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Spectral convergence of high-dimensional spheres

to Gaussian spaces

Asuka Takatsu

Abstract. We prove that the spectral structure on the N -dimensional standard sphere of radius

.N � 1/1=2 compatible with a projection onto the first n-coordinates converges to the spectral

structure on the n-dimensional Gaussian space with variance 1 as N ! 1. We also show the

analogue for the first Dirichlet eigenvalue problem on a ball in the sphere and that on a half-

space in the Gaussian space.

1. Introduction

A curvature-dimension condition CD.�; N / imposes restriction on the spectra of the

weighted Laplacian on a weighted manifold. For example, the Lichnerowicz–Obata-

type eigenvalue estimate is known (see [8, Theorems 1.2], [18, Corollary 1.3], [20,

Theorem 5.34], and the references therein). Here a weighted manifold .M; �/ is a

complete smooth n-dimensional Riemannian manifold .M; g/ equipped with a meas-

ure � of the form

� D exp.�‰/ volM ;

where ‰ 2 C1.M/ and volM denotes the Riemannian volume measure on .M; g/.

The weighted Laplacian�� on .M;�/ is defined as

��f WD �Mf � g.rM‰;rMf / for f 2 C1.M/;

where rM and �M stand for the gradient and the Laplacian on .M; g/, respectively,

so that the following integration by parts is satisfied

Z

M

g.rMf1;rMf2/d� D �
Z

M

f1��f2d� for f1; f2 2 C1
0 .M/:
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Given � 2 R and N 2 Œn;1�, we say that .M; �/ satisfies the curvature-dimension

condition CD.�;N / if

RicM .v; v/C HessM‰.v; v/ � v.‰/2

N � n � �g.v; v/ for v 2 TM;

where RicM is the Ricci curvature tensor and HessM is the Hessian operator on

.M; g/, respectively. To make sense, we employ the convention that 1
1 WD 0; 1

0
WD

C1, and 1 � 0 WD 0. A model space for comparison geometry under the condition

CD.1;N / is theN -dimensional standard sphere of radius .N � 1/1=2 forN 2 N with

N � 2, and the one-dimensional Gaussian space with variance 1 for N D 1.

ForN 2 N and a > 0, let S
N .a/ be the N -dimensional standard sphere of radius

a. We denote by h�; �i the Euclidean inner product and set j � j2 WD h�; �i1=2. For n 2 N

and ˛ > 0, we denote by 
n
˛ the n-dimensional Gaussian measure with variance ˛2,

that is,

d
n
˛ .x/ D .2�˛2/�

n
2 exp

�

�jxj22
2˛2

�

dx:

The weighted manifold �n
˛ WD .Rn; 
n

˛ / is called the n-dimensional Gaussian space

with variance˛2. Notice that a weighted manifold of S
N.a/ equipped with its Rieman-

nian volume measure satisfies CD.a�2.N � 1/; N / and �n
˛ satisfies CD.˛�2;1/,

respectively. Set

SN WD S
N .

p
N � 1/; 
n WD 
n

1 ; �n WD �n
1 :

Since CD.1;1/ can be regarded as the limit of CD.1;N / asN ! 1, the spectral

structure on �n would be derived from the asymptotic behavior of that on SN as well.

For example, Borell [5, Theorem 3.1] and Sudakov and Cirel’son [25, Corollary 1]

independently proved the Brunn–Minkowski inequality on �n by using that on SN .

The Brunn–Minkowski inequality determines a domain minimizing the first Dirichlet

eigenvalue under the restriction of the volume. The key of the proof is the following

asymptotic behavior, so-called Poincaré’s theorem (we refer to [9, Section 6] for the

history of Poincaré’s theorem). Let �N be the normalized Riemannian volume meas-

ure on SN to be a probability measure. For n; N 2 N with n � N , pN
n denotes the

projection from R
N C1 D R

n � R
N �nC1 onto R

n defined by

pN
n .x; y/ WD x for .x; y/ 2 R

n � R
N �nC1:

Then the push-forward measure of �N by the restriction of pN
n to SN satisfies

lim
N !1

d
�

.pN
n jSN

/]�N

�

dx
.x/ D d
n

dx
.x/ for x 2 R

n
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and ¹.pN
n jSN

/]�N ºN 2N converges to 
n weakly as N ! 1. Since the weak con-

vergence of probability measures on Rn is metrizable by the Prokhorov metric dP , it

holds that

lim
N !1

dP ..p
N
n jSN

/]�N ; 

n/ D 0:

Let �N W SN ,! R
N C1 be the inclusion map. In contrast to Poincaré’s theorem,

Shioya and the author [24, Theorem 1.4] showed that

lim inf
N !1

dP .�N ]�N ; 

N C1/ > 0:

This suggests that the asymptotic behavior of the spectral structure on SN and �N C1

are different. Indeed, the multiplicity of the first nonzero eigenvalue on both of SN

and �N C1 are N C 1, while the multiplicity of the second nonzero eigenvalue on

SN is N.N C 3/=2 but that on �N C1 is .N C 1/.N C 2/=2. See [22, Sections 2.1

and 2.2] for instance. Thus, it is more appropriate to compare the spectral structure

on �n with the compatible spectral structure on SN with pN
n , rather than the spectral

structure on SN itself.

In this paper, we prove the convergence of eigenvalues on SN .aN / to those on

�n
˛ together with the convergence of the composition of pN

n and compatible eigen-

functions on S
N .aN / to eigenfunctions on �n

˛ asN ! 1 when ¹aN =
p
N � 1ºN �n;2

converges to ˛. We also show the analogue for the first Dirichlet eigenvalue problem

on a ball in SN .aN / and that on a half-space in �n
˛ .

We define some notation needed to state our theorems. Let N0 denote the set of

nonnegative integers. Unless specified otherwise in this paper, let

n;N 2 N with n; 2 � N; k 2 N0; a; ˛ > 0; � 2 .0; �/; R 2 R:

We shall for convenience denote a sequence ¹cN ºN �N0
by ¹cN ºN .

For the rest of this paper, a weighted manifold .M; �/ is either SN .a/ equipped

with its Riemannian volume measure volSN .a/ or �n
˛ D .Rn; 
n

˛ /. Note that we have

�vol
SN .a/

D �SN .a/. When it will introduce no confusion, we shall denote .SN .a/;

volSN .a// simply by S
N .a/.

A real number � is called a closed eigenvalue, or simply eigenvalue of ��� on

M if there exists a nontrivial solution � 2 C 2.M/ to

��� D ��� in M: (1.1)

A solution to (1.1) is called an eigenfunction of eigenvalue �. Any constant function

on M is an eigenfunction of eigenvalue 0. We denote the list of distinct eigenvalues

on M by

0 D �0.M;�/ < �1.M;�/ < �2.M;�/ < � � � < �k.M;�/ < � � � " 1:
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Let Ek.M;�/ be the linear space of solutions to (1.1) for � D �k.M;�/. It is known

that the linear space Ek.S
N .a// is spanned by the restriction of homogeneous har-

monic polynomials on R
N C1 of degree k to S

N .a/ (see [7, Section II.4]). We denote

by P .n/ the linear space of polynomials on R
n. Define the linear subspace of

Ek.S
N .a// by

En
k .S

N .a// WD ¹ˆ 2 Ek.S
N .a// j Q ı pN

n D ˆ on S
N .a/ for some Q 2 P .n/º:

Theorem 1.1. Let ¹aN ºN be a sequence of positive real numbers. For n;N 2 N with

n; 2 � N and k 2 N0,

dimEn
k .S

N .aN // D dimEk.�
n/ DW dk.n/: (1.2)

Moreover, if ¹aN =
p
N � 1ºN converges to a positive real number ˛ asN ! 1, then

lim
N !1

�k.S
N .aN // D �k.�

n
˛ /: (1.3)

In this case, there exist a set of homogeneous harmonic polynomials ¹PN;j ºdk.n/
j D1 on

R
N C1 of degree k and ¹QN;j ºdk.n/

j D1 � P .n/ satisfying the following three properties:

• the restriction of ¹PN;j ºdk.n/
j D1 to SN .a/ forms a basis of En

k
.SN .aN //.

• QN;j ı pN
n D PN;j on SN .aN /.

• ¹QN;j ºN converges to some Qj 2 P .n/ uniformly on compact sets and strongly

in L2.�n
˛ / as N ! 1 for each 1 � j � dk.n/ and ¹Qj ºdk.n/

j D1 forms a basis

of Ek.�
n
˛ /.

Next we consider the analogue for the first Dirichlet eigenvalue problem. For

m; i 2 N with i � m, let em
i denote the m-tuple consisting of zeros except for a 1

in the i th spot. Let dSN .a/ be the Riemannian distance function on S
N .a/. We define

the open ball BN
a�

in SN .a/ and the open half-space V n
˛R in Rn by

BN
a� WD ¹z 2 S

N .a/ j dSN .a/.z; ae
N C1
1 / < a�º;

V n
˛R WD ¹x D .xi/

n
iD1 2 R

n j x1 > ˛Rº;

respectively. Let � D BN
a�

if M D S
N .a/, and � D V n

˛R if M D �n
˛ .

A real number � is called the first Dirichlet eigenvalue of ��� on� if there exists

a solution � 2 C 2.�/ \ C 0.x�/ to

8

ˆ

ˆ

<

ˆ

ˆ

:

��� D ��� in �;

� > 0 in �;

� D 0 on @�:

(1.4)
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The first Dirichlet eigenvalue of ��� on �, denoted by �.�; .M; �//, is positive

and a solution to (1.4) is uniquely determined up to a positive constant multiple. A

solution to (1.4) is called a first positive Dirichlet eigenfunction of ��� on �.

Let H 1
0 .V

n
˛R; 


n
˛ / denote the completion of C1

0 .V n
˛R/ with respect to the inner

product given by

.f1; f2/H 1.V n
˛R

;
n
˛ / WD

Z

V n
˛R

f1f2d

n
˛ C

Z

V n
˛R

hrRnf1;rRnf2id
n
˛

for f1; f2 2 C1
0 .V n

˛R/.

Theorem 1.2. Let ¹aN ºN , ¹�N ºN be sequences of real numbers such that aN >0 and

�N 2 .0; �/ for N 2 N. Define two functions sN ; wN on Œ�aN ; aN � and a function

w1 on R by

sN .r/ WD 1 � r2

a2
N

;

wN .r/ WD sN .r/
N
2

�1 �
�

aN
Z

�aN

sN .�/
N
2

�1d�

��1

;

w1.r/ WD 1p
2�˛

e
� r2

2˛2 ;

respectively. Let �N be the first positive Dirichlet eigenfunction of ��SN .aN / on

BN
aN �N

such that

Z

BN
aN �N

�N .z/
2dvolSN .aN /.z/ D volSN �1.aN /.S

N �1.aN //

aN
Z

�aN

sN .r/
N
2 �1dr:

Then for n;N 2 N with n; 2 � N , there exists  N 2 H 1
0 .V

n
˛R; 


n
˛ / such that

 N ı pN
n D �N �

°�

sN

r

wN

w1

�

ı pN
1

±

on BN
aN �N

: (1.5)

Moreover, if there exist ˛ > 0 and R 2 R such that

lim
N !1

aNp
N � 1

D ˛;

lim
N !1

aN cos �N D ˛R;

sup
N 2N

a2
N � ˛2.N � 2/

aN

< 1;

aN cos �N � ˛R;
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then

lim
N !1

�.BN
aN �N

;SN .aN // D �.V n
˛R; �

n
˛ /:

In this case, ¹ N ºN converges to the first positive Dirichlet eigenfunction  1 of

��
n
˛

on V n
˛R strongly in H 1

0 .V
n

˛R; 

n
˛ / and

Z

V n
˛R

 1.x/
2d
n

˛ .x/ D 1:

Let us make a few comments on related works. Aside from the difference between

the asymptotic behavior of the spectral structure on SN and �N C1, the study of the

relation between the limit of SN as N ! 1 and the infinite-dimensional Gaussian

space has a long history, which goes back to Boltzmann and Maxwell around the

1860s in the study of the motion of gas molecules. McKean [21] gave an exposi-

tion to explain how this study is fruitful (see also [14], where the classical idea of

Lévy [19] and Wiener [27] is explained with examples in physics and control the-

ory). Its mathematical foundations are established in the 1960s. For example, Hida

and Nomoto [15] constructed an infinite-dimensional Gaussian space as the project-

ive limit space of SN and defined a family of functions analogous to homogeneous

harmonic polynomials restricted to SN , which forms a complete orthonormal system

in theL2-spaces on the infinite-dimensional Gaussian space. Umemura and Kôno [26,

Section 4] made clear the relation between the Laplacian on SN and that on the

infinite-dimensional Gaussian space and investigated how this relation reflects on their

eigenfunctions. Peterson and Sengupta [23, Section 5] analyzed an asymptotic beha-

vior of the Laplacian on SN and its eigenfunctions from the algebraic viewpoint.

Compare Theorem 1.1 with [26, Proposition 5] and [23, Proposition 4.3]. Note that

the difference of eigenvalues on SN and �1 provides an quantitative estimate of the

difference between SN and �1 by [3, Theorem 1.2].

As for the Dirichlet eigenvalue problem, Friedland and Hayman [10, Theorem 2]

proved that the positive root �N .s/ of the equation

�.� CN � 1/ D �.BN
�N
;SN .1//

with

volSN .1/.B
N
�N
/= volSN .1/.S

N .1// D s 2 .0; 1/

is nonincreasing in N 2 N hence the limit of ¹�N .s/ºN as N ! 1 exists. This

suggests that ¹�.BN
�N
; SN .1//=N ºN converges to �.V 1

R ; �
1/ as N ! 1 (see [6,

p. 218]). In general, the spectral convergence with respect to the pointed measured

Gromov–Hausdorff topology under the curvature-dimension condition is known (for

instance, see [1, 2, 12, 28] and the references therein). With respect to the pointed
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measured Gromov–Hausdorff topology, although ¹SN .1/ºN diverges (see [11, Pro-

position 1.1]), ¹.pN
n .SN /; j � j2; .pN

n jSN
/]�N /ºN converges to �n as N ! 1. This

with the metric contraction principle (see [22, Proposition 3.4]) suggests

�m.V
n

˛R; �
n
˛ / � lim

N !1
�m.B

N
aN �N

;SN .aN //;

wherem 2 N and �m.�; .M;�// stands for themth Dirichlet eigenvalue of ��� on

�. In the case n D 1, Kazukawa [17, Example 4.18] used a projection from SN to R

different from pN
1 and discussed the spectral convergence on SN in the framework of

metric measure foliation.

This paper is organized as follows. Section 2 is devoted to recalling some known

facts of Eigenvalue problems on spheres and Gaussian spaces. We prove Theorem 1.1

in Section 3 and Theorem 1.2 in Section 4, respectively. We discuss the relation

between Dirichlet eigenspaces of high-dimensional spheres and those of Gaussian

spaces in Section 5.

2. Eigenvalue problems on S
N .a/ and �n

˛

Let us briefly recall some known facts of eigenvalue problems on SN .a/ and �n
˛ . We

refer to [7, Sections II.4 and II.5] and [22, Sections 2.1 and 2.2] for more details.

2.1. Eigenvalue problem on SN .a/

The kth distinct eigenvalue on S
N .a/ is given by

�k.S
N .a// D k

a2
.k C N � 1/ with multiplicity

�

N C k

k

�

�
�

N C k � 2

k � 2

�

;

(2.1)

where we adhere to the convention that
�

N �2
�2

�

;
�

N �1
�1

�

WD 0.

For a first positive Dirichlet eigenfunction � of ��SN .a/ on BN
a�

, there exists a

solution ' 2 C1.Œ0; a�//\ C.Œ0; a��/ to

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

'00.#/C .N � 1/ cos .#=a/

a sin .#=a/
'0.#/ D ��.BN

a� ;S
N .a//'.#/ in # 2 Œ0; a�/;

'.#/ > 0 in # 2 Œ0; a�/;
'.a�/ D 0;

(DN )
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such that �.z/ D '.dSN .a/.z; ae
N C1
1 // on BN

a�
, where

Z

BN
a�

�.z/2d volSN .a/.z/ D volSN �1.a/.S
N �1.a//

a�
Z

0

'.#/2 sinN �1 .#=a/ d# < 1

(2.2)

holds. It follows that

�.BN
a� ;S

N .a// D 1

a2
�.BN

� ;S
N .1//:

It is known that �.z/ D cos.dSN .a/.z; ae
N C1
1 /=a/ is a first positive Dirichlet eigen-

function of ��SN .a/ onBN
a�=2

and �.BN
a�=2

;SN .a//DN=a2. Hence, '.r/Dcos.r=a/

solves (DN ) with the case � D �=2. Notice that

dSN .a/.z; ae
N C1
1 / D a � arccos

�z1

a

�

on z D .zi /
N C1
iD1 2 S

N .a/ � R
N C1:

2.2. Eigenvalue problem on �n
˛

The weighted Laplacian �
n
˛

is also called the Ornstein–Uhlenbeck operator and is

given by

�
n
˛
f .x/ D �Rnf .x/ � 1

˛2
hx;rRnf .x/i for f 2 C 2.Rn/ and x 2 R

n:

For K D .Ki/
n
iD1 2 N

n
0 and k 2 N0, set

jKj WD
n

X

iD1

Ki ; N
n
0 .k/ WD ¹K 2 N

n
0 j jKj D kº:

The kth distinct eigenvalue on �n
˛ is given by

�k.�
n
˛ / D k

˛2
with multiplicity dk.n/ WD ]Nn

0 .k/ D
�

n � 1C k

k

�

(2.3)

and Ek.�
n
˛ / is spanned by

°

x D .xi/
n
iD1 7!

n
Y

iDi

HKi
.˛�1xi/

±

K2N
n
0

.k/
;

where Hk is the kth order Hermite polynomial of the form

Hk.r/ WD .�1/ke r2

2
dk

drk
e� r2

2 : (2.4)
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An argument similar to the first Dirichlet eigenvalue problem on a ball in a sphere

implies that, for a first Dirichlet eigenfunction  of ��
n
˛

on V n
˛R, there exists a first

Dirichlet eigenfunction h of ��
1
˛

on V 1
˛R D .˛R;1/ such that  .x/ D h.x1/ on

x D .xi/
n
iD1 2 V n

˛R, where

Z

V n
˛R

 .x/2d
n
˛ .x/ D

1
Z

˛R

h.r/2d
1
˛ .r/ < 1:

Moreover, �.V 1
˛R; �

1
˛/ D �.V n

˛R; �
n
˛ / holds.

3. Proof of Theorem 1.1

To prove Theorem 1.1, we analyze the composition of pN
n and homogeneous har-

monic polynomials on R
N C1. Given j 2 N and m 2 N0, set

�
j

Rn WD
�

n
X

iD1

@2

@x2
i

�j

; cj .m/ WD � 1

2j.mC 2j � 1/ ; Cj .m/ WD
j

Y

lD1

cl .m/;

and �0
Rn WD idRn ; C0.m/ WD 1. For K D .Ki/

n
iD1 2 N

n
0 and x D .xi/

n
iD1 2 R

n, set

xK WD
n

Y

iD1

x
Ki

i ;

where by convention 00 WD 1. For t 2 R, let Œt � be the greatest integer less than or

equal to t .

Definition 3.1. For n;N 2 N with n � N , K 2 N
n
0 and a; ˛ > 0, define

PN;n;K.x; y/ WD
ŒjKj=2�
X

j D0

Cj .N � n/jyj2j
2 �

j

Rnx
K for .x; y/2R

n � R
N �nC1;

QN;n;KIa.x/ WD
ŒjKj=2�
X

j D0

Cj .N � n/.a2 � jxj22/j�
j
Rnx

K for x2R
n;

Qn;KI˛.x/ WD
Œk=2�
X

j D0

.�1/j ˛
2j

2jj Š
�

j

Rnx
K for x2R

n:

We easily check that PN;n;K is a homogeneous polynomial on RN C1of degree

jKj and QN;n;KIa;Qn;KI˛ 2 P .n/. All of

¹PN;n;KºK2N
n
0

.k/; ¹QN;n;KIaºK2N
n
0

.k/; ¹Qn;KI˛ºK2N
n
0

.k/
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are linearly independent. It turns out that

QN;n;KIa ı pN
n D PN;n;K on S

N .a/:

Lemma 3.2. For n; N 2 N with n; 2 � N and k 2 N0, let P be a homogeneous

harmonic polynomial on RN C1 of degree k. Then P jSN .a/ 2 En
k
.SN .a// if and only

if there exists bK 2 R for eachK 2 N
n
0 .k/ such that P is decomposed as

P D
X

K2N
n
0

.k/

bKPN;n;K on R
N C1:

Proof. Let P be a homogeneous harmonic polynomial on R
N C1 of degree k.

If P jSN .a/ 2 En
k
.SN .a//, then P satisfies

P.x; y/ D P.x; jyj2eN �nC1
1 / D P.x;�jyj2eN �nC1

1 /

for .x; y/ 2 S
N .a/ � R

n � R
N �nC1: This implies that there exists a homogeneous

polynomialQk�2j on R
n of degree k � 2j for each 0 � j � Œk=2� such that

P.x; y/ D
Œk=2�
X

j D0

jyj2j
2 Qk�2j .x/ for .x; y/ 2 R

n � R
N �nC1

(compare with [23, Proposition 3.10]). Since P is harmonic, we find that

0 D �RN C1P.x; y/

D
Œk=2�
X

j D0

¹.�RN �nC1 jyj2j
2 /Qk�2j .x/C jyj2j

2 �RnQk�2j .x/º

D
Œk=2�
X

j D0

¹2j.N � nC 2j � 1/jyj2.j �1/
2 Qk�2j .x/C jyj2j

2 �RnQk�2j .x/º

D
Œk=2�
X

j D1

¹�RnQk�2.j �1/.x/ � 1

cj .N � n/Qk�2j .x/ºjyj2.j �1/
2

C jyj2Œk=2�
2 �RnQk�2Œk=2�.x/

D
Œk=2�
X

j D1

¹�RnQk�2.j �1/.x/ � 1

cj .N � n/Qk�2j .x/ºjyj2.j �1/
2 ; (3.1)

which implies that

Qk�2j .x/ D cj .N � n/�RnQk�2.j �1/.x/

D � � � D Cj .N � n/�j
RnQk.x/ for 1 � j � Œk=2�:
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Thus, there exists bK 2 R for eachK 2 N
n
0 .k/ such that

P.x; y/ D
Œk=2�
X

j D0

Cj .N � n/jyj2j
2 �

j
Rn

�

X

K2N
n
0

.k/

bKx
K

�

D
X

K2N
n
0

.k/

bKPN;n;K.x; y/:

Conversely, we observe from (3.1) that PN;n;K is harmonic for eachK 2 Nn
0 .k/. This

complete the proof of the lemma.

Proof of Theorem 1.1. The relation (1.2) follows from Lemma 3.2 and (1.3) follows

from (2.1) together with (2.3), respectively.

Fix K 2 N
n
0 .k/. We prove that ¹QN;n;KIaN

ºN converges toQn;KI˛ uniformly on

compact sets and strongly in L2.�n
˛ / as N ! 1 together with Qn;KI˛ 2 Ek.�

n
˛ /.

For 0 � j � Œk=2�, define qN;j 2 P .n/ and qj 2 R by

qN;j .x/ WD Cj .N � n/.a2
N � jxj22/j ; qj WD .�1/j ˛

2j

2j j Š
;

respectively. Then

QN;n;KIaN
.x/D

Œk=2�
X

j D0

qN;j .x/�
j

Rnx
K ; Qn;KI˛.x/D

Œk=2�
X

j D0

qj�
j

Rnx
K for x 2 R

n:

Notice that qN;0 � 1 on R
n and q0 D 1. For 1 � j � Œk=2� and x 2 R

n, we see that

qN;j .x/ D .�1/j
j

Y

lD1

a2
N � jxj22

2l.N � nC 2l � 1/

N !1����! .�1/j
j

Y

lD1

˛2

2l
D qj :

Moreover, ¹qN;j ºN converges to qj uniformly on compact sets as N ! 1, which

implies that ¹QN;n;KIaN
ºN converges to Qn;KI˛ uniformly on compact sets as

N ! 1. We see that ¹qN;j ºN is dominated by ˛2j .1C jxj22/j hence ¹QN;n;KIaN
ºN

is dominated by a certain polynomial on R
n. Since any polynomials on R

n belongs to

L2.�n
˛ /, the dominated convergence theorem implies that ¹QN;n;KIaN

ºN converges

to Qn;KI˛ strongly in L2.�n
˛ / as N ! 1.

A direct computation gives

�
n
˛
Qn;KI˛.x/ D �RnQn;KI˛.x/� 1

˛2
hx;rRnQn;KI˛.x/i

D
Œk=2�
X

j D0

qj�
j C1
Rn xK �

Œk=2�
X

j D0

qj

˛2
hx;rRn�

j
Rnx

Ki:

We find that�
Œk=2�C1
Rn xKD0. Since�

j
Rnx

K is a linear combination of ¹xJºJ 2N
n
0

.k�2j /

and hx;rRnxJ i D jJ jxJ holds for J 2 N
n
0 , it turns out that

hx;rRn�
j
Rnx

Ki D .k � 2j /�j
Rnx

K ;
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and consequently

�
n
˛
Qn;KI˛.x/ D

Œk=2��1
X

j D0

qj�
j C1

Rn xK �
Œk=2�
X

j D0

qj

˛2
.k � 2j /�

j

Rnx
K

D
Œk=2�
X

j D1

°

qj �1 � qj

˛2
.k � 2j /

±

�
j
Rnx

K � q0k

˛2
�0

Rnx
K

D �
Œk=2�
X

j D1

qj k

˛2
�

j

Rnx
K � q0k

˛2
�0

Rnx
K

D � k

˛2
Qn;KI˛.x/:

Thus, Qn;KI˛ 2 Ek.�
n
˛ / and the proof is complete.

Remark 3.3. Notice that ¹QN;n;KIaN
ºN does not converge to Qn;KI˛ uniformly

on Rn. Indeed, if we take n D 1; k D 2; I D 2 and aN D N 1=2, then

QN;1;2I
p

N .x/ D x2 � N � x2

N
; Q1;2I1.x/ D x2 � 1;

sup
x2R

jQN;1;2I
p

N .x/ �Q1;2I1.x/j D 1:

For .M;�/ D .SN .a/;volSN .a// and �n
˛ , it is well known that all eigenfunctions

of ��� on M forms an orthogonal system in L2.M;�/. We denote by .�; �/L2.M;�/

and k � kL2.M;�/ the L2-inner product and L2-norm on .M; �/, respectively. Let

En.SN .a// be the direct sum ofEn
k
.SN .a// over k 2 N0 andEn.SN .a//? its ortho-

gonal complement in L2.SN .a//. The linear space En.SN .a// is spanned by

®

PN;n;KjSN .a/

¯

K2N
n
0

:

SetDn
a WD ¹x 2 Rn j jxj2 < aº. We denote by 1A the indicator function of a setA.

Definition 3.4. Let ¹aN ºN be a sequence of positive real numbers such that the

sequence ¹aN =
p
N � 1ºN converges to a positive real number ˛ as N ! 1. We

define a function !aN ;˛ on Rn by

!aN ;˛.x/ WD
�

1 � jxj22
a2

N

�
N �n�1

2

.2�˛2/
n
2 e

jxj2

2˛2 1Dn
aN
.x/:

For FN 2 En.SN .aN //, define a function fN on R
n by

fN .x/ WD FN .x;

q

a2
N � jxj22eN �nC1

1 /
p
!aN ;˛:

We call fN the horizontal part of FN .
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It is easy to see that the horizontal part of PN;n;K jSN .aN / is QN;n;KIaN

p
!aN ;˛.

Lemma 3.5. Let ¹aN ºN be a sequence of positive real numbers such that the se-

quence ¹aN =
p
N � 1ºN converges to a positive real number ˛ as N ! 1. Assume

n < N . For FN 2 En.SN .aN // and its horizontal part fN , it follows that

kfN k2
L2.�n

˛/
D

kFN k2
L2.SN .aN //

volSN �n.aN /.S
N �n.aN //

:

Proof. Set

‚ WD Œ0; ��N �1 � Œ0; 2��

and define

� D .�; �/W‚ ! S
N .1/ � R

n � R
N �nC1

by

�.�/i D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

cos �1 if i D 1;

�

i�1
Y

j D1

sin �j

�

cos �i if 2 � i � N;

N
Y

j D1

sin �j if i D N C 1:

Moreover, put

f .x/ WD FN .x;

q

a2
N � jxj22eN �nC1

1 /

for x 2 Dn
aN

. Then the change of variables yields

kFN k2
L2.SN .aN //

D aN
N

Z

‚

FN .aN �.�//
2
�

N �1
Y

iD1

sinN �i �i

�

d�

D aN
N

Z

‚

f .aN �.�//
2
�

N �1
Y

iD1

sinN �i �i

�

d�

D 2�
�

N �1
Y

iDnC1

�
Z

0

sinN �i �d�
�

� aN �n
N

Z

Dn
aN

f .x/2
�

1 � jxj22
a2

N

�
N �n�1

2

dx

D volSN �n.aN /.S
N �n.aN //

Z

Rn

fN .x/
2d
n

˛ .x/:

This concludes the proof of the lemma.
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As a corollary of Theorem 1.1, we show the L2-strong convergence of the heat

flow and the Mosco convergence of the Cheeger energy. These convergences with

respect to the pointed measured Gromov–Hausdorff topology under the curvature-

dimension condition are known. For example, see [1, Theorem 1.5.4], [12, Theor-

ems 6.8 and 6.11], [17, Theorem 1.1], and also [2, Theorem 3.4 and Proposition 3.9]

and [28, Theorem 3.8]. The results are concerned with the asymptotic behaviors of

Laplacians. It should be mentioned that, for each k 2 N, Peterson and Sengputa [23,

Proposition 5.4] proved the convergence of �
SN .

p
N �1/ to the Hermite operator as

N ! 1 on the space of homogeneous polynomials of degree at most k, and that the

projection of the Hermite operator onto the first n-coordinates is ��n
1

(see also [26,

Proposition 3]).

Corollary 3.6. Let ¹aN ºN be a sequence of positive real numbers such that the

sequence ¹aN =
p
N � 1ºN converges to a positive real number ˛ as N ! 1. Let

UN W Œ0;1/� SN .aN / ! R denote the solution to the heat equation

8

<

:

@

@t
U D �SN .aN /U in .0;1/ � S

N .aN /;

U.0; �/ D FN in SN .aN /;

where FN 2 En.SN .aN //. Then UN .t; �/ 2 En.SN .aN // for any t � 0.

Let fN and uN .�; t / be the horizontal part of FN and UN .t; �/, respectively. If

¹fN ºN converges to f1 weakly in L2.�n
˛ / as N ! 1, then ¹uN .t; �/ºN converges

to u1.t; �/ strongly in L2.�n
˛ / as N ! 1 for each t > 0 and ¹u1.t; �/ºt�0 solves

the heat equation
8

<

:

@

@t
u D �
n

˛
u in .0;1/ � R

n;

u.0; �/ D f1 in Rn:
(3.2)

Proof. Let ¹�N;kºk2N be an orthonormal system in L2.SN .aN // such that each �N;k

is an eigenfunction of eigenvalue �N;k and either �N;k 2 En.SN .aN // or �N;k 2
En.SN .aN //

? holds. It is well known that UN .t; z/ is given by

UN .t; z/ D
X

k2N

e�t�N;k .FN ; �N;k/L2.SN .aN //�N;k.z/:

For instance, see [7, Section VI.1]. We deduce from

.FN ; �N;k/L2.SN .aN // D 0 for �N;k 2 En.SN .aN //
?

that UN .t; �/ 2 En.SN .aN // holds for any t � 0.
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Without loss of generality, we may assume that, for each �N;k 2 En.SN .aN //,

there exists K 2 N
n
0 such that

�N;k D
PN;n;K jSN .aN /





PN;n;K jSN .aN /







L2.SN .aN //

:

We shall abbreviate PN;n;K jSN .aN / by PN;n;K when there is no possibility of confu-

sion. We see that

fN D
X

K2N
n
0

.FN ; PN;n;K/L2.SN .aN //

kPN;n;Kk2
L2.SN .aN //

QN;n;KIaN

p
!aN ;˛;

uN .t; �/ D
X

K2N
n
0

e�t�jKj.S
N .aN //

.FN ; PN;n;K/L2.SN .aN //

kPN;n;Kk2
L2.SN .aN //

QN;n;KIaN

p
!aN ;˛:

Similarly, for f1 and a solution u to (3.2), it turns out that

f1.x/ D
X

K2N
n
0

.f1;Qn;KI˛/L2.�n
˛/

kQn;KI˛k2
L2.�n

˛/

Qn;KI˛;

u.t; x/ D
X

K2N
n
0

e�t�jKj.�
n
˛ /
.f1;Qn;KI˛/L2.�n

˛/

kQn;KI˛k2
L2.�n

˛/

Qn;KI˛ :

For instance, see [4, Theorem 1.4.4]. As well as the proof of Lemma 3.5, we find that

kQN;n;KIaN
.x/

p
!aN ;˛k2

L2.�n
˛/

D
kPN;n;Kk2

L2.SN .aN //

volSN �n.aN /.S
N �n.aN //

;

.fN ;QN;n;KIaN

p
!aN ;˛/L2.�n

˛/ D
.FN ; PN;n;K/L2.SN .aN //

volSN �n.aN /.S
N �n.aN //

;

for n < N . It follows from the inequality 1 � � � e�� on � 2 R that

�

1 � r2

a2
N

�
N �n�1

2 � exp
�

� r2

a2
N

� N � n � 1

2

�

� exp
�

� r2

4˛2

�

on r 2 .�aN ; aN /

(3.3)

for large enoughN 2 N. Then

¹.2�˛2/�
n
4QN;n;KIaN

p
!aN ;˛ºN

is dominated by the product of exp.jxj2=8˛2/ and a certain polynomial on R
n, where

the product belongs to L2.�n
˛ /, hence the sequence converges to Qn;KI˛ strongly

in L2.�n
˛ / as N ! 1 by the dominated convergence theorem. This with the weak
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convergence of ¹fN ºN in L2.�n
˛ / yields

kQn;KI˛k2
L2.�n

˛/
D lim

N !1
k.2�˛2/�

n
4QN;n;KIaN

p
!aN ;˛k2

L2.�n
˛ /

D lim
N !1

kPN;n;Kk2
L2.SN .aN //

volSN .aN /.S
N .aN //

;

.f1;Qn;KI˛/L2.�n
˛/ D lim

N !1
.fN ; .2�˛

2/�
n
4QN;n;KIaN

p
!aN ;˛/L2.�n

˛ /

D .2�˛2/
n
4 lim

N !1

.FN ; PN;n;K/L2.SN .aN //

volSN .aN /.S
N .aN //

; (3.4)

where we used the Stirling’s approximation to have

volSN .aN /.S
N .aN //

volSN �n.aN /.S
N �n.aN //

N !1����! .2�˛2/
n
2 :

The monotonicity of the L2-energy along the heat flow (see [7, Proposition VI.1.1])

provides

sup
N 2N

kuN .t; �/k2
L2.�n

˛/
D sup

N 2N

kUN .t; �/k2
L2.SN .aN //

volSN �n.aN /.S
N �n.aN //

� sup
N 2N

kFN k2
L2.SN .aN //

volSN �n.aN /.S
N �n.aN //

D sup
N 2N

kfN k2
L2.�n

˛/
< 1:

Then the Banach–Alaoglu theorem implies that there exists a subsequence of the se-

quence ¹uN .t; �/ºN , still denoted by ¹uN .t; �/ºN , converging weakly in L2.�n
˛ /. We

denote by u1.t; �/ the limit. We apply the strong convergence of

¹.2�˛2/�
n
4QN;n;KIaN

p
!aN ;˛ºN

again to have

.u1.t; �/;Qn;KI˛/L2.�n
˛ / D lim

N !1
.uN .t; �/; .2�˛2/�

n
4QN;n;KIaN

p
!aN ;˛/L2.�n

˛/

D.2�˛2/
n
4 lim

N !1
e�t�jKj.S

N .aN //
.FN ; PN;n;K/L2.SN .aN //

volSN .aN /.S
N .aN //

De�t�jKj.�
n
˛/.f1;Qn;KI˛/L2.�n

˛ /

D.u.t; �/;Qn;KI˛/L2.�n
˛/;

which leads to u1.t; �/ D u.t; �/. Thus, ¹uN .t; �/ºN converges to u.t; �/ weakly in

L2.�n
˛ / as N ! 1 for each t � 0.
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For N 2 N and k 2 N0, set

BN;k.t/ WD
X

K2N
n
0

;jKj�k

e�2t�jKj.S
N .aN //

.FN ; PN;n;K/
2
L2.SN .aN //

volSN �n.aN /.S
N �n.aN // � kPN;n;Kk2

L2.SN .aN //

;

Bk.t/ WD
X

K2N
n
0

;jKj�k

e�2t�jKj.�
n
˛/
.f1;Qn;KI˛/2L2.�n

˛/

kQn;KI˛k2
L2.�n

˛/

:

By (3.4) and Theorem 1.1, we see that BN;k.t/ ! Bk.t/ as N ! 1 and

sup
N 2N;k2N0

BN;k.t/ � sup
N 2N

lim
k!1

BN;k.t/ D sup
N 2N

kuN .t; �/k2
L2.�n

˛/

� sup
N 2N

kfN k2
L2.�n

˛/
< 1:

It follows from Dirichlet’s test that

j lim
m!1

BN;m.t/� Bk.t/j � jBk.t/� BN;k.t/j

� j lim
m!1

BN;m.t/ � BN;k.t/j

� 2 sup
m2N

kfmkL2.�n
˛/e

�2t�kC1.SN .aN //:

For t > 0, letting N ! 1 first and then k ! 1 leads to

lim
N !1

kuN .t; �/k2
L2.�n

˛/
D lim

N !1
lim

m!1
BN;m.t/ D lim

k!1
Bk.t/ D ku.t; �/k2

L2.�n
˛ /
;

which is the equivalent to the strong convergence of ¹uN .t; �/ºN to u.t; �/ in L2.�n
˛ /

as N ! 1. This completes the proof of the corollary.

As well asH 1
0 .V

n
˛R; 


n
˛ /, we defineH 1.M;�/ as the completion of C1

0 .M/ with

respect to the inner product given by

.f1; f2/H 1.M;�/ WD
Z

M

f1f2d�C
Z

M

g.rMf1;rMf2/d� for f1; f2 2 C1
0 .M/:

For f 2H 1.M;�/, we write jrf jM WD g.rMf;rMf /
1=2. By [4, Proposition 1.5.4],

H 1.�n
˛ / D

°

f 2 L2.�n
˛ /

ˇ

ˇ

ˇ

X

K2N
n
0

�jKj.�
n
˛ /
.f;Qn;KI˛/2L2.�n

˛ /

kQn;KI˛k2
L2.�n

˛/

< 1
±

:

Similarly, we see that

H 1.SN .aN //\ En.SN .aN //

D
°

FN 2 En.SN .aN //
ˇ

ˇ

ˇ

X

K2N
n
0

�jKj.S
N .aN //

.FN ; PN;n;K/
2
L2.SN .aN //

kPN;n;Kk2
L2.SN .aN //

< 1
±

:



A. Takatsu 1334

For f 2 H 1.�n
˛ / and FN 2 H 1.SN .aN //\ En.SN .aN //, we find that

Z

Rn

jrf j2
Rnd


n
˛ D

X

K2Nn
0

�jKj.�
n
˛ /
.f;Qn;KI˛/2L2.�n

˛/

kQn;KI˛k2
L2.�n

˛ /

;

Z

SN .aN /

jrFN j2
SN .aN /

dvolSN .aN / D
X

K2N
n
0

�jKj.S
N .aN //

.FN ; PN;n;K/
2
L2.SN .aN //

kPN;n;Kk2
L2.SN .aN //

:

(3.5)

Corollary 3.7. Let ¹aN ºN be a sequence of positive real numbers such that the se-

quence ¹aN =
p
N � 1ºN converges to a positive real number ˛ as N ! 1. Define

the Cheeger energy ChN on H 1.SN .aN //\ En.SN .aN // by

ChN .FN / WD 1

volSN �n.aN /.S
N �n.aN //

Z

SN .aN /

jrFN j2
SN .aN /

dvolSN .aN / :

For FN 2 H 1.SN .aN // \ En.SN .aN // and its horizontal part fN , if ¹fN ºN con-

verges to f1 weakly in L2.�n
˛ / as N ! 1, then

Z

Rn

jrf1j2
Rnd


n
˛ � lim inf

N !1
ChN .FN /: (3.6)

Conversely, for Qf 2 H 1.�n
˛ /, there exists zFN 2 H 1.SN .aN // \ En.SN .aN // such

that the sequence of the horizontal parts of zFN converges to Qf strongly in L2.�n
˛ / as

N ! 1 and
Z

Rn

jr Qf j2
Rnd


n
˛ D lim

N !1
ChN . zFN /: (3.7)

Proof. By Theorem 1.1, �jKj.S
N .aN //! �jKj.�

n
˛ / asN ! 1. Moreover, if ¹fN ºN

converges to f1 weakly in L2.�n
˛ / asN ! 1, then (3.4) holds. These and (3.5) with

Fatou’s lemma provide (3.6).

Conversely, for Qf 2 H 1.�n
˛ /, we can choose zFN 2 H 1.SN .aN // \En.SN .a//

as

zFN D
X

K2N
n
0

v

u

u

tvolSN �n.aN /.S
N �n.aN //

a2
N

jKj CN � 1 �
. Qf;Qn;KI˛/2L2.�n

˛/

˛2 kQn;KI˛k2
L2.�n

˛ /

�
PN;n;KjSN .aN /

kPN;n;KkL2.SN .aN //

:

In this case, the sequence of the horizontal parts of zFN converges to Qf strongly in

L2.�n
˛ / as N ! 1 and (3.7) holds. This completes the proof of the corollary.
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4. Proof of Theorem 1.2

We begin with two lemmas concerning boundedness. Notice that Stirling’s approxim-

ation yields

aN
Z

�aN

sN .r/
N
2 �1dr

N !1����!
p
2�˛ and wN .r/

N !1����! w1.r/ for each r 2 R:

Lemma 4.1. Let ¹aN ºN be a sequence of positive real numbers such that the se-

quence ¹aN =
p
N � 1ºN converges to a positive real number ˛ asN!1. ForN 2N,

set

$N WD sup
r2.�aN ;aN /

wN .r/

w1.r/
; AN WD

a2
N � ˛2.N � 2/

aN

:

Then ¹$N ºN is bounded if and only if ¹AN ºN is bounded from above.

Proof. For r 2 .�aN ; aN /, we compute

d

dr
log

wN .r/

w1.r/
D � .N � 2/r

a2
N � r2

C r

˛2
D r

˛2.a2
N � r2/

¹a2
N � ˛2.N � 2/� r2º:

In the case of a2
N � ˛2 .N � 2/ � 0, we see that

$N D wN .0/

w1.0/
D

�

aN
Z

�aN

sN .r/
N
2

�1dr

��1

�
p
2�˛

N !1����! 1:

Thus, if allN 2 N except a finite number satisfy a2
N � ˛2 .N � 2/ � 0, then ¹$N ºN

is bounded and ¹AN ºN is bounded from above.

Assume that a2
N � ˛2 .N � 2/ > 0, that is, AN > 0 for infinitely many N 2 N.

For such N with N > 2, we set

rN WD
q

a2
N � ˛2 .N � 2/ D

p

aNAN :

Then we find that rN < aN and

$N D wN .rN /

w1.rN /
D wN .�rN /
w1.�rN /

;

log
wN .rN /

w1.rN /
D log

wN .0/

w1.0/
C

�N

2
� 1

�

log
�

1 �
r2

N

a2
N

�

C
r2

N

2˛2

D log
wN .0/

w1.0/
C

�N

2
� 1

�°

log
�

1 �
r2

N

a2
N

�

C
r2

N

a2
N � r2

N

±

:
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Since f1.s/ WD log.1� s/ is strictly concave on .�1; 1/ and f1.0/D 0; f 0
1.0/D �1,

it turns out that

log
wN .rN /

w1.rN /
� log

wN .0/

w1.0/
D

�N

2
� 1

�

f1

� r2
N

a2
N

�

C
r2

N

2˛2

< �
�N

2
� 1

� r2
N

a2
N

C
r2

N

2˛2
D
A2

N

2˛2
:

On the other hand, if we set

f2.s/ WD log.1� s/C s

1 � s
for s 2 .�2; 1/;

then

f 0
2.s/ D s

.1 � s/2 ; f 00
2 .s/ D 1C s

.1� s/3
; f 000

2 .s/ D 2.2C s/

.1� s/4 > 0;

consequently,

log
wN .rN /

w1.rN /
� log

wN .0/

w1.0/
D

�N

2
� 1

�

f2

� r2
N

a2
N

�

>
�N

2
� 1

�1

2

� r2
N

a2
N

�2

f 00
2 .0/ D N � 2

4a2
N

A2
N :

Thus, ¹$N ºN is bounded if and only if ¹AN ºN is bounded from above. This com-

pletes the proof of the lemma.

Lemma 4.2. Let ¹aN ºN , ¹�N ºN be sequences of real numbers so that aN > 0 and

�N 2 .0; �/ for N 2 N. If there exist ˛ > 0 and R 2 R such that

lim
N !1

aNp
N � 1

D ˛; lim
N !1

aN cos �N D ˛R;

then

sup
N 2N

�.BN
aN �N

;SN .aN // < 1:

Proof. Assume n; 2 � N . We see that

volSN .aN /.B
N
aN �N

/

volSN .aN /.S
N .aN //

D
volSN .1/.B

N
�N
/

volSN .1/.S
N .1//

D

�N
Z

0

sinN �1 �d�

�
Z

0

sinN �1 �d�

D
aN
Z

aN cos �N

wN .r/dr:
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By an argument similar to (3.3) with Stirling’s approximation, we find that

wN .r/1.aN cos �N ;aN /.r/ � 1p
�˛

e
� r2

4˛2 on r 2 R:

Then the dominated convergence theorem yields

lim
N !1

volSN .aN /.B
N
aN �N

/

volSN .aN /.S
N .aN //

D 
1
˛ .˛R;1/ 2 .0; 1/:

Let � 0
N 2 .0; �/ satisfy

volSN .aN /.B
N
aN � 0

N

/

volSN .aN /.S
N .aN //

D
volSN .1/.B

N
� 0

N

/

volSN .1/.S
N .1//

D 
1
˛.˛R;1/

2
:

Then, for all N 2 N except a finite number, we see that �N � � 0
N hence

�.BN
aN �N

;SN .aN // � �.BN
aN � 0

N
;SN .aN // D 1

a2
N

�.BN
� 0

N
;SN .1// (4.1)

by the domain monotonicity of eigenvalues (see [7, Section I.5]). Since the right-

hand side in (4.1) is bounded by the monotonicity due to Friedland and Hayman [10,

Theorem 2] as mentioned in the introduction, this concludes the proof of the lemma.

Proof of Theorem 1.2. Set

�N WD �.BN
aN �N

;SN .aN //; IN WD .aN cos �N ; aN /; I WD .˛R;1/:

Then IN � I for any N 2 N by the assumption. Notice that the density of 
1
˛ with

respect to the one-dimensional Lebesgue measure is w1.

For a nontrivial solution 'N to (DN ) for .a; �/ D .aN ; �N /, define

hN 2 C1.IN / \ C.IN /

by

hN .r/ WD 'N

�

aN � arccos
� r

aN

��

:

A direct computation provides

8

ˆ

ˆ

<

ˆ

ˆ

:

LNhN D ��NhN in IN ;

hN > 0 in .aN cos �N ; aN �;

hN .aN cos �N / D 0;



A. Takatsu 1338

where LN WC1.IN / ! C1.IN / is defined for f 2 C1.IN / by

LNf .r/ WD sN .r/f
00.r/� Nr

a2
N

f 0.r/:

We can assume that

Z

IN

hN .r/
2wN .r/dr D

aN �N
Z

0

'N .�/
2 sinN �1

� �

aN

�

d� �
�

aN
Z

�aN

sN .r/
N
2 �1dr

��1

D 1

without loss of generality by (2.2). We see that the first positive Dirichlet eigenfunc-

tion �N .z/ WD 'N .dSN .aN /.z; aN e
N C1
1 // of ��SN .aN / on BN

aN �N
satisfies

Z

BN
aN �N

�N .z/
2dvolSN .aN /.z/ D volSN �1.aN /.S

N �1.aN //

aN
Z

�aN

sN .r/
N
2 �1dr:

An integration by parts leads to

�N D �N

Z

IN

hN .r/
2wN .r/dr D �

Z

IN

.LNhN .r//hN .r/wN .r/dr

D
Z

IN

h0
N .r/

2sN .r/wN .r/dr:

Thus, we find that

Z

I

hN .r/
2wN .r/

w1.r/
1IN

.r/d
1
˛.r/ D 1;

Z

I

h0
N .r/

2sN .r/
wN .r/

w1.r/
1IN

.r/d
1
˛.r/ D �N :

Moreover, an integration by parts yields

Z

IN

r2hN .r/
2wN .r/dr

D �
a2

N

N

Z

IN

rhN .r/
2 .sN .r/wN .r//

0 dr

D
a2

N

N

Z

IN

hN .r/
2sN .r/wN .r/dr C

2a2
N

N

Z

IN

rhN .r/h
0
N .r/sN .r/wN .r/dr
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�
a2

N

N
C 1

2

Z

IN

r2hN .r/
2wN .r/dr C

2a4
N

N 2

Z

IN

h0
N .r/

2sN .r/
2wN .r/dr

�
a2

N

N

�

1C
2a2

N�N

N

�

C 1

2

Z

IN

r2hN .r/
2wN .r/dr;

where we used Young’s inequality in the first inequality. This ensures that

Z

I

r2hN .r/
2wN .r/

w1.r/
1IN

.r/d
1
˛.r/ D

Z

IN

r2hN .r/
2wN .r/dr

�
2a2

N

N

�

1C
2a2

N�N

N

�

:

Since ¹�N ºN is bounded by Lemma 4.2, by the Banach–Alaoglu theorem, there exist

a subsequence ¹N.m/ºm of ¹N ºN , h1; Qh1 2 L2.I; 
1
˛/ and � 2 R such that

hN.m/

r

wN.m/

w1
1IN.m/

! h1;

rhN.m/.r/

s

wN.m/.r/

w1.r/
1IN.m/

! rh1;

h0
N.m/

r

sN.m/

wN.m/

w1
1IN.m/

! Qh1;

weakly in L2.I; 
1
˛/ and �N.m/ ! � as m ! 1. We see that h1 is nonnegative

almost everywhere in I . For r 2 IN , we calculate that

�

hN .r/sN .r/

s

wN .r/

w1.r/

�0

D h0
N .r/sN .r/

s

wN .r/

w1.r/
C r

2
hN .r/

s

wN .r/

w1.r/

� 1

˛2
sN .r/� N C 2

a2
N

�

:

This with the boundedness of

sup
N 2N

p

sN .r/ < 1;

sup
N 2N

sup
r2IN

ˇ

ˇ

ˇ

� 1

˛2
sN .r/ � N C 2

a2
N

�ˇ

ˇ

ˇ
< 1

implies that

�

hN.m/sN.m/

r

wN.m/

w1
1IN.m/

�0
! Qh1 weakly in L2.I; 
1

˛/
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as m ! 1. By the compact Sobolev embedding on �1
˛ (see [16, Theorem 3.1] and

also [8, Section 6]), we can extract a subsequence, still denoted by ¹N.m/ºm, such

that

hN.m/sN.m/

r

wN.m/

w1
1IN.m/

! h1 weakly in H 1
0 .I; 


1
˛/ and strongly in L2.I; 
1

˛/

as m ! 1, where h0
1 D Qh1. Moreover, we find that

hN.m/

r

wN.m/

w1
1IN.m/

.1 � sN.m// ! 0 strongly in L2.I; 
1
˛/ as m ! 1

and hence
Z

I

h1.r/
2d
1

˛ .r/ D 1: (4.2)

For f 2 H 1
0 .I; 


1
˛ /, we observe from Lemma 4.1 that ¹f 0psNwN =w11IN

ºN con-

verges to f 0 strongly in L2.I; 
1
˛/ as N ! 1 and compute

Z

I

h0
1.r/f

0.r/d
1
˛.r/

D lim
m!1

Z

IN.m/

h0
N.m/.r/sN.m/.r/f

0.r/wN.m/.r/dr

D � lim
m!1

Z

IN.m/

�

sN.m/.r/h
00
N.m/.r/� Nr

a2
N.m/

h0
N.m/.r/

�

f .r/wN.m/.r/dr

D lim
m!1

Z

IN.m/

�N.m/hN.m/f .r/wN.m/.r/dr

D �

Z

I

h1.r/f .r/d

1
˛.r/;

which ensures that h1 is a weak solution to the Dirichlet eigenvalue problem of

��
1
˛

on I . By the elliptic regularity theory (see [13, Theorem 7.10 and Corol-

lary 8.11] for instance), h1 is a Dirichlet eigenfunction of ��
1
˛

on I of eigen-

value �. Since h1 is nonnegative on I , h1 is a first positive Dirichlet eigenfunction

and hence � D �.I; 
1
˛/ D �.V n

˛R; 

n
˛ /. Thus, ¹�N ºN converges to �.V n

˛R; 

n
˛ / as

N ! 1. Moreover, it follows from (4.2) that ¹hN sN
p

wN =w11IN
ºN converges to

h1 strongly in H 1
0 .I; 


1
˛/ as N ! 1.

If we define

 N .x/ WD hN .x1/sN .x1/

s

wN .x1/

w1.x1/
1IN

.x1/;  1.x/ WD h1.x1/;
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for x D .xi/
n
iD1 2 V n

˛R, then  N ;  1 2 H 1
0 .V

n
˛R; 


n
˛ / and ¹ N ºN converges to  1

strongly in H 1
0 .V

n
˛R; 


n
˛ /. Moreover,  N satisfies (1.5) and  1 is the first positive

Dirichlet eigenfunction  1 of ��
n
˛

on V n
˛R satisfying

Z

V n
˛R

 1.x/
2d
n

˛ .x/ D
Z

I

h1.r/
2d
1

˛.r/ D 1:

Thus, the proof is complete.

5. Projection of Dirichlet eigenspace on high-dimensional sphere

We briefly recall some facts of the Dirichlet eigenvalue problem on a ball in a sphere.

See [7, Sections II.5 and XII.5] for details.

The Dirichlet eigenvalue problem on BN
a�

in SN .a/ is reduced to a Sturm–Liou-

ville problem of the form
8

ˆ

<

ˆ

:

'00.#/C .N � 1/
cos.#=a/

a sin.#=a/
'0.#/ D �

�

� � �k.S
N �1.1//

a2 sin2.#=a/

�

'.#/ in Œ0; a�/;

'.a�/ D 0;

(DN
k

)

for some k 2 N0. The collection of � 2 R for which there exists a nontrivial solution

' 2 C 2.Œ0; a�//\ C.Œ0; a��/ to (DN
k

) consists of a sequence

0 < �k;1.B
N
a� ;S

N .a// < �k;2.B
N
a� ;S

N .a// < � � � < �k;j .B
N
a� ;S

N .a// < � � � " 1;

and �k;j .B
N
a�
; SN .a// determines a one-dimensional linear space of solutions for

each j 2 N. The set of Dirichlet eigenvalues on BN
a�

is given by

[

k2N0;j 2N

¹�k;j .B
N
a� ;S

N .a//º:

Let .r; �/ denote polar geodesic coordinates about aeN C1
1 in S

N .a/, that is,

.r.z/; �.z// WD
�

dSN .a/.z; ae
N C1
1 /;

.zi /
N
iD2p

a2 � z2
1

�

on

z D .zi /
N
iD1 2 S

N .a/ n ¹˙aeN C1
1 º:

Given a solution 'N;k;j to (DN
k

) for � D �k;j .B
N
a�
; SN .a// and ˆ 2 Ek.S

N �1.1//,

define a function �N;k;j .ˆI �/ on z 2 BN
a�

n ¹aeN C1
1 º by

�N;k;j .ˆI z/ WD 'N;k;j .r.z//ˆ.�.z//: (5.1)
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The function �N;k;j .ˆI �/ can be extended to z D aeN C1
1 smoothly and becomes

a Dirichlet eigenfunction on BN
a�

of eigenvalue �k;j .B
N
a�
; SN .a//. Let Ek;j .B

N
a�
;

S
N .a// denote the linear space of all Dirichlet eigenfunctions �N;k;j .ˆI �/ on BN

a�

of eigenvalue �k;j .B
N
a�
;SN .a// given by the form (5.1). Then the linear space of all

Dirichlet eigenfunctions on BN
a�

coincides with

M

k2N0;j 2N

Ek;j .B
N
a� ;S

N .a//:

Notice that

dimEk;j .B
N
a� ;S

N .a// D dimEk.S
N �1.1//:

A similar argument implies that the Dirichlet eigenvalue problem on V n
˛R in �n

˛ is

reduced to a Sturm–Liouville problem of the form

8

<

:

�
1
˛
h D �

�

� � k

˛2

�

h in .˛R;1/;

h.˛R/ D 0;
(Pk)

for some k 2 N0. The collection of � 2 R for which there exists a nontrivial solution

h 2 C 2..˛R;1//\ C.Œ˛R;1// to (Pk) consists of a sequence

0 < �k;1.V
n

˛R; �
n
˛ / < �k;2.V

n
˛R; �

n
˛ / < � � � < �k;j .V

n
˛R; �

n
˛ / < � � � " 1;

and �k;j .V
n

˛R; �
n
˛ / determines a one-dimensional linear space of solutions for each

j 2 N. The set of Dirichlet eigenvalues on V n
˛R is given by

[

k2N0;j 2N

¹�k;j .V
n

˛R; �
n
˛ /º:

Given a solution hk;j to (Pk) for � D �k;j .V
n

˛R; �
n
˛ / and K D .Ki/

n
iD2 2 N

n�1
0 .k/,

define a function  K;j on x D .xi/
n
iD1 2 V n

˛R by

 K;j .x/ WD

8

ˆ

<

ˆ

:

hk;j .x/ if n D 1;

hk;j .x1/

n
Y

iD2

HKi
.˛�1xi/ if n � 2;

(5.2)

whereHk is the kth order Hermite polynomial given by (2.4). Then K;j is a Dirichlet

eigenfunction on V n
˛R of eigenvalue �k;j .V

n
˛R; �

n
˛ /. Let Ek;j .V

n
˛R; �

n
˛ / denote the

linear space of all Dirichlet eigenfunctions K;j on V n
˛R of eigenvalue �k;j .V

n
˛R; �

n
˛ /

given by the form (5.2). Then the linear space of all Dirichlet eigenfunctions on V n
˛R

coincides with
M

k2N0;j 2N

Ek;j .V
n

˛R; �
n
˛ /:
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Notice that

dimEk;j .V
n

˛R; �
n
˛ / D dk.n � 1/;

where we set dk.0/ WD 1.

Let � D BN
a�

if M D S
N .a/, and � D V n

˛R if M D �n
˛ . The first Dirichlet

eigenvalue �.�; .M; �// is �0;1.�; .M; �// and the multiplicity of �.�; .M; �//

is 1. However, �k;j .�; .M; �// D �k0;j 0.�; .M; �// may happen for distinct pairs

.k; j /; .k0; j 0/ 2 N0 � N.

As a counterpart of En
k
.SN .a//, we define

En
k;j .B

N
a� ;S

N .a//

WD
²

� 2 Ek;j .B
N
a� ;S

N .a//

ˇ

ˇ

ˇ

ˇ

� D �N;k;j .ˆI �/ defined in (5.1) such that

�.x; y/ D �.x; jyj2eN �nC1
1 / on .x; y/ 2 BN

a�

³

:

By the definition and Lemma 3.2, we immediately find the following.

Proposition 5.1. Fix N; j 2 N with 2 � N , k 2 N0, a > 0 and � 2 .0; �/. Let

�N;k;j .ˆI �/ be a Dirichlet eigenfunction on BN
a�

of eigenvalue �k;j .B
N
a�
; SN .a//

defined in (5.1).

The linear space E1
k;j
.BN

a�
; SN .a// is nontrivial if and only if k D 0, where

E1
0;j .B

N
a�
;SN .a// is spanned by

¹�N;0;j .1SN �1.1/I �/º

and hence dimE1
0;j .B

N
a�
;SN .a// D 1.

For n 2 N with 2 � n � N , En
k;j
.BN

a�
;SN .a// is spanned by

¹�N;k;j .P jSN �1.1/I �/ºP 2En�1
k

.SN �1.1//:

In the sequel, dimEn
k;j
.BN

a�
;SN .a// D dk.n � 1/.

Given n;N 2 N with 2 � n � N and K 2 Nn�1
0 , define RN;n;KIa 2 P .n/ by

RN;n;KIa.x1; x
0/ WD

ŒjKj=2�
X

j D0

.a2 � jxj22/jCj .N � n/�j

Rn�1x
0K

for xD .x1;x
0/2 R � Rn�1: Then, for zD .x;y/2BN

a�
n ¹aeN C1

1 º � Rn � RN �nC1,

it turns out that

PN �1;n�1;K.�.z// D .a2 � x2
1/

� jKj
2 RN;n;KIa.x/
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and hence

�N;jKj;j .PN �1;n�1;KjSN �1.1/I z/
D 'N;jKj;j .r.z//PN �1;n�1;K.�.z//

D 'N;jKj;j
�

a � arccos
�x1

a

��

� .a2 � x2
1/

� jKj
2 RN;n;KIa.x/:

To establish a counterpart of Theorem 1.2 for higher Dirichlet eigenvalues and their

eigenfunctions, we may need a uniform estimate of �k;j .B
N
aN �N

; SN .aN // with

respect to N 2 N as well as Lemma 4.2 and a detailed analysis of �k;j .V
1

˛R; �
1
˛/.
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