
J. Spectr. Theory 12 (2022), 1383–1404

DOI 10.4171/JST/428

© 2023 European Mathematical Society

Published by EMS Press

This work is licensed under a CC BY 4.0 license

On inverse problems arising in fractional elasticity

Li Li

Abstract. We first formulate an inverse problem for a linear fractional Lamé system. We

determine the Lamé parameters from exterior partial measurements of the Dirichlet-to-Neumann

map. We further study an inverse obstacle problem as well as an inverse problem for a nonlinear

fractional Lamé system. Our arguments are based on the unique continuation property for the

fractional operator as well as the associated Runge approximation property.

1. Introduction

The classical Lamé operator L�;� for a three-dimensional isotropic elastic body is

given by

.L�;�u/i WD

3
X

j D1

@i .�uj;j /C

3
X

j D1

@j .�.ui;j C uj;i // .1 � i � 3/

where ui denotes the i -th component of the vector-valued displacement function u

and ui;j WD @jui . The associated inverse problem has been studied in [8, 21] where

the authors considered the Dirichlet problem

L�;�u D 0 in �; u D g on @�:

They determined the variable Lamé parameters �; � from the Dirichlet-to-Neumann

(displacement-to-traction) map

.ƒg/i WD

3
X

j D1

.�uj;j /�i C

3
X

j D1

�.ui;j C uj;i/�j .1 � i � 3/

where � is the unit outer normal to @� under certain assumptions on �;�.

In this paper, we study a fractional analogue of L�;� and its associated inverse

problems.
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First we recall that the classical elastic model is based on the constitutive relation

�ij D

3
X

k;lD1

Cijklekl

where the fourth-order elastic stiffness tensor is

Cijkl WD �ıij ıkl C �.ıikıjl C ıi lıjk/;

the linearized strain tensor is

eij WD
1

2
.ui;j C uj;i/

and �ij denotes the stress tensor. Here ıij is the standard Kronecker delta.

Recently, the theory of nonlocal elasticity has attracted much attention. The integ-

ral linear constitutive relation

�ij D

3
X

k;lD1

Cijkl.K � ekl /

has been introduced to describe complex materials characterized by nonlocality. Then

the fractional Taylor series approximation for the Fourier transform of the interaction

kernelK, which is given by

.FK/.j�j/ � .FK/.0/C csj�j2s .0 < s < 1/

leads to the definition of the fractional Lamé operator

L WD L�;� C .��/sL�0;�0
: (1)

See [25] and the references there for more background information. In [25], �; � are

constants proportional to the constants �0; �0 but in this paper we allow �; � to be

variable functions.

We consider the exterior Dirichlet problem

Lu D 0 in �; u D g in �e (2)

where� is a bounded Lipschitz domain and�e WDR
3 n x�. Under appropriate assump-

tions on �0; �0; �;�, we can show its well-posedness so we will be able to define the

associated Dirichlet-to-Neumann map ƒ, which is formally given by

ƒg WD .��/sL�0;�0
ug j�e

: (3)

Our goal here is to determine both � and � from exterior partial measurements of ƒ.
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We remark that our problem can be viewed as a variant of the fractional Calderón

problem first introduced in [12] where the authors considered the exterior Dirichlet

problem

..��/s C q/u D 0 in �; u D g in �e

and they proved the fundamental uniqueness theorem that the potential q in � can be

determined from exterior partial measurements of the map

ƒq W g ! .��/sug j�e
:

It has been shown that the knowledge ofƒqg is equivalent to the knowledge of the

nonlocal Neumann derivative of ug (see [12] for more details). Hence, our problem

can also be viewed as a nonlocal analogue of the inverse problem for the classical

Lamé system.

We mention that inverse problems for fractional operators have been extensively

studied so far. See [24] for low regularity and stability results for the fractional Calde-

rón problem. See [11] for reconstruction and single measurement results for the frac-

tional Calderón problem. See [10] for inverse problems for variable coefficients frac-

tional elliptic operators. See [2, 6] for inverse problems for fractional Schrödinger

operators with local and non-local perturbations. See [5, 15, 17] for inverse problems

for fractional magnetic operators. See [14, 18, 19] for inverse problems for fractional

parabolic operators.

The following theorem is our first main result in this paper.

Theorem 1.1. Let 0 < s < 1. Suppose the constants �0; �0 satisfy �0 > 0 and �0 C

�0 � 0. Let 0��.j /;�.j / 2C 1.x�/ and letWj ��e be nonempty and open (j D 1;2).

Letƒ.j / be the Dirichlet-to-Neumann map associated with (2) when �;� are replaced

by �.j /; �.j / in (1). Suppose

ƒ.1/gjW2
D ƒ.2/gjW2

for all g 2 C1
c .W1/. Then �.1/ D �.2/; �.1/ D �.2/ in �.

We remark that our problem provides an example which suggests that the inverse

problem for the fractional operator is more manageable than its classical counterpart.

Recall that to solve the classical inverse problem, we first reduce the Lamé sys-

tem to a first order system perturbation of the Laplacian. Then we construct com-

plex geometrical optics (CGO) solutions and apply the integral identity to obtain the

uniqueness of �; �. For some technical reasons, the uniqueness result is only proved

provided that � is close to a constant. The full classical problem remains open. See

[8, 22] for details.

Here such a priori knowledge of � is not required for solving the fractional prob-

lem. Instead of constructing CGO solutions, we will use the unique continuation
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property and the Runge approximation property associated with our fractional oper-

ator to prove the strong uniqueness result. This scheme was first introduced in [12]

for solving the fractional Calderón problem.

We further study an inverse obstacle problem associated with our fractional oper-

ator.

We consider the following obstacle problem

Lu D 0 in � n xD; u D 0 in D; u D g in �e; (4)

where D � � is a nonempty open set satisfying that � n xD is a bounded Lipschitz

domain.

As we did for the exterior problem (2), we can similarly show the well-posedness

of (4) and define the Dirichlet-to-Neumann map ƒD by

ƒDg WD .��/sL�0;�0
ug j�e

: (5)

Our next goal is to determine D;�;� from the knowledge of ƒD.

The following theorem is our second main result.

Theorem 1.2. Let 0 < s < 1. Suppose the constants �0; �0 satisfy �0 > 0 and �0 C

�0 � 0. Let Dj � � be nonempty and open such that� nDj is a bounded Lipschitz

domain, 0 � �.j /; �.j / 2 C 1.x� nDj / and letWj � �e be nonempty and open (j D

1; 2). Letƒ
.j /
Dj

be the Dirichlet-to-Neumann map corresponding to �.j /;�.j / andDj .

Suppose

ƒ
.1/
D1
gjW2

D ƒ
.2/
D2
gjW2

for a nonzero g 2 C1
c .W1/. ThenD1 D D2 DWD. Further assume the identity holds

for all g 2 C1
c .W1/. Then �.1/ D �.2/ and �.1/ D �.2/ in � n xD.

We also study an inverse problem for a nonlinear fractional Lamé system.

We consider the following nonlinear exterior problem

LuC N u D 0 in �; u D g in �e (6)

where the nonlinear operator N is given by

.N u/i WD

3
X

j D1

@jNiju .1 � i � 3/ (7)

where

Niju WD
�C B

2

X

m;n

u2
m;nıij C C

�

X

m

um;m

�2

ıij C
B

2

X

m;n

um;nun;mıij

C B

X

m

um;muj;i C
A

4

X

m

uj;mum;i C .�C B/
X

m

um;mui;j

C
�

�C
A

4

�

X

m

.um;ium;j C ui;muj;m C ui;mum;j /:
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This nonlinearity comes from the higher order expansion of the energy density as well

as the nonlinear term in the strain tensor

eij WD
1

2

�

ui;j C uj;i C
X

m

um;ium;j

�

:

In fact, A;B;C are the coefficients of terms cubic in eij in the expansion of the energy

density. They are all constants in the original model but in this paper we allow them to

be variable functions. See [16, Section 26] for more background information on N .

We remark that our N is the static version of the nonlinearity considered in [7,26],

where the inverse problem for the associated nonlinear elastic wave equation was

studied.

Under certain assumptions, we can show the well-posedness of (6) for small g 2

C1
c .�e/ and then for such g we can define the associated Dirichlet-to-Neumann map

ƒN formally given by

ƒNg WD .��/sL�0;�0
ug j�e

: (8)

Our last goal is to determine �;�;A;C from the knowledge of ƒN .

The following theorem is our third main result.

Theorem 1.3. Let 1
2

� s < 1. Suppose the constants �0; �0 satisfy �0 > 0 and �0 C

�0 � 0 and let B 2 C 1.x�/. Let 0 � �.j /;�.j / 2 C 1.x�/, let A
.j /;C .j / 2 C 1.x�/ and

letWj ��e be nonempty and open (j D 1; 2). Letƒ
.j /
N be the Dirichlet-to-Neumann

map corresponding to �.j /; �.j /;A.j /;C .j /. Suppose

ƒ
.1/
N gjW2

D ƒ
.2/
N gjW2

for small g 2 C1
c .W1/. Then

�.1/ D �.2/; �.1/ D �.2/;

A
.1/ D A

.2/; C
.1/ D C

.2/

in �.

Note that here we only claim that A; C can be determined for a fixed B. The

question whether we can simultaneously determine A;B;C is still open.

The rest of this paper is organized in the following way. In Section 2, we summar-

ize the background knowledge. In Section 3, we show the well-posedness of the linear

exterior problem; We prove the unique continuation property and the Runge approx-

imation property associated with our fractional operator; Then we prove Theorem 1.1

and Theorem 1.2. In Section 4, we show the well-posedness of the nonlinear exterior

problem for small exterior data; We combine linearization arguments with the Runge

approximation property to prove Theorem 1.3.
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2. Preliminaries

Throughout this paper we use the following notations.

• We fix the space dimension n D 3 and the fractional power 0 < s < 1.

• x D .x1; x2; x3/ denotes the spatial variable.

• For vector-valued function u, ui denotes the i -th component of u and ui;j WD @jui .

• � denotes a bounded Lipschitz domain and �e WD R
3 n x�.

• ıij denotes the standard Kronecker delta.

• h�; �i denotes the distributional pairing so formally, hf; gi D
R

fg.

Throughout this paper we refer all function spaces to real-valued function spaces. For

convenience, we use the same notation for the scalar-valued function space and the

vector-valued one. For instance, C1
c .�/ can be either C1

c .�I R/ or C1
c .�I R

3/.

2.1. Sobolev spaces

For r 2 R, we have the Sobolev space

H r.Rn/ WD

²

f 2 �
0.Rn/W

Z

Rn

.1C j�j2/r jF f .�/j2d� < 1

³

where F is the Fourier transform and � 0.Rn/ is the space of temperate distributions.

We have the natural identification

H�r.Rn/ D H r .Rn/�:

Let U be an open set in R
n. Let F be a closed set in R

n. Then

H r .U / WD ¹ujU W u 2 H r .Rn/º; H r
F .R

n/ WD ¹u 2 H r.Rn/W suppu � F º;

zH r .U / WD the closure of C1
c .U / in H r.Rn/:

Since � is a bounded Lipschitz domain, we also have the identifications

zH r.�/ D H r
x�
.Rn/; H�r.�/ D zH r.�/�:

Let 0 < s < 1. It is well known that we have the following continuous embedding

zH s.�/ ,! L
2n

n�2s .�/:

See, for instance, [20, Section 1.5]. It has also been proved that we have the continuous

embedding

L
n

2s .�/ ,! M.H s ! H�s/
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whereM.H s !H�s/ is the space of pointwise multipliers fromH s.Rn/ toH�s.Rn/

equipped with the norm

kf ks;�s D sup¹jhf; � ijW �; 2 C1
c .�/; k�kH s.Rn/ D k kH s.Rn/ D 1º:

See for instance, [6, Section 2] or [24, Section 2].

2.2. Fractional Laplacian

Let 0 < s < 1. The fractional Laplacian .��/s is formally given by the pointwise

definition

.��/su.x/ WD cn;s lim
"!0C

Z

RnnB".x/

u.x/� u.y/

jx � yjnC2s
dy

as well as the equivalent Fourier transform definition

.��/su.x/ WD F
�1.j�j2s

F u.�//.x/:

It is well known that one of the equivalent forms of the H s-norm is given by

kf k2
H s WD kf k2

L2 C

Z

Rn

Z

Rn

jf .x/ � f .y/j2

jx � yjnC2s
; f 2 H s.Rn/

and we have the following bilinear form formula

h.��/su; vi D c0
n;s

Z

Rn

Z

Rn

.u.x/� u.y//.v.x/� v.y//

jx � yjnC2s
dxdy; u; v 2 H s.Rn/:

It is also well known that one of the equivalent forms of the H 1Cs-norm is given by

kf k2
H 1Cs WD kf k2

H 1 C
X

j

Z

Rn

Z

Rn

j@jf .x/� @jf .y/j
2

jx � yjnC2s
; f 2 H 1Cs.Rn/:

By the classical and fractional Poincaré inequalities, we have the following norm

equivalence:

kf k2
H 1Cs �

X

j

.k@jf k2
L2 C h.��/s@jf; @jf i/

�
X

j

h.��/s@jf; @jf i/; f 2 zH 1Cs.�/:

The following unique continuation property of .��/s was first proved in [12].

Proposition 2.1. Suppose u 2 H r .Rn/ for some r 2 R. Let W � R
n be open and

non-empty. If

.��/su D u D 0 in W;

then u D 0 in R
n.
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3. Linear fractional elasticity

3.1. Well-posedness

We first study the equation

Lu D f in �: (9)

The bilinear form associated with �L (see (1) in Section 1 for its definition) is

BŒu; v� D
D

X

j

.��/s�0uj;j ;
X

j

vj;j

E

C

Z

�

�
�

X

j

uj;j

��

X

j

vj;j

�

C
1

2

X

i;j

�

h.��/s�0.ui;j C uj;i/; vi;j C vj;ii

C

Z

�

�.ui;j C uj;i/.vi;j C vj;i /

�

: (10)

Here �0; �0 are constants and we assume �;� 2 L1.�/.

We claim that B is bounded over H 1Cs.R3/ �H 1Cs.R3/. In fact, note that we

have

ˇ

ˇ

ˇ

D

X

j

.��/s�0uj;j ;
X

j

vj;j

E

C
1

2

X

i;j

h.��/s�0.ui;j C uj;i/; vi;j C vj;ii
ˇ

ˇ

ˇ

� C
X

i;j

k@iukH s k@j vkH s

since the bilinear form h.��/s�;  i is bounded over H s.R3/ �H s.R3/. Also note

that we have
ˇ

ˇ

ˇ

ˇ

Z

�

�
�

X

j

uj;j

��

X

j

vj;j

�

C
1

2

X

i;j

Z

�

�.ui;j C uj;i/.vi;j C vj;i /

ˇ

ˇ

ˇ

ˇ

� C 0
X

i;j

k@iukL2k@j vkL2 :

Hence, we have

jBŒu; v�j � C 00kukH 1Cs kvkH 1Cs :

Now, we further assume �;� � 0, �0 > 0 and �0 C �0 � 0.

We claim that B is coercive over zH 1Cs.�/ � zH 1Cs.�/ in this case. In fact, note

that

h.��/sui;j ; uj;ii D h.��/sui;i ; uj;j i
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for u 2 zH 1Cs.�/ so we have

BŒu; u� �
D

X

j

.��/s�0uj;j ;
X

j

uj;j

E

C
1

2

X

i;j

h.��/s�0.ui;j C uj;i/; ui;j C uj;i i

D
D

X

j

.��/s�0uj;j ;
X

j

uj;j

E

C
X

i;j

h.��/s�0ui;j ; ui;j i

C
X

i;j

h.��/s�0ui;j ; uj;ii

D
D

X

j

.��/s�0uj;j ;
X

j

uj;j

E

C
X

i;j

h.��/s�0ui;j ; ui;j i

C
X

i;j

h.��/s�0ui;i ; uj;j i

D
D

X

j

.��/s.�0 C �0/uj;j ;
X

j

uj;j

E

C
X

i;j

h.��/s�0ui;j ; ui;j i

�
X

i;j

h.��/s�0ui;j ; ui;j i:

The first inequality holds by the assumption �;� � 0. The last inequality holds by the

positivity of the fractional Laplacian and the assumption �0 C �0 � 0. Note that for

u 2 zH 1Cs.�/, we have

X

i;j

h.��/s�0ui;j ; ui;j i �
X

i

kui k
2
H 1Cs � kuk2

H 1Cs

by the assumption �0 > 0 and theH 1Cs-norm equivalence in Section 2.2. Hence, we

conclude that B is coercive over zH 1Cs.�/ � zH 1Cs.�/.

Now, the Lax–Milgram theorem implies that the solution operator f ! uf

associated with (9) is well defined, which is a homeomorphism from H�1�s.�/ to
zH sC1.�/.

From now on, we will always assume 0��;�2L1.�/,�0>0 and �0 C�0 � 0.

Let f WD �.��/sL�0;�0
gj� in (9). Then we have the well-posedness of the exter-

ior problem (2).

Proposition 3.1. For each g 2 H 1Cs.R3/, there exists a unique solution

ug 2 H 1Cs.R3/

of (2) such that ug � g 2 zH 1Cs.�/. Moreover, the solution operator g ! ug is

bounded on H 1Cs.R3/.
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3.2. Dirichlet-to-Neumann map and integral identity

Let X WD H 1Cs.R3/= zH 1Cs.�/ D H 1Cs.�e/ and Qg WD the natural image of g 2

H 1Cs.R3/ in X .

We define the Dirichlet-to-Neumann map ƒ by

hƒ Qg; Qhi WD �BŒug ; h�; g; h 2 H 1Cs.R3/

where ug is the solution corresponding to the exterior data g in (2).

Note that if g2 � g1 2 zH 1Cs.�/ and h2 � h1 2 zH 1Cs.�/, then ug1
D ug2

and

BŒug2
; h2� � BŒug1

; h1� D BŒug2
� ug1

; h2�C BŒug1
; h2 � h1� D 0

so ƒ is well defined. For convenience, we will write ƒg and hƒg; hi instead of ƒ Qg

and hƒ Qg; Qhi.

Also note that for g; h 2 C1
c .�e/, by (10) we have

hƒg; hi D �
D

X

j

.��/s�0.ug/j;j ;
X

j

hj;j

E

�
1

2

X

i;j

h.��/s�0Œ.ug/i;j C .ug/j;i �; hi;j C hj;i i

D �
X

i;j

h.��/s�0.ug/j;j ; hi;ii �
X

i;j

h.��/s�0Œ.ug/i;j C .ug/j;i �; hi;j i

D
X

i;j

h@i .��/
s�0.ug/j;j ; hi i C

X

i;j

h@j .��/
s�0Œ.ug/i;j C .ug/j;i �; hi i

D h.��/sL�0;�0
ug ; hi:

Hence, the bilinear form definition given here coincides with the one given by (3) for

g 2 C1
c .�e/.

The symmetry of ƒ immediately follows from the symmetry of B . In fact,

hƒg; hi D �BŒug ; uh� D �BŒuh; ug � D hƒh; gi

so we have the integral identity

hƒ.1/g.1/; g.2/i � hƒ.2/g.1/; g.2/i

D �B.1/Œu.1/; u.2/�C B.2/Œu.2/; u.1/�

D

Z

�

.�.2/ � �.1//
�

X

j

u
.1/
j;j

��

X

j

u
.2/
j;j

�

C
1

2

Z

�

.�.2/ � �.1//
X

k;j

.u
.1/

k;j
C u

.1/

j;k
/.u

.2/

k;j
C u

.2/

j;k
/; (11)
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where L
.j /,B.j /,�.j / correspond to Lamé parameters �.j /; �.j /; u.j / denotes the

solution of

L
.j /u D 0 in �; u D g.j / in �e :

We remark that this integral identity has the same form as its classical counterpart

(see [8]).

3.3. Unique continuation property and Runge approximation property

Recall that a classical operator L possesses the unique continuation property in a

domain U if

Lu D 0 in U; u D 0 in V

where V is a nonempty open subset of U imply that u D 0 in U .

It is well known that the classical constant coefficients Lamé operator L�0;�0

possesses the unique continuation property in this sense. (This property even holds

true for the general variable coefficients Lamé operator L�;�. See for instance, the

main theorem in [1].)

The following proposition is the unique continuation property of .��/sL�0;�0
.

Proposition 3.2. Let u 2 H 1Cs.R3/. Let W be open. If

.��/sL�0;�0
u D u D 0 in W;

then u D 0 in R
3.

Proof. By the unique continuation property of .��/s (Proposition 2.1), we have

L�0;�0
u D 0 in R

3. Then by the unique continuation property of L�0;�0
we have

u D 0 in R
3.

Based on the unique continuation property above, we can prove the following

Runge approximation property.

Proposition 3.3. Let W � �e be nonempty and open. Then

S WD ¹ug j� W g 2 C1
c .W /º

is dense in zH 1Cs.�/ where ug is the solution corresponding to the exterior data g

in (2).

Proof. By the Hahn–Banach Theorem, it suffices to show that if f 2 H�1�s.�/ and

hf;wi D 0 for all w 2 S , then f D 0.
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In fact, we can choose v 2 zH 1Cs.�/ to be the solution of Lv D f in �. For

any g 2 C1
c .W /, note that ug � g 2 zH 1Cs.�/ so by the assumption hf;wi D 0 for

w 2 S we have

0 D hf; ug � gi D �BŒv; ug � g�:

Since ug is the solution of the exterior problem, we have BŒug ; v� D 0 so

0 D BŒv; g� D �h.��/sL�0;�0
v; gi:

This implies .��/sL�0;�0
v D 0 in W . By the unique continuation property above

we have v D 0 in R
3. Hence, f D 0.

3.4. Proof of Theorem 1.1

Now, we are ready to prove Theorem 1.1. The key point is to approximate certain

carefully chosen functions by solutions of the linear exterior problems based on the

Runge approximation property. This will enable us to exploit the integral identity (11)

to determine �;�.

Proof. Let u.j / denote the solution of

L
.j /u D 0 in �; u D g.j / in �e :

For any given " > 0 and f .j / 2 C1
c .�/, by the Runge approximation property (Pro-

position 3.3) we can choose g.1/ 2 C1
c .W1/ such that

ku.1/ � f .1/k zH 1Cs.�/ � "

and for this chosen g.1/, again by the Runge approximation property we can choose

g.2/ 2 C1
c .W2/ such that

ku.1/k zH 1Cs .�/ku
.2/ � f .2/k zH 1Cs .�/ � ":

(Actually we only need the H 1-norm approximation.) By the assumption

ƒ.1/gjW2
D ƒ.2/gjW2

for g 2 C1
c .W1/ and the integral identity (11) we get

Z

�

.�.2/ � �.1//
�

X

j

u
.1/
j;j

��

X

j

u
.2/
j;j

�

C
1

2

Z

�

.�.2/ � �.1//
X

k;j

.u
.1/

k;j
C u

.1/

j;k
/.u

.2/

k;j
C u

.2/

j;k
/ D 0:
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Based on our choice for g.j /, we get

ˇ

ˇ

ˇ

ˇ

Z

�

.�.2/ � �.1//
�

X

j

f
.1/

j;j

��

X

j

f
.2/

j;j

�

C
1

2

Z

�

.�.2/ � �.1//
X

k;j

.f
.1/

k;j
C f

.1/

j;k
/.f

.2/

k;j
C f

.2/

j;k
/

ˇ

ˇ

ˇ

ˇ

� C";

where C is a constant depending on �.j /; �.j / and f .j /. Hence, we conclude that

Z

�

.�.2/ � �.1//
�

X

j

f
.1/

j;j

��

X

j

f
.2/

j;j

�

C
1

2

Z

�

.�.2/ � �.1//
X

k;j

.f
.1/

k;j
C f

.1/

j;k
/.f

.2/

k;j
C f

.2/

j;k
/ D 0 (12)

since " is arbitrary.

We will appropriately choose f .j / in (12) to determine �;�.

In fact, for any given  2 C1
c .�/, we can choose � such that � 2 C1

c .�/ and

� D x1 on supp .

We can show that
Z

�

.�.2/ � �.1//@j D 0 .1 � j � 3/:

For instance, to obtain the equality above for j D 2, we can choose

f .1/ D .0; �; 0/; f .2/ D . ; 0; 0/

in (12). We can also show that

Z

�

.�.2/ � �.1//@j D 0 .1 � j � 3/:

For instance, to obtain the equality above for j D 2, we can choose

f .1/ D .�; 0; 0/; f .2/ D .0;  ; 0/

in (12). Hence, we get

r.�.2/ � �.1// D r.�.2/ � �.1// D 0:

Now, we show that the constants c� WD �.2/ � �.1/ and c� WD �.2/ � �.1/ are

zeros.
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In fact, we can choose 2 C1
c .�/ such that k@1 kL2 ¤ k@2 kL2 . Then we can

show that

.c� C 2c�/k@1 k2
L2 C c�k@2 k2

L2 C c�k@3 k2
L2 D 0;

.c� C 2c�/k@2 k2
L2 C c�k@3 k2

L2 C c�k@1 k2
L2 D 0;

.c� C 2c�/k@3 k2
L2 C c�k@1 k2

L2 C c�k@2 k2
L2 D 0:

In fact, in order to obtain the first identity, we can choose

f .1/ D f .2/ D . ; 0; 0/:

Then we have
X

j

f
.1/

j;j D
X

j

f
.2/

j;j D @1 

and the five non-vanishing terms in the sum

X

k;j

.f
.1/

k;j
C f

.1/

j;k
/.f

.2/

k;j
C f

.2/

j;k
/

are 4j@1 j2 when .k; j / D .1; 1/, j@2 j2 when .k; j / D .1; 2/ or .2; 1/ and j@3 j2

when .k; j / D .1; 3/ or .3; 1/. Now, it is clear that (12) becomes the first identity in

this case. Similarly we can choose

f .1/ D f .2/ D .0;  ; 0/ .resp. f .1/ D f .2/ D .0; 0;  //

to obtain the second (resp. third) identity.

On one hand, we sum up the three identities to obtain

.c� C 4c�/.k@1 k2
L2 C k@2 k2

L2 C k@3 k2
L2/ D 0:

Since at least one of @1 ; @2 is nonzero, we conclude that c� C 4c� D 0.

On the other hand, we combine the first two identities to obtain

.c� C c�/k@1 k2
L2 D .c� C c�/k@2 k2

L2 ;

which implies c� C c� D 0. Hence, the only possibility is c� D c� D 0.

Remark. Similar strategy has been applied to solve inverse problems for fractional

Schrödinger operators with local perturbations. See [4, 6] for details.
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3.5. Proof of Theorem 1.2

We can identically apply the considerations for the exterior problem (2) in previous

subsections to the obstacle problem (4). (We just replace� by � n xD in earlier argu-

ments.) Our main task in this subsection is to prove the first part of Theorem 1.2. We

will see that this part is an immediate consequence of the unique continuation prop-

erty (Proposition 3.2). Once we have determined the obstacleD, we can use the same

arguments as in the proof of Theorem 1.1 to determine �;�.

Proof. For the fixed nonzero g 2 C1
c .W1/, let u.j / denote the solution of the obstacle

problem

L
.j /u D 0 in � nDj ; u D 0 in Dj ; u D g in �e:

Since we have the assumption

ƒ
.1/
D1
gjW2

D ƒ
.2/
D2
gjW2

and u.1/ D u.2/ D g in �e , we get

.��/sL�0;�0
.u.1/ � u.2// D u.1/ � u.2/ D 0 in W2:

Then Proposition 3.2 implies that u.1/ D u.2/ in R
3.

Suppose D1 ¤ D2. Without loss of generality we can assume V WD D2 n xD1 is

nonempty. Note that u.1/ D u.2/ D 0 in V . Then the equation for u.1/ in V implies

.��/sL�0;�0
u.1/ D 0 in V . But now Proposition 3.2 implies that u.1/ D 0 in R

3,

which contradicts that g is nonzero.

Remark. Similar inverse obstacle problems have been studied for fractional elliptic

operators. See [3] for details.

4. Nonlinear fractional elasticity

4.1. Well-posedness and Dirichlet-to-Neumann map

We first study the nonlinear equation

LuC N u D f in � (13)

See (7) in Section 1 for the definition of N .

From now on, we will always assume A;B;C 2 C 1.x�/ in (7). Let 1
2

� s < 1.

Then 2n
n�2s

� n
2s

for n D 3 so we have the continuous embeddings (see Section 2.1)

zH s.�/ ,! L
2n

n�2s .�/ ,! L
n
2s .�/ ,! M.H s ! H�s/:
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Note that for u 2 zH sC1.�/, each component ofNu is a sum of terms which have

the form @j .a� / where a 2 C 1.x�/ and �; 2 zH s.�/. The embedding zH s.�/ ,!

M.H s ! H�s/ ensures that � 2 H�s.R3/ so Nu 2 H�1�s.R3/. Hence, the map

F defined by

F.f; u/ WD .LuC N u/j� � f

maps from H�1�s.�/ � zH sC1.�/ to H�1�s.�/.

Note that F.0; 0/ D 0 and it is easy to verify that the Fréchet derivative

DuF j.0;0/.v/ D Lvj�;

which is a homeomorphism from zH sC1.�/ to H�1�s.�/. By Implicit function the-

orem (see, for instance, [23, Theorem 10.6]), there exists ı > 0 such that whenever

kf kH �1�s .�/ � ı, we have both existence and uniqueness of small solutions of (13),

and uf smoothly depends on f .

Let f WD �.��/sL�0;�0
gj� in (13). Then we have the well-posedness of (6).

Proposition 4.1. For each sufficiently small g 2 C1
c .�e/, there exists a unique small

solution ug of the exterior problem (6) such that ug � g 2 zH 1Cs.�/ and ug smoothly

depends on g.

Now, we can conclude that the associated Dirichlet-to-Neumann map ƒN given

by (8) is well defined at least for small g 2 C1
c .�e/.

4.2. Proof of Theorem 1.3

We are ready to prove Theorem 1.3. We will first apply the first order linearization

and the linear result (Theorem 1.1) to determine �; �. Then we will apply the second

order linearization and the Runge approximation property (Proposition 3.3) to determ-

ine A;C .

Proof. i. Determine �;�. Let u
.j /
";g be the solution of the exterior problem

L
.j /uC N

.j /u D 0 in �; u D "g in �e (14)

for g 2 C1
c .W1/ and small ". Applying @

@"

ˇ

ˇ

"D0
to (14), we obtain that

u.j /
g WD

@

@"

ˇ

ˇ

ˇ

"D0
u.j /

";g

is the solution of

L
.j /u D 0 in �; u D g in �e :

Since we have the assumption

ƒ
.1/
N g D ƒ

.2/
N g in W2;
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i.e.,

.��/sL�0;�0
u.1/

";g D .��/sL�0;�0
u.2/

";g in W2;

we can apply @
@"

ˇ

ˇ

"D0
to the identity to obtain that

.��/sL�0;�0
u.1/

g D .��/sL�0;�0
u.2/

g in W2;

i.e.,

ƒ.1/g D ƒ.2/g in W2:

Hence, we conclude that

�.1/ D �.2/ WD �;

�.1/ D �.2/ WD �

based on Theorem 1.1.

Now, we use L to denote both L.1/ and L.2/.

ii. Determine A;C . Let u
.j /
";g be the solution of the exterior problem

LuC N
.j /u D 0 in �; u D "1g

.1/ C "2g
.2/ in �e (15)

for g.j / 2 C1
c .W1/ and small "j . First note that

@

@"j

ˇ

ˇ

ˇ

"j D0
u.1/

";g D
@

@"j

ˇ

ˇ

ˇ

"j D0
u.2/

";g

since both of them are the solution of

Lu D 0 in�; u D g.j / in �e :

Hence, we can denote both of them by v.j /. Next we apply @2

@"1@"2

ˇ

ˇ

"1D"2D0
to (15).

Then

w.j / WD
@2

@"1@"2

ˇ

ˇ

ˇ

"1D"2D0
u.j /

";g

satisfies

Lw.j / C zN .j /.v.1/; v.2// D 0 in �; w.j / D 0 in �e : (16)

Here (based on (7)) we can compute that

zN
.l/
i D

3
X

j D1

@j zN
.l/
ij .1 � l � 2I 1 � i � 3/
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with

zN
.l/
ij .v

.1/; v.2// D .�C B/
X

m;n

v.1/
m;nv

.2/
m;nıij C 2C .l/

�

X

m

v.1/
m;m

��

X

m

v.2/
m;m

�

ıij

C B

X

m;n

v.1/
m;nv

.2/
m;nıij C B

X

m

.v.1/
m;mv

.2/
j;i C v.2/

m;mv
.1/
j;i /

C
A.l/

4

X

m

.v
.1/
j;mv

.2/
m;i C v

.2/
j;mv

.1/
m;i /

C .�C B/
X

m

.v.1/
m;mv

.2/
i;j C v.2/

m;mv
.1/
i;j /

C
�

�C
A.l/

4

�

X

m

.v
.1/
m;iv

.2/
m;j C v

.2/
m;iv

.1/
m;j

C v
.1/
i;mv

.2/
j;m C v

.2/
i;mv

.1/
j;m

C v
.1/
i;mv

.2/
m;j C v

.2/
i;mv

.1/
m;j /:

We also apply @2

@"1@"2
j"1D"2D0 to the Dirichlet-to-Neumann map assumption

.��/sL�0;�0
u.1/

";g D .��/sL�0;�0
u.2/

";g in W2:

Then we get

.��/sL�0;�0
w.1/ D .��/sL�0;�0

w.2/ in W2:

Since w.1/ D w.2/ D 0 in �e , the unique continuation property (Proposition 3.2)

implies that w.1/ D w.2/ in R
3.

Now, we combine the two equations (j D 1; 2) in (16) to obtain

3
X

j D1

@j zGij .v
.1/; v.2// D 0 .1 � i � 3/ (17)

where

zGij .v
.1/; v.2// D zN

.2/
ij .v.1/; v.2// � zN

.1/
ij .v.1/; v.2//

D
A

.2/ � A
.1/

4

�

X

m

.v
.1/
j;m C v

.1/
m;j /.v

.2/
i;m C v

.2/
m;i /

C
X

m

.v
.2/
j;m C v

.2/
m;j /.v

.1/
i;m C v

.1/
m;i /

�

C 2.C .2/ � C
.1//

�

X

m

v.1/
m;m

��

X

m

v.2/
m;m

�

ıij :
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Let both sides of (17) act on  2 C1
c .�/. Then Proposition 3.3 implies that

3
X

j D1

Z

zGij .f
.1/; f .2//@j D 0 .1 � i � 3/ (18)

for any f .j / 2 C1
c .�/. We can appropriately choose f .j / to show that

Z

.A.2/ � A
.1//@j D 0; .1 � j � 3/:

For instance, if we choose i D 1, f .1/ D .0; �; 0/ and f .2/ D .�; 0; 0/ where � 2

C1
c .�/ satisfies � D x1 on supp for a chosen  2 C1

c .�/, a direct computation

shows that

zG11 D 0; zG12 D
A.2/ � A.1/

2
; zG13 D 0;

which verifies the equality for j D 2. Hence, we conclude that A
.2/ � A

.1/ WD cA is

a constant.

We can also appropriately choose f .j / to show that

Z

.C .2/ � C
.1//@j D 0 .1 � j � 3/:

For instance, if we choose i D 1, f .1/ D .0; '; 0/ and f .2/ D .�; 0; 0/ where �

is defined as before and ' 2 C1
c .�/ satisfies ' D x2 on supp for a chosen  2

C1
c .�/, a direct computation shows that

zG11 D 2.C .2/ � C
.1//; zG12 D 0; zG13 D 0;

which verifies the equality for j D 1. Hence, we conclude that C
.2/ � C

.1/ WD cC is

a constant.

Now, we show that cA and cC are zeros. In fact, we can choose 2 C1
c .�/ such

that k@1 kL2 ¤ k@2 kL2 . Then we can appropriately choose f .j / to obtain

.4cA C 4cC /k@1 k2
L2 C cAk@2 k2

L2 C cAk@3 k2
L2 D 0;

.4cA C 4cC /k@2 k2
L2 C cAk@3 k2

L2 C cAk@1 k2
L2 D 0;

.4cA C 4cC /k@3 k2
L2 C cAk@1 k2

L2 C cAk@2 k2
L2 D 0:

For instance, if we choose f .1/ D . ; 0; 0/ and f .2/ D .�; 0; 0/ where � is defined

as before, a direct computation shows that

zG11 D 2cA@1 C 2cC@1 ; zG12 D
cA

2
@2 ; zG13 D

cA

2
@3 :
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Let i D 1 in (18). Then we have
Z

.2cA@1 C 2cC@1 /@1 C

Z

�cA

2
@2 

�

@2 C

Z

�cA

2
@3 

�

@3 D 0;

which coincides with the first identity.

On one hand, we sum up the three identities to obtain

.6cA C 4cC /.k@1 k2
L2 C k@2 k2

L2 C k@3 k2
L2/ D 0:

Since at least one of @1 ; @2 is nonzero, we conclude that 6cA C 4cC D 0.

On the other hand, we combine the first two identities to obtain

.3cA C 4cC /k@1 k2
L2 D .3cA C 4cC /k@2 k2

L2 ;

which implies 3cA C 4cC D 0. Hence, the only possibility is cA D cC D 0.

Remark. The multiple-fold linearization procedure performed in the proof has been

widely applied in solving inverse problems. For instance, see [9,13] for this approach

for inverse problems for semilinear elliptic operators. Also see [26] for this approach

for an inverse problem for a nonlinear elastic wave operator.

Acknowledgement. The author would like to thank Professor Gunther Uhlmann for

suggesting the problem and for helpful discussions.
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