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Inertia of Kraus matrices

Takashi Sano and Kazuki Takeuchi

Abstract. For positive real numbers r , p0, and p1 < � � � < pn; let Kr be the n � n Kraus matrix

whose .i; j / entry is equal to

1

pi � pj

�pr
i

� pr
0

pi � p0

�
pr

j
� pr

0

pj � p0

�

:

We determine the inertia of this matrix.

1. Introduction

In matrix analysis and operator theory, the notions of matrix monotone functions and

matrix convex functions initiated by Löwner [19] and Kraus [18] are quite important.

There have been several studies of these two classes of functions, see [1, 3, 8–11,

16] for instance. Let f be a real function defined on an interval I . The function f

is said matrix monotone of order n if A 5 B implies f .A/ 5 f .B/ for all n � n

Hermitian matrices A; B with eigenvalues in I ; it is called matrix convex of order n

if f .tA C .1 � t/B/ 5 tf .A/ C .1 � t/f .B/ for all n � n Hermitian matrices A; B

with eigenvalues in I and for all t 2 Œ0; 1�:

Let f be a C 1-function on I . For �1; : : : ; �n 2 I , the n � n matrix

Lf .�1; : : : ; �n/ WD Œ Œ�i ; �j �f �

is called a Loewner matrix associated with f , where Œ�i ; �j �f is the first divided

difference of f ; Œ�i ; �j �f is defined as
f .�i /�f .�j /

�i ��j
if �i ¤ �j , and f 0.�i/ if �i D �j .

Let f be a C 2-function on I . For �0; �1; : : : ; �n in I , the n � n matrix

Kf .�0I �1; : : : ; �n/ WD Œ Œ�0; �i ; �j �f � (1.1)
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is called a Kraus matrix associated with f , where Œ�0; �i ; �j �f is the second divided

difference of f ; for distinct �0; �i ; �j ,

Œ�0; �i ; �j �f WD
Œ�i ; �0�f � Œ�j ; �0�f

�i � �j

D
1

�i � �j

�f .�i / � f .�0/

�i � �0

�
f .�j / � f .�0/

�j � �0

�

;

and this can be extended continuously for any �0; �i ; �j 2 I . To be precise, if �1; : : : ;

�n are distinct and �0 is different from them, then the .i; i / entry Œ�0; �i ; �i �f is

f 0.�i /

�i � �0

�
f .�i / � f .�0/

.�i � �0/2
:

If �0 coincides with some �j , then the .j; j / entry Œ�j ; �j ; �j �f is f 00.�j /=3Š: We

refer to [4, 10, 16, 21] for divided differences.

It is known, thanks to Löwner [19], that for a C 1-function f on I; f is matrix

monotone of order n if and only if the Loewner matrix Lf .�1; : : : ; �n/ is positive

semidefinite for any �1; : : : ; �n 2 I and, thanks to Kraus and Heinävaara [14, 18],

that for a C 2-function f on I; f is matrix convex of order n if and only if the Kraus

matrix Kf .�0I �1; : : : ; �n/ is positive semidefinite for any �0; �1; : : : ; �n 2 I:

Let A be an n � n Hermitian matrix. The inertia of A is the triple

In.A/ WD .�.A/; �.A/; �.A//;

where �.A/ is the number of positive eigenvalues of A, �.A/ is the number of zero

eigenvalues of A, and �.A/ is the number of negative eigenvalues of A.

In [5], Bhatia, Friedland, and Jain settled the conjecture about the inertia of

Loewner matrices for the power functions t r on .0; 1/ which was proposed by Bha-

tia and Holbrook in [6]. In this article, we study the inertia of Kraus matrices for

the power functions. We denote Ktr .p0I p1; : : : ; pn/ by Kr.p0I p1; : : : ; pn/; and

moreover simply by Kr when p0; p1; : : : ; pn are easily inferred from the context:

Kr WD
h 1

pi � pj

�pr
i � pr

0

pi � p0

�
pr

j � pr
0

pj � p0

�i

: (1.2)

Our main theorem is as follows:

Theorem 1.1. Let r , p0, and p1 < � � � < pn; be positive real numbers. Let Kr be the

n � n Kraus matrix defined in (1.2). Then

(i) Kr is singular if and only if r D 1; : : : ; n;

(ii) if r is a positive integer and r 5 n C 1; then

r D 2k H) In.Kr/ D .k; n C 1 � r; k � 1/;
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and

r D 2k � 1 H) In.Kr/ D .k � 1; n C 1 � r; k � 1/

for a positive integer k;

(iii) if r is not a positive integer and r < n; then

2.k � 1/ < r < 2k � 1 H) In.Kr/ D .k � 1; 0; n C 1 � k/;

and

2k � 1 < r < 2k H) In.Kr/ D .n C 1 � k; 0; k � 1/

for a positive integer k;

(iv) if r > n, then In.Kr/ D In.KnC1/:

In Section 2, we give a proof of Theorem 1.1. We note that

In.K�r/ D In.KrC1/

for r > 0, since

K�r.p0I p1; : : : ; pn/ D q0DKrC1.q0I q1; : : : ; qn/D

holds. Here

qi WD p�1
i ; i D 0; : : : ; n

and D is the n � n diagonal matrix diag.q1; : : : ; qn/I hence, we just consider the case

r > 0.

In the remainder of this section, we fix our notations and recall several notions.

We refer the reader to [4, 17] for matrix analysis.

For an n � n Hermitian matrix A, all eigenvalues are real numbers and we denote

them as

�1.A/ = �2.A/ = � � � = �n.A/:

An n � n Hermitian matrix A is said to be positive semidefinite or simply positive if

hAx; xi = 0 for all x 2 C
n;

and positive definite or strictly positive if

hAx; xi > 0 for all non-zero x 2 C
n:

For Hermitian matrices A and B; A = B means that A � B is positive semidefinite.

Let H1 be the subspace of Cn defined as

H1 WD
°

x D .xi/ 2 C
nW

n
X

iD1

xi D 0
±

;
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which is the kernel space of the n � n matrix E with all entries 1. An n � n Hermitian

matrix A is said to be conditionally positive definite (cpd for short) or almost positive

if

hAx; xi = 0 for all x 2 H1;

and conditionally negative definite (cnd for short) if �A is cpd. It is known that if A is

cpd (resp. cnd), then �n�1.A/ = 0 (resp. �2.A/ 5 0). We refer the reader to [2,10,16,

21] for properties of these matrices. We also recall our study of the operator/matrix

convexity by conditional negative/positive Loewner matrices in [7, 15].

2. Proof

In this section, we give a proof of Theorem 1.1. The following theorem and corollary

are obtained similarly to those for Loewner matrices by Bhatia, Friedland, and Jain

in [5]. All divided differences are associated with the power function t r on .0; 1/; so

that we simply write them like Œp0; pi ; pj �:

Let c1; c2; : : : ; cn be real numbers, not all of which are zero. Let p0 and

p1 < � � � < pn be positive real numbers. Let us define the continuous function f

on .0; 1/ as

f .x/ D

n
X

j D1

cj Œp0; x; pj � for x 2 .0; 1/: (2.1)

Theorem 2.1. Let r be a positive real number not equal to 1; 2; : : : ; n: Then the

function f defined in (2.1) has at most n � 1 zeros in .0; 1/:

Proof. Let r1 < r2 < � � � < rm; and let a1; a2; : : : ; am be real numbers not all of which

are zero. Then, the function

g.x/ D

m
X

j D1

aj xrj (2.2)

has at most m � 1 zeros in .0;1/: This is a well known fact: for example, consult [20,

p. 46]. For the function f , let

g.x/ WD f .x/

n
Y

iD0

.x � pi /:

Then g can be expressed in the form of (2.2) with m D 2n C 1 and ¹r1; : : : ; r2nC1º D

¹0; 1; : : : ; n � 1; n; r; r C 1; : : : ; r C n � 1º: In fact, we have g.x/ D xr h1.x/ �
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xh2.x/ C h3.x/; where

h1.x/ WD

n
X

j D1

cj

n
Y

iD1;i¤j

.x � pi /;

h2.x/ WD

n
X

j D1

cj Œpj ; p0�

n
Y

iD1;i¤j

.x � pi /;

h3.x/ WD

n
X

j D1

cj .p0Œpj ; p0� � pr
0/

n
Y

iD1;i¤j

.x � pi /:

Note that

Œp0; x; pj �.x � pj / D Œx; p0� � Œpj ; p0�;

and

Œp0; x; pj �.x � pj /.x � p0/ D xr � pr
0 � Œpj ; p0�x C p0Œpj ; p0�:

These polynomials h1.x/; h2.x/, and h3.x/ are of degree at most n � 1. Since

h1.pi / ¤ 0 for some i with ci ¤ 0, if r ¤ 1; 2; : : : ; n, then g is not identically zero,

and, by the fact mentioned above, the function g has at most 2n zeros in .0; 1/: It is

clear that n C 1 zeros occur at x D p0; pj .1 5 j 5 n/; so f has at most n � 1 zeros

in .0; 1/; and the proof is complete.

Corollary 2.2. Let r be a positive real number different from 1; 2; : : : ; n. Then, the

n � n Kraus matrix Kr defined in (1.2) is nonsingular.

Proof. If the matrix Kr were singular, then there would be a non-zero vector c D

.c1; : : : ; cn/ such that Krc D 0I that is,

n
X

j D1

cj Œp0; pi ; pj � D 0

for i D 1; 2; : : : ; n: This means that the function f .x/ in (2.1) would have n zeros:

x D p1; : : : ; pn: But this contradicts Theorem 2.1.

Proposition 2.3. Let p0 and p1 < p2 be in .0; 1/: If r > 2, then the 2 � 2 Kraus

matrix Kr.p0I p1; p2/ has a positive eigenvalue and a negative eigenvalue.

Proof. Let f .t/ D t r . Since the function .p0; p1; p2/ 7! det Kr.p0I p1; p2/ is con-

tinuous and the matrix Kr WD Kr.p0I p1; p2/ is nonsingular by Corollary 2.2, either
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det Kr > 0 for any p0; p1 < p2 or det Kr < 0 for any p0; p1 < p2: Suppose that

det Kr > 0: Note that
ˇ

ˇ

ˇ

ˇ

ˇ

Œp0; p1; p1� Œp0; p1; p2�

Œp0; p2; p1� Œp0; p2; p2�

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

Œp0; p1; p1� Œp0; p1; p2� � Œp0; p1; p1�

Œp0; p2; p1� Œp0; p2; p2� � Œp0; p2; p1�

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

Œp0; p1; p1� .p2 � p1/Œp0; p1; p2; p1�

Œp0; p2; p1� .p2 � p1/Œp0; p2; p2; p1�

ˇ

ˇ

ˇ

ˇ

ˇ

D .p2 � p1/

ˇ

ˇ

ˇ

ˇ

ˇ

Œp0; p1; p1� Œp0; p1; p1; p2�

Œp0; p2; p1� Œp0; p1; p2; p2�

ˇ

ˇ

ˇ

ˇ

ˇ

D .p2 � p1/

ˇ

ˇ

ˇ

ˇ

ˇ

Œp0; p1; p1� Œp0; p1; p1; p2�

Œp0; p2; p1� � Œp0; p1; p1� Œp0; p1; p2; p2� � Œp0; p1; p1; p2�

ˇ

ˇ

ˇ

ˇ

ˇ

D .p2 � p1/2

ˇ

ˇ

ˇ

ˇ

ˇ

Œp0; p1; p1� Œp0; p1; p1; p2�

Œp0; p1; p2; p1� Œp0; p1; p1; p2; p2�

ˇ

ˇ

ˇ

ˇ

ˇ

I

that is,

det Kr D .p2 � p1/2

ˇ

ˇ

ˇ

ˇ

ˇ

Œp0; p1; p1� Œp0; p1; p1; p2�

Œp0; p1; p1; p2� Œp0; p1; p1; p2; p2�

ˇ

ˇ

ˇ

ˇ

ˇ

:

We refer the reader to [10,12,21] for this computation. It follows from our assumption

det Kr > 0 that
ˇ

ˇ

ˇ

ˇ

ˇ

Œp0; p1; p1� Œp0; p1; p1; p2�

Œp0; p1; p1; p2� Œp0; p1; p1; p2; p2�

ˇ

ˇ

ˇ

ˇ

ˇ

> 0

so that

lim
p1!p0;p2!p0

ˇ

ˇ

ˇ

ˇ

ˇ

Œp0; p1; p1� Œp0; p1; p1; p2�

Œp0; p1; p1; p2� Œp0; p1; p1; p2; p2�

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

f .2/.p0/=2Š f .3/.p0/=3Š

f .3/.p0/=3Š f .4/.p0/=4Š

ˇ

ˇ

ˇ

ˇ

ˇ

= 0: (2.3)

It is known in [13, Proposition 3.1] for f .t/ D t r on .0; 1/ that
ˇ

ˇ

ˇ

ˇ

ˇ

f .2/.t/=2Š f .3/.t/=3Š

f .3/.t/=3Š f .4/.t/=4Š

ˇ

ˇ

ˇ

ˇ

ˇ

D �
1

144
r2.r � 1/2.r � 2/.r C 1/t2r�6;

which is negative if r > 2. This contradicts (2.3); therefore, det Kr < 0 and we get

the conclusion.
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Corollary 2.4. Let p0 and p1 < � � � < pn be in .0; 1/. If r > 2, then the n � n Kraus

matrix Kr.p0I p1; : : : ; pn/ D Kr admits both a positive eigenvalue and a negative

eigenvalue; that is,

�1.Kr/ > 0 > �n.Kr/:

Proof. Since

�1.Kr.p0I p1; p2// > 0 > �2.Kr.p0I p1; p2//

by Proposition 2.3, using Cauchy’s interlacing principle, we have the conclusion.

Proof of Theorem 1.1 (iv). If the inertia of Kr (r > 0) were to change, then one of the

eigenvalues of Kr had to change sign, but this contradicts Corollary 2.2.

Proof of Theorem 1.1 (iii). For t > 0 and 0 < r < 1 the following formula is well

known [4, p. 116]:

t r D
sin r�

�

1
Z

0

t

� C t
�r�1 d�:

We write this as

t r D

1
Z

0

t

� C t
d�.�/; (2.4)

where � is a positive measure on .0; 1/: For each � > 0 let

k�.t/ D
t

� C t
:

Since

1

pi � pj

�k�.pi / � k�.p0/

pi � p0

�
k�.pj / � k�.p0/

pj � p0

�

D �
�

.� C p0/.� C pi /.� C pj /
;

the Kraus matrix of k� is expressed as

Kk�
.p0I p1; : : : ; pn/ D �

�

� C p0

D�ED�;

where E is the matrix with all entries equal to 1: E D Œ1� = 0; and D� is the diagonal

matrix diag. 1
�Cp1

; : : : ; 1
�Cpn

/: It follows that Kk�
5 0I hence, Kr 5 0: To be precise,

by Corollary 2.2 or a direct computation, Kr is negative definite, and

In.Kr/ D .0; 0; n/:

For 1 < r < 2; we get from (2.4) that

t r D

1
Z

0

t2

� C t
d�.�/:
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For each � > 0 let

h�.t/ D
t2

� C t
:

Since

1

pi � pj

�h�.pi/ � h�.p0/

pi � p0

�
h�.pj / � h�.p0/

pj � p0

�

D
�2

.� C p0/.� C pi /.� C pj /
;

the Kraus matrix of h� is of the form

Kh�
.p0I p1; : : : ; pn/ D

�2

� C p0

D�ED� = 0;

so Kr = 0: Moreover, Kr is positive definite by Corollary 2.2, so that

In.Kr/ D .n; 0; 0/:

We pause the proof with a remark. Since f .t/ D t r is operator convex for 1 < r < 2,

that is, matrix convex of any order n, the corresponding Kraus matrix is known to be

positive semidefinite for any p0; p1; : : : ; pn; see [18]. The above argument for Kr

is already in [7], and for 2 < r < 3 or 3 < r < 4 the functions g�.t/ WD t3

�Ct
and

f�.t/ WD t4

�Ct
work equally well. Actually, in terms of D WD diag.p1; : : : ; pn/ and

D�; we see that

Kg�
.p0I p1; : : : ; pn/ D E �

�3

� C p0

D�ED�;

and

Kf�
.p0I p1; : : : ; pn/ D DE C ED C p0E � �E C

�4

� C p0

D�ED�I

thus, Kr is cnd for 2 < r < 3 and cpd for 3 < r < 4; and we could determine its inertia

by [2, Lemma 4.3.5] with Corollary 2.4.

To continue the proof in the general case, we take an alternative approach, follow-

ing the argument by Bhatia, Friedland, and Jain as in the proof of [5, Theorem 1.1]

for Loewner matrices, to determine the inertia of the Kraus matrix for the power func-

tion t r :

Due to the identity

pi

�pr�2
i � pr�2

0

pi � p0

�
pr�2

j � pr�2
0

pj � p0

�

pj

D �.pi � pj /
�

pi

pr�2
i � pr�2

0

pi � p0

C pj

pr�2
j � pr�2

0

pj � p0

C pr�2
0

�

C
pr

i � pr
0

pi � p0

�
pr

j � pr
0

pj � p0

;
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the Kraus matrices Kr and Kr�2 are related as

Kr D DKr�2D C D�DE C EDD� C pr�2
0 E;

where E D Œ1�, D D diag.p1; : : : ; pn/ and

D� WD diag
�pr�2

1 � pr�2
0

p1 � p0

; : : : ;
pr�2

n � pr�2
0

pn � p0

�

:

Suppose 2 < r < 3. Then Kr is cnd. In fact, for x 2 H1 or Ex D 0,

hKrx; xi D hDKr�2Dx; xi C hD�DEx; xi C hx; D�DExi C pr�2
0 hEx; xi

D hDKr�2Dx; xi:

We know that Kr�2 is negative definite for 0 < r � 2 < 1; so hKrx; xi 5 0 for x 2

H1 or Kr is cnd; hence, �2.Kr/ 5 0: Since Kr is nonsingular by Corollary 2.2 and

�1.Kr/ > 0 by Corollary 2.4, we conclude that

In.Kr/ D .1; 0; n � 1/:

Especially, for n D 2 and r > 2

In.Kr/ D .1; 0; 1/ D In.K3/:

Let n > 2 and suppose 3 < r < 4. Since Kr�2 is positive definite for 1 < r � 2 < 2,

hKrx; xi D hDKr�2Dx; xi = 0

for x 2 H1; hence, Kr is cpd, and �n�1.Kr/ = 0: As Kr is nonsingular by Corol-

lary 2.2 and �n.Kr/ < 0 by Corollary 2.4, we have

In.Kr/ D .n � 1; 0; 1/:

In particular, for n D 3 and r > 3

In.Kr/ D .2; 0; 1/ D In.K4/:

Let us define the subspace H2 by

H2 WD
°

x D .xi/ 2 C
nW

n
X

iD1

xi D 0 D

n
X

iD1

pi xi

±

D ¹x 2 C
nW Ex D 0 D EDxº;

where E D Œ1� and D D diag.p1; : : : ; pn/; being the orthogonal complement of the

span of the vectors .1; : : : ; 1/ and .p1; : : : ; pn/.
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Let n > 3 and suppose 4 < r < 5. For x 2 H2,

hKrx; xi D hKr�2y; yi;

where y WD Dx 2 H1. Since Kr�2 is cnd for 2 < r � 2 < 3; hKr�2y; yi 5 0 or

hKr x; xi 5 0

for x 2 H2. The minmax principle implies that �3.Kr/ 5 0: We already proved that

a 3 � 3 principal submatrix of Kr has two positive eigenvalues, so �2.Kr/ > 0 by

Cauchy’s interlacing principle. Since Kr is nonsingular by Corollary 2.2, one has

In.Kr/ D .2; 0; n � 2/I

especially, for n D 4 and r > 4

In.Kr/ D .2; 0; 2/ D In.K5/:

Let n > 4 and suppose 5 < r < 6. For x 2 H2

hKrx; xi D hKr�2y; yi;

where y WD Dx 2 H1. Since Kr�2 is cpd for 3 < r � 2 < 4; hKr�2y; yi = 0:

hKr x; xi = 0

for x 2 H2. By the minmax principle and the nonsingularity of Kr �n�2.Kr/ > 0; and

since a 4 � 4 principal submatrix of Kr has two negative eigenvalues, �n�1.Kr/ < 0

by Cauchy’s interlacing principle. Hence, we have

In.Kr/ D .n � 2; 0; 2/;

so for n D 5 and r > 5

In.Kr/ D .3; 0; 2/ D In.K6/:

We define the subspace H3 by

H3 WD ¹x D .xi/ 2 C
nW

n
X

iD1

xi D

n
X

iD1

pi xi D

n
X

iD1

p2
i xi D 0º

D ¹x 2 C
nW Ex D EDx D ED2x D 0º;

which is the orthogonal complement of the span of the vectors .1; : : : ;1/; .p1; : : : ;pn/;

and .p2
1; : : : ; p2

n/:
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Let n > 5 and suppose 6 < r < 7. For x 2 H3; since Ex D EDx D 0,

hKrx; xi D hDKr�2Dx; xi D hD2Kr�4D2x; xi D hKr�4y; yi;

where y WD D2x 2 H1. Since Kr�4 is cnd for 2 < r � 4 < 3; hKr�4y; yi 5 0; that

is,

hKrx; xi 5 0 for x 2 H3.

The minmax principle with the nonsingularity of Kr implies that

�4.Kr/ < 0: Since a 5 � 5 principal submatrix of Kr has three positive eigenvalues,

�3.Kr/ > 0 by Cauchy’s interlacing principle. We conclude that

In.Kr/ D .3; 0; n � 3/I

in particular, for n D 6 and r > 6

In.Kr/ D .3; 0; 3/ D In.K7/:

Let n > 6 and suppose 7 < r < 8. For x 2 H3;

hKrx; xi D hKr�4y; yi;

where y WD D2x 2 H1. Since Kr�4 is cpd for 3 < r � 4 < 4; hKr�4y; yi = 0W

hKr x; xi = 0

for x 2 H3. By the minmax principle and the nonsingularity of Kr , �n�3.Kr/ > 0;

and a 6 � 6 principal submatrix of Kr has three negative eigenvalues so �n�2.Kr/ < 0

by Cauchy’s interlacing principle; hence,

In.Kr/ D .n � 3; 0; 3/I

particularly, for n D 7 and r > 7,

In.Kr/ D .4; 0; 3/ D In.K8/:

In this way, we have a proof by induction. Let n > 2k � 3: If 2.k � 1/ < r <

2k � 1, then 2 < r � 2.k � 2/ < 3: Let us define the subspace Hk�1 as the orthogonal

complement of the span of the vectors .1; : : : ; 1/; .p1; : : : ;pn/; : : : ; .pk�2
1 ; : : : ;pk�2

n /I

that is, Hk�1 WD ker E \ ker ED \ � � � \ ker EDk�2: For x 2 Hk�1;

hKrx; xi D hKr�2.k�2/y; yi;

where y WD Dk�2x 2 H1: Since Kr�2.k�2/ is cnd for 2 < r � 2.k � 2/ < 3;

hKr�2.k�2/y; yi 5 0;
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or

hKrx; xi 5 0 for x 2 Hk�1.

The minmax principle with the nonsingularity of Kr implies that �k.Kr/ < 0: Since

a .2k � 3/ � .2k � 3/ principal submatrix of Kr has .k � 1/ positive eigenvalues by

induction, �k�1.Kr/ > 0 by Cauchy’s interlacing principle; hence, we conclude that

In.Kr/ D .k � 1; 0; n C 1 � k/I

in particular, for n D 2.k � 1/ and r > n,

In.Kr/ D .k � 1; 0; k � 1/ D In.KnC1/:

Similarly, let n > 2k � 2: If 2k � 1 < r < 2k, then 3 < r � 2.k � 2/ < 4 and for

x 2 Hk�1

hKrx; xi D hKr�2.k�2/y; yi;

where

y WD Dk�2x 2 H1:

Since Kr�2.k�2/ is cpd for 3 < r � 2.k � 2/ < 4; hKr�2.k�2/y; yi = 0W

hKr x; xi = 0

for x 2 Hk�1, and by the minmax principle, �n�.k�1/.Kr/ = 0: Since a 2.k � 1/-

square principal submatrix of Kr has .k � 1/ negative eigenvalues by induction,

�n�kC2.Kr/ < 0 by Cauchy’s interlacing principle. We conclude by the nonsingu-

larity of Kr that

In.Kr/ D .n C 1 � k; 0; k � 1/;

so that for n D 2k � 1 and r > n

In.Kr/ D .k; 0; k � 1/ D In.KnC1/:

The proof of (iii) is complete.

Proof of Theorem 1.1 (i) and Theorem 1.1 (ii). For r D 1, the .i; j / entry of K1 is

1

pi � pj

�pi � p0

pi � p0

�
pj � p0

pj � p0

�

D 0;

that is, K1 D 0 and In.K1/ D .0; n; 0/:

For r D 2,

1

pi � pj

�p2
i � p2

0

pi � p0

�
p2

j � p2
0

pj � p0

�

D
1

pi � pj

�

.pi C p0/ � .pj C p0/
�

D 1;
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so that K2 D E D
�

1
�

and In.K2/ D .1; n � 1; 0/:

In general, for a positive integer r 5 n C 1, let Hr WD ker E \ ker ED \ � � � \

ker EDr�1: It is easy to see that Kr is of the form

Kr D

r�1
X

kD1

pk�1
0

r�k
X

lD1

Dr�k�lEDl�1;

so that

ker Kr � ker E \ ker ED \ ker ED2 \ � � � \ ker EDr�2 D Hr�1;

and

dim ker Kr = dim Hr�1 D n � .r � 1/ D n C 1 � r:

For r D 3 and n = 2, dimkerK3 = n � 2: By Corollary 2.4, �1.K3/ > 0 > �n.K3/;

so that In.K3/ D .1; n � 2; 1/ for n = 2.

For r D 4 and n = 3, dim ker K4 = n � 3: Since a 3 � 3 principal submatrix of

K4 has the inertia .2; 0; 1/ as in the proof of (iii), �2.K4/ > 0 > �n.K4/ by Cauchy’s

interlacing principle; hence, In.K4/ D .2; n � 3; 1/ for n = 3.

For r D 5 and n = 4, dim ker K5 = n � 4: A 4 � 4 principal submatrix of K5

has the inertia .2; 0; 2/ as in the proof of (iii), we conclude by Cauchy’s interlacing

principle that In.K5/ D .2; n � 4; 2/ for n = 4.

We can continue this argument; if r D 2k, then a .r � 1/-square principal sub-

matrix of Kr has the inertia .k; 0; k � 1/ as in the proof of (iii), so In.Kr/ D .k;

n C 1 � r; k � 1/ by Cauchy’s interlacing principle; if r D 2k � 1, then a .r � 1/-

square principal submatrix of Kr has the inertia .k � 1; 0; k � 1/ as in the proof

of (iii), so In.Kr/ D .k � 1; n C 1 � r; k � 1/ by Cauchy’s interlacing principle.

If r 2 ¹1;2; : : : ;nº; then the number of zero eigenvalues is n C 1 � r , which is non-

zero; so Kr is singular. The other implication follows from Corollary 2.2; therefore,

the proof is complete.
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