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Lp-bounds for semigroups generated

by non-elliptic quadratic differential operators

Francis White

Abstract. In this note, we establish Lp-bounds for the semigroup e�tqw.x;D/, t � 0, gen-

erated by a quadratic differential operator qw.x; D/ on R
n that is the Weyl quantization of

a complex-valued quadratic form q defined on the phase space R
2n with non-negative real

part Re q � 0 and trivial singular space. Specifically, we show that e�tqw.x;D/ is bounded

from Lp.Rn/ to Lq.Rn/ for all t > 0 whenever 1 � p � q � 1, and we prove bounds on

ke�tqw.x;D/kLp
!Lq in both the large t � 1 and small 0 < t � 1 time regimes.

Regarding Lp ! Lq bounds for the evolution semigroup at large times, we show that

ke�tqw.x;D/kLp
!Lq is exponentially decaying as t ! 1, and we determine the precise rate

of exponential decay, which is independent of .p; q/. At small times 0 < t � 1, we establish

bounds on ke�tqw.x;D/kLp
!Lq for .p; q/ with 1 � p � q � 1 that are polynomial in t�1.

1. Introduction and statement of results

In this note, we prove Lp-bounds for the solution operator e�tqw.x;D/ of the Schrö-

dinger initial value problem

´

@tu.t; x/ C qw .x; D/u.t; x/ D 0; .t; x/ 2 Œ0; 1/ � Rn;

u.0; x/ D u0.x/; x 2 R
n;

(1.1)

where u0 2 L2.Rn/ is the initial data, q D q.x; �/ is a complex-valued quadratic

form on the phase space R2n D Rn
x � R

n
�

with non-negative real part Re q � 0, and

qw.x; D/ is the Weyl quantization of q.x; �/, defined by

qw .x; D/v.x/ D .2�/�n

Z

Rn

Z

Rn

ei.x�y/��q
�x C y

2
; �

�

v.y/ dy d�; v 2 �
0.Rn/;

(1.2)
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in the sense of distributions. Operators of the form (1.2) are quadratic differential

operators with a simple, explicit expression. This is because the Weyl quantization of

a quadratic monomial of the form x˛�ˇ , where ˛; ˇ 2 N
n, j˛ C ˇj D 2, is

x˛Dˇ C Dˇ x˛

2
; D WD

1

i
@: (1.3)

The class of evolution equations of the form (1.1) contains a number of familiar

examples, such as the free Schrödinger equation where q.x; �/ D i j�j2, .x; �/ 2 R
2n,

the quantum harmonic oscillator, where q.x; �/ D i.jxj2 C j�j2/, .x; �/ 2 R
2n, the

heat equation, where q.x; �/ D j�j2, .x; �/ 2 R2n, and the Kramers–Fokker–Planck

equation with a quadratic potential, where q.x;v; �;�/ D �2 C 1
4
v2 C i.v � � � ax � �/,

for .x; v; �; �/ 2 R
4n D R

2n
x;v � R

2n
�;�

and a 2 Rn¹0º a constant. From the work [15], it

is known that the operator qw.x; D/, regarded as an unbounded operator on L2.Rn/

equipped with the maximal domain

Dmax D ¹u 2 L2.Rn/W qw.x; D/u 2 L2.Rn/º; (1.4)

is maximally accretive and generates a strongly continuous contraction semigroup

G.t/ WD e�tqw.x;D/, t � 0, on L2.Rn/. We may regard G.t/ as the solution operator

for the problem (1.1). Given that a wide range of physical processes may be modeled

by equations of the form (1.1), it is of interest to understand the Lp ! Lq mapping

properties of the evolution semigroup G.t/ and to obtain bounds for the operator norm

kG.t/kLp!Lq at various time regimes. Let us mention that the study of Lp-bounds

for semigroups generated by self-adjoint Schrödinger operators has a long and rich

tradition in the field of mathematical physics. We refer to [7, 8, 24, 25] for some fun-

damental results in this area. In particular, Lp-bounds for the propagator G.t/ were

obtained in [17] in the case when (1.1) is the time evolution of the quantum harmonic

oscillator. We also mention that the topic of Lp-bounds for operators with Gaussian

kernels is a classical subject. In particular, it is known that the that the Lp ! Lq norm

of an operator on Rn with a Gaussian kernel must be realized by a Gaussian. For more

information, see [18].

In this note, we shall be primarily interested in obtaining Lp ! Lq bounds for

G.t/ in the case when the quadratic form q is non-elliptic. In order to recount the

known results in this direction, we pause to recall the notion of the singular space of

a complex-valued quadratic form q on R
2n with non-negative real part Re q � 0. Let

R
2n be equipped with the standard symplectic form

�..x; �/; .y; �// D � � y � x � �; .x; �/; .y; �/ 2 R
2n: (1.5)

Suppose qW R2n ! C is a complex-valued quadratic form with Re q � 0 and let q.�; �/

denote its symmetric C-bilinear polarization. Because � is non-degenerate, there is a
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unique F 2 Mat2n�2n.C/ such that

q..x; �/; .y; �// D �..x; �/; F.y; �// (1.6)

for all .x; �/; .y; �/ 2 R
2n. This matrix F is called the Hamilton map or Hamilton

matrix of q (see [16, Section 21.5]). Explicitly, the Hamilton matrix of q is given by

F D
1

2
Hq; (1.7)

where Hq D .q0
�
; �q0

x/ is the Hamilton vector field of q, viewed as a linear map

C2n ! C2n. Let

Re F D
F C xF

2
; Im F D

F � xF

2i

be the real and imaginary parts of F respectively. The singular space S of q is defined

as the following finite intersection of kernels:

S D
�

2n�1
\

j D0

ker Œ.Re F /.Im F /j �
�

\ R
2n: (1.8)

The singular space was first introduced by M. Hitrik and K. Pravda-Starov in [9]

where it arose naturally in the study of spectra and semigroup smoothing properties

for non-self adjoint quadratic differential operators. The concept of the singular space

has since been shown to play a key role in the understanding of hypoelliptic and

spectral properties of non-elliptic quadratic differential operators. See for instance

[10, 11, 20, 21, 28, 29]. Recent work has also shown that the singular space is vital for

the description of the propagation of microlocal singularities for the evolution (1.1).

We refer the reader to [2, 3, 5, 22, 23, 30, 31].

Let q be a complex-valued quadratic form on R
2n with non-negative real part

Re q � 0. Let S be the singular space of q. The quadratic form q is said to be elliptic

if

q.X/ D 0; X 2 R
2n H) X D 0; (1.9)

If (1.9) fails to hold, then we say that q is non-elliptic. To the best of our know-

ledge, there are currently only two general results regarding Lp ! Lq bounds for the

semigroup G.t/ in the case when q is non-elliptic. First, in [9, Theorem 1.2.3], it was

established that kG.t/kL2!L2 decays exponentially as t ! 1 whenever S is sym-

plectic and distinct from the entire phase space R2n. In other words, if S is symplectic

and S ¤ R
2n, then there are C; c > 0 such that

kG.t/kL2!L2 � Ce�ct ; t � 0: (1.10)
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Thanks to the subsequent work [19], it is also known that if S is trivial, i.e., S D ¹0º,

then the optimal rate of exponential decay of kG.t/kL2!L2 is the quantity  defined

below in Theorem 1.1. The second general result concerning Lp � Lq bounds for

G.t/ is [12, Theorem 1.2], which yields the following L2 � L1 estimate: if S D ¹0º,

then, for every s > n=2, there is C > 0 such that

kG.t/kL2!L1 � C t� 1
2 .2k0C1/.2nCs/; 0 < t � 1; (1.11)

where k0 2 ¹0; 1; : : : ; 2n � 1º is the smallest non-negative integer such that

k0
\

j D0

ker Œ.Re F /.Im F /j � \ R
2n D ¹0º: (1.12)

Our goal in the present work is to prove bounds for the operator norm kG.t/kLp!Lq

with .p; q/ more general than .2; 2/ and .2; 1/. The main result of this note refines

and extends the bounds (1.10) and (1.11) under the assumption that S D ¹0º. We recall

from [9, Theorem 1.2.2] that when S D ¹0º the spectrum of the quadratic differential

operator qw.x; D/ is only composed of eigenvalues of finite algebraic multiplicity

with

Spec.qw.x; D// D
°

X

�2Spec.F /
Im.�/>0

.r� C 2k�/.�i�/W k� 2 N

±

; (1.13)

where r� is the dimension of the space of generalized eigenvectors of the Hamilton

matrix F of q in C2n corresponding to the eigenvalue � 2 C. In particular, the eigen-

value of qw.x; D/ obtained by setting k� D 0 for all � 2 Spec.F / in (1.13) is

� D
X

�2Spec.F /
Im.�/>0

�ir��: (1.14)

We may think of � as the “lowest eigenvalue” or “ground state energy” of the operator

qw.x; D/.

Theorem 1.1. Let q, qw.x; D/, G.t/, S , and F be as above. Assume that S D ¹0º.

1. Let  D Re.�/ > 0. For every 1 � p � q � 1 and " > 0, there are constants

C D C";p;q > 0 and c D cp;q > 0, such that

ce�t � kG.t/kLp!Lq � Ce�t ; t � ": (1.15)

2. Let k0 2 ¹0;1; : : : ; 2n � 1º be the smallest non-negative integer such that (1.12)

holds. There is a time 0 < t0 � 1 such that for any 1 � p � q � 1 we have

c � kG.t/kLp!Lq � C t�.2k0C1/n; 0 < t � t0; (1.16)

for some constants C D Cp;q > 0 and c D cp;q > 0.
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Remark 1. For any 1 � p � q � 1, it is actually true that there is a constant c D

cp;q > 0 such that

ce�t � kG.t/kLp!Lq ; 0 � t < 1: (1.17)

In fact, we have c � kvkLq , where v 2 �.Rn/ is the Lp-normalized “ground state”

for the operator qw.x; D/. For a proof, see the derivation of (4.15) below.

Let us make some general comments regarding Theorem 1.1 First, the bounds

(1.15) show that for any 1 � p � q � 1 the operator norm kG.t/kLp!Lq decays

exponentially as t ! 1, with  being the precise rate of decay, independent of .p;q/.

To prove that  is the exact rate of exponential decay, one may examine the action of

the propagator G.t/ on the “ground state” eigenfunction of qw.x; D/ corresponding

to the eigenvalue � (see Section 4 below). Regarding the short time 0 < t � 1 bounds

in Theorem 1.1, it is clear that (1.16) is not sharp for all 1 � p � q � 1. For instance,

(1.16) fails to reproduce (1.10) when p D q D 2. However, one may interpolate (1.16)

with the bound G.t/ D OL2!L2.1/ as t ! 0C to obtain more precise estimates at

short times. We also note that when .p; q/ D .2; 1/, the bound (1.16) gives G.t/ D

OL2!L1.t�.2k0C1/n/ as t ! 0C, which is an improvement over (1.11).

Finally, let us briefly touch on the main ideas involved in the proof of Theorem

1.1. In the recent work [31], we showed that if T' is a global metaplectic FBI trans-

form on Rn, in the sense of either [32, Chapter 13] or the minicourse [13], then the

conjugated propagator zG.t/ WD T' ı G.t/ ı T
�

' is, for each t � 0, a metaplectic Fourier

integral operator acting on the Bargmann space Hˆ0
.Cn/, which is the unitary image

of L2.Rn/ under T' . In particular, we showed that the “Bergman form” ([6, 27]) of
zG.t/ is given by

zG.t/u.z/

D Oa.t/

Z

Cn

e2‰t .z; Nw/u.w/e�2ˆ0.w/L.dw/; z 2 C
n; u 2 Hˆ0

.Cn/; t � 0;

(1.18)

where L.dw/ is the Lebesgue measure on C
n, ˆ0.w/ WD supy2Rn.� Im '.w; y//;

w 2 C
n, is the strictly plurisubharmonic quadratic form on C

n associated to ', ‰t is

a holomorphic quadratic form on C2n D Cn � Cn depending analytically on t � 0,

and Oa 2 C !.Œ0; 1/I C/ is a non-vanishing amplitude. Moreover, we showed that ‰t

and Oa are the solutions of an eikonal equation and a transport equation, respectively.

In particular, we did not attempt to solve these equations explicitly for ‰t and Oa. Now,

thanks to the work [1], it is known that when the singular space is trivial S D ¹0º it is

possible to choose a metaplectic FBI transform T' so that conjugated semigroup has
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the simple form

zG.t/u.z/ D e
i
2

tr.M /tu.ei tM z/; u 2 Hˆ0
.Cn/; t � 0; (1.19)

where M 2 Matn�n.C/ is a suitable matrix. In the present work, we show that this

choice of T' leads to equations for ‰t and Oa that may be easily solved. One may then

show that (1.18) coincides with (1.19), giving an alternative derivation of (1.19). Once

the Bergman form of zG.t/ is known and a basic estimate for the real part of its phase

function is established, the bounds (1.15) and (1.16) follow easily by writing down a

formal expression for the Schwartz kernel of the composition T
�

' ı zG.t/ ı T' using

(1.18) and applying Young’s integral inequality.

The plan for this note is as follows. In Section 2, we recall how to choose the

FBI transform T' so that (1.19) holds. In Section 3, we determine the Bergman form

(1.18) of zG.t/ for t � 0 and prove some basic estimates. In Section 4, we conclude

the proof of Theorem 1.1, as outlined in this introduction.

2. Reduction to a normal form on the FBI transform side

In this section, we follow the approach of [14, 29] for reducing qw .x; D/ to a nor-

mal form via a metaplectic FBI transform. We provide additional references where

convenient.

Let q be a complex-valued quadratic form on R2n with non-negative real part

Re q � 0 and trivial singular space S D ¹0º. Let C2n D Cn
z � Cn

�
be equipped with

the standard complex symplectic form � D d� ^ dz. Let F be the Hamilton matrix

of q introduced in (1.6). From the work [9], it is known that the matrix F has no real

eigenvalues. Consequently,

#¹� 2 Spec.F /W Im � > 0º D #¹� 2 Spec.F /W Im � < 0º; (2.1)

counting algebraic multiplicities. For � 2 Spec.F /, let

V� D ker..F � �/2n/ � C
2n (2.2)

be the generalized eigenspace of F corresponding to �. Let us also introduce the

stable outgoing and stable incoming manifolds for the quadratic form �iq given by

ƒC D
M

�2Spec.F /
Im �>0

V�; ƒ� D
M

�2Spec.F /
Im �<0

V�; (2.3)
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respectively. By [29, Proposition 2.1], ƒC is a strictly positive C-Lagrangian sub-

space of C2n in the sense that ƒC is Lagrangian with respect to the complex sym-

plectic form � and

1

i
�.Z; xZ/ > 0; Z 2 ƒCn¹0º; (2.4)

and ƒ� is a strictly negative C-Lagrangian subspace of C
2n in the sense that ƒ�

is Lagrangian for the form � and (2.4) holds for all Z 2 ƒ�n¹0º with “>” replaced

by “<”. For background information regarding positive and negative C-Lagrangian

subspaces of C2n, we refer to [6, 13]. In particular, from the discussion on [13,

pp. 488–489], we know that there exists a holomorphic quadratic form ' D '.z; y/

on C
2n D C

n
z � C

n
y with

det '00
zy ¤ 0; Im '00

yy > 0; (2.5)

such that the complex linear canonical transformation

�' W C
2n 3 .y; �'0

y.z; y// 7! .z; '0
z.z; y// 2 C

2n; .z; y/ 2 C
2n; (2.6)

generated by ' satisfies

�'.ƒC/ D ¹.z; 0/W z 2 C
nº; �'.ƒ�/ D ¹.0; �/W � 2 C

nº: (2.7)

Let

ˆ0.z/ D sup
y2Rn

.� Im '.z; y//; z 2 C
n; (2.8)

be the strictly plurisubharmonic quadratic form on C
n associated to the phase ' (see

[32, Chapter 13] or [13, Section 1.3]), and let

ƒˆ0
D

°�

z;
2

i
ˆ0

0;z.z/
�

W z 2 C
n
±

: (2.9)

From either [32, Theorem 13.5] or [13, Proposition 1.3.2], we have

�'.R2n/ D ƒˆ0
; (2.10)

and thus ƒˆ0
is I -Lagrangian and R-symplectic for the complex symplectic form � .

Also, the strict positivity of ƒC in conjunction with (2.7) gives that the base ¹.z; 0/W

z 2 C
nº is strictly positive relative to ƒˆ0

(see, e.g., [6]). It then follows, as explained

in [26, Chapter 11], that the quadratic form ˆ0 is strictly convex.

Let

Qq D q ı ��1
' ; (2.11)
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regarded as a holomorphic quadratic form on C
2n. Since ƒC and ƒ� are invariant

under F and Lagrangian with respect to � , we have

q.X/ D �.X; FX/ D 0; X 2 ƒC [ ƒ�: (2.12)

From (2.7) and (2.11), it follows that Qq must be of the form

Qq.z; �/ D Mz � �; .z; �/ 2 C
2n; (2.13)

for some M 2 Matn�n.Cn/. In particular, the complex Hamilton vector field of Qq with

respect to � is

H Qq D .Mz; �M T �/; .z; �/ 2 C
2n: (2.14)

The Hamilton map of Qq is thus given by zF D 1
2
H Qq , and we have

zF D
1

2

�

M 0

0 �M T

�

: (2.15)

As a consequence of (2.11), (1.6), and the invariance of � under �' , it is true that
zF D �' ı F ı ��1

' . Since also zF maps .z; 0/ 2 �'.ƒC/ to 1
2
.Mz; 0/ 2 �'.ƒC/, we

have

Spec.M/ D Spec.2F / \ ¹Im � > 0º; (2.16)

with agreement of algebraic multiplicities.

Let T' W � 0.Rn/ ! Hol.Cn/ be the metaplectic FBI transform on Rn associated to

', given in the sense of distributions by

T'u.z/ D c'

Z

Rn

ei'.z;y/u.y/L.dy/; u 2 �
0.Rn/; (2.17)

where

c' D 2�n=2��3n=4.det Im '00
yy/�1=4j det '00

zyj: (2.18)

By [32, Theorem 13.7], T' is unitary L2.Rn/ ! Hˆ0
.Cn/, where

Hˆ0
.Cn/ WD L2.Cn; e�2ˆ0.z/L.dz// \ Hol.Cn/ (2.19)

is the Bargmann space associated to the weight ˆ0, equipped with the natural Hil-

bert space structure inherited from L2.Cn; e�2ˆ0.z/L.dz//. Here L.dz/ denotes the

Lebesgue measure on C
n. Let Qqw.z; D/ denote the complex Weyl quantization of
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the symbol Qq with respect to the weight ˆ0. We recall that Qqw.z; D/ is defined as an

unbounded operator on Hˆ0
.Cn/ that acts on suitable u 2 Hˆ0

.Cn/ by

Qqw .z; D/u.z/ D
1

.2�/n

“

�ˆ0
.z/

ei.z�w/�� Qqw
�z C w

2
; �

�

u.w/ dw ^ d�; z 2 C
n;

(2.20)

for the contour of integration

�ˆ0
.z/W w 7! � D

2

i
ˆ0

0;z

�z C w

2

�

; w 2 C
n; z 2 C

n: (2.21)

For more information on Weyl quantization in the complex domain, see [32,

Chapter 13] or [13, Section 1.4]. By Egorov’s theorem (see [32, Theorem 13.9] or

[13, Theorem 1.4.2]), we have

qw .x; D/ D T
�

' ı Qqw.z; D/ ı T' (2.22)

when both sides are viewed as operators acting on the maximal domain of qw .x; D/,

Dmax D ¹u 2 L2.Rn/W qw.x; D/u 2 L2.Rn/º: (2.23)

Let

zDmax D ¹u 2 Hˆ0
.Cn/W Qqw.z; D/u 2 Hˆ0

.Cn/º (2.24)

be the maximal domain of Qqw .z; D/, and let us view Qqw .z; D/ as an unbounded

operator on Hˆ0
.Cn/ with the domain zDmax. Thanks to (2.22), we have

zDmax D T'.Dmax/: (2.25)

Let G.t/ D e�tqw.x;D/, t � 0, be the strongly continuous semigroup on L2.Rn/

generated by qw.x; D/ (see [15]). From (2.22), (2.25), and the unitarity of T' , it

follows that Qqw.z;D/ generates a strongly continuous semigroup zG.t/ D e�t Qqw.z;D/,

t � 0, on Hˆ0
.Cn/. The semigroups G.t/ and zG.t/ are related by

G.t/ D T
�

' ı zG.t/ ı T' (2.26)

for all t � 0.

We have established the following proposition, which summarizes the discussion

in this section.

Proposition 2.1. Let q be a complex-valued quadratic form on R
2n with non-negative

real part Req � 0 and trivial singular space S D ¹0º. Let F be the Hamilton matrix of

q, and let qw.x; D/ be the Weyl quantization of q, viewed as an unbounded operator
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on L2.Rn/ equipped with its maximal domain Dmax defined in (2.23). Let G.t/ D

e�tqw.x;D/, t � 0, be the strongly continuous semigroup on L2.Rn/ generated by

qw.x; D/.

1. There exists a holomorphic quadratic form ' on C
2n satisfying (2.5) such that

the quadratic form ˆ0 defined by (2.8) is strictly convex and the complex linear

canonical transformation �' W C2n ! C2n defined implicitly by (2.6) has the

property that

Qq.z; �/ WD .q ı ��1
' /.z; �/ D Mz � �; .z; �/ 2 C

2n; (2.27)

where M 2 Matn�n.C/ is such that Spec.M/ D Spec.2F / \ ¹Im � > 0º with

agreement of algebraic multiplicities.

2. Let Qqw.z; D/ be the complex Weyl quantization (2.20) of Qq with respect to

the weight ˆ0, realized as an unbounded operator on the Bargmann space

Hˆ0
.Cn/ introduced in (2.19) equipped with the maximal domain zDmax defined

in (2.24). The operator Qqw.z; D/ generates a strongly continuous semigroup

zG.t/ D e�t Qqw.z;D/, t � 0, on Hˆ0
.Cn/ that is unitarily equivalent to G.t/ for

each t � 0. This unitary equivalence is given by the FBI transform T' intro-

duced in (2.17), i.e.,

G.t/ D T
�

' ı zG.t/ ı T' ; t � 0: (2.28)

3. The evolution semigroup on the FBI transform side

We now study the semigroup zG.t/, t � 0. Let ‰0 be the polarization of ˆ0, i.e. ‰0

is the unique holomorphic quadratic form on C
2n D C

n � C
n such that ‰0.z; Nz/ D

ˆ0.z/ for all z 2 C
n. Since

ˆ0.z/ D
1

2
ˆ00

0;zzz � z C ˆ00
0; Nzzz � Nz C

1

2
ˆ00

0; Nz Nz Nz � Nz; z 2 C
n; (3.1)

we see that ‰0 is given explicitly by

‰0.z; �/ D
1

2
ˆ00

0;zzz � z C ˆ00
0; Nzzz � � C

1

2
ˆ00

0; Nz Nz� � �; .z; �/ 2 C
2n: (3.2)

In the work [31], we showed that for every t � 0 the semigroup zG.t/ is a metaplectic

Fourier integral operator in the complex domain whose underlying complex canonical

transformation is the Hamilton flow Q�t of the symbol Qq at time t= i , i.e.,

Q�t D exp
� t

i
H Qq

�

; t � 0: (3.3)
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In view of (2.14), we have

Q�t .z; �/ D .e�i tM z; ei tM T

�/; .z; �/ 2 C
2n; t � 0: (3.4)

For background information regarding metaplectic Fourier integral operators in the

complex domain, see [4, Appendix B]. In particular, in the work [6], it was shown that

every such metaplectic Fourier integral operator in Cn possesses a unique “Bergman

form.” In Section 6 of [31], we proved that the Bergman form of zG.t/ is given by

zG.t/u.z/ D Oa.t/

Z

Cn

e2‰t .z; Nw/u.w/e�2ˆ0.w/L.dw/; z 2 C
n; u 2 Hˆ0

.Cn/;

(3.5)

where ‰t is a holomorphic quadratic form on C
2n, depending analytically on t � 0,

and Oa 2 C !.Œ0;1/IC/ is a non-vanishing amplitude. In addition, we showed that ‰t ,

t � 0, is the unique solution of the eikonal equation

8

<

:

2@t‰t .z; �/ C Qq
�

z;
2

i
‰0

t;z.z; �/
�

D 0; .z; �/ 2 C
2n; t � 0;

‰t .z; �/jtD0 D ‰0.z; �/; .z; �/ 2 C
2n;

(3.6)

and Oa is the unique solution of the transport equation

8

<

:

Oa0.t/ C
1

2i
ˇ.t/ Oa.t/ D 0; t � 0;

Oa.0/ D Cˆ0
;

(3.7)

where

ˇ.t/ D tr
�

Qq00
�z C Qq00

�� �
2

i
‰00

t;zz

�

; t � 0; (3.8)

and

Cˆ0
D 2n��n det ˆ00

0;z Nz: (3.9)

We note that the initial conditions in (3.6) and (3.7) are chosen so that when t D 0 the

right-hand side of (3.5) coincides with the orthogonal projector

…ˆ0
W L2.Cn; e�2ˆ0.z/L.dz// ! Hˆ0

.Cn/;

which has the explicit integral representation

…ˆ0
u.z/ D Cˆ0

Z

Cn

e2‰0.z; Nw/u.w/e�2ˆ0.w/L.dw/; u 2 L2.Cn; e�2ˆ.z/L.dz//:

(3.10)



F. White 1306

In the literature, the operator …ˆ0
is known as the “Bergman projector” associated to

the weight ˆ0. For a proof of (3.10), see [32, Theorem 13.6] or [13, Proposition 1.3.4].

Since Qq has the simple form (2.13), we may determine ‰t and Oa by solving (3.6)

and (3.7) explicitly. We begin by studying the transport equation (3.7). Thanks to

(2.13), we see that

ˇ.t/ D tr.M/; t � 0: (3.11)

The unique solution of (3.7) is

Oa.t/ D Cˆ0
e

i
2 tr.M /t ; t � 0: (3.12)

Next, we solve (3.6) for ‰t . We search for a solution to (3.6) of the form

‰t .z; �/ D
1

2
At z � z C Btz � � C

1

2
Dt� � �; .z; �/ 2 C

2n; t � 0; (3.13)

where At ; Bt ; Dt 2 Matn�n.C/ depend smoothly on t and At D AT
t and Dt D DT

t

for all t � 0. Inserting (3.13) into (3.6) and using (2.13) and (3.2), we see that ‰t will

be a solution of (3.6) provided At ; Bt , and Dt satisfy

8

<

:

@tAt z � z C
2

i
At Mz � z D 0; z 2 C

n; t � 0;

A0 D ˆ00
0;zz;

(3.14)

8

<

:

@tBt z � � C
1

i
BtMz � � D 0; z; � 2 C

n; t � 0;

B0 D ˆ00
0; Nzz;

(3.15)

and
´

@t Ct � � � D 0; � 2 C
n; t � 0;

C0 D ˆ00
0; Nz Nz;

(3.16)

respectively. The symmetry of At implies that

2AtMz � z D .AtM C M T At /z � z; z 2 C
n; t � 0: (3.17)

Thus, (3.14) holds if and only if

8

<

:

@tAt C
1

i
AtM C

1

i
M T At D 0; t � 0;

A0 D ˆ00
0;zz:

(3.18)
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The unique solution of (3.18) is

At D eiM T tˆ00
0;zzeiM t ; t � 0: (3.19)

By inspection, the solutions of (3.15) and (3.16) are

Bt D ˆ00
0; Nzzei tM ; Ct D ˆ00

0; Nz Nz ; t � 0; (3.20)

respectively. Using (3.2), we get

‰t .z; �/ D ‰0.ei tM z; �/; .z; �/ 2 C
2n; t � 0: (3.21)

From (3.5), (3.10), (3.12), and (3.21), we deduce that

zG.t/u.z/ D e
i
2 tr.M /tu.ei tM z/; u 2 Hˆ0

.Cn/; t � 0: (3.22)

The formula (3.22) for the semigroup zG.t/ was obtained by a different method in [1].

For t � 0, let us define

ˆt .z/ D ˆ0.ei tM z/; z 2 C
n; t � 0: (3.23)

Since ˆ0 is strictly convex, ˆt is a strictly convex quadratic form on Cn for all t � 0.

In addition, we have ˆt jtD0 D ˆ0. For t � 0, let

Hˆt
.Cn/ D L2.Cn; e�2ˆt .z/L.dz// \ Hol.Cn/ (3.24)

be the Bargmann space associated to ˆt , equipped with the natural Hilbert space

structure induced from L2.Cn; e�2ˆt .z/L.dz//. From (3.22), it is clear that zG.t/

is bounded Hˆ0
.Cn/ ! Hˆt

.Cn/ for every t � 0, and a direct computation using

(3.22), (3.23), and (2.16) gives

k zG.t/ukHˆt
.Cn/ D et kukHˆ0

.Cn/; u 2 Hˆ0
.Cn/; t � 0; (3.25)

where  > 0 is as in the statement of Theorem 1.1.

The following proposition summarizes the discussion so far in this section and

establishes some basic estimates that will be necessary for the proof of Theorem 1.1

in Section 4.

Proposition 3.1. Let q, Qq, M , ˆ0, Hˆ0
.Cn/, and zG.t/ be as in Proposition 2.1.

1. For every t � 0, we have

zG.t/u.z/ D e
i
2

tr.M /tu.ei tM z/; u 2 Hˆ0
.Cn/: (3.26)

In addition,

k zG.t/ukHˆt
.Cn/ D et kukHˆ0

.Cn/; t � 0; (3.27)
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where

ˆt .z/ D ˆ0.ei tM z/; z 2 C
n; t � 0; (3.28)

the norm k�kHˆt
.Cn/ is the norm on the Bargmann space Hˆt

.Cn/ introduced

in (3.24), and  > 0 is as in the statement of Theorem 1.1.

2. Let Rt D ˆ0 � ˆt , t � 0, and let ˛W Œ0; 1/ ! R be the continuous function

defined by

˛.t/ D minjzjD1 Rt .z/; (3.29)

so that

Rt .z/ � ˛.t/jzj2; z 2 C
n; t � 0: (3.30)

The function ˛ has the following properties:

a. ˛.0/ D 0 and ˛.t/ > 0 for all t > 0,

b. ˛ is non-decreasing,

c. there is 0 < t0 � 1 and c > 0 such that

˛.t/ � ct2k0C1; 0 � t � t0; (3.31)

where k0 2 ¹0;1; : : : ; 2n � 1º is the smallest non-negative integer such that

(1.12) holds, and

d. ˛.t/ ! minjzjD1 ˆ0.z/ > 0 as t ! 1.

3. Let ‰0 be the polarization of ˆ0 given by (3.2). For any t �0 and u2Hˆ0
.Cn/,

we have

zG.t/u.z/ D Cˆ0
e

i
2 tr.M /t

Z

Cn

e2‰t .z; Nw/u.w/e�2ˆ0.w/L.dw/; z 2 C
n;

(3.32)

where

‰t .z; �/ D ‰0.ei tM z; �/; .z; �/ 2 C
2n; t � 0: (3.33)

Moreover, there are constants C; c > 0, independent of t , such that

�C jw � ei tM zj2 � 2 Re ‰t .z; Nw/ � ˆt .z/ � ˆ0.w/

� �cjw � ei tM zj2; z; w 2 C
n; t � 0: (3.34)
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Proof. It remains to establish Point 2 and the estimate (3.34). To this end, let

Rt .z/ D ˆ0.z/ � ˆt .z/; z 2 C
n; t � 0; (3.35)

and let ˛W Œ0; 1/ ! 1 be as in (3.29). We will begin by showing that

Rt .z/ � 0; z 2 C
n; t � 0: (3.36)

Let Q�t , t � 0, be as in (3.3). A straightforward computation using (2.9), (3.4),

and (3.28) gives that

Q�t .ƒˆ0
/ D ƒˆt

WD
°�

z;
2

i
ˆ0

t;z.z/
�

W z 2 C
n
±

; t � 0: (3.37)

From either the discussion in [31, Section 6] or a direct computation, we know that

the family .ˆt /t�0 satisfies the eikonal equation

8

<

:

@t ˆt .z/ C Re Qq
�

z;
2

i
ˆ0

t;z.z/
�

D 0; z 2 C
n; t � 0;

ˆt jtD0 D ˆ0 on C
n:

(3.38)

As a consequence of (3.37), for every z 2 C
n and t � 0, there is a point Z 2 ƒˆ0

such that

�

z;
2

i
ˆ0

t;z.z/
�

D Q�t .Z/: (3.39)

Since Qq is invariant under the flow Q�t , for every t � 0 and z 2 C
n, there is Z 2 ƒˆ0

such that

@t ˆt .z/ D � Re Qq.Z/: (3.40)

Because Re q � 0, (2.10) and (2.11) imply that Re Qq � 0 on ƒˆ0
, and we have

@tˆt .z/ � 0; z 2 C
n; t � 0: (3.41)

Thus, for any fixed z 2 Cn, the function

t 7! ˆ0.z/ � ˆt .z/ (3.42)

is non-decreasing. It follows that Rt � 0 for all t � 0 and that the function ˛ is non-

decreasing.

We next recall from [31, Proposition 6.1] that

ƒˆ0
\ ƒˆt

D �1.�'.S//; t > 0; (3.43)
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where S is the singular space of q, �' W C
2n ! C

2n is the complex linear canonical

transformation defined by (2.6), and �1W C2n ! Cn is the projection �1W .z; �/ 7! z.

Since we assume that S D ¹0º, we deduce from (3.43) that

ƒˆ0
\ ƒˆt

D ¹0º; t > 0: (3.44)

Thus, for every t > 0 and z 2 C
n,

2

i
ˆ0

0;z.z/ �
2

i
ˆ0

t;z.z/ D 0 () z D 0: (3.45)

Because Rt is a non-negative quadratic form for each t � 0, we have

Rt .z/ D 0; z 2 C
n; t > 0 () rRe z;Im zRt .z/ D 0

()
2

i
ˆ0

0;z.z/ �
2

i
ˆ0

t;z.z/ D 0: (3.46)

Hence, for any z 2 C
n and t > 0,

Rt .z/ D 0 () z D 0: (3.47)

Thus, ˛.t/ > 0 for all t > 0.

To establish (3.31), we recall the main result of [12, Section 2], which states that

if the singular space of q is trivial, S D ¹0º, then there is a small time 0 < t0 � 1 and

a constant c > 0 such that

Rt .z/ � ct2k0C1jzj2; z 2 C
n; 0 � t � t0; (3.48)

where k0 2 ¹0; 1; : : : ; 2n � 1º is the smallest non-negative integer such that (1.12)

holds. It is therefore true that

˛.t/ � ct2k0C1; 0 � t � t0: (3.49)

To prove the claim regarding the behavior of ˛.t/ as t ! 1, we note that (2.16)

implies that spec.iM/ � ¹Re � < 0º. Thus, there is c > 0 such that

Rt .z/ D ˆ0.z/ C O.e�ct jzj2/ as t ! 1: (3.50)

It follows that

˛.t/ ! minjzjD1 ˆ0.z/ as t ! 1: (3.51)

The proof of Point 2 is complete.
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Finally, we prove (3.34). Using (3.1), (3.2), (3.21), and (3.23), we obtain the fol-

lowing identity by elementary algebraic manipulations:

2 Re ‰t .z; Nw/ � ˆt .z/ � ˆ0.w/

D �ˆ00
0; Nzz.w � eiM tz/ � N

.w � eiM tz/; z; w 2 C
n; t � 0: (3.52)

Because ˆ0 is a strictly plurisubharmonic quadratic form, the Levi matrix ˆ00
0; Nzz is

Hermitian positive-definite. Consequently, there are constants C; c > 0, independent

of t , such that

�C jw � ei tM zj2 � 2 Re ‰t .z; Nw/ � ˆt .z/ � ˆ0.w/

� �cjw � ei tM zj2; z; w 2 C
n; t � 0: (3.53)

This proves (3.34).

4. The conclusion of the proof of Theorem 1.1

In view of (2.26), (2.17), (3.5), and (3.12), the Schwartz kernel Kt .x; y/ of G.t/ is

given, formally, by

Kt .x; y/ D c2
'Cˆ0

e
i
2 tr.M /t

Z

Cn

Z

Cn

ePt .x;y;z;w/L.dw/L.dz/; .x; y/ 2 R
2n; t � 0;

(4.1)

where

Pt .x; y; z; w/ WD �i'.z; x/ � 2ˆ0.z/ C 2‰t.z; Nw/ � 2ˆ0.w/ C i'.w; y/; (4.2)

for x; y 2 R
n, z; w 2 C

n, and t � 0. For z 2 C
n, let r.z/ 2 R

n be the unique point

such that

ˆ0.z/ D � Im '.z; r.z//: (4.3)

We note that r.z/ is an R-linear function of z 2 C
n. Since Im '00

yy > 0, there is c > 0

such that

� Im '.z; y/ � ˆ0.z/ � �cjy � r.z/j2; z 2 C
n; y 2 R

n: (4.4)

Using (4.4) together with the estimate (3.34), we find that

Re Pt .x; y; z; w/ � �cjx � r.z/j2 � Rt .z/ � cjw � ei tM zj2 � cjy � r.w/j2;

(4.5)
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for all x; y 2 R
n, z; w 2 C

n, and t � 0, where Rt .z/ is as in Proposition 3.1. Let

˛W Œ0; 1/ ! R be as in (3.29). Since (3.30) holds, there is c > 0 such that

Re Pt .x; y; z; w/

� �cjx � r.z/j2 � ˛.t/jzj2 � cjw � ei tM zj2 � cjy � r.w/j2 (4.6)

for all x; y 2 Rn, z; w 2 Cn, and t � 0.

Let  be as in the statement of Theorem 1.1. Taking the absolute value of (4.1)

and using (4.6) and (2.16), we find that there are constants C; c > 0 such that

jKt .x; y/j

� Ce�t

Z

Cn

Z

Cn

e�cjx�r.z/j2�˛.t/jzj2�cjw�exp .itM /zj2�cjy�r.w/j2L.dw/L.dz/

(4.7)

for every x; y 2 Rn and t � 0. Let 1 � p � q � 1 be given, and let 1 � r � 1 be

such that

1 C
1

q
D

1

p
C

1

r
: (4.8)

Using Minkowski’s integral inequality and the fact that ˛.t/ > 0 for every t > 0, we

get that

kKt .x; �/kLr

� Ce�t

Z

Cn

Z

Cn

e�cjx�r.z/j2�˛.t/jzj2�cjw�exp .itM /zj2ke�cjy�r.w/j2 kLr
y
L.dw/L.dz/

� C˛.t/�ne�t ; x 2 R
n; t > 0; (4.9)

where C D Cp;q > 0 depends only on p and q. By similar reasoning, there is C D

Cp;q > 0 such that

kKt .�; y/kLr � C˛.t/�ne�t ; y 2 R
n; t > 0: (4.10)

Applying Young’s integral inequality with (4.9) and (4.10) gives

kG.t/kLp!Lq � C˛.t/�ne�t ; t > 0; (4.11)

for some C D Cp;q > 0.

Let " > 0 be arbitrary. From Proposition 3.1, we know that ˛ is non-decreasing

and ˛.t/ > 0 for all t > 0. Thus,

˛.t/ � ˛."/; t � ": (4.12)
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In view of (4.11), we may deduce that there is C D C";p;q > 0 such that

kG.t/kLp!Lq � Ce�t ; t � ": (4.13)

To see that the bound (4.13) is sharp as t ! 1, we recall from [19, Theorem 2.1]

that the lowest eigenvalue � of qw.x; D/, introduced in (1.14), is simple and that the

eigenspace of qw .x;D/ corresponding to � is spanned by a “ground state” of the form

u0.x/ D e�a.x/; x 2 R
n; (4.14)

where a is a complex-valued quadratic form on R
n with positive-definite real part

Re a > 0. Let v D ku0k�1
Lp.Rn/

u0. Since qw.x; D/v D �v, is is clear that

ke�tqw.x;D/vkLq D e�tkvkLq ; t � 0: (4.15)

Hence, there is a constant c D cp;q > 0 such that

ke�tqw.x;D/kLp!Lq � ce�t ; t � 0: (4.16)

We conclude that there are constants C D C";p;q > 0 and c D cp;q > 0 such that (1.15)

holds for all t � ".

Finally, we prove the bound (1.16). From (3.31), (4.11), and (4.16), we get that

there are constants C D Cp;q > 0 and cp;q > 0 such that

c � kG.t/kLp!Lq � C t�.2k0C1/n; 0 < t � t0: (4.17)

The proof of Theorem 1.1 is complete.
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