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Spectral shift for relative Schatten class perturbations

Teun D. H. van Nuland and Anna Skripka

Abstract. We affirmatively settle the question on existence of a real-valued higher order spec-

tral shift function for a pair of self-adjoint operators H and V such that V is bounded and

V .H � iI /�1 belongs to a Schatten–von Neumann ideal �
n of compact operators in a sep-

arable Hilbert space. We also show that the function satisfies the same trace formula as in the

known case of V 2 �
n and that it is unique up to a polynomial summand of order n � 1. Our res-

ult significantly advances earlier partial results where counterparts of the spectral shift function

for noncompact perturbations lacked real-valuedness and aforementioned uniqueness as well as

appeared in more complicated trace formulas for much more restrictive sets of functions. Our

result applies to models arising in noncommutative geometry and mathematical physics.

1. Introduction

The spectral shift function originates from the foundational work of M. G. Krein [8]

which followed I. M. Lifshits’ physics research summarised in [10]. It is a central

object in perturbation theory that allows to approximate a perturbed operator func-

tion by the unperturbed one while controlling noncommutativity in the remainder. In

1984, Koplienko [7] suggested an interesting and useful generalization by considering

higher order Taylor remainders and conjecturing existence of higher order spectral

shift functions. Many partial results were obtained in that direction, but they were

confined to either lower order approximations, weakened trace functionals and rep-

resentations, or compact perturbations. This paper closes a gap between theory and

applications, where perturbations are often noncompact, by proving existence of a

higher order spectral shift function under a general condition on a weighted resolvent

of the initial operator and obtaining bounds and properties stricter than previously

known.
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Our prime result is that, given a self-adjoint operator H densely defined in a sep-

arable Hilbert space H and a bounded self-adjoint operator V on H satisfying

V.H � iI /�1 2 �
n; (1)

there exists a real-valued spectral shift function �n D �n;H;V of order n. Namely, the

trace formula

Tr
�
f .H C V / �

n�1X

kD0

1

kŠ

dk

dtk
f .H C tV /

ˇ̌
ˇ
tD0

�
D

Z

R

f .n/.x/�n.x/ dx (2)

holds for a wide class of functions f and the function �n satisfies suitable uniqueness

and summability properties and bounds detailed below. The relative Schatten class

condition (1) applies, in particular, to

I. V 2 �nI
II. .H � iI /�1 2 �n;

III. inner fluctuations of H D D in a regular locally compact spectral triple

.A; H ; D/ (see Section 5.1);

IV. differential operators on manifolds perturbed by multiplication operators

(see Section 5.2).

To prove our main result, we develop new techniques, which were also applied in

the subsequent work [12] in the setting (II) to resolve analytical issues occurring in

the study of the spectral action in noncommutative geometry. The latter application

suggests that our techniques can be used to substantially generalize [12,13] as well as

can be useful in other problems of noncommutative geometry.

New and prior results. Under the assumption (I), the problem on existence of higher

order spectral shift functions was resolved in [14]. More precisely, (2) was established

in [7,8,14] for n D 1, n D 2, n � 3, respectively, for important test functions f (see,

e.g., [21, Section 5.5] for details), where the function �n D �n;H;V is unique, real-

valued, and satisfies the bound

k�nk1 � cnkV kn
n:

Taylor approximations and respective trace formulas were also derived in the

study of the spectral action functional Tr.f .H// occurring in noncommutative geo-

metry [2] for operators H with compact resolvent .H � iI /�1. The case of (II)

and functions f in the form f .x/ D g.x2/, where g is the Laplace transform of a

regular Borel measure, was handled in [22]. The case of compact .H � iI /�1 and

f 2 C nC1
c .R/ was handled in [17, 19]. In particular, the existence of a locally integ-

rable spectral shift function was established in [19].
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In our main result, Theorem 4.1, given n 2 N and H;V satisfying (1), we establish

the existence of a real-valued function �n D �n;H;V such that �n 2 L1.R; dx
.1Cjxj/nC" /

for every " > 0 and such that (2) holds for every f 2 Wn, where the class Wn is given

by Definition 3.1. In particular, Wn includes all .n C 1/-times continuously differen-

tiable functions whose derivatives decay at infinity at the rate f .k/.x/ D O.jxj�k�˛/,

k D 0; : : : ; n C 1, for some ˛ > 1
2

(see Proposition 3.3 (i)). The weighted L1-norm of

the spectral shift function �n admits the bound

Z

R

j�n.x/j dx

.1 C jxj/nC"
� cn.1 C "�1/.1 C kV k/kV.H � iI /�1kn

n

for every " > 0. Moreover, the locally integrable spectral shift function �n is unique

up to a polynomial summand of degree at most n � 1.

Below we briefly summarize advantages of our main result in comparison to most

relevant prior results. Other results on approximation of operator functions and omit-

ted details can be found in [21, Chapter 5] and references cited therein.

The existence of a real-valued function �1 2 L1.R; dx
1Cx2 / satisfying the trace

formula (2) with n D 1 for bounded rational functions was established in [9, The-

orem 3] (see also [26, p. 48, Corollary 0.9.5]). The formula (2) was extended to

twice-differentiable f with bounded f 0; f 00 such that

dk

dxk
.f .x/ � cf x�1/ D O.jxj�k�1�"/ as jxj ! 1; k D 0; 1; 2; " > 0; (3)

where cf is a constant, in [26, p. 47, Theorem 0.9.4]. It was shown in [24, Sec-

tion 8.8 (3)] that �1 2 L1.R; dx
.1Cjxj/1C" / for " > 0. The respective function �1 was

determined by (2) uniquely up to a constant summand. We prove that (2) with n D 1

holds for all W1, which contains all functions satisfying (3) (see Proposition 3.3 (i))

as well as functions not included in (3) (see, e.g., Remark 3.4).

In [11, Corollary 3.7], the trace formula (2) with n D 2 and real-valued �2 2
L1.R; dx

.1Cx2/2 / was proved for a set of functions including Schwartz functions along

with span¹.z � �/�kW Im.z/ ¤ 0; k 2 N; k � 2º. The respective �2 2 L1.R; dx
.1Cx2/2 /

was determined by (2) uniquely up to a linear summand. We prove that (2) with

n D 2 holds for all f 2 W2, which contains the functions .z � �/�1, Im.z/ ¤ 0 not

included in [11, Corollary 3.7] and the Schwartz functions included in [11, Corol-

lary 3.7], and that �2 is integrable with a significantly smaller weight, namely, �2 2
L1.R; dx

.1Cjxj/2C" / for " > 0.
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Let n � 2. The existence of a complex-valued Q�n 2 L1.R; dx

.1Cx2/n=2 / satisfying

the trace formula

Tr
�
f .H C V / �

n�1X

kD0

1

kŠ

dk

dtk
f .H C tV /

ˇ̌
ˇ
tD0

�

D
Z

R

dn�1

dxn�1
..x � i /2nf 0.x// Q�n.x/ dx (4)

for a set of functions f including span¹.z � �/�k; Im.z/ > 0; k 2 N; k � 2nº was

established in [4, Theorem 4.6] (see also [4, Remark 4.8 (ii)]). The weighted L1-norm

of Q�n satisfies the bound

Z

R

j Q�n.x/j dx

.1 C x2/
n
2

� cn.1 C kV k/n�1kV.H � iI /�1kn
n:

As distinct from the aforementioned result of [4] for n � 2, the function �n in our

main result is real-valued and satisfies the simpler trace formula (2) for the larger class

Wn of functions f described in terms of familiar function classes. Moreover, the set

of functions Wn is large enough to ensure the uniqueness of �n up to a polynomial

term of degree at most n � 1.

Other assumptions on H and V , each having its merits and limitations, were also

considered in the literature. For instance, the existence of a nonnegative function �2 D
�2;H;V 2 L1.R; dx

.1Cx2/
 /, 
 > 1=2, satisfying the trace formula (2) with n D 2 for

bounded rational functions f was established in [7, Theorem 2] under the assumption

V jH � iI j� 1
2 2 �2. A more relaxed condition .H C V � iI /�1 � .H � iI /�1 2

�n was traded off for a more restrictive set of functions f and, when n � 2, for

more complicated trace formulas where both the left and right-hand sides of (2) are

modified. The respective results for n D 1 can be found in [9, Theorem 3] and [25,

Theorem 2.2]; for n D 2 in [11, Theorem 3.5 and Corollary 3.6]; for n � 2 in [15,

Theorem 3.5] and [18].

Methods. The major technical tools and novelty of our approach are briefly discussed

below.

The technical scheme leading to the representation (2) under the assumption (1)

is more subtle than the one under the assumption (I). The derivatives and Taylor

approximations of operator functions are known to be expressible in terms of multiple

operator integrals (see Theorems 3.12 and 3.13). The prime technique to handle these

multiple operator integrals (see Theorem 3.7) only applies to compact perturbations

satisfying (I). To bridge the gap between existing results for (I) and our setting (1) we
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impose suitable weights on the perturbations and involve multi-stage approximation

arguments for functions and perturbations.

In Theorem 3.10 we create Schatten class perturbations out of relative Schat-

ten class perturbations (1) inside a multiple operator integral whose integrand is the

n-th order divided difference f Œn� of a function f 2 C n.R/ satisfying the properties

f .k/.x/ D o.jxj�k/ as jxj ! 1, k D 0; : : : ; n, and bf .n/ 2 L1.R/.

Our Theorem 3.10 significantly generalizes and extends earlier attempts in that

direction made in [17, Lemma 3.6], [19, Proposition 2.7], and [4, Lemma 4.1].

The proof of Theorem 3.10 involves the introduction of novel function classes

(see Definition 3.1, (9), and (10)), approximation arguments (see Lemma 3.5), and

analysis of multilinear operator integrals.

Based on the aforementioned results and analysis of distributions, in Proposi-

tion 4.2 we establish the trace formula

Tr
�
f .H C V / �

n�1X

kD0

1

kŠ

dk

dtk
f .H C tV /

ˇ̌
ˇ
tD0

�
D

Z

R

f .n/.x/ d�n.x/ (5)

for every f 2 Wn, where �n is a Borel measure determined uniquely up to an abso-

lutely continuous term whose density is a polynomial of degree at most n � 1 and

such that for every " > 0 the measure .x � i /�n�" d�n.x/ is finite and satisfies

k.� � i /�n�" d�nk � cn.1 C "�1/.1 C kV k/kV.H � iI /�1kn
n: (6)

In order to obtain absolute continuity of �n (and hence obtain a spectral shift

function), we apply the change of variables provided by Theorem 3.10 again, this

time to multiple operator integrals of order n � 1. This entails new terms for which the

trace is defined only when perturbations satisfy additional summability requirements.

We establish an auxiliary result for finite rank perturbations in Proposition 4.2 and

then extend it to relative Schatten class perturbations appearing in our main result

with help of two new approximation results, one for operators obtained in Lemma 4.8

and the other for Taylor remainders obtained in Lemma 4.9. In order to apply those

approximation results, in Lemma 4.5 we derive a new representation for the remainder

of the Taylor approximation of f .H C V / in terms of handy components that are

continuous in V in a very strong sense.

In order to strengthen (5), in Proposition 4.4 we establish another weaker version

of (2) for f 2 C nC1
c .R/, where on the left-hand side we have a certain component of

the Taylor remainder and on the right-hand side in place of f we have its product with

some complex weight. By combining advantages of the results of Propositions 4.2

and 4.4 we derive the trace formula (2).
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Examples. The relative Schatten class condition (1) arises in noncommutative geo-

metry; see, for instance, [22, 23]. In that setting, H is a generalized Dirac operator

occurring in a (possibly non-unital) spectral triple and V a generalized vector potential

[5, Section IV.1], which is also known as an inner fluctuation or Connes’ differential

one-form [2,22]. For unital spectral triples, the condition (II), which is known as finite

summability, is often assumed. For non-unital spectral triples, conditions similar to

(III) are discussed in Section 5.1. Both in the unital and non-unital case, it is import-

ant to relax assumptions on the function f appearing in the spectral action [2] since

that function might be prescribed by the model [3]. Sometimes, it is impossible or at

least inconvenient to assume that f is given by a Laplace transform, as it was done

in [22], and a general class of functions considered in this paper is more beneficial.

The condition (1) is also satisfied by many Dirac as well as random and determin-

istic Schrödinger operators H with Lp-potentials V . Appearance of such operators in

problems of mathematical physics is discussed in, for instance, [20,26] and references

cited therein. Sufficient conditions for (1) are discussed in Section 5.

2. Notations

Let H be a separable Hilbert space, B.H / the C �-algebra of all bounded linear oper-

ators on H , and B.H /sa the subset of all self-adjoint operators in B.H /. For p 2
Œ1; 1/, we denote the respective Schatten–von Neumann ideal of compact operators

on H by �p and briefly call it the Schatten p-class. Basic properties of Schatten–

von Neumann ideals can be found in, for instance, [16, 21]. In some cases it will also

be convenient to denote �
1 WD B.H /.

Let N denote the positive natural numbers and let n 2 N. When H is a self-

adjoint operator densely defined in H , we briefly write H is a self-adjoint operator

in H . Given a self-adjoint operator H in H and V 2 B.H /, we denote

zV WD V.H � iI /�1:

Throughout the paper we will also use the notations

u.�/ WD � � i

and u�k.x/ WD .u.x//�k. If H0; : : : ; Hm are self-adjoint operators in H , and V1; : : : ;

Vm are bounded operators, we denote

zVj WD Vj u�1.Hj / D Vj .Hj � iI /�1:

Given two Banach spaces X and Y, let B.X; Y/ denote the Banach space of all

bounded linear operators mapping X to Y. For T 2 B.X; Y/; we denote its norm by

kT kX!Y .
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We denote positive constants by letters c; C with subscript indicating dependence

on their parameters. For instance, the symbol c˛ denotes a constant depending only

on the parameter ˛.

Function spaces. Let C0 D C0.R/ denote the space of continuous functions on R

decaying to 0 at infinity, Cc D Cc.R/ the space of compactly supported continuous

functions on R, C n
c the class of n times continuously differentiable functions in Cc ,

and C n
c Œ�a; a� the class of functions in C n

c whose support is contained in Œ�a; a�. Let

C n
b

denote the subset of C n of such f for which f .n/ is bounded and let C n
0 denote

the subset of C n of such f for which f .n/ 2 C0.R/. We write f .x/ D O.g.x// if

there exists M > 0 such that jf .x/j � Mg.x/ for all x outside a compact set. We

write f .x/ D o.g.x// if, for all " > 0, we have jf .x/j � "g.x/ for all x outside a

compact set depending on ".

Let Lp denote the space of measurable f for which jf jp is Lebesgue integ-

rable on R equipped with the standard norm kf kp D kf kLp WD .
R

R
jf .x/jp dx/1=p,

1 � p < 1, and let L1 denote the space of essentially bounded functions on R

equipped with the ess sup norm k � k1. Let L1
loc denote the space of functions loc-

ally integrable on R equipped with the seminorms f 7!
R a

�a jf .x/j dx, a > 0. By

`p.L2.Rd //, where p � 1, we denote the space of functions consisting of those meas-

urable functions f W Rd ! C for which

kf kp

`p.L2.Rd //
WD

X

k2Zd

� Z

.0;1/d Ck

jf .x/j2 dx

� p
2

< 1: (7)

Whenever we write Of 2 L1, it is implicitly assumed that f 2 C0 � �
0, in order

to define the Fourier transform. This can be done without loss of generality by the

Riemann–Lebesgue lemma.

We recall that the divided difference of the zeroth order f Œ0� is the function f

itself. Let �0; �1; : : : ; �n be points in R and let f 2 C n.R/. The divided difference

f Œn� of order n is defined recursively by

f Œn�.�0; : : : ; �n/ D lim
�!�n

f Œn�1�.�0; : : : ; �n�2; �/ � f Œn�1�.�0; : : : ; �n�2; �n�1/

� � �n�1

:

3. Auxiliary technical results

In this section we set a technical foundation for the proof of our main result.
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3.1. New function classes

In this section we introduce a new class of functions Wn, for which our main result

holds, along with auxiliary classes Bn and bn and derive their properties.

Definition 3.1. Let Wn denote the set of functions f 2 C n.R/ such that

i. 2f .k/uk 2 L1.R/; k D 0; : : : ; n,

ii. f .k/ 2 L1.R; .1 C jxj/k�1 dx/, k D 1; : : : ; n.

The following sufficient condition for integrability of the Fourier transform of a

function is a standard exercise and, thus, its proof is omitted.

Lemma 3.2. If f 2 L2.R/ \ C 1.R/ and f 0 2 L2.R/, then Of 2 L1.R/.

Proposition 3.3. Let n 2 N. Then, the following assertions hold.

i. For every ˛ > 1
2

,

Wn � ¹f 2 C nC1W f .k/.x/ D O.jxj�k�˛/ as jxj ! 1;

k D 0; : : : ; n C 1º:

ii. Furthermore,

Wn � ¹f 2 C nW f .k/;
b
f .k/ 2 L1.R/; k D 1; : : : ; nº:

Proof. The inclusion in (i) is straightforward, as it follows from Lemma 3.2.

(ii) The properties f .k/; bf .n/ 2 L1.R/; k D 1; : : : ; n follow immediately from the

definition of Wn. To prove bf .k/ 2 L1.R/, k D 1; : : : ; n � 1, firstly we confirm that

f .k/uk 2 C0; k D 1; : : : ; n � 1; (8)

for every f 2 Wn.

Fix k 2 ¹2; : : : ; nº and let

g D f .k�1/uk�1:

Then, by the definition of the class Wn,

g0 D f .k/uk�1 C .k � 1/f .k�1/uk�2 2 L1.R/:

It follows that both limx!1 g.x/ and limx!�1 g.x/ exist. Suppose that

lim
x!1

g.x/ ¤ 0:
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Then there exist L; c > 0 such that for all x � L we have jg.x/j � c. Therefore,

c

1Z

L

ju�1.x/j dx �
1Z

L

jf .k�1/.x/uk�2.x/j dx < 1;

which is impossible. Hence, limx!1 g.x/ D 0 and, similarly, limx!�1 g.x/ D 0.

Thus, (8) holds.

From (8), we deduce that f .k/ 2 L1.R/, k D 1; : : : ; n � 1. By the definition

of Wn, we also have f .n/ 2 L1.R/. Combining the latter with f .k/ 2 L1.R/, k D
1; : : : ; n, implies f .k/ 2 L2.R/, k D 1; : : : ; n. Hence, by Lemma 3.2, bf .k/ 2 L1.R/

for k D 1; : : : ; n � 1. Therefore, the proof of (ii) is complete.

Remark 3.4. It follows from Proposition 3.3 (i) that Wn contains all bounded rational

functions except for linear combinations with constant functions, which are trivial

in the context of our paper. In particular, Wn contains the space span¹.z � �/�k;

Im.z/ > 0; k 2 N; k � 2nº considered in [4]. In addition, Wn contains all Schwartz

functions and every f 2 C nC1 such that f .x/ D jxj�˛ outside a bounded neighbor-

hood of zero for some ˛ > 1
2

.

We will need the auxiliary function classes

Bn WD ¹f 2 C nW f .k/uk 2 C0.R/; k D 0; : : : ; n;
b
f .n/ 2 L1.R/º (9)

and

bn WD ¹f 2 BnW 2f .p/up 2 L1.R/; p D 0; : : : ; nº: (10)

It follows from Definition 3.1, Proposition 3.3 (ii), and (8) that

Wn � Bn:

We also have the following result relating bn and Bn.

Lemma 3.5. The space bn is dense in Bn with respect to the norm

kf kBn
WD

nX

pD0

kf .p/upk1 C kbf .n/k1:

Proof. Let f 2 Bn. Fix a Schwartz function � such that O� 2 C 1
c .R/ and �.0/ D 1.

For every k 2 N, define

�k.x/ WD �.x=k/; x 2 R:
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We note that ¹c�kº1
kD1

is an approximate identity. In particular, it satisfies the property

kc�k � g � gk1 ! 0 as k ! 1 (11)

for every g 2 L1. Define

fk WD �kf:

Because every �
.m/

k
is of rapid decrease, it is obvious that

f
.p/

k
up D

pX

mD0

�
p

m

�
�

.m/

k
f .p�m/up

is integrable for every p 2 ¹0; : : : ; nº. By Lemma 3.2 and the rapid decrease of

every �
.m/

k
, we obtain that

2
f

.p/

k
up 2 L1 for every p 2 ¹0; : : : ; n � 1º. In the same

way, we obtain that .f .p/�
.n�p/

k
un/O 2 L1 for every p 2 ¹0; : : : ; n � 1º. Moreover,

we have .f .n/�kun/O D bf .n/ �1�kun 2 L1. Hence,

2
f

.n/

k
un D

nX

pD0

�
n

p

�
.f .p/�

.n�p/

k
un/O 2 L1:

We conclude that fk 2 bn.

In order to prove that kf .p/up � f
.p/

k
upk1 ! 0 as k ! 1, we write

kf .p/up � f
.p/

k
upk1

� k.1 � �k/f .p/upk1 C
pX

mD1

�
p

m

�
k�

.m/

k
umf .p�m/up�mk1: (12)

Since f .p/up 2 C0.R/, we obtain

k.1 � �k/f .p/upk1 ! 0 as k ! 1: (13)

By using �
.m/

k
.x/ D �.m/.x=k/=km, we obtain

j�.m/

k
.x/um.x/j �

p
2

mk�.m/k1k�m=2 for x 2 Œ�
p

k;
p

k� (14)

and

k�
.m/

k
umk1 �

p
2

mk�.m/umk1: (15)

We now analyze the terms on the right-hand side of (12) as k ! 1. By (14), (15),

and the assumption f .p�m/up�m 2 C0, we obtain k�
.m/

k
umf .p�m/up�mk1 ! 0 as

k ! 1. Combining the latter with (12) and (13) implies

kf .p/up � f
.p/

k
upk1 ! 0 as k ! 1; p D 0; : : : ; n:
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We are left to prove that kbf .n/ � bf .n/

k
k1 ! 0. Applying

f
.n/

k
D

nX

mD0

�
n

m

�
�

.m/

k
f .n�m/

along with standard properties of the Fourier transform and convolution yields

kbf .n/ � bf .n/

k
k1 � kbf .n/ � c�k � bf .n/k1 C

nX

mD1

�
n

m

�kb�.m/k1

km
k2f .n�m/k1: (16)

The first term on the right-hand side of (16) converges to 0 as k ! 1 by (11) applied

to g D bf .n/. The other terms on the right-hand side of (16) converge to 0 as k ! 1
because 1=km ! 0.

3.2. Multilinear operator integration

In this section we recall known as well as establish new technical results on operator

integration that are important in the proof of our main theorem. An interested reader

can find a more detailed discussion of the known results in [21].

The following multilinear operator integral was introduced in [14] (see also [21,

Definition 4.3.3]).

Definition 3.6. For n 2 N, let �W R
nC1 ! C be a bounded Borel function and fix

˛; ˛1; : : : ; ˛n 2 Œ1; 1� such that 1
˛

D 1
˛1

C � � � C 1
˛n

. Let H0; : : : ; Hn be self-adjoint

operators in H . Denote E
j

l;m
WD EHj

.Œ l
m

; lC1
m

//. If for all Vj 2 � j̨ , j D 1; : : : ; n,

the iterated limit

T
H0;:::;Hn

� .V1; : : : ; Vn/

WD lim
m!1

lim
N !1

X

jl0j;:::;jlnj<N

�

�
l0

m
; : : : ;

ln

m

�
E0

l0;mV1E1
l1;m : : : VnEn

ln;m

exists in �˛, then the transformation T
H0;:::;Hn

� , which belongs to B.�˛1 � � � � ��˛n ;

�
˛/ by the Banach–Steinhaus theorem, is called a multilinear operator integral.

We write T
H0;:::;Hn

� 2 B.�˛1 � � � � � �
˛n ; �

˛/ to indicate that T
H0;:::;Hn

� exists in

the sense of Definition 3.6. The transformation given by the latter definition satisfies

the following powerful estimate.

Theorem 3.7. Let ˛;˛1; : : : ; ˛n 2 .1;1/ be such that 1
˛

D 1
˛1

C � � � C 1
˛n

. If f 2 C n

is such that f .n/ 2 Cb , then T
H0;:::;Hn

f Œn� 2 B.�˛1 � � � � � �
˛n ; �

˛/ and

kT
H0;:::;Hn

f Œn� k�˛1 ������˛n !�˛ � c˛1;:::;˛n
kf .n/k1: (17)
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Proof. The result for H0 D � � � D Hn is proved in [14, Theorem 5.6]. Its extension to

the case of distinct H0; : : : ; Hn is explained in the proof of [21, Theorem 4.3.10].

The domain of T
H0;:::;Hn

� extends to B.H /�n D �
1 � � � � � �

1 for functions �

admitting a certain separation of variables. The proof of the following result can be

found in [14, Lemma 3.5].

Theorem 3.8. Let H0; : : : ; Hn be self-adjoint operators in H . Let �W R
nC1 ! C be

a function admitting the representation

�.�0; : : : ; �n/ D
Z

�

˛0.�0; s/ : : : ˛n.�n; s/ d�.s/; (18)

where .�; �/ is a finite measure space,

j̨ .�; s/W R ! C; s 2 �;

are bounded continuous functions, and there is a sequence ¹�kº1
kD1

of growing meas-

urable subsets of � such that � D [1
kD1

�k and the families

¹ j̨ .�; s/ºs2�k
; j D 0; : : : ; n

are uniformly bounded and uniformly equicontinuous. Then, T
H0;:::;Hn

� 2 B.�˛1 �
� � � � �˛n ; �˛/ for all ˛; j̨ 2 Œ1; 1� with 1

˛1
C � � � C 1

˛n
D 1

˛
, as well as

T
H0;:::;Hn

� .V1; : : : ; Vn/.y/

D
Z

�

˛0.H0; s/V1˛1.H1; s/ : : : Vn˛n.Hn; s/y d�.s/; y 2 H ;

and

kT
H0;:::;Hn

� k�˛1 ������˛n !�˛ � inf

Z

�

nY

j D0

k j̨ .�; s/k1 d j�j.s/;

where the infimum is taken over all possible representations (18).

We will also need the following particular case of Theorem 3.8.

Theorem 3.9. If f 2 C n and bf .n/ 2 L1, then � D f Œn� satisfies the assumptions of

Theorem 3.8 and, for all ˛; j̨ 2 Œ1; 1� with 1
˛1

C � � � C 1
˛n

D 1
˛

,

kT
H0;:::;Hn

f Œn� k�˛1 ������˛n !�˛ � 1

nŠ
kbf .n/k1: (19)
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Proof. Let � D f Œn�, where f 2 C n and bf .n/ 2 L1. A straightforward induction

argument (see, e.g., the proofs of [14, Lemma 5.1 and Lemma 5.2]) gives

f Œn�.�0; : : : ; �n/ D
Z

�n

Z

R

ei ts0�0 : : : ei tsn�n bf .n/.t/ dt d�.s/; (20)

where �n D ¹s D .s0; : : : ; sn/ 2 R
nC1
�0 W

Pn
j D0 sj D 1º is the n-simplex, d� is the

Lebesgue measure on �n, and dt is the Lebesgue measure on R. That is, f Œn� admits

a representation of the form (18), where .�;�/ D .�n � R;d� � .bf .n/.t/ dt//. Since

kd� � .bf .n/.t/ dt/k � 1
nŠ

kbf .n/k1, the estimate (19) follows.

All three of the above known theorems (Theorems 3.7, 3.8, and 3.9) are needed to

prove the following new crucial result, Theorem 3.10. That theorem creates Schatten

class perturbations zVj D Vj .Hj � iI /�1 out of relative Schatten class perturbations

Vj inside a multiple operator integral by means of a certain change of variables. It will

be used throughout this paper, in particular to apply the bound from Theorem 3.7 to

the relative Schatten case, in which the perturbation V is generally noncompact.

Theorem 3.10. Let n 2 N, let H0; : : : ; Hn be self-adjoint operators in H , and let

V1; : : : ; Vn 2 B.H /. Then, the multiple operator integral given by Definition 3.6 sat-

isfies the following properties.

i. For every f 2 C n satisfying
bf .n/; 2.f u/.n/;2f .n�1/ 2 L1, we have

T
H0;:::;Hn

f Œn� .V1; : : : ; Vn/

D T
H0;:::;Hn

.f u/Œn� ..H0 � iI /�1V1; V2; : : : ; Vn/

� .H0 � iI /�1V1T
H1;:::;Hn

f Œn�1� .V2; : : : ; Vn/; (21)

T
H0;:::;Hn

f Œn� .V1; : : : ; Vn/

D T
H0;:::;Hn

.f u/Œn� .V1; : : : ; zVj ; : : : ; Vn/

� T
H0;:::;Hj �1;Hj C1;:::;Hn

f Œn�1� .V1; : : : ; zVj Vj C1; : : : ; Vn/ (22)

for j D 1; : : : ; n � 1, and

T
H0;:::;Hn

f Œn� .V1; : : : ; Vn/

D T
H0;:::;Hn

.f u/Œn� .V1; : : : ; Vn�1; zVn/ � T
H0;:::;Hn�1

f Œn�1� .V1; : : : ; Vn�1/ zVn:



T. D. H. van Nuland and A. Skripka 1360

ii. Denote zVj;l WD zVj C1 : : : zVl . Then, for all f 2 C nC1
c ,

T
H0;:::;Hn

f Œn� .V1; : : : ; Vn/

D
nX

pD0

X

0<j1<���<jp�n

.�1/n�pT
H0;Hj1

;:::;Hjp

.f up/Œp� . zV0;j1
; : : : ; zVjp�1;jp

/ zVjp;n:

If Vk.Hk � iI /�1 2 �
n for all k D 1; : : : ; n, then the above formula holds

for every f 2 Bn introduced in (9), and hence, for every f 2 Wn.

iii. If Vk.Hk � iI /�1 2 �
n for every k D 1; : : : ; n, then

T
H0;:::;Hn

f Œn� .V1; : : : ; Vn/ 2 �
1

for every f 2 bn.

Proof. Since uŒ1� D 1R2 and uŒp� D 0 for all p � 2, the Leibniz rule for divided

differences gives

.f u/Œn�.�0; : : : ; �n/ D f Œn�.�0; : : : ; �n/u.�n/ C f Œn�1�.�0; : : : ; �n�1/:

If we swap �n with �j (for any j 2 ¹0; : : : ; nº), and rearrange using symmetry of the

divided difference, we obtain

f Œn�.�0; : : : ; �n/ D .f u/Œn�.�0; : : : ; �n/u�1.�j /

� f Œn�1�.�0; : : : ; �j �1; �j C1; : : : ; �n/u�1.�j /: (23)

Applying (23) repeatedly, we obtain

f Œn�.�0; : : : ; �n/

D
nX

pD0

X

0<j1<���<jp�n

.�1/n�p.f up/Œp�.�0; �j1
; : : : ; �jp

/u�1.�1/ : : : u�1.�n/:

(24)

Since bf .n/; 2.f u/.n/;2f .n�1/ 2 L1, by Theorem 3.9, the functions f Œn�1� and .f u/Œn�

admit the representation (18). Hence, the function on the right-hand side of (23) also

admits the representation (18). Therefore, by Theorem 3.8 applied to � D f Œn� and

� D r.h.s of (23), we obtain (i). Similarly, applying Theorem 3.8 and Theorem 3.9

to (24) gives

T
H0;:::;Hn

f
Œn�

k

.V1; : : : ; Vn/

D
nX

pD0

X

0<j1<���<jp�n

.�1/n�pT
H0;Hj1

;:::;Hjp

.fkup/Œp� . zV0;j1
; : : : ; zVjp�1;jp

/ zVjp;n (25)

for all fk 2 bn introduced in (10).
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Let f 2 Bn. By Lemma 3.5 we can choose fk 2 bn for all k 2 N such that

kbf .n/

k
� bf .n/k1 ! 0 and k.fkup/.p/ � .f up/.p/k1 ! 0: (26)

The above L1-norm-convergence implies that the left-hand side of (25) converges (in

operator norm) to T
H0;:::;Hn

f Œn� .V1; : : : ; Vn/ by (19). Moreover, we find that zVjm�1;jm
2

�
˛m , where ˛m WD n=.jm � jm�1/ 2 .1; 1/ for m D 2; : : : ; p, and zV0;j1

2 �
˛1 ,

zVjp ;n 2 �
˛pC1 , where ˛1 D n=j1 2 Œ1;1/, p̨C1 D n=.n � jp/ 2 .1;1�. By Hölder’s

inequality and Theorems 3.8 and 3.9, we obtain that the right-hand side of (25) is

in �1, implying (iii). On the strength of Theorem 3.7 applied to �2˛m , the supnorm-

convergence in (26) implies that the right-hand side of (25) converges to the right-hand

side of (ii) in the operator norm (since convergence in Schatten norms implies uniform

convergence). By uniqueness of limits in B.H /, we conclude (ii).

Remark 3.11. (i) Although the condition V.H � iI /�1 2 �
n is equivalent to the

condition V.H 2 C I /�1=2 2 �n, this paper makes use of the complex weight u.t/ D
t � i rather than the real weight Qu.t/ D

p
t2 C 1, because there is no suitable analog

of Theorem 3.10 for the latter. For instance, an analog of (23) for Qu.t/ WD
p

t2 C 1

with n D 4 and j D 1 contains terms like

f Œ2�.�0; �2; �4/ QuŒ2�.�1; �2; �3/u�1.�1/: (27)

The latter is an obstacle to creating weights in the spirit of Theorem 3.10.

3.3. Taylor remainder via operator integrals

The following two results are known. We refer the interested reader to [21] for addi-

tional details.

Theorem 3.12. Let n 2 N and let f 2 C n.R/ be such that bf .k/ 2 L1.R/, k D
1; : : : ; n. Let H be a self-adjoint operator in H , let V 2 B.H /sa. Then, the Fréchet

derivative 1
kŠ

dk

dtk f .H C tV /jtD0 exists in the operator norm and admits the multiple

operator integral representation

1

kŠ

dk

dsk
f .H C sV /

ˇ̌
ˇ
sDt

D T
HCtV;:::;HCtV

f Œk� .V; : : : ; V /: (28)

The map t 7! dk

dsk f .H C sV /jsDt is continuous in the strong operator topology and,

when V 2 �k , in the �1-norm.

Proof. The first assertion is given in [21, Theorem 5.3.5] and, in fact, holds for a

larger set of functions. The second assertion follows from [21, Proposition 4.3.15].

The proof relies on Theorems 3.8 and 3.9.
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Given a function f 2 C n.R/ satisfying bf .k/ 2 L1.R/, k D 1; : : : ;n, a self-adjoint

operator H in H , and V 2 B.H /sa, we denote the nth Taylor remainder by

Rn;H;f .V / WD f .H C V / � f .H/ �
n�1X

kD1

1

kŠ

dk

dtk
f .H C tV /

ˇ̌
ˇ
tD0

: (29)

The Taylor remainder admits the following representation in terms of a multiple

operator integral.

Theorem 3.13. Let n 2 N and let f 2 C n.R/ be such that
bf .k/ 2 L1.R/, k D

1; : : : ; n. Let H be a self-adjoint operator in H , let V 2 B.H /sa. Then,

Rn;H;f .V / D T
H;HCV;H;:::;H

f Œn� .V; : : : ; V /; (30)

where T
H;HCV;H;:::;H

f Œn� is the multilinear operator integral given by Definition 3.6.

Proof. By [21, Theorem 3.3.8] for k D 0 and [21, Theorem 4.3.14] for k � 1,

T
H0;H1CV;H2;:::;Hk

f Œk� .V1; : : : ; Vk/ � T
H0;:::;Hk

f Œk� .V1; : : : ; Vk/

D T
H0;H1CV;H1;:::;Hk

f ŒkC1� .V1; V; V2; : : : ; Vk/; (31)

where H0; : : : ; Hk are self-adjoint operators in H and V; V1; : : : ; Vk 2 B.H /sa. In

particular,

T
H;HCV;H;:::;H

f Œk� .V; : : : ; V / � T
H;:::;H

f Œk� .V; : : : ; V / D T
H;HCV;H;:::;H

f ŒkC1� .V; : : : ; V /:

(32)

Combining (32) with (28) and proceeding by induction on k yields (30).

4. Existence of the spectral shift function

In this section we establish our main result.

Theorem 4.1. Let n 2 N, let H be a self-adjoint operator in H , and let V 2 B.H /sa

be such that V.H � iI /�1 2 �n. Then, there exists cn > 0 and a real-valued function

�n such that

Z

R

j�n.x/j dx

.1 C jxj/nC"
� cn.1 C "�1/.1 C kV k/kV.H � iI /�1kn

n for all " > 0

(33)
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and

Tr.Rn;H;f .V // D
Z

R

f .n/.x/�n.x/ dx (34)

for every f 2 Wn. The locally integrable function �n is determined by (34) uniquely

up to a polynomial summand of degree at most n � 1.

We start by outlining major steps and ideas of the proof of Theorem 4.1.

In Proposition 4.2 we establish a weaker version of (34) with measure d�n on

the right-hand side of (34) in place of the desired absolutely continuous measure

�n.x/ dx. The measure �n, which we call the spectral shift measure, satisfies the

bound (33). In Proposition 4.4, we establish another weaker version of (34) for com-

pactly supported f , where on the left-hand side we have a certain component of the

remainder and on the right-hand side in place of f we have its product with some

complex weight. By combining advantages of the results of Propositions 4.2 and 4.4,

we derive the trace formula (34).

One of our main tools is multilinear operator integration developed for Schatten

class perturbations. We have onset technical obstacles since our perturbations are not

compact. To bridge the gap between existing results and our setting we impose suit-

able weights on the perturbations and involve multistage approximation arguments.

In particular, the proof of Proposition 4.4 requires two novel techniques. The first

one is a new expression for the remainder Rn;H;f .V / in terms of handy components

that are continuous in V in a very strong sense. The second one is an approximation

argument that allows replacing relative Schatten V by finite rank Vk and strengthens

convergence arguments present in the literature.

4.1. Existence of the spectral shift measure

The following result is our first major step in the proof of the representation (34).

Proposition 4.2. Let n 2 N, let H be a self-adjoint operator in H , and let V 2
B.H /sa be such that V.H � iI /�1 2 �

n. Then, there exists a Borel measure �n such

that

Tr.Rn;H;f .V // D
Z

R

f .n/ d�n (35)

for every f 2 Wn and

d�n.x/ D un.x/ d�n.x/ C �n.x/ dx; (36)
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where �n is a finite measure satisfying

k�nk � cn.1 C kV k/kV.H � iI /�1kn
n; (37)

and �n is a continuous function satisfying

j�n.x/j � cn.1 C kV k/kV.H � iI /�1kn
n.1 C jxj/n�1; x 2 R; (38)

for some constant cn > 0. If Q�n is another locally finite Borel measure such that (35)

holds for all f 2 C nC1
c , then d Q�n.x/ D d�n.x/ C pn�1.x/ dx, where pn�1 is a

polynomial of degree at most n � 1.

To prove Proposition 4.2 we need the estimate stated below.

Lemma 4.3. Let k 2 N, let H0; : : : ;Hk be self-adjoint operators in H , let ˛1 : : : ;˛k 2
.1; 1/ be such that 1

˛1
C � � � C 1

˛k
D 1, and let Bj 2 �

˛k , j D 1; : : : ; k. Then, there

exists c˛ WD c˛1;:::;˛k
> 0 such that for multiple operator integrals given by Defini-

tion 3.6,

j Tr.T
Hk ;H1;:::;Hk

f Œk� .B1; : : : ; Bk//j � c˛kf .k/k1kB1k˛1
: : : kBkk˛k

.
b
f .k/ 2 L1/

and

j Tr.B1T
H0;:::;Hk�1

f Œk�1� .B2; : : : ; Bk//j

� c˛kf .k�1/k1kB1k˛1
: : : kBkk˛k

.f 2 C k�1
b /:

Consequently, there exist unique (complex) Borel measures �1;�2 with total variation

bounded by c˛kB1k˛1
: : : kBkk˛k

such that

Tr.T
Hk ;H1;:::;Hk

f Œk� .B1; : : : ; Bk// D
Z

R

f .k/d�1 .
b
f .k/ 2 L1/

and

Tr.B1T
H0;:::;Hk�1

f Œk�1� .B2; : : : ; Bk// D
Z

R

f .k�1/d�2 .f 2 C k�1
0 /:

Proof. The first assertion follows from [14, Theorem 5.3 and Remark 5.4], Hölder’s

inequality, and [21, Theorem 4.3.10]. The second assertion is subsequently obtained

by the Riesz–Markov representation theorem for a bounded linear functional on the

space C0.R/.
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Proof of Proposition 4.2. Let n � 2. Using (30) and Theorem 3.10 (ii), we obtain

Rn;H;f .V / DT
H;HCV;H;:::;H

f Œn� .V; : : : ; V /

D
nX

pD0

X

j1;:::;jp�1;jpC1�0

j1C���CjpC1Dn

.�1/n�pT
H;Hj1

;H;:::;H

.f up/Œp� . zV j1 ; : : : ; zV jp/ zV jpC1 ;

(39)

where H1 D H C V and Hj1
D H for j1 ¤ 1, and in which the first factor of zV in

the first input of the multilinear operator integral should be interpreted as V.H C V �
iI /�1. By the second resolvent identity,

kV.H C V � iI /�1kn � .1 C kV k/kV.H � iI /�1kn: (40)

By the definition of Wn (see Definition 3.1) and property (8), we obtain .f up/.p/ 2
C0.R/ for every f 2 Wn, p D 0; : : : ; n. Hence, by Lemma 4.3 applied to each term

of (39), there exist unique Borel measures M�0; : : : ; M�n such that

k M�pk � Cn.1 C kV k/kV.H � iI /�1kn
n (41)

and

Tr.Rn;H;f .V // D
nX

pD0

Z
.f up/.p/ d M�p (42)

for every f 2 Wn, n � 2.

Let n D 1. By Theorem 3.12 and the fundamental theorem of calculus,

R1;H;f .V / D f .H C V / � f .H/ D
1Z

0

T
Ht ;Ht

f Œ1� .V / dt

for f 2 W1, where Ht D H C tV . By (22) of Theorem 3.10 (i) for j D 1 applied to

T
Ht ;Ht

f Œ1� .V / and by continuity of the trace, we obtain

Tr.R1;H;f .V // D
1Z

0

Tr.T
Ht ;Ht

.f u/Œ1�.V .Ht � iI /�1/ � f .Ht /V .Ht � iI /�1/ dt:

Noticing that

sup
t2Œ0;1�

kV.Ht � iI /�1k1 � .1 C kV k/kV.H � iI /�1k1;
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using the property of the double operator integral Tr.T
H;H

gŒ1� .V // D Tr.g0.H/V /, and

applying Hölder’s inequality and the Riesz–Markov representation theorem completes

the proof of (42) for n D 1.

Let n 2 N. Applying a higher order differentiation product rule on the right-hand

side of (42) gives

Tr.Rn;H;f .V // D
nX

pD0

pX

kD0

�
p

k

�
pŠ

kŠ

Z
f .k/uk d M�p

D
n�1X

kD0

Z
f .k/uk d J�k C

Z
f .n/un d�n; (43)

for some Borel measures J�0; : : : ; J�n�1; �n satisfying

k J�0k; : : : ; k J�n�1k; k�nk � zCn.1 C kV k/kV.H � iI /�1kn
n: (44)

Integrating by parts in (43) and applying

lim
x!˙1

f .k/.x/uk.x/ D 0; k D 0; : : : ; n � 1; (45)

(see (8) in the proof of Proposition 3.3) yields

Tr.Rn;H;f .V // D �
n�1X

kD0

1Z

�1

.f .kC1/uk C kf .k/uk�1/.x/ J�k..�1; x// dx

C
Z

f .n/un d�n:

Since

f .k/uk�1 2 L1.R/; k D 1; : : : ; n;

we rearrange the terms above to obtain

Tr.Rn;H;f .V // D
nX

kD1

Z
f .k/.x/uk�1.x/ Q�k.x/ dx C

Z
f .n/un d�n; (46)

where Q�k are continuous functions defined by

Q�k.x/ D � J�k�1..�1; x// � k J�k..�1; x//; k D 1; : : : ; n � 1;

Q�n.x/ D � J�n�1..�1; x//;

so that

kQ�kk1 � cn;k.1 C kV k/kV.H � iI /�1kn
n; k D 1; : : : ; n: (47)
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By a repeated partial integration in (46) and application of (45), we obtain

Tr.Rn;H;f .V // D
Z

R

f .n/ d�n .f 2 Wn/

with

d�n.x/ D un.x/ d�n.x/ C �n.x/ dx; (48)

where

�n.s0/ WD
nX

kD1

.�1/n�k

s0Z

0

ds1� � �
sn�k�1Z

0

uk�1.sn�k/ Q�k.sn�k/ dsn�k: (49)

The function �n given by (49) is continuous. To confirm (38) we note that, for all

m 2 N,

sup
x2R

ˇ̌
ˇ̌u�m.x/

xZ

0

g.t/ dt

ˇ̌
ˇ̌ � sup

x2R

�ˇ̌
ˇ x

u.x/

ˇ̌
ˇ sup

jt j�jxj

ju1�m.x/g.t/j
�

� ku1�mgk1: (50)

By applying (50) .n � k/-times in (49) and using the bound (47), we obtain

j�n.x/j � cn.1 C kV k/kV.H � iI /�1kn
n.1 C jxj/n�1; x 2 R: (51)

We have thereby proven the first part of the proposition.

To prove the second part of the proposition, we let Q�n be a locally finite measure

such that (35) holds for all f 2 C nC1
c and denote

�n WD �n � Q�n:

Then,
Z

f .n/ d�n D 0 .f 2 C nC1
c /: (52)

We are left to confirm that

d�n.x/ D pn�1.x/ dx; (53)

where pn�1 is a polynomial of degree at most n � 1. Consider the distribution T

defined by

T .g/ WD
Z

g d�n

for all g 2 C 1
c .R/. By (52) and the definition of the derivative of a distribution,

T .n/ D 0. Since the primitive of a distribution is unique up to an additive constant

(see, e.g., [1, Theorem 3.10]), by an inductive argument (see, e.g., [1, Example 2.21]),

we obtain (53).
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4.2. Alternative trace formula

The following result is our second major step in the proof of the representation (34). It

provides an alternative to (34) with weighted f on the right-hand side. It also provides

an alternative to (35) with weighted f on the right-hand side, thereby effectively

replacing the measure �n with functions M�0; : : : ; M�n�1 2 L1
loc.

Proposition 4.4. Let n 2 N, n � 3, let H be a self-adjoint operator in H , and let

V 2 B.H /sa satisfy V.H � iI /�1 2 �
n. Then, for every p D 0; : : : ;n � 1, there exists

M�p 2 L1
loc such that

Tr.Rn;H;f .V // D
n�1X

pD0

.�1/n�1�p

Z

R

.f up/.pC1/.x/ M�p.x/ dx (54)

for all f 2 C nC1
c .

In order to prove (54), firstly we decompose Rn;H;f .V / into more convenient

components for which we can derive trace formulas by utilizing the method of Sec-

tion 4.1, partial integration, and approximation arguments.

Lemma 4.5. Let H be a self-adjoint operator in H , let V 2 B.H /sa, let n 2 N, and

let f 2 C nC1
c . Then,

Rn;H;f .V / D
n�1X

pD0

.�1/n�1�p zRp

n;H;f
.V /;

where

zR0
1;H;f .V / WD f .H C V / � f .H/;

zR0
n;H;f .V / WD f .H/V..H C V � iI /�1 � .H � iI /�1/ zV n�2 (55)

for n � 2 and

zRp

n;H;f
.V /

WD
X

j1;:::;jp�1;jpC1�0
j1C���CjpC1Dn�1

�
T

H;Hj1
;H;:::;H

.f up/Œp� .V .H C V � iI /�1 zV j1�1; : : : ; zV jp / zV jpC1

� T
H;:::;H

.f up/Œp�. zV j1 ; : : : ; zV jp/ zV jpC1
�

(56)

for p D 1; : : : ; n � 1, with H1 D H C V and Hj1
D H for j1 ¤ 1.
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Proof. Using (28) and (30), we get

Rn;H;f .V / DRn�1;H;f .V / � 1

.n � 1/Š

dn�1

dtn�1
f .H C tV /

ˇ̌
ˇ
tD0

DT
H;HCV;H;:::;H

f Œn�1� .V; : : : ; V / � T
H;:::;H

f Œn�1� .V; : : : ; V /: (57)

An application of Theorem 3.10 (ii) to each of the terms in (57) completes the proof.

Firstly, we show that (54) holds when V is a finite-rank operator. This is done by

establishing an analog of (54) for zRp

n;H;f
.V / and then extending (54) to Rn;H;f .V /

with help of Lemma 4.5.

Proposition 4.6. Let n 2 N, n � 3, let H be a self-adjoint operator in H , and let

V 2 B.H /sa be of finite rank. Then, for p D 0; : : : ; n � 1, there exists M�p 2 L1
loc such

that

Tr. zRp

n;H;f
.V // D

Z

R

.f up/.pC1/.x/ M�p.x/ dx

for all f 2 C nC1
c , where zRp

n;H;f
is given by (56).

Proof. By the definition of zRp

n;H;f
.V / in Lemma 4.5,

j Tr. zRp

n;H;f
.V //j

�
X

j1;:::;jp�1;jpC1�0
j1C���CjpC1Dn�1

�
j Tr.T

H;Hj1
;H;:::;H

.f up/Œp� .V .H CV �iI /�1 zV j1�1; : : : ; zV jp/ zV jpC1/j

C j Tr.T
H;:::;H

.f up/Œp�. zV j1 ; : : : ; zV jp/ zV jpC1/j
�
:

(58)

By Lemma 4.3 applied to each summand on the right-hand side of (58),

j Tr. zRp

n;H;f
.V //j

�
X

j1;:::;jp�1;jpC1�0
j1C���CjpC1Dn�1

2cn;j k.f up/.p/k1.1 C kV k/kV.H � iI /�1kn�1
n�1

DW cnk.f up/.p/k1.1 C kV k/kV.H � iI /�1kn�1
n�1: (59)

Hence, by the Riesz–Markov representation theorem, there exist unique Borel meas-

ures M�p such that

k M�pk � cn.1 C kV k/kV.H � iI /�1kn�1
n�1
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and

Tr. zRp

n;H;f
.V // D

Z
.f up/.p/ d M�p

for all f 2 C nC1
c � Wn. Hence, �p.x/ WD � M�p..�1; x// is a bounded function in

L1
loc.R/ and the proposition follows by the partial integration formula for distribution

functions.

Proposition 4.6 will be extended from finite rank to relative Schatten class perturb-

ations by an approximation argument. To carry out the latter we build some technical

machinery below.

We need the next standard result in operator theory.

Lemma 4.7. Let ˛; j̨ 2 Œ1;1� satisfy 1
˛1

C � � � C 1
˛n

D 1
˛

. Denote L˛ WD .�˛;k � k˛/

for ˛ 2 Œ1; 1/ and L
1 WD .B.H /1; so*/, where B.H /1 denotes the closed unit ball

in B.H /. Then, the function

.A1; : : : ; An/ 7! A1 : : : An

is a continuous map from L˛1 � � � � � L˛n to L˛.

The following approximation of weighted perturbations is an important step in the

approximation of the trace formula given by Proposition 4.6.

Lemma 4.8. Let H be a Hilbert space, H a self-adjoint operator in H , and let

V 2 B.H /sa be such that V.H � iI /�1 2 �
n. Then, there exists a sequence .Vk/k �

B.H /sa of finite-rank operators such that .Vk/k converges strongly to V and such

that

kVk.H � iI /�1 � V.H � iI /�1kn ! 0 as k ! 1 (60)

and, moreover,

kVkk � kV k and kVk.H � iI /�1kn � kV.H � iI /�1kn: (61)

Proof. We start with a sequence of spectral projections, denoted

Pk WD EH ..�k; k//;

which by the functional calculus converges strongly to I . Applying subsequently the

property of orthogonal projections and standard functional calculus we obtain

.PkVPk/..H � iI /�1Pk C .I � Pk// D .PkVPk/..H � iI /�1Pk/

D PkV.H � iI /�1Pk 2 �
n (62)
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for each k 2 N. By the functional calculus, .H � iI /�1Pk C .I � Pk/ is invertible.

Therefore, from (62) we derive

PkVPk D PkV.H � iI /�1Pk..H � iI /�1Pk C .I � Pk//�1 2 �
n:

For a fixed k, by the spectral theorem of compact self-adjoint operators, there exists

a sequence .El/
1
lD1

of finite-rank projections, each El commuting with PkVPk , such

that ElPkVPk converges to PkVPk in �
n as l ! 1. For all k 2 N, there exists lk 2 N

such that

kElk
PkVPk � PkVPkkn < 1=k:

Define

Vk WD Elk
PkVPk :

Then kVkk � kV k holds, Vk is self-adjoint, Vk ! V strongly, and

kVk.H � iI /�1 � V.H � iI /�1kn

� kElk
PkVPk � PkVPkknk.H � iI /�1k

C kPkV.H � iI /�1Pk � V.H � iI /�1kn:

By Lemma 4.7, the latter expression converges to 0 as k ! 1. The second inequality

in (61) follows from the estimate

kElk
PkVPk.H � iI /�1kn � kElk

kkPkkkV.H � iI /�1knkPkk:

Our approximation on the left-hand side of the trace formula in Proposition 4.6 is

based on the next estimate.

Lemma 4.9. Let H be a self-adjoint operator in H , let n 2 N, n ¤ 2, and let

V 2 B.H /sa be such that V.H � iI /�1 2 �n. Let .Vk/k � B.H /sa be a sequence

satisfying the assertions of Lemma 4.8. Let W 2 ¹V; Vmº, where m 2 N. Then, given

a > 0, there exists cn;H;V;a > 0 such that

j Tr. zRp

n;H;f
.Vk/ � zRp

n;H;f
.W //j � cn;H;V;ak.f up/.pC1/k1k zVk � �W kn

for all p D 0; : : : ;n � 1, k 2 N, and f 2 C nC1
c Œ�a;a�, where zRp

n;H;f
is given by (56).

Proof. Let n � 3. By (56) in Lemma 4.5,

zRp

n;H;f
.Vk/ � zRp

n;H;f
.W /

D
X

j1;:::;jp�1;jpC1�0
j1C���CjpC1Dn�1

�
T

H;HCVk;j1
;H;:::;H

.f up/Œp� .Vk.H CVk �iI /�1 zV j1�1

k
; : : : ; zV jp

k
/ zV jpC1

k

� T
H;HCWj1

;H;:::;H

.f up/Œp� .W.H C W � iI /�1 �W j1�1; : : : ; �W jp / �W jpC1

� T
H;:::;H

.f up/Œp�. zV j1

k
; : : : ; zV jp

k
/ zV jpC1

k
C T

H;:::;H

.f up/Œp�. �W j1 ; : : : ; �W jp/ �W jpC1
�
; (63)
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where Vk;1 D Vk , W1 D W and Vk;j D Wj D 0 for j ¤ 1. Below we also use the

notations MV j

k
D Vk.H C Vk � iI /�1 zV j �1

k
and MW j D W.H C W � iI /�1 �W j �1.

By (31), for p � 1 we have

T
H;HCVk ;H;:::;H

.f up/Œp� . zV j1

k
; : : : ; zV jp

k
/ zV jpC1

k

D T
H;HCVk ;HCW;H;:::;H

.f up/ŒpC1� . zV j1

k
; Vk � W; zV j2

k
; : : : ; zV jp

k
/ zV jpC1

k

C T
H;HCW;H;:::;H

.f up/Œp� . zV j1

k
; : : : ; zV jp

k
/ zV jpC1

k
: (64)

By telescoping and (31) for p � 1 we obtain

T
H;HCW;H;:::;H

.f up/Œp� . zV j1

k
; : : : ; zV jp

k
/ zV jpC1

k
� T

H;HCW;H;:::;H

.f up/Œp� . �W j1 ; : : : ; �W jp / �W jpC1

� T
H;:::;H

.f up/Œp�. zV j1

k
; : : : ; zV jp

k
/ zV jpC1

k
C T

H;:::;H

.f up/Œp�. �W j1 ; : : : ; �W jp/ �W jpC1

D
pC1X

lD1

.T
H;HCW;H;:::;H

.f up/Œp� � T
H;:::;H

.f up/Œp�/

� . zV j1

k
; : : : ; zV jl�1

k
; zV jl

k
� �W jl ; �W jlC1 ; : : : ; �W jp / �W jpC1

D
pC1X

lD1

T
H;HCW;H;:::;H

.f up/ŒpC1� . zV j1

k
; W; zV j2

k
; : : : ; zV jl�1

k
; zV jl

k
� �W jl ;

�W jlC1 ; : : : ; �W jp/ �W jpC1 : (65)

Combining (63)–(65) and (22) of Theorem 3.10 (i) and adjusting the argument to

the terms with MVk yields

zRp

n;H;f
.Vk/ � zRp

n;H;f
.W /

D
X

j1;:::;jp�1;jpC1�0
j1C���CjpC1Dn�1

�
T

H;HCVk;j1
;HCWj1

;H;:::;H

.f upC1/ŒpC1� . MV j1

k
; .Vk;j1

�Wj1
/.H CW �iI /�1;

zV j2

k
; : : : ; zV jp

k
/ zV jpC1

k

� T
H;HCVk;j1

;H;:::;H

.f up/Œp� . MV j1

k
; .Vk;j1

� Wj1
/.H C W � iI /�1 zV j2

k
; : : : ; zV jp

k
/ zV jpC1

k

C
pC1X

lD1

�
T

H;HCWj1
;H;:::;H

.f upC1/ŒpC1� . zV j1

k
; �Wj1

; zV j2

k
; : : : ; zV jl�1

k
; zV jl

k
� �W jl ;

�W jlC1 ; : : : ; �W jp/ �W jpC1

� T
H;HCWj1

;H;:::;H

.f up/Œp� . zV j1

k
; �Wj1

zV j2

k
; : : : ; zV jl�1

k
; zV jl

k
� �W jl ;

�W jlC1 ; : : : ; �W jp/ �W jpC1

� T
H;HCWj1

;H;:::;H

.f up/Œp� . MV j1C1

k
; zV j2

k
; : : : ; zV jl�1

k
; zV jl

k
� �W jl ;

�W jlC1 ; : : : ; �W jp/ �W jpC1
��

: (66)

A straightforward application of the second resolvent identity implies

.Vk � W /.H C W � iI /�1 D .Vk � W /.H � iI /�1.I � W.H C W � iI /�1/:
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For each W 2 ¹V; Vmº, by the estimates (61) of Lemma 4.8, we obtain

k �W kn � k zV kn: (67)

and

kI � W.H C W � iI /�1k � 1 C kV k:

By the latter estimate,

k.Vk � W /.H C W � iI /�1kn � .1 C kV k/k zVk � �W kn:

It follows from (67) and the telescoping identity

zV j

k
� �W j D

j �1X

iD0

zV i
k . zVk � �W / �W j �1�i

that

k zV j

k
� �W j kn=j � j k zV kj �1

n k zVk � �W kn:

Applying the latter bound and Lemma 4.3 in (66) implies

j Tr. zRp

n;H;f
.Vk/ � zRp

n;H;f
.W //j

�
X

j1;:::;jp�1;jpC1�0

j1C���CjpC1Dn�1

.c1
n;j k.f upC1/.pC1/k1 C c2

n;j k.f up/.p/k1/Cn;V;H k zVk � �W kn;

(68)

for some constants c1
n;j and c2

n;j depending only on n and j1; : : : ; jpC1, and the

constant

Cn;V;H WD .1 C kV k/2k zV kn�1
n :

If supp f � Œ�a; a�, then the fundamental theorem of calculus gives

k.f up/.p/k1 � 2ak.f up/.pC1/k1:

Since .f upC1/.pC1/ D .f up/.pC1/u C .p C 1/.f up/.p/, we obtain

k.f upC1/.pC1/k1 � .ju.a/j C 2a.p C 1//k.f up/.pC1/k1:

Along with (68), the latter two inequalities yield the result for n � 3.

If n D 1, then p D 0 and (55) gives zR0
1;H;f

.Vk/ � zR0
1;H;f

.W / D f .H C Vk/ �
f .H C W /. Hence, by Theorem 3.12 and the fundamental theorem of calculus,

zR0
1;H;f .Vk/ � zR0

1;H;f .W / D
1Z

0

T
Ht ;Ht

f Œ1� .Vk � W / dt;
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where Ht D H C W C t.Vk � W /. By (22) of Theorem 3.10 (i) for j D 1 applied to

T
Ht ;Ht

f Œ1� .Vk � W / and by continuity of the trace, we obtain

Tr. zR0
1;H;f .Vk/ � zR0

1;H;f .W // D
1Z

0

�
Tr.T

Ht ;Ht

.f u/Œ1�..Vk � W /.Ht � iI /�1//

� Tr.f .Ht /.Vk � W /.Ht � iI /�1/
�

dt:

Noticing that

sup
t2Œ0;1�

k.Vk � W /.Ht � iI /�1k1 � .1 C kVk � W k/k zVk � �W k1

� .1 C 2kV k/k zVk � �W k1

and applying Hölder’s inequality and the Riesz–Markov representation theorem com-

pletes the proof of the result for n D 1.

Below we extend the result of Proposition 4.6 to relative Schatten class perturba-

tions.

Proof of Proposition 4.4. Let .Vk/k be a sequence provided by Lemma 4.8. For every

p 2 ¹0; : : : ; n � 1º and k 2 N, let M�p;k be a function satisfying

Tr. zRp

n;H;f
.Vk// D

Z
.f up/.pC1/.x/ M�p;k.x/ dx;

which exists by Proposition 4.6. By Lemma 4.9 applied to W D Vm, we have

k M�p;k � M�p;mkL1..�a;a// D sup

f 2C
nC1
c Œ�a;a�

k.f up/.pC1/k1�1

j Tr. zRp

n;H;f
.Vk/ � zRp

n;H;f
.Vm//j

� cn;H;V;ak zVk � zVmkn:

By Lemma 4.8, the latter expression approaches 0 as k � m ! 1. Thus, . M�p;k/k is

Cauchy in L1
loc.R/. Let M�p be its L1

loc-limit.

Assume that f 2 C nC1
c Œ�a; a�. We obtain

Z

R

M�p.x/.f up/.pC1/.x/ dx D
Z

supp f

.f up/.pC1/.x/ M�p.x/ dx

D lim
k!1

Z

supp f

.f up/.pC1/.x/ M�p;k.x/ dx

D lim
k!1

Tr. zRp

n;H;f
.Vk//:
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By Lemma 4.9 applied to W D V ,

j Tr. zRp

n;H;f
.Vk/ � zRp

n;H;f
.V //j � cn;H;V;ak.f up/.pC1/k1k zVk � zV kn

for every k 2 N. Hence, by Lemma 4.8,

Tr. zRp

n;H;f
.V // D lim

k!1
Tr. zRp

n;H;f
.Vk// D

Z

R

.f up/.pC1/.x/ M�p.x/ dx;

completing the proof of the result.

4.3. Absolute continuity of the spectral shift measure

In this section we prove our main result for relative Schatten class perturbations.

Proof of Theorem 4.1. Let f 2 C nC1
c . We provide a proof in the case n � 3; the cases

n D 1 and n D 2 can be proved completely analogously. Applying the general Leibniz

differentiation rule on the right-hand side of (54) (see Proposition 4.4) gives

Tr.Rn;H;f .V //

D
n�1X

pD0

.�1/n�1�p

Z

R

.f up/.pC1/.x/ M�p.x/ dx:

D
n�1X

pD0

.�1/n�1�p

pC1X

kD0

Z

R

�
p C 1

k

�
f .k/.x/.up/.pC1�k/.x/ M�p.x/ dx

D
n�1X

pD0

.�1/n�1�p

pC1X

kD1

Z

R

f .k/.x/

�
p C 1

k

�
pŠ

.k � 1/Š
uk�1.x/ M�p.x/ dx:

Integration by parts gives

Tr.Rn;H;f .V // D
n�1X

pD0

Z

R

f .pC1/.x/z�p.x/ dx;

where

z�p.t/ D
pC1X

kD0

.�1/n�kpŠ.p C 1/Š

.p C 1 � k/ŠkŠ.k � 1/Š

tZ

0

ds1

s1Z

0

ds2� � �
sp�kZ

0

uk�1.x/ M�p.x/ dx:
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Subsequent integration by parts gives

Tr.Rn;H;f .V //

D
Z

R

f .n/.x/

� n�1X

pD0

.�1/n�1�p

xZ

0

ds1

s1Z

0

ds2� � �
sn�p�2Z

0

z�p.t/ dt

�
dx

DW
Z

R

f .n/.x/ J�n.x/ dx (69)

for every f 2 C nC1
c . Since M�p 2 L1

loc (see Proposition 4.4), we have that z�p 2 L1
loc

and, hence, J�n 2 L1
loc.

By Proposition 4.2, there exists a locally finite Borel measure �n satisfying (35)

and determined by (35) for every f 2 C nC1
c uniquely up to an absolutely continuous

measure whose density is a polynomial of degree at most n � 1. Combining the latter

with (69) implies

d�n.x/ D J�n.x/dx C pn�1.x/dx DW K�n.x/dx; (70)

where pn�1 is a polynomial of degree at most n � 1. By Proposition 4.2, the function

K�n WD J�n C pn�1 satisfies (34) for every f 2 Wn. The fact that u�n�"d�n is a finite

measure translates to K�n 2 L1.R; u�n�".x/dx/.

It follows from (36) that

ku�n�" d�nk � ku�"k1k�nk C ku�n�"�nk1:

Along with (37) and (38), the latter implies

ku�n�" d�nk � cn.1 C ku�1�"k1/.1 C kV k/kV.H � iI /�1kn
n:

Since

1Z

0

.1 C x2/.�1�"/=2 dx � 1 and

1Z

1

.1 C x2/.�1�"/=2 dx �
1Z

1

x�1�" dx D "�1;

(71)

we obtain the bound

ku�n�" d�nk � cn.1 C "�1/.1 C kV k/kV.H � iI /�1kn
n; (72)

which translates to
Z

R

j K�n.x/j dx

.1 C jxj/nC"
� cn.1 C "�1/.1 C kV k/kV.H � iI /�1kn

n:
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We define

�n WD Re. K�n/;

and obtain (33) by using j�nj � j K�nj. As we have seen, K�n satisfies (34) for all f 2 Wn.

Therefore,

Tr.Rn;H;f .V // D
Z

R

f .n/.x/�n.x/ dx C i

Z

R

f .n/.x/ Im. K�n.x// dx: (73)

When f 2 Wn is real-valued, the left-hand side of (73) is real, and consequently the

second term on the right-hand side of (73) vanishes. The latter implies (34) for real-

valued f 2 Wn. By applying (34) to the real-valued functions Re.f / and Im.f /, we

extend (34) to all f 2 Wn.

The uniqueness of �n satisfying (34) up to a polynomial summand of order at most

n � 1 can be established completely analogously to the uniqueness of the measure �n

established in Proposition 4.2.

5. Examples

We discuss models of noncommutative geometry and mathematical physics that sat-

isfy the condition (1).

5.1. Noncommutative geometry

In this section we show that the relative Schatten class condition occurs naturally in

noncommutative geometry, namely, in inner perturbations of regular locally compact

spectral triples (see Definition 5.1 below). Many examples, including noncommutat-

ive field theory [6], satisfy the following definition.

Let dom.D/ denote the domain of any operator D and let

ıD.T / WD ŒjDj; T �

be defined on those T 2 B.H / for which ıD.T / extends to a bounded operator.

Definition 5.1. A locally compact spectral triple .A; H ; D/ consists of a separable

Hilbert space H , a self-adjoint operator D in H and a *-algebra A � B.H / such that

a.dom.D// � dom.D/, ŒD; a� extends to a bounded operator, and a.D � iI /�s 2 �
1

for all a 2 A and some s 2 N, called the summability of .A; H ; D/. A spectral triple

.A; H ; D/ is called regular if for all a 2 A, we have a; ŒD; a� 2
T1

kD1 dom.ık
D/.

The following result appears to be known, but nowhere explicitly proven, although

a similar statement is made in [23].
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Let �1
D.A/ WD ¹

Pn
j D1 aj ŒD; bj �W aj ; bj 2 A; n 2 Nº denote the set of inner fluc-

tuations [2] or Connes’ differential one-forms.

Theorem 5.2. A regular locally compact spectral triple .A; H ; D/ of summability s

satisfies V.D � iI /�1 2 �
s for all V 2 �1

D.A/.

Proof. Let V D
Pn

j D1 aj ŒD; bj � 2 �1
D.A/ be arbitrary and let ı WD ıD. For all X 2T1

kD1 dom.ık/ we have

X.jDj � iI /�1 D .jDj � iI /�1X C .jDj � iI /�1ı.X/.jDj � iI /�1:

By induction, for all X 2
T1

kD1 dom.ık/ there exists some Y 2
T1

kD1 dom.ık/ such

that

X.jDj � iI /�s D .jDj � iI /�sY: (74)

Since ŒD;bj � 2
T1

kD1 dom.ık/ for all j and since gWR ! C; t 7! .jt j � i /=.t � i /

is continuous and bounded, we have g.D/ 2 B.H / and there exists some Yj 2 B.H /

such that

V.D � iI /�s D
X

j

aj ŒD; bj �.jDj � iI /�sg.D/s

D
X

j

aj .jDj � iI /�sYj g.D/s

D
X

j

aj .D � iI /�sg.D/�sYj g.D/s 2 �
1:

More generally, let X1; : : : ; Xm 2
T1

kD1 dom.ık/, let k1; : : : ; km 2 N and set

k D
Pm

j D1 kj . By induction, noting that
T1

kD1 dom.ık/ is an algebra, and applying

(74) to s D kj , we obtain

mY

j D1

Xj .D � iI /�kj D .D � iI /�kY;

for some Y 2
T1

kD1 dom.ık/. If s is even, we obtain

j.D C iI /�1V �js D V.D2 C I /�1V � : : : V .D2 C I /�1V �

D V.D � iI /�sY 2 �
1;

for some Y 2
T1

kD1 dom.ık/. Therefore,

V.D � iI /�1 D ..D C iI /�1V �/� 2 �
s:
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If s is odd, we use polar decomposition to obtain U 2 B.H / such that

jV.D � iI /�1j D U V.D � iI /�1:

Hence,

jV.D � iI /�1js D U V.D � iI /�1jV.D � iI /�1js�1

D U V.D2 C I /�1V � : : : V .D2 C I /�1V �V.D � iI /�1

D U V.D � iI /�sY 0 2 �
1

for some Y 0 2
T1

kD1 dom.ık/. Therefore, V.D � iI /�1 2 �s .

5.2. Differential operators

In this section we consider conditions sufficient for perturbations of Dirac and Schrö-

dinger operators to satisfy (1).

Given v 2 L1.Rd /, let Mv denote the operator of multiplication by v, that is,

Mv.g/ WD vg; g 2 L2.R/:

We will consider self-adjoint perturbations V D Mv , where v is real-valued.

Let

� D
dX

kD1

@2

@x2
k

denote the Laplacian operator densely defined in the Hilbert space L2.Rd /.

For m � 0, let Dm denote the free massive Dirac operator defined as follows.

For d 2 N; let N.d/ WD 2b.dC1/=2c. Let ek 2 MN.d/.C/; 0 � k � d; be the Clifford

generators, that is, self-adjoint matrices satisfying e2
k

D I for 0 � k � d and ek1
ek2

D
�ek2

ek1
for 0 � k1; k2 � d; such that k1 ¤ k2: Let Dk WD @

i@xk
. Then, the operator

Dm WD e0 ˝ mI C
dX

kD1

ek ˝ Dk

is densely defined in the Hilbert space C
N.d/ ˝ L2.Rd /:

We note that D0 is unitarily equivalent to I ˝ D, where I 2 MN.d/=N.d�1/.C/

and D is the usual massless Dirac operator. We also note that, in the case when d D 1,

the Dirac operator D0 D I ˝ @
i@x

can be identified with the differential operator @
i@x

in the Hilbert space L2.R/.

The Schatten class membership of the weighted resolvents below was derived in

[20, Theorem 3.3 and Remark 3.6]. To estimate the respective Schatten norms one

just needs to carefully follow the proof of the latter result.
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Theorem 5.3. Let d 2 N, 1 � p < 1. Let

v 2
´

`p.L2.Rd // \ L1.Rd / if 1 � p < 2

Lp.Rd / \ L1.Rd / if 2 � p < 1

be real-valued.

i. If p > d and m � 0, then .I ˝ Mv/.Dm � iI /�1 2 �p and

k.I ˝ Mv/.Dm � iI /�1kp � cd;p

´
kvk`p.L2/ if 1 � p < 2;

kvkLp if 2 � p < 1:
(75)

ii. If p > d
2

, then Mv.�� � iI /�1 2 �p and

kMv.�� � iI /�1kp � cd;p

´
kvk`p.L2/ if 1 � p < 2;

kvkLp if 2 � p < 1:
(76)

Remark 5.4. The bounds analogous to (75) and (76) can also be established for per-

turbed Dirac Dm C W and perturbed Schrödinger �� C W operators, respectively.

The respective results follow from Theorem 5.3 and Proposition 5.5 below. In partic-

ular, we have the following bound for a massive Dirac operator with electromagnetic

potential in the case p > d :




.I ˝ Mv/
�
Dm C

dX

kD1

ek ˝ Mwk
C I ˝ MwdC1

� iI
��1




p

� cd;p.1 C max
1�k�dC1

kwkkL1/

´
kvk`p.L2/ if 1 � p < 2;

kvkLp if 2 � p < 1:

The same reasoning applies to generalized Dirac operators Ik ˝ D C W , where k 2 N

and W 2 B.Ck ˝ H /sa, that are associated with almost-commutative spectral triples.

Proposition 5.5. Let H; V be self-adjoint operators in H and W 2 B.H /sa. Let

1 � p < 1 and assume that kV.H � iI /�1kp < 1. Then,

kV.H C W � iI /�1kp � kV.H � iI /�1kp.1 C kW k/:

Proof. The result follows from the second resolvent identity

.H C W � iI /�1 D .H � iI /�1 � .H � iI /�1W.H C W � iI /�1

upon multiplying it by V and applying Hölder’s inequality for Schatten norms.
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