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Inertia of Kraus matrices

Takashi Sano and Kazuki Takeuchi

Abstract. For positive real numbers r, pg, and p; <--- < pj, let K, be the n x n Kraus matrix
whose (i, j) entry is equal to

1 (pf—PS_Pf—P(G)
pi—pj\pi—po pj—Dro’

We determine the inertia of this matrix.

1. Introduction

In matrix analysis and operator theory, the notions of matrix monotone functions and
matrix convex functions initiated by Lowner [19] and Kraus [18] are quite important.
There have been several studies of these two classes of functions, see [1, 3, 811,
16] for instance. Let f be a real function defined on an interval /. The function f
is said matrix monotone of order n ift A = B implies f(A) = f(B) for all n x n
Hermitian matrices A, B with eigenvalues in I; it is called matrix convex of order n
if fA+ (1 —1)B)=tf(A)+ (1 —1)f(B) forall n x n Hermitian matrices A, B
with eigenvalues in / and for all ¢ € [0, 1].
Let f bea C'-functionon /. For Ay,..., A, € I, the n x n matrix

LAty An) i=[[Ai, A7 ]

is called a Loewner matrix associated with f, where [A;, A;]r is the first divided
difference of f; [A;, A;]y is defined as %{fk’) if A; # Aj,and f'(4;) if A; = A;.
Let f be a C2-function on /. For Ag, A1,..., A, in I, the n x n matrix

Kr(Aos A1, ..., An) i=[[Ao, Ai, Aj]r ] (1.1)
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is called a Kraus matrix associated with f, where [Ag, A;, Aj]y is the second divided
difference of f'; for distinct Ao, A;, A5,

[Ai, Aoly — [Aj. Aol

[Ao. Ais Ajly = [V
i J

_ 1 (f(ki)—f(ko)_f(kj)—f(ko))

A=A Ai — Ao Ai—Ao

and this can be extended continuously for any A¢,A;,A; € I. To be precise, if A1,. . .,
An are distinct and A is different from them, then the (i, ) entry [Ao, A;, A;]7 is

S1i)  f) = f(Ao)
Ai = Ao (A —A0)?

If Ay coincides with some A;, then the (j, j) entry [A;, A, Aj]r is /" (X;)/3!. We
refer to [4, 10, 16,21] for divided differences.

It is known, thanks to Lowner [19], that for a C!-function f on I, f is matrix
monotone of order n if and only if the Loewner matrix Lz (A1, ..., A,) is positive
semidefinite for any A1, ..., A, € I and, thanks to Kraus and Heindvaara [14, 18],
that for a C2-function f on I, f is matrix convex of order 7 if and only if the Kraus
matrix Kz (Ao; A1, ..., Ay) is positive semidefinite for any A9, Ay,..., A, € I.

Let A be an n x n Hermitian matrix. The inertia of A is the triple

In(4) := (7(4),{(A), v(4)),

where 7 (A) is the number of positive eigenvalues of A, {(A) is the number of zero
eigenvalues of A4, and v(A) is the number of negative eigenvalues of A.

In [5], Bhatia, Friedland, and Jain settled the conjecture about the inertia of
Loewner matrices for the power functions ¢” on (0, co) which was proposed by Bha-

tia and Holbrook in [6]. In this article, we study the inertia of Kraus matrices for
the power functions. We denote K;r(po: p1, ..., pn) by Kr(po; p1...., pn), and

moreover simply by K, when py, p1, ..., pn are easily inferred from the context:
1 [ —py Pj—Po
K= (Z=h 2P (12)
bi—Ppj Pi—Po Pj—Do

Our main theorem is as follows:

Theorem 1.1. Let r, po, and p1 < --- < pyn, be positive real numbers. Let K, be the
n X n Kraus matrix defined in (1.2). Then
(i) K issingularifandonly ifr =1,...,n;

(1)  ifr is a positive integer andr = n + 1, then
p 8

r=2k = In(K,))=(k,n+1-rk—-1),
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and
r=2k—-1 = In(K,))=(k—-1,n+1-rk—1)
for a positive integer k;
(iii) if'r is not a positive integer and r < n, then

2k —1)<r<2k—-1 = In(K,)=(k—-1,0,n+1—k),
and
2k—1<r<2k = In(K,))=(n+1—-k,0,k—1)

for a positive integer k;

@iv) ifr > n, then In(K;) = In(Ky+1).
In Section 2, we give a proof of Theorem 1.1. We note that
n(K_,) = In(K/11)
for r > 0, since

K_r(po;:pi.--..pn) = qoDKr11(q0:q1,....qn)D

holds. Here

qi = pi_l, i=0,...,n
and D is the n x n diagonal matrix diag(q1,. . ., ¢, ); hence, we just consider the case
r > 0.

In the remainder of this section, we fix our notations and recall several notions.
We refer the reader to [4, 17] for matrix analysis.
For an n x n Hermitian matrix A, all eigenvalues are real numbers and we denote

them as
A(A) Z A2(A4) = -+ Z An(A).

An n x n Hermitian matrix A is said to be positive semidefinite or simply positive if
(Ax,x) =0 forall x € C",
and positive definite or strictly positive if
(Ax,x) > 0 for all non-zero x € C".

For Hermitian matrices A and B, A = B means that A — B is positive semidefinite.
Let #¢; be the subspace of C” defined as

gy = {x — (x) € (C":Xn:xi - o},
i=1
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which is the kernel space of the n x n matrix E with all entries 1. An n x n Hermitian
matrix A is said to be conditionally positive definite (cpd for short) or almost positive
if
(Ax,x) =0 forall x € J1,

and conditionally negative definite (cnd for short) if —A is cpd. It is known that if A4 is
cpd (resp. end), then A,—1(A) = 0 (resp. A2(A4) = 0). We refer the reader to [2, 10, 16,
21] for properties of these matrices. We also recall our study of the operator/matrix
convexity by conditional negative/positive Loewner matrices in [7, 15].

2. Proof

In this section, we give a proof of Theorem 1.1. The following theorem and corollary
are obtained similarly to those for Loewner matrices by Bhatia, Friedland, and Jain
in [5]. All divided differences are associated with the power function " on (0, 00), so
that we simply write them like [po, p;, pj].

Let ¢y, c2, ..., cy, be real numbers, not all of which are zero. Let py and
p1 < --- < p, be positive real numbers. Let us define the continuous function f
on (0, 0o) as

n
JS(x) = ch [po.x, p;j] forx e (0,00). (2.1
j=1
Theorem 2.1. Let r be a positive real number not equal to 1,2, ...,n. Then the

function f defined in (2.1) has at most n — 1 zeros in (0, 00).

Proof. Letri <ry <:---<rpy,andletay,as,...,a, bereal numbers not all of which
are zero. Then, the function

gx) =) a;x" 2.2)
j=1

has at most m — 1 zeros in (0, 00). This is a well known fact: for example, consult [20,
p- 46]. For the function f, let

gx) = f() [ [x = po).
i=0

Then g can be expressed in the form of (2.2) withm =2n + 1 and {ry,...,rap41} =
{0,1,....n—=1,n,r,r+1,...,r +n —1}. In fact, we have g(x) = x"h;(x) —
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xhy(x) + hs(x), where

I (x) = Zc, H(x—p,

J=1 i=1,i#j
ha(x) —Zc, 7). pol 1‘[(x pi).
=1 i=1,i#j
h3(x) = ch (polps. pol = PY) 1‘[<x — pi).
j=1 i=1,i#j
Note that
[Po.x, pjl(x — pj) = [x, po]l — [Pj, Pol.
and

[po.x. pjl(x — pj)(x — po) = x" — pg — [pj. Polx + polpj. Pol.

These polynomials /1(x), h2(x), and h3(x) are of degree at most n — 1. Since
h1(pi) # 0 for some i with ¢; # 0,if r £ 1,2,...,n, then g is not identically zero,
and, by the fact mentioned above, the function g has at most 2n zeros in (0, c0). It is
clear that n + 1 zeros occur at x = pg, pj (1 = j = n), so f has at mostn — 1 zeros
in (0, 00), and the proof is complete. ]

Corollary 2.2. Let r be a positive real number different from 1,2, ..., n. Then, the
n X n Kraus matrix K, defined in (1.2) is nonsingular.

Proof. 1f the matrix K, were singular, then there would be a non-zero vector ¢ =
(c1,...,cp) such that K,c = 0; that is,

n
> ¢ilpo. pi-pjl =0

j=1
fori = 1,2,...,n. This means that the function f(x) in (2.1) would have n zeros:
X = pi,..., pn. But this contradicts Theorem 2.1. n

Proposition 2.3. Let py and p1 < ps be in (0,00). If r > 2, then the 2 x 2 Kraus
matrix K, (po; p1, p2) has a positive eigenvalue and a negative eigenvalue.

Proof. Let f(t) = t". Since the function (py, p1, p2) + det K, (po; p1, p2) is con-
tinuous and the matrix K, := K, (po; p1, p2) is nonsingular by Corollary 2.2, either
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det K, > 0 for any pg, p1 < p, or det K, < O for any pg, p1 < p2. Suppose that
det K, > 0. Note that

[Po. P1, P1] [po. P1. p2]
[Po. P2, p1l  [po. p2. 2]

[po. P1. 1l [po. p1. P2] = [Po. P1. P1]
[Po. P2, p1l  [po. P2, p2] — [Po. P2, P1]

[Po. 1. p1] (P2 — p)lpo. p1. P2, p1]
[Po. p2. p1] (P2 — p)lpo. 2. P2, p1]

[Po. p1. 1l [po. p1. P1. p2]

= (p2—p1)
[Po. P2, p1]  [po. p1, P2, p2]

[Po. P1. P1] [Po. P1, P1. P2]

= (p2—p1)
[po. P2, 1] — [po. P1, P1]  [Po. P1. p2. p2] — [Po. P1. P1. P2]

[Po. p1. p1] [po. P1. P1, P2]

= (p2— p1)?
[Po. P1. P2, p1]  [po. P1. P1. P2, P2]

s

that is,

[Po. p1. p1] [po. P1. P1. P2]

det K, = (p2 — p1)?
! [po. 1. 1. P2l [Po. P1. P1. P2, P2)

We refer the reader to [10,12,21] for this computation. It follows from our assumption
det K, > 0 that

[Po. p1. p1] [po. P1. P1. p2]

>0
[po. P1. P1. p2]  [Po. P1. P1. P2, P2]

so that

[Po. p1, p1] [Po. P1. P1. P2]
[po, 1, P1, P2] [po, P1, P1, P2, P2]

F®@(po)/2! [P (po)/3!
S (po)/3! [P (po)/4!

lim
P1—>D0,P2—> PO

v

0. (2.3)

It is known in [13, Proposition 3.1] for f(¢) = ¢” on (0, co) that

‘f(z)(t)/zl f(3)(t)/3' — _LVZ(V _ 1)2(7' _ 2)(7‘ + 1)t2r_6,

w3 f@@)/4 144

which is negative if r > 2. This contradicts (2.3); therefore, det K, < 0 and we get
the conclusion. n
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Corollary 2.4. Let pg and py < --- < pp bein (0,00). If r > 2, then the n X n Kraus
matrix K,(po; p1, ..., pn) = K, admits both a positive eigenvalue and a negative
eigenvalue; that is,

Al(Kr) >0> An(Kr)

Proof. Since
A (Kr(po: p1, p2)) > 0 > A2 (K, (po: p1, p2))

by Proposition 2.3, using Cauchy’s interlacing principle, we have the conclusion. m

Proof of Theorem 1.1 (iv). If the inertia of K, (r > 0) were to change, then one of the
eigenvalues of K, had to change sign, but this contradicts Corollary 2.2. ]

Proof of Theorem 1.1 (iii). For t > 0 and 0 < r < 1 the following formula is well
known [4, p. 116]:

oo
r_smr /‘ A’ o
0

‘We write this as

[ o du(h), 24
where  is a positive measure on (0, 00). For each A > 0 let
t

kyit) = ——.

20 =+ .
Since

1 (k)L(Pi) —ka(po)  ka(p)) —kA(Po)) _ A

pi — Dj pi — Po pi—po (A + po)(A + p)(A + pj)’

the Kraus matrix of k is expressed as

A
Ky (po:pr-opn) = = n pOD)LED)L,

where E is the matrix with all entries equal to 1: E = [1] = 0, and D, is the diagonal
matrix diag(ﬁ, o ﬁ). It follows that K, = 0; hence, K, = 0. To be precise,
by Corollary 2.2 or a direct computation, K, is negative definite, and

In(K,) = (0,0, n).

For 1 <r < 2, we get from (2.4) that

g
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For each A > 0 let

2
hy(t) = .
20 =37
Since
1 (hx(Pi) —ha(po)  ha(pj) _hA(PO)) _ A2
pi—Dj pi — Do Pj — Po (A + po)(A + pi)(A + pj)’
the Kraus matrix of % is of the form
AZ
K TPl = DyEDj = 0,
hy (Po: P1 Dn) T g DAEDa =

so K; = 0. Moreover, K, is positive definite by Corollary 2.2, so that
In(K;) = (n,0,0).

We pause the proof with a remark. Since f(¢) = ¢” is operator convex for 1 < r < 2,
that is, matrix convex of any order n, the corresponding Kraus matrix is known to be

positive semidefinite for any po, pi1, ..., pn; see [18]. The above argument for K,
is already in [7], and for 2 < r < 3 or 3 < r < 4 the functions g, (¢) := A’—it and
@) = At_::t work equally well. Actually, in terms of D := diag(pi,..., pn) and

D, we see that

3
K¢, (Po: p1s--.s pn) = E_)H—

D, ED,,
Po

and
4

Kfl(po;pl,...,pn):DE+ED+p0E—)kE+A D,EDj;

+ Po
thus, K, is cnd for 2 < r < 3 and cpd for 3 < r < 4, and we could determine its inertia
by [2, Lemma 4.3.5] with Corollary 2.4.

To continue the proof in the general case, we take an alternative approach, follow-
ing the argument by Bhatia, Friedland, and Jain as in the proof of [5, Theorem 1.1]
for Loewner matrices, to determine the inertia of the Kraus matrix for the power func-
tion ¢”.

Due to the identity

(ﬁ‘Z—PKQ ﬁ;z—PFQ)
Di - Dj
Di — Po Pj — Po
_ — 2 r—2
pI—py? e _
= —(pi = p) (P ™ S+ pi +r57%)
Pi — Do pi— 7D

L PPy P P
Pi — Po Pj—Po’
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the Kraus matrices K, and K, _, are related as
K, = DK,_»D + D~ DE + EDD"~ + py2E,

where £ = [1], D = diag(p1,..., pn) and

r—=2 _ ,r—2 r—=2 _ ,r—2
D = diag(H——Po P _ZPo )
P1— Po Pn — Do
Suppose 2 < r < 3. Then K, is cnd. In fact, for x € #; or Ex = 0,

(Kyx,x) = (DK,—2Dx,x) + (D~ DEx, x) + (x, D~ DEx) + p{ *(Ex, x)
= (DK,_»Dx, x).

We know that K,_ is negative definite for 0 < r —2 < 1, so (K,x,x) = 0 for x €
H#1 or K, is cnd; hence, A,(K;) = 0. Since K, is nonsingular by Corollary 2.2 and
A1(K;) > 0 by Corollary 2.4, we conclude that

In(K;) =(1,0,n —1).
Especially, forn = 2andr > 2
In(K;) = (1,0,1) = In(K3).
Letn > 2 and suppose 3 < r < 4. Since K,_, is positive definite for 1 <r —2 <2,
(Krx,x) = (DK,_>Dx,x) =0

for x € #; hence, K, is cpd, and A,,_1(K;) = 0. As K, is nonsingular by Corol-
lary 2.2 and A, (K,) < 0 by Corollary 2.4, we have

In(K;) =(n—1,0,1).
In particular, forn = 3and r > 3
In(K;) = (2,0,1) = In(K4).
Let us define the subspace #, by
n n
Ho 1= {x =(x;) € (C":in =0= Zpixi}

i=1 i=1

={xeC" Ex=0= EDx},

where E = [1] and D = diag(py, ..., px), being the orthogonal complement of the
span of the vectors (1,...,1) and (py,..., pn).
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Letn > 3 and suppose 4 < r < 5. For x € #>,
(Krx,x) = (Kr—2y, ).
where y := Dx € J;. Since K, iscndfor2 <r —2 < 3,(K,_,y,y) =0or
(Krx,x) =0

for x € #». The minmax principle implies that A5(K,) = 0. We already proved that
a 3 x 3 principal submatrix of K, has two positive eigenvalues, so A,(K;) > 0 by
Cauchy’s interlacing principle. Since K, is nonsingular by Corollary 2.2, one has

In(K;) = (2,0,n —2);
especially, forn = 4andr > 4
In(K;) = (2,0,2) = In(K5).
Letn > 4 and suppose 5 < r < 6. For x € #,
(Krx,x) = (Kr2y.y),
where y := Dx € J;. Since K, iscpdfor3 <r —2 < 4,(K,_»y,y) = 0:
(Krx,x) =0

for x € #,. By the minmax principle and the nonsingularity of K, A,_»(K,) > 0, and
since a 4 x 4 principal submatrix of K, has two negative eigenvalues, A,—1(K;) < 0
by Cauchy’s interlacing principle. Hence, we have

In(K;) = (n—2,0,2),
soforn =5andr > 5
In(K;) = (3,0,2) = In(Kp).
We define the subspace #5 by

n n n
Hyi=f{x=(x)eCY xi=) pixi= Y pix =0}
i=1

i=1 i=1

={x e C" Ex = EDx = ED*x =0},

which is the orthogonal complement of the span of the vectors (1,...,1), (p1,..., pn),
and (p?,..., p2).
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Letn > 5 and suppose 6 < r < 7. For x € J#3, since Ex = EDx =0,
(Kyx,x) = (DK,_2Dx,x) = (D*K,_4D*x,x) = (K,_4y.y),

where y := D?x € #;. Since K,_4iscnd for2 <r —4 < 3,(K,_4y,y) = 0, that
is,
(Kyx,x) =0 forx € Js.

The minmax principle with the nonsingularity of K, implies that
Aa(K;) < 0. Since a 5 x 5 principal submatrix of K, has three positive eigenvalues,
A3(K;) > 0 by Cauchy’s interlacing principle. We conclude that

In(K;) = (3,0,n —3);
in particular, forn = 6 andr > 6
In(K;) = (3,0,3) = In(Ky).
Letn > 6 and suppose 7 < r < 8. For x € #3,
(Krx,x) = (Kr-4y,y),
where y := D%x € #,. Since K,_4iscpdfor3 <r —4 <4,(K,_4y,y) = 0:
(Krx,x) =0

for x € J¢3. By the minmax principle and the nonsingularity of K, A,—3(K,) > 0,
and a 6 x 6 principal submatrix of K, has three negative eigenvalues so A,_»(K;,) <0
by Cauchy’s interlacing principle; hence,

In(K;) = (n—3,0,3);
particularly, forn = 7 and r > 7,
In(K,;) = (4,0,3) = In(Kg).

In this way, we have a proof by induction. Let n > 2k —3. If 2(k — 1) < r <
2k —1,then 2 < r —2(k — 2) < 3. Let us define the subspace #;_1 as the orthogonal
complement of the span of the vectors (1,...,1), (p1,..., pu),....(P¥72,..., pk=2);
that is, Hj_; := ker E Nker ED N ---Nker ED¥=2_For x € J_,

(Krx,x) = (Kr—2(k-2)), ¥)
where y := D¥"2x € H#;. Since Ky 5@k-2)iscndfor2 <r —2(k —2) < 3,

(Kr—2(k—2)y.y) =0,
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or
(Kyx,x) =0 forx e Hp_1.

The minmax principle with the nonsingularity of K, implies that A, (K,) < 0. Since
a (2k — 3) x (2k — 3) principal submatrix of K, has (k — 1) positive eigenvalues by
induction, Ax_1 (K;) > 0 by Cauchy’s interlacing principle; hence, we conclude that

In(K,;)=(k—-1,0,n+1—k);
in particular, forn = 2(k — 1) and r > n,
In(K;)=(k—1,0,k—1) = In(K,+1).

Similarly, letn > 2k —2.If 2k — 1 < r < 2k, then 3 <r —2(k —2) < 4 and for
X € %k—l
(Krx,x) = (Kr—2(—2)). ¥)

where
y = DF2x e ;.

Since K, _5k—2)iscpdfor3 <r —2(k —2) < 4,(K,—2k-2)y,y) Z 0:
(Krx,x) =0

for x € Hx_1, and by the minmax principle, A,_—1)(K;) = 0. Since a 2(k — 1)-
square principal submatrix of K, has (k — 1) negative eigenvalues by induction,
An—k+2(K;) < 0 by Cauchy’s interlacing principle. We conclude by the nonsingu-
larity of K, that

In(K;)=n+1—k,0,k—1),

sothatforn =2k —landr > n
In(K;) = (k,0,k — 1) = In(Kp+1)-
The proof of (iii) is complete. |

Proof of Theorem 1.1 (i) and Theorem 1.1 (ii). For r = 1, the (i, j) entry of K is

1 (Pi—Po_Pj—P0)=0
pi—Ppj\Pi—Po  Pj— Do ’

thatis, K; = 0 and In(K;) = (0,n,0).
Forr =2,

1 (p,?—pg pf—pé)

Pi — Pj

1
= ((pi + po) — (pj + po)) =1,
Pi — Po Pj — Po

Pi — Pj
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so that K, = E = [1] and In(K>) = (1,n —1,0).
In general, for a positive integer r = n + 1, let #, :(=ker E N ker ED N---N
ker ED"~! It is easy to see that K, is of the form

r—1 r—k
Kr — Z plg—l ZDr_k_lEDl_l,
k=1 =1
so that

kerK, DkerE N ker ED N kerED?> N ---N ker ED" ™2 = H#,_4,

and
dimker K, Zdimd,— 1 =n—(r—-1)=n+1-—r.

Forr =3andn = 2,dimker K3 = n —2. By Corollary 2.4, A1 (K3) > 0> 1,(K3),
so that In(K3) = (1,n —2,1) forn = 2.

Forr =4 and n = 3, dimker K4 = n — 3. Since a 3 x 3 principal submatrix of
K, has the inertia (2,0, 1) as in the proof of (iii), A2(K4) > 0 > 1,(K4) by Cauchy’s
interlacing principle; hence, In(K4) = (2,n — 3, 1) forn = 3.

For r =5and n = 4, dimker K5 2 n — 4. A 4 x 4 principal submatrix of K5
has the inertia (2, 0, 2) as in the proof of (iii), we conclude by Cauchy’s interlacing
principle that In(Ks) = (2,n — 4,2) forn = 4.

We can continue this argument; if r = 2k, then a (r — 1)-square principal sub-
matrix of K, has the inertia (k, 0,k — 1) as in the proof of (iii), so In(K;) = (k,
n + 1 —r, k —1) by Cauchy’s interlacing principle; if r = 2k — 1, then a (r — 1)-
square principal submatrix of K, has the inertia (k — 1,0,k — 1) as in the proof
of (iii), so In(K;) = (k — 1,n + 1 — r, k — 1) by Cauchy’s interlacing principle.

Ifr €{1,2,...,n}, then the number of zero eigenvaluesis n 4+ 1 — r, which is non-
zero; so K, is singular. The other implication follows from Corollary 2.2; therefore,
the proof is complete. ]
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