quantity

X

u;v2Zd

e�tV.u/�tV.v/
.u � v/ (2.3)

does not blow up at a faster rate than t�2 as t ! 0. As advertised in our informal

statement, this depends on the growth rate of the potential V and the decay rate (if

any) of the covariance 
 at infinity. To give an illustration of how this is carried out

in this paper, we consider the two simplest (and most extreme) cases of covariance

structure:

1. .�.v//v2Zd are i.i.d., i.e., 
.v/ D 0 whenever v ¤ 0;

2. .�.v//v2Zd are all equal to each other, i.e., 
.v/ D 
.0/ for all v 2 V.

The quantity (2.3) then becomes

X

u;v2Zd

e�tV.u/�tV.v/
.u � v/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:


.0/
X

v2Z
d

e�2tV.v/ i.i.d. case,


.0/
�

X

v2Zd

e�tV.v/
�2

all equal case.

If we assume that V.v/ � d.0; v/˛ for some ˛ > 0, then for any � > 0 we have that

X

v2Zd

e�� tV.v/ �
X

v2Zd

e�� td.0;v/˛ D
X

n2N[¹0º

cn.0/e�� tn˛

; (2.4)

where we recall that cn.0/ denotes for every n 2 N the number of vertices in G such

that d.0; v/ D n. For the d -dimensional integer lattice Z
d , it is easy to check that
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there exists a constant C > 0 such that cn.0/ � C nd�1 for every n 2 N, whence (2.4)

yields

X

v2Z
d

e�� tV.v/ �
X

n2N[¹0º

nd�1e�� tn˛ �
1

Z

0

xd�1e�� tx˛

dx D O.t�d=˛/: (2.5)

Summarizing our argument so far in (2.1)–(2.5), we are led to the t ! 0 asymp-

totic

VarŒTrŒe�tH �� �
´

t2�d=˛ i.i.d. case,

t2�2d=˛ all equal case.

Thus, the eigenvalue point process of H is proved to be number rigid if V.v/ �
d.0; v/d=2 in the i.i.d case and V.v/ � d.0; v/d in the all equal case. If 
 has a less

extreme decay rate (such as 
.v/ D O.d.0; v/�ˇ / as d.0; v/ ! 1 for some ˇ > 0),

then the eigenvalue point process of H is number rigid if V.v/ � d.0; v/˛ for some

d=2 � ˛ � d , where the exact value of ˛ depends on the decay rate of 
 . We refer to

Theorems 3.16 and 3.17 for the details.

3. Main results

3.1. Basic definitions and notations

We begin by introducing basic/standard notations that will be used throughout the

paper.

Notation 3.1 (Function spaces). We use `p.V/ to denote the space of real-valued

absolutely p-summable (or bounded if p D 1) functions on V; we denote the associ-

ated norm by k � kp . We use h�; �i to denote the inner product on `2.V/. Given a subset

U � V, we denote

`
p
U

.V/ WD ¹f 2 `p.V/ W f .u/ D 0 for every u 2 Uº:

Notation 3.2 (Operator theory). Given a linear operator T on `2
U

.V/ (or a dense

domain D.T / � `2
U

.V/), we use �.T / to denote its spectrum, and �p.T / � �.T /

to denote its point spectrum. If T is bounded, we denote its operator norm by

kT kop WD sup
f 2`2

U
.V/; kf k2D1

kTf k2:

We use R.z; T / WD .T � z/�1 to denote the resolvent of T for all z 2 C n �.T /. If �

is an isolated eigenvalue of T , then we let

ma.�; T / WD dim

�

rg

�

1

2�i

I

��

R.z; T / dz

��
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denote the algebraic multiplicity of �, where dim denotes the dimension of a linear

space, rg denotes the range of an operator, and �� denotes a Jordan curve that encloses

� and excludes the remainder of the spectrum of T .

Definition 3.3 (Rigidity). Let X D
P

k2N
ı�k

be an infinite point process on C. We

say that X is real-bounded below by a random variable ! 2 R if <.�k/ � ! almost

surely for every k 2 N. We say that such a point process is number rigid if for every

Borel set B � C such that B � .�1; ı� C iŒ�Qı; Qı� for some ı; Qı > 0, the random

variable X.B/ is measurable with respect to the completion (under the law of the

point process X) of the sigma algebra generated by the set

®

X.A/W A � C is Borel and B \ A D ¿

¯

:

Remark 3.4. In previous works in the literature, it is most common to define number

rigidity as the requirement that X.B/ is measurable with respect to the configuration

in C n B for every bounded Borel set B . This is in part due to the fact that most point

processes that have been proved to be number rigid thus far are such that X.B/ D 1
almost surely whenever B is unbounded.

That being said, the fact that we are considering the spectrum of Schrödinger

operators whose potentials have a strong growth at infinity means that we are consid-

ering eigenvalue point processes that are real-bounded below, in which case a more

general notion of number rigidity makes sense. We note that a similarly generalized

notion of rigidity appeared in the work of Bufetov on the stochastic Airy operator

in [7, Proposition 3.2].

3.2. Markov process

Next, we introduce the Markov processes on the graph G that generate our random

operators, as well as some of the notions we need to describe them. We recall that

G D .V;E/ is a countably infinite connected graph with uniformly bounded degrees

and a root 0 2 V.

Definition 3.5 (Markov process). Let …WV � V ! Œ0; 1� be a matrix such that

1. … is stochastic, that is, for every u 2 V,

X

v2V

….u; v/ D 1I

2. ….v; v/ D 0 for all v 2 V; and

3. if .u; v/ 62 E, then ….u; v/ D ….v; u/ D 0.

Let qWV ! .0; 1/ be a positive vector and let X W Œ0; 1/ ! V denote the continuous-

time Markov process on V defined as follows. If X is in state u 2 V, it waits for
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a random time with an exponential distribution with rate q.u/, and then jumps to

another state v ¤ u with probability ….u; v/, independently of the wait time. Once at

the new state, X repeats this procedure independently of all previous jumps.

Remark 3.6. We note that condition (3) in the above definition implies that X is

a Markov process on the graph G, in the sense that jumps can only occur between

vertices that are connected by edges.

Notation 3.7. For every v 2 V, we use Xv to denote the process X conditioned on

the starting point X.0/ D v. We use P
v to denote the law of Xv, and E

v to denote

expectation with respect to P
v .

We assume throughout that the Markov process X and the graph G satisfy the

following.

Assumption 3.8 (Graph geometry and jump rates). The following two conditions

hold.

1. There exists constants d � 1 and c > 0 such that

sup
v2V

cn.v/ WD sup
v2V

j¹u 2 VW d.u; v/ D nºj � cnd�1 for all n 2 N [ ¹0º; (3.1)

recalling that d is the graph distance in G, that is, d.u; v/ is the length of the shortest

path (in terms of number of edges) connecting u and v, and with the convention that

d.v; v/ D 0 for all v 2 V.

2. X has uniformly bounded jump rates, that is,

q WD sup
v2V

q.v/ < 1:

Remark 3.9. We note that the assumption (3.1) simultaneously takes care of the

requirement that G has uniformly bounded degrees (since c1.v/ D deg.v/) and of

the asymptotic growth rate (1.1) stated in our informal theorem.

3.3. Feynman–Kac kernel

We are now in a position to introduce the central objects of study of this paper, namely,

the Feynman–Kac semigroups of the Schrödinger operators we are interested in.

Notation 3.10 (Local time). For every t � 0, we let Lt WV ! Œ0; t � denote the local

time of X :

Lt .v/ WD
t

Z

0

1¹X.s/Dvº ds; v 2 V:
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Definition 3.11 (Potential and noise). Let V WV ! R [ ¹1º be a deterministic func-

tion, and let �WV ! R be a random function. We denote the set

Z WD ¹v 2 VW V.v/ D 1º: (3.2)

Throughout, we make the following assumptions on the noise and potential.

Assumption 3.12 (Potential growth and noise tails). There exists ˛ > 0 such that

lim inf
d.0;v/!1

V.v/

d.0; v/˛
D 1: (3.3)

Moreover, � satisfies the following conditions:

1. EŒ�.v/� D 0 for every v 2 V;

2. there exists m > 0 such that for every p 2 N,

sup
v2V

EŒj�.v/jp� � pŠmp: (3.4)

In the sequel, it will be useful to characterize noises in terms of the decay rate of

their covariances. For this purpose, we make the following definition.

Definition 3.13 (Covariance decay). We say that � has covariance decay of order (at

least) ˇ > 0 if there exists a constant C > 0 such that

jEŒ�.u/�.v/�j � C.d.u; v/ C 1/�ˇ (3.5)

for every u; v 2 V, and such that

jEŒ�.u/�.v/�.w/�j � C min
a;b2¹u;v;wº

.d.a; b/ C 1/�ˇ (3.6)

for every u; v; w 2 V.

Definition 3.14 (Feynman–Kac kernel). Define the Feynman–Kac kernel

Kt .u; v/ WD E
uŒe�hLt ;V C�i

1¹X.t/Dvº�; u; v 2 V; (3.7)

where we assume that X is independent of � , and that E
v denotes the expectation with

respect to the Markov process Xv, conditional on � . We denote the trace of Kt by

TrŒKt � WD
X

v2V

Kt .v; v/:

Remark 3.15. In the above definition, we use the convention that e�1 WD 0 whenever

V.v/ D 1, in particular, Kt .u; v/ D 0 whenever u 2 Z or v 2 Z.
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3.4. Main results: variance upper bound and rigidity

We now state our main results. First, we have the following sufficient condition for

the vanishing of the variance of the trace of Kt as t ! 0:

Theorem 3.16. Suppose that Assumptions 3.8 and 3.12 hold. In order to have

lim
t!0

VarŒTrŒKt �� D 0;

it is sufficient that the constant ˛ in (3.3) satisfies the following:

1. if � has covariance decay of order ˇ > 0, then

˛

8

ˆ

ˆ

<

ˆ

ˆ

:

� d=2 when ˇ > d;

> d=2 when ˇ D d;

� d � ˇ=2 when ˇ < d I
(3.8)

2. otherwise, ˛ � d .

As a consequence of the above theorem, we have the following result, which states

some properties of the infinitesimal generator of Kt , including number rigidity.

Theorem 3.17. Suppose that Assumptions 3.8 and 3.12 hold, and that we take the

constant ˛ in (3.3) as in Theorem 3.16. The following conditions hold almost surely.

1. For every t > 0, Kt is a trace class linear operator on `2
Z

.V/. There exists a

random variable ! � 0 such that kKt kop � e�!t for all t > 0.

2. The family of operators .Kt/t>0 is a strongly continuous semigroup on `2
Z

.V/.

3. The infinitesimal generator

H WD lim
t!0

K0 � Kt

t
(3.9)

is closed on some dense domain D.H/ � `2
Z

.V/, and its action on functions is

given by the following matrix:

H.u; v/ WD

8

ˆ

ˆ

<

ˆ

ˆ

:

�q.u/….u; v/ if u ¤ v and u; v 62 Z;

q.u/ C V.u/ C �.u/ if u D v and u 62 Z;

0 if u 2 Z or v 2 Z:

(3.10)

(So, if f 2 D.H/, then f .v/ D 0 for every v 2 Z.)

In particular, almost surely, H has a pure point spectrum without accumulation point,

and the eigenvalue point process (counting algebraic multiplicities)

XH WD
X

�2�.H/

ma.�; H/ ı� (3.11)

is real-bounded below by ! and number rigid in the sense of Definition 3.3.
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3.5. Questions of optimality

In this section, we study the optimality of the growth assumptions we make on V in

Theorem 3.16 by considering three counterexamples.

Theorem 3.18. Suppose that X is the nearest-neighbor symmetric random walk on

the integer lattice Zd , that V.v/ WD d.0; v/ı for some ı > 0, and that � is a centered

stationary Gaussian process whose covariance function 
.v/ WD EŒ�.v/�.0/� is non-

negative. If one of the following conditions hold:

1. ı � d=2 and 
.v/ D 1¹vD0º;

2. ı � d � ˇ=2 for some 0 < ˇ < d , and there exists a constant L > 0 such that


.v/ � L.d.0; v/ C 1/�ˇ for every v 2 V;

3. ı � d and infv2Zd 
.v/ > L for some constant L > 0;

then we have the variance lower bound

lim inf
t!0

VarŒTrŒKt �� > 0:

Thus, given that cn.v/ � nd�1 as n ! 1 on Zd , if one is interested in providing

a general sufficient condition for number rigidity on graphs using semigroups, then

Theorem 3.16 is essentially the optimal result one could hope for.

Remark 3.19. An examination of the proof of Theorem 3.18 reveals that similar

lower bounds can be proved for more general examples with little effort; we restrict

our attention to this elementary setting for simplicity of exposition.

4. Proof of Theorem 3.16

Throughout this section, we suppose that Assumptions 3.8 and 3.12 hold. This section

is organized as follows. In Section 4.1, we outline the main steps of the proof of

Theorem 3.16. That is, we state a number of technical propositions and lemmas, which

we then use to prove Theorem 3.16. Then, in Sections 4.2–4.6, we prove the technical

results stated Section 4.1, thus wrapping-up the proof of Theorem 3.16.

4.1. Proof outline

4.1.1. Step 1. Variance formula and first bound. We begin with some notations.

Notation 4.1. Let us denote by .�� ; P�/ the probability space on which � is defined.

Let Y be any random element that is independent of � , and let F be any measurable
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function. We denote the random variable

E� ŒF .�; Y /� WD
Z

��

F.x; Y / dP�.x/I

that is, E� is the conditional expectation with respect to � , given Y . Then, for meas-

urable functions F and G, we denote the random variable

Cov� ŒF .�; Y /; G.�; Y /� WD E� ŒF .�; Y /G.�; Y /� � E� ŒF .�; Y /�E� ŒG.�; Y /�:

Our main tool in the proof of Theorem 3.16 is the following variance formula:

Proposition 4.2. For every u; v 2 V, we let Xu and zXv be independent copies of the

Markov process X started from u and v respectively. We assume that Xu and zXv are

independent of the noise � , and we denote their local times by

Lu
t .w/ WD

t
Z

0

1¹Xu.s/Dwº ds and zLv
t .w/ WD

t
Z

0

1¹ zXv.s/Dwº ds

for all w 2 V. It holds that

VarŒTrŒKt �� D
X

u;v2V

EŒe�hLu
t C zLv

t ;V i Cov� Œe�hLu
t ;�i; e�h zLv

t ;�i�1¹Xu.t/Du; zXv.t/Dvº�:

The proof of this proposition, which we provide in Section 4.2 below, is essen-

tially a direct consequence of the definition of Kt in (3.7). In order to find sufficient

conditions for VarŒTrŒKt �� ! 0 as t ! 0 using this formula, it is convenient to con-

trol the contributions coming from V and � separately. To this end, we use Hölder’s

inequality, as well as the elementary fact that 1E � 1 for every event E, which yields

EŒe�hLu
t C zLv

t ;V i Cov� Œe�hLu
t ;�i; e�h zLv

t ;�i�1¹Xu.t/Du; zXv.t/Dvº�

� EŒe�2hLu
t C zLv

t ;V i�1=2
EŒCov� Œe�hLu

t ;�i; e�h zLv
t ;�i�2�1=2

for every fixed u; v 2 V. Then, by summing both sides of the above inequality over

u; v 2 V, we obtain our first upper bound for the variance:

VarŒTrŒKt �� �
X

u;v2V

EŒe�2hLu
t C zLv

t ;V i�1=2
EŒCov� Œe�hLu

t ;�i; e�h zLv
t ;�i�2�1=2: (4.1)

4.1.2. Step 2. Controlling the contributions from � and V . We now state the tech-

nical results that we use to control the right-hand side of (4.1). Our first such result is

as follows:
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Lemma 4.3. Recall the definition of the constant m > 0 in (3.4). There exists a con-

stant C1 > 0 (which only depends on m) such that for every t < 1=C1, one has

sup
u;v2V

EŒCov� Œe�hLu
t ;�i; e�h zLv

t ;�i�2�1=2 � C1t2:

The proof of Lemma 4.3, which we provide in Section 4.4, follows from estim-

ating expectations of the form E
vŒe��hLt ;�i� using our assumption that the tails of �

are not worse than exponential (i.e., (3.4)). Next, we have the following result, which

provides a tighter decay rate in the case where � has covariance decay:

Lemma 4.4. Suppose that � has covariance decay of order ˇ, as per Definition 3.13.

Recall the definitions of the constants q, m, and C in Assumption 3.8 (3), (3.4), (3.5),

and (3.6). There exists a constant C2 > 0 (which only depends on q, m, C, and ˇ)

such that, for every t < 1=C2 and u; v 2 V, one has

EŒCov� Œe�hLu
t ;�i; e�h zLv

t ;�i�2�1=2 � C2.t2.d.u; v/ C 1/�ˇ C t4/:

Lemma 4.4 is proved in Section 4.5. The proof of this lemma is rather more subtle

than that of Lemma 4.3, and depends on a careful control of how much Xu and zXv

deviate from their respective starting points u and v. We note that the uniform upper

bound on the jump rates of X in Assumption 3.8 (3) is crucial for this lemma.

Remark 4.5. The proofs of Lemmas 4.3 and 4.4 both rely on some elementary for-

mulas and estimates of the moment generating functions of the noises and their cov-

ariances, which will be stated and proved in Section 4.3.

With Lemmas 4.3 and 4.4 in hand, it now only remains to control the contribution

of the potential V in (4.1). For this, we have the following result:

Lemma 4.6. Recall the definition of d � 1 and c > 0 in (3.1). Suppose that we can

find some constants �; � > 0 such that

V.v/ � .�d.0; v//˛ � �; v 2 V: (4.2)

Then, there exists a constant C3 > 0 (which only depends on ˛, ˇ, d , and c) such that

lim sup
t!0

t2d=˛
X

u;v2V

EŒe�2hLu
t C zLv

t ;V i�1=2 � C3��2d I (4.3)

lim sup
t!0

t .2d�ˇ/=˛
X

u;v2V

EŒe�2hLu
t C zLv

t ;V i�1=2.d.u; v/ C 1/�ˇ � C3��2dCˇ (4.4)

for every 0 < ˇ < d ; and

lim sup
t!0

td=˛
X

u;v2V

EŒe�2hLu
t C zLv

t ;V i�1=2.d.u; v/ C 1/�ˇ � C3��d (4.5)

for every ˇ > d .
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Lemma 4.6, which is proved in Section 4.6, follows the strategy outlined in (2.4)

and (2.5). The first step of the proof of Lemma 4.6 relies on a rigorous implementation

of the intuition that, for very small t > 0, one expects that

EŒe�2hLu
t C zLv

t ;V i�1=2 � e�tV.u/�tV.v/: (4.6)

This once again relies on controlling how much Xu and zXv deviate from their starting

points. Once a quantitative version of (4.6) is established, we can then use (4.2), which

allows to control EŒe�2hLu
t C zLv

t ;V i�1=2 in terms of quantities that only depend on the

geometry of G (more precisely, the graph distance). We then wrap up the proof of the

lemma by using the upper bound on the coordination sequences in (3.1), in similar

fashion to (2.5).

4.1.3. Step 3. Conclusion of the proof. We now combine the technical results stated

above to conclude the proof of Theorem 3.16. By applying Lemmas 4.3 and 4.4 to our

upper bound (4.1), we get that for every t < 1=C1, one has

VarŒTrŒKt �� � C1t2
X

u;v2V

EŒe�2hLu
t C zLv

t ;V i�1=2; (4.7)

and if � has covariance decay of order ˇ > 0, then for every t < 1=C2, one has

VarŒTrŒKt �� � C2t2
X

u;v2V

EŒe�2hLu
t C zLv

t ;V i�1=2.d.u; v/ C 1/�ˇ

C C2t4
X

u;v2V

EŒe�2hLu
t C zLv

t ;V i�1=2: (4.8)

Thanks to our growth assumption in (3.3), for any choice of � > 0, we know that there

exists a large enough � > 0 so that (4.2) holds. We may then complete the proof of

Theorem 3.16 by an application of Lemma 4.6. We do this on a case-by-case basis:

Suppose first that � has covariance decay of order 0 < ˇ < d and that ˛ � d � ˇ=2

> d=2. Then, the fact that 2 � .2d � ˇ/=˛ � 0 implies by (4.4) that

lim sup
t!0

t2
X

u;v2V

EŒe�2hLu
t C zLv

t ;V i�1=2.d.u; v/ C 1/�ˇ

D lim sup
t!0

t2�.2d�ˇ/=˛t .2d�ˇ/=˛
X

u;v2V

EŒe�2hLu
t C zLv

t ;V i�1=2.d.u; v/ C 1/�ˇ

� C3��2dCˇ I

and the fact that 4 � 2d=˛ > 0 implies by (4.3) that

lim sup
t!0

t4
X

u;v2V

EŒe�2hLu
t C zLv

t ;V i�1=2

D lim sup
t!0

t4�2d=˛t2d=˛
X

u;v2V

EŒe�2hLu
t C zLv

t ;V i�1=2 D 0: (4.9)
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Combining this with (4.8) implies that

lim sup
t!0

VarŒTrŒKt �� � C2C3��2dCˇ ;

where we recall that C2; C3 > 0 do not depend on � or �. Since (4.2) holds for any

choice of � > 0, we can take � ! 1, which then yields VarŒTrŒKt �� ! 0 as t ! 0.

Next, suppose that � has covariance decay of order ˇ D d and that ˛ > d=2. We

note that this implies that � also has correlation decay of order Q̌ for any choice of

0 < Q̌ < d . Since ˛ > d=2 implies that 2d � 2˛ < d , we can choose Q̌ close enough

to d so that 2d � 2˛ < Q̌, which we can rearrange into 2 > .2d � Q̌/=˛. Thus, (4.4)

implies that

lim sup
t!0

t2
X

u;v2V

EŒe�2hLu
t C zLv

t ;V i�1=2.d.u; v/ C 1/�ˇ

D lim sup
t!0

t2�.2d� Q̌/=˛t .2d� Q̌/=˛
X

u;v2V

EŒe�2hLu
t C zLv

t ;V i�1=2.d.u; v/ C 1/� Q̌ D 0:

Combining this with (4.9), we directly prove that VarŒTrŒKt �� ! 0 as t ! 0 in this

case.

Suppose now that � has covariance decay of order ˇ > d and that ˛ � d=2. Then,

the fact that 2 � d=˛ � 0 implies by (4.5) that

lim sup
t!0

t2
X

u;v2V

EŒe�2hLu
t C zLv

t ;V i�1=2.d.u; v/ C 1/�ˇ

D lim sup
t!0

t2�d=˛td=˛
X

u;v2V

EŒe�2hLu
t C zLv

t ;V i�1=2.d.u; v/ C 1/�ˇ � C3��d I

and the fact that 4 � 2d=˛ � 0 implies by (4.3) that

lim sup
t!0

t4
X

u;v2V

EŒe�2hLu
t C zLv

t ;V i�1=2

D lim sup
t!0

t4�2d=˛t2d=˛
X

u;v2V

EŒe�2hLu
t C zLv

t ;V i�1=2 � C3��2d : (4.10)

Combining this with (4.8) and taking � ! 1 then implies that VarŒTrŒKt �� ! 0 as

t ! 0.

Finally, consider the general case where we simply assume that ˛ � d . Then,

2 � 2d=˛ � 0, and thus (4.3) implies that

lim sup
t!0

t2
X

u;v2V

EŒe�2hLu
t C zLv

t ;V i�1=2

D lim sup
t!0

t2�2d=˛t2d=˛
X

u;v2V

EŒe�2hLu
t C zLv

t ;V i�1=2 � C3��2d :
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Since the constants C1; C3 > 0 are independent of � and �, combining this with (4.7)

and taking � ! 1 then implies that VarŒTrŒKt �� ! 0 as t ! 0 in this case. This then

completes the proof of Theorem 3.16.

4.2. Proof of Proposition 4.2

Since the random walk X is assumed independent of � , by applying Fubini’s theorem

to the definition of Kt in (3.7), we have that

EŒTrŒKt �� D
X

v2V

E
vŒe�hLt ;V i

E� Œe�hLt ;�i�1¹X.t/Dvº�;

where we recall the definition of E� in Notation 4.1. Taking the square of this expres-

sion, we then get once again by Fubini’s theorem that

EŒTrŒKt ��
2 D

X

u;v2V

EŒe�hLu
t C zLv

t ;V i
E� Œe�hLu

t ;�i�E� Œe�h zLv
t ;�i�1¹Xu.t/Du; zXv.t/Dvº�:

Thanks to (3.7), it is easy to check that

TrŒKt �
2 D

X

u;v2V

E� Œe�hLu
t C zLv

t ;V C�i
1¹Xu.t/Du; zXv.t/Dvº�:

Taking the expectation of this expression using Fubini’s theorem then leads to

EŒTrŒKt �
2� D

X

u;v2V

EŒe�hLu
t C zLv

t ;V i
E� Œe�hLu

t C zLv
t ;�i�1¹Xu.t/Du; zXv.t/Dvº�:

The proof of Proposition 4.2 is then simply a matter of subtracting EŒTrŒKt ��
2 from

the above expression for EŒTrŒKt �
2�, and using the definition of Cov� in Notation 4.1.

4.3. Auxiliary results on estimates of moment generating functions

Before discussing the proofs of Lemma 4.3 and Lemma 4.4 in the next two sub-

sections, we list here two simple propositions concerning the tail behaviors of the

moment generating functions of the noises and their covariances. The first result is a

straightforward consequence of Taylor expansions and Assumption 3.12 on the tails

of the noises.

Proposition 4.7. Under Assumption 3.12, for every finitely-supported deterministic

functions f; gWV ! R such that kf C gk1; kf k1; kgk1 � 1=2m, it holds that

jEŒehf;�i� � 1j � 2m2kf k2
1 (4.11)

and

j CovŒehf;�i; ehg;�i�j � 2m2.kf C gk2
1 C kf k2

1 C kgk2
1/ C 4m4kf k2

1kgk2
1: (4.12)
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Proof. For every deterministic function f WV ! R, it follows from a straightforward

Taylor expansion of the exponential that

EŒehf;�i� D
1

X

pD0

1

pŠ

X

v1;:::;vp2V

EŒ�.v1/ � � � �.vp/�f .v1/ � � � f .vp/; (4.13)

with the convention that the term with p D 0 above is equal to one. Firstly, since

EŒ�.v/� D 0 for all v, the term corresponding to p D 1 in (4.13) is zero. Secondly,

thanks to our moment growth assumption EŒj�.v/jp� � pŠmp , for every p � 2 we

have that
ˇ

ˇ

ˇ

X

v1;:::;vp2V

EŒ�.v1/ � � � �.vp/�f .v1/ � � � f .vp/
ˇ

ˇ

ˇ

�
X

v1;:::;vp2V

EŒj�.v1/jp�1=p � � � EŒj�.vp/jp�1=pjf .v1/j � � � jf .vp/j

� pŠ.mkf k1/p:

Thus, if kf k1 � 1=2m, then we have that

jEŒehf;�i� � 1j �
1

X

pD2

.mkf k1/p D .mkf k1/2

1 � mkf k1

� 2.mkf k1/2:

As for the claim regarding the covariance, for any two random variables Y and Z, we

have by the triangle inequality that

j CovŒY; Z�j D jEŒYZ� � EŒY �EŒZ�j
� jEŒYZ� � 1j � jEŒY � � 1jjEŒZ� � 1j C j1 � EŒY �j C j1 � EŒZ�j

Thus, whenever kf C gk1; kf k1; kgk1 � 1=2m, it follows from (4.11) that

j CovŒehf;�i; ehg;�i�j � 2m2.kf C gk2
1 C kf k2

1 C kgk2
1/ C 4m4kf k2

1kgk2
1;

as desired.

In cases where we need a more precise control on the covariance, we have the

following power series expansion:

Proposition 4.8. Suppose that Assumption 3.12 holds. For any two finitely supported

deterministic functions f; gWV ! R, one has

CovŒehf;�i; ehg;�i� D
1

X

pD2

Ap.f; g/

pŠ
;
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where, for every p � 2, we denote

Ap.f; g/ WD
X

v1;:::;vp2V

� p�1
X

mD1

�

p

m

�

CovŒ�.v1/ � � � �.vm/; �.vmC1/ � � � �.vp/�

� f .v1/ � � � f .vm/g.vmC1/ � � � g.vp/

�

: (4.14)

Proof. Using the same Taylor expansion as in (4.13), we get, on the one hand,

EŒehf Cg;�i�

D
1

X

pD0

1

pŠ

X

v1;:::;vp2V

EŒ�.v1/ � � � �.vp/�.f .v1/ C g.v1// � � � .f .vp/ C g.vp//

D
1

X

pD0

1

pŠ

X

v1;:::;vp2V

p
X

mD0

�

p

m

�

EŒ�.v1/ � � � �.vp/�f .v1/ � � � f .vm/

� g.vmC1/ � � � g.vp/;

and on the other hand

EŒehf;�i�EŒehg;�i�

D
1

X

m1;m2D0

1

m1Šm2Š

�

X

v1;:::;vm1Cm2
2V

EŒ�.v1/ � � � �.vm1
/�EŒ�.vm1C1/ � � � �.vm1Cm2

/�

� f .v1/ � � � f .vm1
/g.vm1C1/ � � � g.vm1Cm2

/
�

D
1

X

pD0

p
X

mD0

1

mŠ.p � m/Š

�

X

v1;:::;vp2V

EŒ�.v1/ � � � �.vm/�EŒ�.vmC1/ � � � �.vp/�

� f .v1/ � � � f .vm/g.vmC1/ � � � g.vp/
�

D
1

X

pD0

1

pŠ

X

v1;:::;vp2V

�

p
X

mD0

�

p

m

�

EŒ�.v1/ � � � �.vm/�EŒ�.vmC1/ � � � �.vp/�

� f .v1/ � � � f .vm/g.vmC1/ � � � g.vp/
�

:

We then get the result by subtracting these two expressions.

4.4. Proof of Lemma 4.3

By definition of local time, kLu
t k1 D kzLv

t k1 D t , as well as kLu
t C zLv

t k1 D 2t . Thus,

by (4.12) in Proposition 4.7, if t < 1=4m, then we have for any u; v 2 V that

j Cov� Œe�hLu
t ;�i; e�h zLv

t ;�i�j � 2m2.4t2 C t2 C t2/ C 4m4t4 D 12m2t2 C 4m4t4:

Since the right-hand side of this inequality is not random, the result then follows by

noting that t4 � t2 when t � 1 and taking C1 WD max¹1; 4m; 12m2; 4m4º.
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4.5. Proof of Lemma 4.4

For every u; v 2 V and t > 0, let us denote by

D
u;v
t WD min

a;b2V

Lu
t .a/; zLv

t .b/¤0

d.a; b/

the distance between the ranges of Xu and zXv up to time t . In Section 4.5.1 below

we prove the following crude version of Lemma 4.4: For every t < min¹1;1=4mº and

u; v 2 V,

j Cov� Œe�hLu
t ;�i; e�h zLv

t ;�i�j � 2Ct2.D
u;v
t C 1/�ˇ C 64m4t4: (4.15)

With this in hand, by Minkowski’s inequality, we have that

EŒCov� Œe�hLu
t ;�i; e�h zLv

t ;�i�2�1=2 � 2Ct2
EŒ.D

u;v
t C 1/�2ˇ �1=2 C 64m4t4 (4.16)

for every t < min¹1; 1=4mº and u; v 2 V.

Next, we control D
u;v
t in terms of d.u; v/. We do this in two cases. Suppose first

that d.u; v/ < 16. In this case, we have the trivial bound

EŒ.D
u;v
t C 1/�2ˇ �1=2 � 1 � 17ˇ .d.u; v/ C 1/�ˇ ;

which, when combined with (4.16), yields

EŒCov� Œe�hLu
t ;�i; e�h zLv

t ;�i�2�1=2 � 2 � 17ˇ Ct2.d.u; v/ C 1/�ˇ C 64m4t4 (4.17)

for every t < min¹1; 1=4mº and u; v 2 V such that d.u; v/ < 16.

Suppose then that d.u; v/ � 16. For any u;v 2 V and t > 0, we introduce the event

E
u;v
t WD

°

sup
0�s�t

d.Xu.s/; u/ � d.u; v/

4
and sup

0�s�t

d. zXv.s/; v/ � d.u; v/

4

±

:

With this in hand, given that .D
u;v
t C 1/�ˇ � 1 and

p
x C y �

p
x C p

y for all

x; y � 0,

EŒ.D
u;v
t C 1/�2ˇ �1=2 � EŒ.D

u;v
t C 1/�2ˇ

1E
u;v
t

�1=2 C P Œ.E
u;v
t /c�1=2:

For any outcome in the event E
u;v
t , we have by the triangle inequality that

d.Xu.s/; zXv.Qs// � d.u; v/ � d.Xu.s/; u/ � d. zXv.Qs/; v/ � d.u; v/

4

for every 0 � s; Qs � t . In particular, this means that D
u;v
t 1Eu;v

t
� d.u; v/=4. In Sec-

tion 4.5.2 below, we prove that if t < min¹4=q; 1=4qeº and d.u; v/ � 16, then

P Œ.E
u;v
t /c�1=2 �

p
2q2e2t2

16
: (4.18)
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Combining these bounds with (4.16), we are led to

EŒCov� Œe�hLu
t ;�i; e�h zLv

t ;�i�2�1=2

� 2 � 4ˇ Ct2.d.u; v/ C 1/�ˇ C
�

p
2q2e2C

8
C 64m4

�

t4 (4.19)

for all t < min¹1; 1=4m; 4=q; 1=4qeº and u; v 2 V such that d.u; v/ � 16.

With (4.17) and (4.19) in hand, in order to prove Lemma 4.4, it only remains to

establish (4.15) and (4.18). We do this in the next two subsections.

4.5.1. Proof of (4.15). Our main tool to prove (4.15) consists of the power series

expansion proved in Proposition 4.14:

Cov� Œe�hLu
t ;�i; e�h zLv

t ;�i� D
1

X

pD2

Ap.�Lu
t ; �zLv

t /

pŠ
; (4.20)

where the terms Ap are defined in (4.14). Thanks to our moment growth assumptions

in (3.4), for every p � 4 and 1 � m � p � 1, we have that

ˇ

ˇ CovŒ�.v1/ � � � �.vm/; �.vmC1/ � � � �.vp/�
ˇ

ˇ

�
ˇ

ˇEŒ�.v1/ � � � �.vp/�
ˇ

ˇ C
ˇ

ˇEŒ�.v1/ � � � �.vm/�EŒ�.vmC1/ � � � �.vp/�
ˇ

ˇ

� EŒj�.v1/jp�1=p � � � EŒj�.vp/jp�1=p

C EŒj�.v1/jm�1=m � � � EŒj�.vm/jm�1=m

� EŒj�.vmC1/jp�m�1=.p�m/ � � � EŒj�.vp/jp�m�1=.p�m/

� pŠmp C mŠ.p � m/Šmp � 2pŠmp:

Therefore, by combining (4.14) with the fact that
Pp

mD0

�

p
m

�

D 2p, one has

jAp.�Lu
t ; �zLv

t /j
pŠ

� 2mp

p�1
X

mD1

�

p

m

�

kLu
t km

1 kzLv
t kp�m

1 � 2.2mt/p:

Next, if � has covariance decay of order ˇ, then (3.5) implies that

jA2.�Lu
t ; �zLv

t /j �
X

w1;w22V

j CovŒ�.w1/; �.w2/�jLu
t .w1/ zLv

t .w2/:

� C.D
u;v
t C 1/�ˇkLu

t k1kzLv
t k1 � Ct2.D

u;v
t C 1/�ˇ :

and similarly (3.6) implies that

jA3.�Lu
t ; �zLv

t /j � Ct3.D
u;v
t C 1/�ˇ :
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At this point if we take t < min¹1; 1=4mº, then t3 � t2, and thus it follows from the

expansion (4.20) and the estimates above that

j Cov� Œe�hLu
t ;�i; e�h zLv

t ;�i�j � 2Ct2.D
u;v
t C 1/�ˇ C 2

1
X

pD4

.2mt/p

D 2Ct2.D
u;v
t C 1/�ˇ C 32m4t4

1 � 2mt

� 2Ct2.D
u;v
t C 1/�ˇ C 64m4t4:

4.5.2. Proof of (4.18). Let us denote by �t .X/ the number of jumps that X makes in

the time interval Œ0; t �. For every x > 0 and v 2 V, it is easy to see that

P
vŒ max

0�s�t
d.v; X.s// � x� � P

vŒ�t .X/ � x�: (4.21)

For every v 2 V and t � 0, the number of jumps �t .X/ is stochastically dominated

by a Poisson random variable with parameter tq. Therefore, applying the Chernoff

bound for the tails of Poisson random variables, we obtain that

sup
v2V

P
vŒ max

0�s�t
d.v; X.s// � x� � sup

v2V

P
vŒ�t .X/ � x� � e�qt

�qet

x

�x

(4.22)

for every x > qt . In order to specialize this to (4.18), we use the parameter x WD
d.u; v/=4. If t < min¹4=q; 1=4qeº and d.u; v/ � 16, then we have that 4qet < 1 and

x > qt , and thus it follows by a union bound that

P Œ.E
u;v
t /c�1=2 �

�

P
u
h

�t .X/ � d.u; v/

4

i

C P
v
h

�t .X/ � d.u; v/

4

i�1=2

�
p

2e�qt=2
� 4qet

d.u; v/

�d.u;v/=8

�
p

2q2e2t2

16
;

as desired.

4.6. Proof of Lemma 4.6

Notation 4.9. Throughout this proof, we use C > 0 to denote a constant whose exact

value may change from one display to the next. If C > 0 depends on some other

parameters, this will be explicitly stated.

4.6.1. Step 1. General upper bound. Our first step in this proof is to provide a

general upper bound for EŒe�2hLu
t C zLv

t ;V i�1=2 that formalizes the intuition (4.6). To

this effect, we claim that if (4.2) holds, then

�hLu
t ; V i � �.�t1=˛

d.0; u//min¹˛;1º C max
0�s�t

.�t1=˛
d.u; Xu.s///min¹˛;1º � 1 C �t

(4.23)
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for every u 2 V and t > 0, and similarly for �hzLv
t ; V i. To see this, we note that

�hLu
t ; V i � �

t
Z

0

.�d.0; Xu.s///˛ ds C �t

D �
t

Z

0

j�.d.0; u/ � d.0; u/ C d.0; Xu.s///j˛ ds C �t

D �
1

Z

0

j�t1=˛.d.0; u/ � d.0; u/ C d.0; Xu.ut///j˛ du C �t; (4.24)

where the first line follows directly from (4.2), and the last line follows from a change

of variables. For any x; y 2 R, the triangle inequality implies that

jx � yj˛ � jx � yjmin¹˛;1º � 1 � jxjmin¹˛;1º � jyjmin¹˛;1º � 1:

Applying this to (4.24) yields

�hLu
t ; V i � � .�t1=˛

d.0; u//min¹˛;1º C max
0�s�t

j�t1=˛.d.0; Xu.s// � d.0; u//jmin¹˛;1º

� 1 C �t:

We then obtain (4.23) by combining the fact that x 7! xmin¹˛;1º is increasing for x > 0

with the reverse triangle inequality
ˇ

ˇd.0; Xu.s// � d.0; u/
ˇ

ˇ � d.u; Xu.s//.

With (4.23) in hand, we see that EŒe�2hLu
t C zLv

t ;V i�1=2 is bounded above by

e2.�t�1/�.�t1=˛
d.0;u//min¹˛;1º�.�t1=˛

d.0;v//min¹˛;1º

� EŒexp. max
0�s�t

.�t1=˛
d.u; Xu.s///min¹˛;1º C max

0�s�t
.�t1=˛

d.v; zXv.s///min¹˛;1º/�1=2:

(4.25)

On the one hand, e2.�t�1/ ! e�2 as t ! 0 for any choice of � > 0. On the other

hand, thanks to the tail bound (4.22), we know that for every �; � > 0, one has

lim sup
t!0

sup
u2V

EŒexp.� max
0�s�t

.�t1=˛
d.u; Xu.s///min¹˛;1º/� D 1;

and similarly for zX . Therefore, by a straightforward application of Hölder’s inequality

on the second line of (4.25), in order to prove Lemma 4.6, it suffices to prove that there

exists a constant C > 0 (which only depends on ˛, ˇ, d , and c) such that

lim sup
t!0

t2d=˛
X

u;v2V

e�.�t1=˛
d.0;u//min¹˛;1º�.�t1=˛

d.0;v//min¹˛;1º � C ��2d I (4.26)

lim sup
t!0

t .2d�ˇ/=˛
X

u;v2V

e�.�t1=˛
d.0;u//min¹˛;1º�.�t1=˛

d.0;v//min¹˛;1º

.d.u; v/ C 1/ˇ
� C ��2dCˇ (4.27)
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for every 0 < ˇ < d ; and

lim sup
t!0

td=˛
X

u;v2V

e�.�t1=˛
d.0;u//min¹˛;1º�.�t1=˛

d.0;v//min¹˛;1º

.d.u; v/ C 1/ˇ
� C ��d (4.28)

for every ˇ > d . We now prove these claims in two steps.

4.6.2. Step 2. Proof of (4.26). Recalling the definition and upper bound of the

coordination sequences cn.v/ of G in (3.1), we have that
X

u;v2V

e�.�t1=˛
d.0;u//min¹˛;1º�.�t1=˛

d.0;v//min¹˛;1º

D
�

X

v2V

e�.�t1=˛
d.0;v//min¹˛;1º

�2

D
�

X

n2N[¹0º

cn.0/e�.�t1=˛n/min¹˛;1º
�2

� c2
�

X

n2N[¹0º

nd�1e�.�t1=˛n/min¹˛;1º
�2

D c2t .�2dC2/=˛
�

X

n2t1=˛N[¹0º

nd�1e�.�n/min¹˛;1º
�2

: (4.29)

By a Riemann sum, we have that

lim
t!1

t2=˛
�

X

n2t1=˛N[¹0º

nd�1e�.�n/min¹˛;1º
�2

D
�

1
Z

0

xd�1e�.�x/min¹˛;1º

dx

�2

D
��2d �

�

d
min¹1;˛º

�2

min¹1; ˛2º : (4.30)

Combining this limit with (4.29) yields (4.26), where, as shown on the right-hand side

of (4.30), the constant C > 0 only depends on the parameters ˛, d , and c.

4.6.3. Step 3. Proof of (4.27) and (4.28). We now conclude the proof of Lemma 4.6

by establishing (4.27) and (4.28). We separate the analysis of the sum on the left-

hand sides of (4.27) and (4.28) into two parts, namely, the terms u; v 2 V such that

d.u; v/ > ��1t�1=˛, and those such that d.u; v/ � ��1t�1=˛.

We first consider the terms such that d.u; v/ > ��1t�1=˛. For these, we have the

sequence of upper bounds

X

u;v2V

d.u;v/>��1t�1=˛

e�.�t1=˛
d.0;u//min¹˛;1º�.�t1=˛

d.0;v//min¹˛;1º

.d.u; v/ C 1/ˇ

�
X

u;v2V

d.u;v/>��1t�1=˛

e�.�t1=˛
d.0;u//min¹˛;1º�.�t1=˛

d.0;v//min¹˛;1º

d.u; v/ˇ



Spectral conditioning of discrete Random Schrödinger operators 1135

< �ˇ tˇ=˛
X

u;v2V

d.u;v/>��1t�1=˛

e�.�t1=˛
d.0;u//min¹˛;1º�.�t1=˛

d.0;v//min¹˛;1º

� �ˇ tˇ=˛
�

X

v2V

e�.�t1=˛
d.0;v//min¹˛;1º

�2

:

At this point, by replicating the arguments in Section 4.6.2, we get that there exists a

constant C > 0 that only depends on ˛, d , and c, and such that

lim sup
t!0

t .2d�ˇ/=˛
X

u;v2V

d.u;v/>��1t�1=˛

e�.�t1=˛
d.0;u//min¹˛;1º�.�t1=˛

d.0;v//min¹˛;1º

.d.u; v/ C 1/ˇ
� C ��2dCˇ (4.31)

if 0 < ˇ < d ; and

lim
t!0

td=˛
X

u;v2V

d.u;v/>��1t�1=˛

e�.�t1=˛
d.0;u//min¹˛;1º�.�t1=˛

d.0;v//min¹˛;1º

.d.u; v/ C 1/ˇ
D 0 (4.32)

if ˇ > d .

We now consider the terms such that d.u; v/ � ��1t�1=˛. For those terms, we can

reformulate the summands as follows:

X

u;v2V

d.u;v/���1t�1=˛

e�.�t1=˛
d.0;u//min¹˛;1º�.�t1=˛

d.0;v//min¹˛;1º

.d.u; v/ C 1/ˇ

D
X

u2V

e�.�t1=˛
d.0;u//min¹˛;1º

�

X

v2V
d.u;v/���1t�1=˛

e�.�t1=˛
d.0;v//min¹˛;1º

.d.u; v/ C 1/ˇ

�

D
X

u2V

e�.�t1=˛
d.0;u//min¹˛;1º

�

X

v2V
d.u;v/���1t�1=˛

e�.�t1=˛.d.u;v/Cd.0;v/�d.u;v///min¹˛;1º

.d.u; v/ C 1/ˇ

�

:

(4.33)

For every every u; v 2 V such that d.u; v/ � ��1t�1=˛, the fact that d.0; v/ � 0 gives

the upper bound e�.�t1=˛.d.0;v/�d.u;v///min¹˛;1º � e. Putting this into the above equation,

we then obtain that

(4.33) � e
X

u2V

e�.�t1=˛
d.0;u//min¹˛;1º

�

X

v2V
d.u;v/���1t�1=˛

e�.�t1=˛
d.u;v//min¹˛;1º

.d.u; v/ C 1/ˇ

�

� e
X

u2V

e�.�t1=˛
d.0;u//min¹˛;1º

�

��1t�1=˛
X

nD0

cn.u/e�.�t1=˛n/min¹˛;1º

.n C 1/ˇ

�

:
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Thanks to the uniform bound in (3.1), we then have that

(4.33) � ec
�

X

u2V

e�.�t1=˛
d.0;u//min¹˛;1º

��

��1t�1=˛
X

nD0

nd�1e�.�t1=˛n/min¹˛;1º

.n C 1/ˇ

�

� e1C.�t1=˛/min¹˛;1º

c
�

X

u2V

e�.�t1=˛
d.0;u//min¹˛;1º

�

�
�

X

n2N[¹0º

.n C 1/d�1�ˇ e�.�t1=˛.nC1//min¹˛;1º
�

D e1Co.1/c
�

X

u2V

e�.�t1=˛
d.0;u//min¹˛;1º

��

X

n2N

nd�1�ˇ e�.�t1=˛n/min¹˛;1º
�

:

(4.34)

We now analyze the two sums on the right-hand side of (4.34). Looking at the first

term, the same analysis carried out in Section 4.6.2 implies that

lim sup
t!0

td=˛
X

u2V

e�.�t1=˛
d.0;u//min¹˛;1º � C ��d

for some C that only depends on ˛, d , and c. Next, the second sum in (4.34) is

analyzed differently depending on whether 0 < ˇ < d or ˇ > d : On the one hand, if

ˇ < d , then by a Riemann sum we have that

lim
t!0

t .d�ˇ/=˛
X

n2N

nd�1�ˇ e�.�t1=˛n/min¹˛;1º D lim
t!0

t1=˛
X

n2t1=˛N

nd�1�ˇ e�.�n/min¹˛;1º

D
1

Z

0

xd�1�ˇ e�.�x/min¹˛;1º

dx

D
��dCˇ �

�

d�ˇ
min¹˛;1º

�

min¹˛; 1º :

On the other hand, if ˇ > d , then we have by dominated convergence that

lim
t!0

X

n2N

nd�1�ˇ e�.�t1=˛n/min¹˛;1º D
X

n2N

nd�1�ˇ I

we know that the sum on the right-hand side is convergent since ˇ > d .

Putting these two limits back into (4.34), we then get that there exists a constant

C > 0 (which only depends on ˛, d , ˇ, and c) such that

lim sup
t!0

t .2d�ˇ/=˛
X

u;v2V

d.u;v/���1t�1=˛

e�.�t1=˛
d.0;u//min¹˛;1º�.�t1=˛

d.0;v//min¹˛;1º

.d.u; v/ C 1/ˇ
� C ��2dCˇ
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when ˇ < d , and such that

lim sup
t!0

td=˛
X

u;v2V

d.u;v/���1t�1=˛

e�.�t1=˛
d.0;u//min¹˛;1º�.�t1=˛

d.0;v//min¹˛;1º

.d.u; v/ C 1/ˇ
� C ��d

when ˇ > d . Combining this with (4.31) and (4.32) concludes the proof of (4.27)

and (4.28). With this in hand, we have now completed the proof of Lemma 4.6.

5. Spectral mapping and multiplicity

A crucial aspect of the proof of Theorem 3.17 is the ability to relate exponential linear

statistics of the eigenvalue point process (3.11) to the trace of Kt via the identities

TrŒKt � D
X

�2�.Kt /n¹0º

ma.�; Kt /� D
X

�2�.H/

ma.�; H/e�t� 2 .0; 1/: (5.1)

Though we expect that such a result is known (or at least folklore) in the operator

theory community, we were not able to locate any reference that contains all of the

precise statements that we need to prove (5.1). (This is especially so since the level of

generality in this paper allows for non-self-adjoint operators.) As such, our purpose

in this section is to provide a general criterion for an identity of the form (5.1) to hold

(as well as a few more properties), which we then use in Section 6 to wrap up the

proof of Theorem 3.17.

We begin this section with a definition:

Definition 5.1. We say that a linear operator T on `2
Z

.V/ is finite-dimensional if there

exists a finite set U � V such that T .u;v/ D 0 whenever .u; v/ 62 U� U. In particular,

if we enumerate the set U D ¹u1; : : : ; ujUjº, then T has the same spectrum as the

jUj � jUj matrix MT with entries

MT .i; j / WD T .ui ; uj /; 1 � i; j � jUj: (5.2)

The result that we prove in this section is as follows:

Proposition 5.2. Let .Tt /t>0 be a strongly continuous semigroup of trace class oper-

ators on `2
Z

.V/ such that kTt kop � e�!t for some ! < 0, and let G be its infinitesimal

generator. The following holds:

1. G is closed and densely defined on `2
Z

.V/;

2. �.G/ D �p.G/, and <.�/ � ! for all � 2 �.G/;

3. for every t > 0, �.Tt/ n ¹0º D ¹e�t�W � 2 �.G/º.
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Moreover, if there exists a sequence of finite-dimensional operators .Gn/n2N such

that

lim
n!1

kR.z; Gn/ � R.z; G/kop D 0 (5.3)

for at least one z 2 C n �.G/ and such that

lim
n!1

ke�tGn � Ttkop D 0; (5.4)

then for every t > 0 and � 2 �.Tt/ n ¹0º,

ma.�; Tt / D
X

�2�.G/We�t�D�

ma.�; G/: (5.5)

As a direct consequence of the above proposition, we have that

TrŒTt � D
X

�2�.Tt /n¹0º

ma.�; Tt /� D
X

�2�.G/

ma.�; G/e�t� 2 C

for all t > 0, which is precisely the kind of statement that we are looking for. The

remainder of this section is now devoted to the proof of Proposition 5.2.

5.1. Step 1. Closed generator and spectral mapping

We begin with the more straightforward aspects of the statement of Proposition 5.2,

namely, items (1)–(3). Since .Tt /t>0 is strongly continuous and kTt kop � e�!t , it

follows from the Hille–Yosida theorem (e.g., [17, Chapter II, Corollary 3.6]) that G

is closed and densely defined on `2
Z

.V/. Moreover, <.�/ � ! for every � 2 �.G/.

Given that the Tt are trace class, we know that �.Tt/ D �p.Tt/ and that

TrŒTt � D
X

�2�.Tt /n¹0º

ma.�; Tt /� 2 C

by Lidskii’s theorem (e.g., [40, Sections 3.6 and 3.12]). Next, by the spectral mapping

theorem (e.g., [17, Chapter IV, (3.7) and (3.16)]), we know that for every t > 0,

¹e�t�W � 2 �.G/º � �.Tt/ and ¹e�t�W � 2 �p.G/º D �p.Tt / n ¹0º: (5.6)

In particular, �.G/ D �p.G/, concluding the proof of Proposition 5.2 (1)–(3).

5.2. Step 2. Multiplicities in finite dimensions

It now remains to prove (5.5). Before we prove this result, we first prove the corres-

ponding statement in finite dimensions, namely:
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Lemma 5.3. Let T be a finite-dimensional linear operator on `2
Z

.V/ and F W C ! C

be an analytic function. For every � 2 �.F.T // D F.�.T //, one has

ma.�; F.T // D
X

�2�.T /WF .�/D�

ma.�; T /:

Applying this to the exponential map and the operators e�tGn , we are led to the

fact that for every n 2 N, t > 0, and � 2 �.Gn/ one has

ma.�; e�tGn/ D
X

�2�.Gn/We�t�D�

ma.�; Gn/: (5.7)

Proof of Lemma 5.3. It suffices to prove the result with T replaced by MT and F.T /

replaced by F.MT /, where MT is the matrix defined in (5.2). Let MT D PJP �1 be

the Jordan canonical form of MT . That is, J is the direct sum of the Jordan blocks of

MT , and in particular the number of times any � 2 C appears on the diagonal of J

is equal to ma.�; MT /. By the standard analytic functional calculus for matrices, we

know that F.MT / D PF.J /P �1, where F.J / is the direct sum of the transformed

Jordan blocks of MT , wherein any k � k Jordan block of the form

2

6

6

6

4

� 1

� 1

: : :
: : :

� 1

3

7

7

7

5

is transformed into the upper triangular matrix

2

6

6

6

6

6

6

4

F.�/ F 0.�/ F 00.�/=2 � � � F .k�1/.�/=.k � 1/Š

F.�/ F 0.�/ � � � F .k�2/.�/=.k � 2/Š
: : :

: : :
:::

: : : F 0.�/

F.�/

3

7

7

7

7

7

7

5

:

Given that the characteristic polynomial of F.MT / is the same as that of F.J /, this

readily implies the result.

5.3. Step 3. Passing to the limit

We now complete the proof of Proposition 5.2 by arguing that the identity (5.7)

persists in the large n limit. Thanks to (5.3) and (5.4), we know that we have the

convergences Gn ! G and e�tGn ! Tt for every t > 0 in the generalized sense of

Kato (see [30, Chapter IV, (2.9), (2.20), and p. 206] for a definition of convergence in
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the generalized sense, and [30, Chapter IV, Theorems 2.23 a) and (2.25)] for a proof

that norm-resolvent and norm convergence implies convergence in the generalized

sense). As shown in [30, Chapter IV, Theorem 3.16] (see also [30, Chapter IV, Sec-

tion 5] for a discussion specific to the context of isolated eigenvalues), convergence

in the generalized sense implies the following spectral continuity results:

Notation 5.4. In what follows, we use B.z;r/ to denote the closed ball in the complex

plane centered at z 2 Z and with radius r > 0.

Corollary 5.5. For every � 2 �.G/, if " > 0 is such that �.G/ \ B.�; "/ D ¹�º, then

there exists N 2 N large enough so that

X

Q�2�.Gn/\B.�;"/

ma. Q�; Gn/ D ma.�; G/ (5.8)

whenever n � N .

Conversely, for every t > 0 and � 2 �.Tt/ n ¹0º, if " > 0 is such that �.Tt/ \
B.�; "/ D ¹�º, then there exists N 2 N large enough so that

X

Q�2.e�tGn /\B.�;"/

ma. Q�; e�tGn/ D ma.�; Tt / (5.9)

whenever n � N .

We are now ready to prove (5.2). We first show that for every t > 0 and � 2
�.Tt/ n ¹0º, the set ¹� 2 �.G/W e�t� D �º is finite. Suppose by contradiction that

this is not the case. Then, for any integer M > 0, we can find at least M distinct

eigenvalues �1; : : : ; �M 2 �.G/ such that e�t�i D �. By taking a small enough " > 0

and large enough N 2 N, a combination of (5.7) and (5.9) yields

ma.�; Tt / D
X

Q�2�.e�tGN /\B.�;"/

ma. Q�; e�tGN / D
X

Q�2�.GN /We�t Q�2B.�;"/

ma. Q�; GN /: (5.10)

Since z 7! e�tz is continuous, we can take ı > 0 small enough so that

1. if Q� 2 B.�i ; ı/ for some 1 � i � M , then e�t Q� 2 B.�; "/;

2. �.G/ \ B.�i ; ı/ D ¹�i º for every 1 � i � M .

Thus, up to increasing the value of N if necessary, an application of (5.8) to the right-

hand side of (5.10) then gives

ma.�; Tt / �
M

X

iD1

X

Q�2�.GN /\B.�i ;ı/

ma. Q�; GN / D
M

X

iD1

ma.�i ; G/ � M: (5.11)



Spectral conditioning of discrete Random Schrödinger operators 1141

Since M was arbitrary, this implies that ma.�; Tt / D 1. Since Tt is trace class this

cannot be the case, hence we conclude that ¹� 2 �.G/W e�t� D �º is finite.

By repeating the argument leading up to (5.11), but this time letting M be equal

to the number of eigenvalues in the set ¹� 2 �.G/W e�t� D �º, we obtain that

ma.�; Tt / �
X

�2�.G/We�t�D�

ma.�; G/:

We now proceed to prove the reverse inequality. Recall that ¹� 2 �.G/We�t� D �º con-

tains finitely many elements. Denote them by �1; : : : ; �M for some M 2 N. Thanks

to (5.8), we can find a small enough " > 0 and large enough N 2 N such that

M
X

iD1

ma.�i ; G/ D
X

Q�2
SM

iD1 �.GN /\B.�i ;"/

ma. Q�; GN / D
X

Q�2�.GN /\.
SM

iD1 B.�i ;"//

ma. Q�; GN /:

Then, by (5.7), one has
X

Q�2�.GN /\.
SM

iD1 B.�i ;"//

ma. Q�; GN / D
X

Q�2�.e�tGN /

Q�2e�t .
SM

iD1 B.�i ;"//

m. Q�; e�tGN /; (5.12)

where we use e�t .B/ to denote the image of a set B � C through the exponential

map z 7! e�tz. Since the exponential map is open and e�t�i D � for all 1 � i �
M , we can find a small enough ı > 0 such that B.�; ı/ � e�t .

SM
iD1 B.�i ; "// and

�.Tt/ \ B.�; ı/ D ¹�º. As a result, we get

M
X

iD1

ma.�i ; G/ � r.h.s. of (5.12) �
X

Q�2�.e�tGN /\B.�;ı/

ma. Q�; e�tGN /: (5.13)

At this point, up to increasing N if necessary an application of (5.9) then yields

M
X

iD1

ma.�i ; G/ �
X

Q�2�.e�tGN /\B.�;ı/

ma. Q�; e�tGN / D ma.�; Tt /;

thus concluding the proof of (5.5) and Proposition 5.2.

6. Proof of Theorem 3.17

In this section, we prove Theorem 3.17. We suppose throughout that Assumptions 3.8

and 3.12 hold. We begin with a notation:

Notation 6.1. Throughout this proof, we denote transition semigroup of X by

…t .u; v/ D P
uŒX.t/ D v�; t � 0; u; v 2 V:
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6.1. Step 1. Boundedness

Our first step in the proof is to show that, almost surely, Kt is a bounded linear oper-

ator on `2
Z

.V/ with kKt kop � e!t for every t > 0 for some ! < 0. As is typical in

Schrödinger semigroup theory, this relies on controlling the minimum of the random

potential V C � . To this end, we have the following result:

Lemma 6.2. Define the random variable

!0 WD inf
v2V

.V .v/ C �.v//: (6.1)

!0 > �1 almost surely.

Proof. Thanks to (3.3), it suffices to prove that

lim inf
n!1

�

inf
v2VWd.0;v/�n

�.v/

log n

�

> �1 almost surely: (6.2)

By a union bound and Markov’s inequality, for every �; � > 0,

P . inf
v2VWd.0;v/�n

�.v/ � ��/ �
X

v2VWd.0;v/�n

e���
EŒe���.v/�:

On the one hand, thanks to (3.1), we have that

j¹v 2 VW d.0; v/ � nºj � c

n
X

mD1

md�1 � c C c

n
Z

1

xd�1 dx � C nd

for some constant C > 0. On the other hand, thanks to the moment bound (3.4), there

exists a � > 0 small enough so that

sup
v2V

EŒe���.v/� < 1:

Combining these two observations, we conclude that there exists zC; � > 0 such that

P . inf
v2VWd.0;v/�n

�.v/ � ��/ � zC nd e���; � > 0:

If we take � D �.n/ D c log n for large enough c > 0, then
P

n2N
zC nd e���.n/ < 1;

hence (6.2) holds by the Borel–Cantelli lemma.

As a direct application of Lemma 6.2, we have Kt .u; v/ � e�!0t…t .u; v/ for

every u; v 2 V, where we take !0 as in (6.1). In particular, kKt kop � e�!0tk…t kop.

Given that !0 > �1 almost surely by Lemma 6.2, it suffices to prove that …t is

bounded with k…t kop � e�t!1 for some constant !1 � 0. We now prove this.
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Note that, for every f 2 `2.V/, we have by Jensen’s inequality that

k…t f k2
2 D

X

v2V

E
vŒf .X.t//�2 �

X

v2V

E
vŒf .X.t//2� D

X

u;v2V

…t .v; u/f .u/2;

from which we conclude that

k…t kop �
s

sup
u2V

X

v2V

…t .v; u/:

If we define the matrix

HX .u; v/ WD
´

�q.u/….u; v/ if u ¤ v

q.u/ if u D v
; u; v 2 V

(i.e., the Markov generator of X ), then we can write

X

v2V

…t .v; u/ D
X

v2V

1
X

nD0

.�t/nH n
X .v; u/

nŠ
�

1
X

nD0

tn

nŠ

X

v2V

jH n
X .v; u/j:

Noting that

sup
u;v2V

jH n
X .u; v/j � kH n

Xkop � kHX kn
op;

for every u; v 2 V, we have the bound

jH n
X .v; u/j � kHXkn

op1¹d.u;v/�nº:

By (3.1), for any u 2 V, the number of v 2 V such that .u; v/ is an edge is bounded

by c. Thus, the number of v 2 V such that d.u; v/ � n is crudely bounded by cn.

Consequently,

k…t k2
op � sup

u2V

X

v2V

…t .v; u/ �
1

X

nD0

.tckHXkop/n

nŠ
D eckHX kopt :

Thus, it now suffices to prove that kHXkop < 1.

Recall that, by assumption, q WD supu2Vq.u/ < 1. For every f 2 `2.V/,

kHXf k2
2 � q2

X

u2V

�

X

v2V

1¹.u;v/2Eºf .v/
�2

� q22c
X

u;v2V

1¹.u;v/2Eºf .v/2;

where the last inequality comes from the fact that

.x1 C � � � C xc/
2 � 2c.x2

1 C � � � C x2
c
/; xi 2 R;
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and that, by (3.1), for every v 2 V there are at most c vertices u such that .u; v/ 2 E.

Using once again this last observation, we have that
X

u;v2V

1¹.u;v/2Eºf .v/2 � ckf k2
2;

from which we conclude that kHXk2
op � q22cc; as desired.

6.2. Step 2. Continuity of the semigroup

We now prove the almost-sure strong continuity and semigroup property. Since X is

Markov and local time is additive, the semigroup property is trivial. We now prove

strong continuity. Let C0;Z.V/ denote the set of functions f WV ! R that are finitely

supported on V n Z. Since C0;Z.V/ is dense in `2
Z

.V/ and a semigroup of bounded

linear operators is strongly continuous if and only if it is weakly continuous (e.g.,

[17, Chapter I, Theorem 5.8]), it suffices to prove that hf; Kt g � gi ! 0 as t ! 0 for

every f; g 2 C0;Z.V/. For every g 2 C0;Z.V/, we know that

lim
t!0

g.X.t//e�hLt;V C�i D g.X.0//1¹X.0/62Zº D g.X.0// almost surely:

By the definition of !0, it follows that hLt ; V C �i � !0t which implies that

jg.X.t//e�hLt;V C�ij � kgk`1 e�!0t :

Since the right-hand side of this inequality is independent of X , it follows from dom-

inated convergence that

lim
t!0

Ktg.v/ D lim
t!0

E
vŒg.X.t//e�hLt;V C�i� D g.v/ almost surely

for every v 2 V. Finally, given that for every v 2 V, we have

jf .v/.Ktg.v/ � g.v//j � kf k`1kgk`1.e�!0t C 1/1¹f .v/¤0º;

which is summable in v whenever f 2 C0;Z.V/, we obtain hf;Kt g � gi ! 0 as t ! 0

by dominated convergence.

6.3. Step 3. Trace class

By the semigroup property, for every t > 0, we can write Kt as the product Kt=2Kt=2.

Thus, given that the product of any two Hilbert–Schmidt operators is trace class

(e.g., [40, Theorem 3.7.4]), it suffices to prove that, almost surely, Kt is Hilbert–

Schmidt for all t > 0, that is,
X

u;v2V

Kt .u; v/2 < 1:
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By (6.2), there exists finite random variables �; � > 0 that only depend on � such that

V.v/ C �.v/ � .�d.0; v//˛ � �; v 2 V

almost surely. Therefore, it suffices to prove the result with Kt replaced by the kernel

zKt .u; v/ WD e�t
E

uŒe�hLt ;.�d.0;�//˛i
1¹X.t/Dvº�; u; v 2 V:

By Jensen’s inequality,

X

u;v2V

zKt .u; v/2 � e2�t
X

u;v2V

E
uŒe�2hLt ;.�d.0;�//˛i

1¹X.t/Dvº�

� e2�t
X

u2V

E
uŒe�2hLt ;.�d.0;�//˛i�:

At this point, the same argument used in (4.22), (4.24), and (4.25) implies that there

exists some finite constant C�;t > 0 (which depends on � and t) such that

X

u;v2V

zKt .u; v/2 � C�;t e2�t
X

u2V

e�2t.�d.0;u//˛

:

Then, writing the above sum as

X

u2V

e�2t.�d.0;u//˛ D
X

n2N

cn.0/e�2t.�n/˛

;

this is easily seen to be finite for all t > 0 by (3.1).

6.4. Step 4. Infinitesimal generator

We now prove the properties of the generator H , except for number rigidity of its

spectrum, which is relegated to the next (and final) step of the proof. That the gener-

ator of Kt is of the form (3.10) follows from the straightforward computation that for

every u; v 2 V n Z,

lim
t!0

1¹uDvº � Kt .u; v/

t
D H.u; v/ almost surely

(indeed, recall that by definition of the process X , …t .u; v/ D q.u/….u; v/t C o.t/

as t ! 0 whenever u ¤ v, and that Kt .u; v/ D 0 if u 2 Z or v 2 Z).

Almost surely, .Kt /t>0 is a strongly continuous semigroup of trace class operators

and kKt kop � e�!t . Therefore, by Proposition 5.2 (1)–(3), the following holds almost

surely:

1. H is closed and densely defined on `2.V/;

2. �.H/ D �p.H/, and <.�/ � ! for all � 2 �.H/;
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3. for every t > 0, �.Kt/ n ¹0º D ¹e�t�W � 2 �.H/º.

It now remains to establish the trace identity (5.1), which is crucial in our proof of

rigidity. The fact that TrŒKt � is a positive real number follows from the fact that

TrŒKt � D
X

v2V

Kt .v; v/

and that Kt .u;v/ 2 Œ0;1/ for all u;v 2 V. To prove the remainder of (5.1), as per Pro-

position 5.2, we need to find a sequence of finite-dimensional operators that converge

to H and Kt in the sense of (5.3) and (5.4).

To this end, for every n 2 N, let us denote the subset

Vn WD ¹v 2 VW d.0; v/ � nº � V:

Given that G has uniformly bounded degrees, this must be finite. Thus, the operators

Hn.u; v/ WD H.u; v/1¹.u;v/2Vnº; u; v 2 V

are finite-dimensional in the sense of Definition 5.1. More specifically, Hn is the

restriction of H to the set Vn with Dirichlet boundary on V n Vn. In particular, if

for every n 2 N we denote the hitting time

�n WD inf
t�0

¹t � 0W X.t/ 62 Vnº;

then e�tHn is the integral operator on `2
Z

.V/ with kernel

e�tHn.u; v/ D E
uŒe�hLt ;V C�i

1¹X.t/Dvº1¹�n>tº�: (6.3)

The proof of (5.1) is now a matter of establishing the following result:

Lemma 6.3. Almost surely, it holds that

lim
n!1

kR.z; Hn/ � R.z; H/kop D 0 (6.4)

for every z 2 C such that <.z/ < ! and

lim
n!1

ke�tGn � Ktkop D 0 (6.5)

for every t > 0.

Proof. Given that 0 � e�tHn.u; v/ � Kt .u; v/ for all u; v 2 V, it is easy to see that

ke�tHnkop � kKt kop � e�!t for all t > 0 almost surely. In particular, any z 2 C such
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that <.z/ < ! is in the resolvent set of Hn and H for all n. Consequently, it follows

from [17, Chapter II, Theorem 1.10] that

kR.z; Hn/ � R.z; H/kop D












1
Z

0

etz.e�tGn � Kt / dt













op

�
1

Z

0

etzke�tGn � Ktkop dt;

where the last inequality follows from [15, Chapter II, Theorem 4 (ii)]. Given that

1
Z

0

etzke�tGn � Ktkop dt �
1

Z

0

etz.ke�tGnkop C kKtkop/ dt � 2

1
Z

0

et.z�!/ dt < 1

whenever <.z/ < !, we get that (6.4) is a consequence of (6.5) by an application of

the dominated convergence theorem.

Let us then prove (6.5). Since the Hilbert–Schmidt norm dominates the operator

norm, it suffices to prove that

X

u;v2V

.e�tGn.u; v/ � Kt .u; v//2 D
X

u;v2V

E
uŒe�hLt ;V C�i

1¹X.t/Dvº1¹�n�tº�
2 (6.6)

vanishes as n ! 1 for all t > 0 almost surely. By Hölder’s inequality, the right-hand

side of (6.6) is bounded above by

X

u;v2V

E
uŒe�2hLt ;V C�i

1¹X.t/Dvº�P
uŒ�n � t �:

By mimicking our proof that Kt is trace class, we know that

X

u;v2V

E
uŒe�2hLt ;V C�i

1¹X.t/Dvº� < 1

for every t > 0 almost surely. Thus, by dominated convergence, it suffices to prove

that

lim
n!1

P
uŒ�n � t � D 0

for every u 2 V and t > 0. Noting that

P
uŒ max

0�s�t
d.0; X.s// > n� � P

uŒ max
0�s�t

d.u; X.s// > n � d.0; u/�

for all n 2 N by the triangle inequality, this follows directly from the tail bound (4.22).
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6.5. Step 5. Rigidity

It now only remains to prove that the point process (3.11) is number rigid in the sense

of Definition 3.3. The proof of this amounts to a minor modification of the argument

in [25, Theorem 6.1] (see also [34, Proposition 2.2]).

Let B � C be a Borel set such that B � .�1; ı� C iŒ�Qı; Qı� for some ı; Qı > 0.

Thanks to the trace identity (5.1), almost surely, we can write

XH .B/ D
X

�2�.H/\B

ma.�; H/

as the sum of the following three terms:

X

�2�.H/

ma.�; H/e�t� � E

h

X

�2�.H/

ma.�; H/e�t�
i

D TrŒKt � � EŒTrŒKt ��; (6.7)

X

�2�.H/\B

ma.�; H/.1 � e�t�/; (6.8)

E

h

X

�2�.H/

ma.�; H/e�t�
i

�
X

�2�.H/nB

ma.�; H/e�t�: (6.9)

Since we choose the exponent ˛ in the same way as Theorem 3.16, (6.7) converges to

zero as t ! 0 almost surely along a subsequence. Next, we have that (6.8) is bounded

above in absolute value by

XH .B/ sup
�2Œ!;ı�CiŒ˛;ˇ�

j1 � e�t� j;

where we recall that ! is the random lower bound on the real part of the points in

XH . Since XH is real-bounded below and B � .�1; ı� C iŒ�Qı; Qı�, XH .B/ < 1
almost surely. Thus, (6.8) converges to zero almost surely as t ! 0. Thus, XH .B/

is the almost sure limit of (6.9) as t ! 0, along a subsequence. Given that (6.9) is

measurable with respect to the configuration of points outside of B for every t and

that the almost-sure limit of measurable functions is measurable (assuming the sigma

algebra is complete), we conclude that XH .B/ is measurable with respect to the con-

figuration outside of B . This then concludes the proof of number rigidity, and thus of

Theorem 3.17.

Remark 6.4. Referring back to the point raised in Section 1.4.2, we see that the

function denoted NB therein satisfies the relation

NB.�.H/ n B/ D lim
n!1

�

E

h

X

�2�.H/

ma.�; H/e�tn�
i

�
X

�2�.H/nB

ma.�; H/e�tn�
�

(6.10)

with probability one, where .tn/n2N is a sparse enough sequence that vanishes in the

large n limit. In particular, understanding the precise form of NB relies, among other
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things, on understanding how the divergences of the two terms inside the limit on the

right-hand side of (6.10) somehow cancel out as n ! 1.

7. Proof of Theorem 3.18

7.1. Step 1. General lower bound

We begin by providing a lower bound for VarŒTrŒKt �� in the general setting of the

statement of Theorem 3.18. This bound will then be shown to remain positive as

t ! 0 in the cases labelled (1)–(3).

Recalling that 
 is the positive definite covariance function of � , if we denote the

semi-inner-product

hf; gi
 WD
X

u;v2Zd

f .u/
.u � v/g.v/; f; gW Z
d ! R;

then our assumption that 
 is nonnegative implies that hf; gi
 � 0 whenever f and g

are nonnegative. In particular, we have that

Cov� Œe�hLu
t ;�i; e�h zLv

t ;�i� D e
1
2

hLu
t ;Lu

t i
 C 1
2

h zLv
t ; zLv

t i
 .ehLu
t ; zLv

t i
 � 1/ � 0: (7.1)

For every u;v 2 Z
d and t > 0, denote the event Jt .u;v/ WD ¹Lu

t D t1u and zLv
t D t1vº.

Clearly, Jt .u; v/ � ¹Xu.t/ D u; zXv.t/ D vº, and by independence of Xu and zXv,

inf
u;v2Zd

P ŒJt .u; v/� D inf
v2Zd

P
vŒX.s/ D v for every s � t �2 � e�2t : (7.2)

We now combine (7.1) and (7.2) to lower bound the variance of TrŒKt �. By Pro-

position 4.2, we may write

VarŒTrŒKt �� �
X

u;v2Zd

EŒe�hLu
t C zLv

t ;V ie
1
2 hLu

t ;Lu
t i
 C 1

2 h zLv
t ; zLv

t i
 .ehLu
t ; zLv

t i
 � 1/1Jt.u;v/�

D
X

u;v2Zd

e�tV.u/�tV.v/et2
.0/.et2
.u�v/ � 1/P ŒJt.u; v/�

� e�2tCt2
.0/
X

u;v2Zd

e�tV.u/�tV.v/.et2
.u�v/ � 1/

D e�2tCt2
.0/
X

u;v2Zd

e�td.0;u/ı�td.0;v/ı

.et2
.u�v/ � 1/; (7.3)

where the first line comes from (7.1) and the fact that EŒY � � EŒY 1E � for any non-

negative random variable Y and event E, the second line comes from the definition

of the event Jt .u; v/, the third line comes from (7.2), and the last line comes from the
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assumption on V stated in Theorem 3.18. As e�2tCt2
.0/ ! 1 as t ! 0, we obtain

our general lower bound:

lim inf
t!0

VarŒTrŒKt �� � lim inf
t!0

X

u;v2Z
d

e�td.0;u/ı�td.0;v/ı

.et2
.u�v/ � 1/: (7.4)

We now prove that the right-hand side of (7.4) is positive in cases (1)–(3).

7.2. Step 2. Three examples

Suppose first that ı � d=2 and 
.v/ D 1¹vD0º. On the integer lattice Zd , it is easy

to see that there exists a constant C > 0 such that cn.0/ � C nd�1. Therefore, by an

application of (7.4), followed by the inequality ex � 1 � x for all x � 0 and a Riemann

sum, we have that

lim inf
t!0

VarŒTrŒKt �� � lim inf
t!0

.et2 � 1/
X

v2Z
d

e�2td.0;v/ı � lim inf
t!0

t2
X

n2N[¹0º

cn.0/e�2tnı

� C lim inf
t!0

t2�d=ı t1=ı
X

n2t1=ıN[¹0º

nd�1e�2n � C

1
Z

0

xd�1e�2x dx > 0:

Next, suppose that ı � d � ˇ=2 and that 
.v/ � L.d.0;v/ C 1/�ˇ for some 0 < ˇ < d

and L > 0. Then, (7.4), the triangle inequality, and the same arguments as in the

previous case yield

lim inf
t!0

VarŒTrŒKt ��

� lim inf
t!0

X

u;v2Zd

e�td.0;u/ı�td.0;v/ı

.eLt2.d.u;v/C1/�ˇ � 1/

� L lim inf
t!0

t2
X

u;v2Zd

e�td.0;u/ı�td.0;v/ı

.d.0; u/ C d.0; v/ C 1/�ˇ

D L lim inf
t!0

t2
X

m;n2N[¹0º

cm.0/cn.0/e�tmı�tnı

.m C n C 1/�ˇ

� LC 2 lim inf
t!0

t2�2.d�1/=ıCˇ=ı
X

m;n2t1=ıN[¹0º

.mn/d�1e�mı�nı

.m C n C tı/�ˇ

D LC 2 lim inf
t!0

t2�2.d�ˇ=2/=ı

1
Z

0

1
Z

0

.xy/d�1

.x C y/ˇ
e�xı�yı

dx dy > 0:

Finally, suppose that ı � d and infv2Zd 
.v/ > L > 0. In this case we obtain that

lim inf
t!0

VarŒTrŒKt �� � lim inf
t!0

.eLt2 � 1/
X

u;v2Zd

e�td.0;u/ı�td.0;v/ı
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� LC 2 lim inf
t!0

t2
�

X

n2N

nd�1e�2tnı
�2

D LC 2 lim inf
t!0

t2�2d=ı

�

1
Z

0

xd�1e�2x dx

�2

> 0;

thus concluding the proof.

References

[1] A. A. Abramov, A. Aslanyan, and E. B. Davies, Bounds on complex eigenvalues and

resonances. J. Phys. A 34 (2001), no. 1, 57–72 Zbl 1123.81415 MR 1819914

[2] M. Aizenman and P. A. Martin, Structure of Gibbs states of one-dimensional Coulomb

systems. Comm. Math. Phys. 78 (1980/81), no. 1, 99–116 MR 597033

[3] M. Aizenman and S. Warzel, Random operators. Grad. Stud. Math. 168, American Math-

ematical Society, Providence, RI, 2015 Zbl 1333.82001 MR 3364516

[4] P. W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109 (1958),

1492–1505

[5] A. Baddeley, P. Gregori, J. Mateu, R. Stoica, and D. Stoyan (eds.), Case studies in spatial

point process modeling. Lecture Notes in Statistics, 185. Springer, New York, 2006.

Zbl 1084.62501 MR 2229141

[6] S. Bögli, Schrödinger operator with non-zero accumulation points of complex eigenvalues.

Comm. Math. Phys. 352 (2017), no. 2, 629–639 Zbl 1364.35256 MR 3627408

[7] A. I. Bufetov, Rigidity of determinantal point processes with the Airy, the Bessel and the

gamma kernel. Bull. Math. Sci. 6 (2016), no. 1, 163–172 Zbl 1335.60075 MR 3472852

[8] A. I. Bufetov, Quasi-symmetries of determinantal point processes. Ann. Probab. 46 (2018),

no. 2, 956–1003 Zbl 1430.60045 MR 3773378

[9] A. I. Bufetov, Y. Dabrowski, and Y. Qiu, Linear rigidity of stationary stochastic processes.

Ergodic Theory Dynam. Systems 38 (2018), no. 7, 2493–2507 Zbl 1400.37010

MR 3846715

[10] A. I. Bufetov, P. P. Nikitin, and Y. Qiu, On number rigidity for Pfaffian point processes.

Mosc. Math. J. 19 (2019), no. 2, 217–274 Zbl 1457.60068 MR 3957808

[11] R. Carmona and J. Lacroix, Spectral theory of random Schrödinger operators. Probab.

Appl., Birkhäuser, Boston, MA, 1990 Zbl 0717.60074 MR 1102675

[12] E. B. Davies, Nonunitary scattering and capture. I. Hilbert space theory. Comm. Math.

Phys. 71 (1980), no. 3, 277–288 Zbl 0428.47006 MR 565282

[13] E. B. Davies and J. Nath, Schrödinger operators with slowly decaying potentials. J. Com-

put. Appl. Math. 148 (2002), no. 1, 1–28. Zbl 1019.34083 MR 1946184

[14] M. Demuth, M. Hansmann, and G. Katriel On the discrete spectrum of non-selfadjoint

operators. J. Funct. Anal. 257 (2009), no. 9, 2742–2759 Zbl 1183.47016 MR 2559715

[15] J. Diestel and J. J. Uhl, Jr., Vector measures. Math. Surv. 15, American Mathematical

Society, Providence, R.I., 1977 Zbl 0369.46039 MR 0453964

https://zbmath.org/?q=an:1123.81415
https://mathscinet.ams.org/mathscinet-getitem?mr=1819914
https://mathscinet.ams.org/mathscinet-getitem?mr=597033
https://zbmath.org/?q=an:1333.82001
https://mathscinet.ams.org/mathscinet-getitem?mr=3364516
https://zbmath.org/?q=an:1084.62501
https://mathscinet.ams.org/mathscinet-getitem?mr=2229141
https://zbmath.org/?q=an:1364.35256
https://mathscinet.ams.org/mathscinet-getitem?mr=3627408
https://zbmath.org/?q=an:1335.60075
https://mathscinet.ams.org/mathscinet-getitem?mr=3472852
https://zbmath.org/?q=an:1430.60045
https://mathscinet.ams.org/mathscinet-getitem?mr=3773378
https://zbmath.org/?q=an:1400.37010
https://mathscinet.ams.org/mathscinet-getitem?mr=3846715
https://zbmath.org/?q=an:1457.60068
https://mathscinet.ams.org/mathscinet-getitem?mr=3957808
https://zbmath.org/?q=an:0717.60074
https://mathscinet.ams.org/mathscinet-getitem?mr=1102675
https://zbmath.org/?q=an:0428.47006
https://mathscinet.ams.org/mathscinet-getitem?mr=565282
https://zbmath.org/?q=an:1019.34083
https://mathscinet.ams.org/mathscinet-getitem?mr=1946184
https://zbmath.org/?q=an:1183.47016
https://mathscinet.ams.org/mathscinet-getitem?mr=2559715
https://zbmath.org/?q=an:0369.46039
https://mathscinet.ams.org/mathscinet-getitem?mr=0453964


P. Y. Gaudreau Lamarre, P. Ghosal, and Y. Liao 1152

[16] A. Edelman and B. D. Sutton, From random matrices to stochastic operators. J. Stat. Phys.

127 (2007), no. 6, 1121–1165 Zbl 1131.15025 MR 2331033

[17] K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations. Grad.

Texts Math. 194, Springer, New York, 2000 Zbl 0952.47036 MR 1721989
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