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Boundary superconductivity in the BCS Model

Christian Hainzl, Barbara Roos, and Robert Seiringer

Abstract. We consider the linear BCS equation, determining the BCS critical temperature, in
the presence of a boundary, where Dirichlet boundary conditions are imposed. In the one-dimen-
sional case with point interactions, we prove that the critical temperature is strictly larger than
the bulk value, at least at weak coupling. In particular, the Cooper-pair wave function localizes
near the boundary, an effect that cannot be modeled by effective Neumann boundary conditions
on the order parameter as often imposed in Ginzburg—Landau theory. We also show that the
relative shift in critical temperature vanishes if the coupling constant either goes to zero or to
infinity.

1. Introduction and main result

We study how a boundary influences the critical temperature of a superconductor in
the Bardeen—Cooper—Schrieffer (BCS) model. At superconductor—insulator (or super-
conductor—vacuum) boundaries, it is natural to impose Dirichlet boundary conditions
on the Cooper-pair wave function. In several works [1, 5, 6], it was concluded that
the presence of the boundary only affects the Cooper-pair wave function on micro-
scopic scales; in particular, on larger scales described by Ginzburg-Landau theory
(GL), the effect of the Dirichlet boundary conditions disappears and consequently the
GL order parameter should satisfy Neumann boundary conditions [7, Chapter 7.3],
[14, Chapter 6]. This seems to implicitly assume that the effect of the boundary on
the critical temperature is negligible. Recent computations [3, 4, 16] indicate, how-
ever, that the Cooper-pair wave function can localize near the boundary, leading to an
increase in the critical temperature compared to its bulk value. In this paper, we shall
give a rigorous proof of the occurrence of this phenomenon in the simplest setting of
one dimension, with §-interactions among the particles. We consider a system on the
half-line, where the boundary is then just a point.

The increase of the critical temperature in the presence of a boundary has some
far-reaching implications. First of all, it implies that boundary superconductivity in the
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BCS model sets in already above the bulk value of the critical temperature. Second,
it questions the validity of the often employed phenomenological GL theory in the
presence of boundaries, as detailed in [17]. Note that GL theory has so far only been
rigorously derived from the BCS model for periodic systems without boundaries [10].
(In the low-density BEC limit at zero temperature it was shown in [1 1] that the effect-
ive Gross—Pitaevskii theory inherits the microscopic Dirichlet boundary conditions.)
In mathematical terms, the presence of a boundary manifests itself in a com-
pact perturbation of a translation-invariant operator, and we shall show that at weak
coupling this leads to the appearance of discrete eigenvalues outside the continuous
spectrum. In particular, there is an effective attraction to the boundary, which is strong
enough to create bound states.
In the following, we shall consider a superconductor on a domain €2, with either
Q =Ror 2 =Ry = (0,00). The main quantity of interest is the linear two-particle
operator
ye _ —Ax— Ay —2p
tanh(=352) + tanh(=5 S =)

—vé(x —y) (1.1)

actingin L2,,.(R%) = {y € L*(Q%) | ¥ (x,y) = ¥(y,x) forall x, y € 2}, where A
denotes the Dirichlet Laplacian on €2, and the subscripts x and y, respectively, indic-
ate the variable on which A acts. The first term is defined through functional calculus.
In the second term, § is the Dirac delta distribution, and v > 0 is a coupling constant.
Moreover, T > 0 denotes the temperature, and © € R is the chemical potential.

As explained in [9], HTEZ characterizes the local stability of the normal state in
BCS theory. If HTEZ has spectrum below zero, i.e., inf o (H }2) < 0, the normal state is
unstable and the system in 2 is superconducting. If inf o (H 753) > 0, the normal state
is locally stable. We define the critical temperatures TcQ as

T (v) := inf{T € (0,00) | info(HZ) > 0}. (1.2)

The sample is thus superconducting for 7' < TCQ. In the translation-invariant case,
i.e., 2 = R, it is also known that local stability of the normal state implies global
stability [12]; in particular, the sample is always in a normal state for 7 > TC]R in
this case, i.e., TX separates the superconducting and the normal phases. For the point
interactions considered in (1.1), one can derive the explicit relation

1 tanh( TR ) 1
= 2—() dg = —. (1.3)
b4 J g% — i v

Because of translation invariance, H $ has purely essential spectrum. Moreover,

R . . o . .
Hp * has the same essential spectrum and possibly additional eigenvalues below it.
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In particular, for all v > 0 the critical temperatures satisfy
Tt (v) = TR (). (14)

Our main result states that this inequality is actually strict, at least for small v, proving
that the boundary increases the critical temperature. Moreover, the relative difference
between the two critical temperatures vanishes both in the weak and in the strong
coupling limit.

Theorem 1.1. Let u > 0.

i.  Thereis a v > 0 such that
R
Te " (v) > TR (v)

for0 < v <.

ii.  In the weak coupling limit

Tt ) — TR @) _

lim 0.
vo0 TR (v)
iii. In the strong coupling limit
R
T () - TR _
lim = 0.
v—>00 TCR(U)

This result can be viewed as a rigorous justification of the observations in [16].
Numerics shows that the ratio Tc]R *(v)/ TR (v) can be as large as 1.06, see [16, Fig-
ure 2]. Moreover, numerics also suggests that Tc]R *(v) and TR (v) actually agree for
v large enough, but it remains an open problem to show this.

Part (i) of Theorem 1.1 follows from the existence of an eigenvalue of H 5 * below
the spectrum of H. 5. It is quite remarkable that a Dirichlet boundary can decrease the
ground state energy and create bound states. In contrast, for two-particle Schrodinger
operators of the form —Ay — A, + V(x — y), only Neumann boundaries can bind
states [8, 15].

While we restrict our attention in this article to the one-dimensional setting with
point interactions, we expect that our methods can be generalized to a larger class
of interaction potentials, as well as to higher dimensions and the corresponding more
complicated geometries possible. We shall leave these generalizations for future
investigations, however.

Remark 1.2. Our techniques can also be applied in case of Neumann boundary con-
ditions for A on R . In this case one obtains the following results instead.
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1. Forallv > 0
R
T. T (v) > TR(v).

ii.  In the weak coupling limit

Ry oy _ 7R
T -170) _, (1.5)

i
vo0 TR(v)

iii. In the strong coupling limit

R
Vo T TR
v—>00 TCR(U)

In the remainder of this article, we shall give the proof of Theorem 1.1. In Sec-
tion 2, we shall use the Birman—Schwinger principle to conveniently reformulate the
problem in terms of bounded operators and compact perturbations. Section 3 contains
the proof of part (i), the existence of boundary superconductivity. The analysis of the
weak and strong coupling limits in parts (ii) and (iii) is the content of Sections 4 and 5,
respectively. Finally, Section 6 contains the proofs of some auxiliary lemmas.

2. Preliminaries

Let us fix the notation

2T

tanh(pi;“) + tanh(qz_“)
Pta*=2u

Lru(p.q) =

Using the partial fraction expansion for tanh (Mittag-Leffler series), one can obtain
the series representation [9]

1 1
L .q) =2T - - 2.1
7. (P:q) ZPZ_M_IWMZ_MW” @.1)
nez
for w, = w(2n + 1)T. Moreover, let
2
tanh(Z74)
Fru(p) = Lru(p. p) = —5—2—
g 8 p2—n
and p+q p—q
Bru(p.q) = Lru( P51 2. 22)

In order to control the kinetic energy in H. 75.2 the following bounds turn out to be
useful. We shall prove them in Section 6.1.
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Lemma 2.1. Let T > 0. There are constants C1(T, j1), Co(T, ) > 0 such that for all
p.q €R

CUT. W) (A + p> +¢%) = Lru(p, @)~ = C(T, w1 + p* +¢°).
Moreover, for Ty > 0 there is a C3(Tp, u) > 0 such that

C3(To. )T + p* +¢%) < Lru(p. @)™
forall T > Ty and p,q € R.

Since v§(x — y) is infinitesimally form bounded with respectto —Ax — A, it fol-
lows that the H }2 are self-adjoint operators defined via the KLMN theorem. Moreover,
the operators H }2 become positive for T large enough. In particular, the critical tem-
peratures defined in (1.2) are finite in both cases 2 = R and 2 = R.

Let LQ denote the operator L1, (—iVy, —iV,) defined through functional cal-
culus. Of course LT P depends on the domain €2 and on the boundary conditions
imposed on A. Its integral kernel is given by

L§ (x.yix ) = [ dp dq @GP D L1 (p.D)ia (¥ Pia(q).
]RZ

where for the problem on the full real line tR (x) = ﬁe"‘ * and on the half-line with

Dirichlet boundary condition fg (x) f sin(x). For Neumann boundary condi-
tions, one would have fg | (x) = ﬁ cos(x) instead.

It is convenient to switch to the Birman—-Schwinger formulation of the prob-
lem. For a more regular interaction V' instead of §, the Birman—-Schwinger operator
would be VI/ZL%MV”Z. For the §-case, it turns out that V!/2 has to be under-
stood as restriction of a two-body wave function to its diagonal. Hence, the Birman—
Schwinger operator has kernel L% M(x, x;x’,x") and acts on functions of one variable
only. For the two domains under consideration, the Birman—Schwinger operators
Aﬂﬁ’;: L?((0,00)) — L2((0, 00)) and A]R : L2(R) — L?(R) are explicitly given by

1
(Anﬁ,ﬁa)(X) = / dp / dgq / dy sin(px) sin(gx) L. (p. q) sin(py) sin(gy)ec(y)

(2.3)
and

1 .
U580 = s [ dp [aq [ ayed 00 L (. B,
R R R
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Lemma 2.2. The condition inf o (H }2) < 0 is equivalent to
1
A% ) > =
supo(AF,) >
for either Q = R or Q = R.

Proof. The quadratic form corresponding to H? is defined on the Sobolev space
Dgq = HJ (2?). Since the operator L¥ .. 1s positive definite, one can write

1 ( 1
1-v/18,8/18,) .
7 T,
VT VT

Hence, info (H }2) < 0 is equivalent to

w | i)

ve(LF )"V 2Da.llvl2=1

HF = (L) —vs =

By Lemma 2.1, L¥u: L?(R?) — Dg and its inverse are bounded. Hence,
(LE,) 7" 2Dg = L2(Q2?).
The projection onto the diagonal H!(22) — L?(Q), ¥ (x,y) — ¥ (x, x) defines a

bounded operator [2, Theorem 4.12]. Let Mq: L?(222) — L?(2) be the composition
of \/LE ,, with the projection H'(Q?) — L?(Q). Explicitly, Mg is given by

Moy (x) = / dpdg / ' dy tg CPIa ) Lo (p. i (' Dia (Y Y (. y)
R2 Q2

1 .
Ee X and []R+ ()C) =

L

where tr(x) = NG

sin(x). Note that
Q Q _ gt
LT’M(S LT’M = Mgy Mg
and A%M = MQM;g. Hence,

o (4, )\ (0t =0 (/18 ,6,/18,)\ 0}

and the claim follows. n

From now on, we will work with the operators Agf " rather than H 79 . In momentum
space, the operator A]}R i is multiplication by the function

1
Aru(p) = - / 1,.(P.q)dq, (2.4)
R

where B is defined in (2.2).
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Lemma 2.3 (Momentum representation of A% - With

3 _L ipx
pr = —= Rf B(x)elP¥dx,

we have for all B1, B> € D(A%u)

(B1 | AR | Bo) = / Br(p) Ar(p)Pa(p)dp.
R

The following Lemma shows that adding the boundary to the system effectively
introduces the perturbation ﬁ Br,,, where Bt is short for the operator with integral
kernel Br ,(p.q).

Lemma 2.4 (Momentum representation of AEL). With

o0

1
6(p) = [ atr)—=cos(pr)dr.
0/\ ﬁ

we have for all aq,q, € D(AEJ;

(o | AR ) = / &1(p) A7 u(P)aa(p)dp
R

1 _ A
T in / f a1(p)Br,u (p.q) @2(q)dpdq. (2.5)
R R

Note that here we work with the cosine transform and not the sine transform as
might be expected from (2.3). This is because « is the diagonal of a function which is
antisymmetric under both x — —x and y — —y and hence symmetric under (x, y) —

(—X, —J’)
Proof or Lemma 2.4. Using that
. . 1
sin(px) sin(gx) = ~[cos((p — g)x) — cos((p + ¢)x)]
and substituting p’ = p —q andq’ = p + ¢ gives

o0 [o¢]
1 _ . .
(o | A5 Taz) = 5 [ dapeg [ ax [ ay@rtosingp) sing)
0 0

R? X L, (p.q) sin(py) sin(gy)az(y)
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= dx | dy ey (x)[cos(p'x) — cos(q'x)]
R2 0 0
L (2 D eos(pl) — costg e ()

/dl;dq [61(p") = G1(qN] Br,u(p', 4")a2(p") — G2(q")].
R2

Since B(p',q’) = B(q’, p’), this reduces to

Ry dP/dq/ ~ N I NTA / ~ l
(o | Ap), [ 2) = yp a1(p")Bru(p'. ¢)[e2(p’) — a2(q')]. u

RZ

Lemma 2.3 follows from an analogous computation.
Since the operator Aﬂ}’ .. 1s multiplication by the function (2.4), it has purely essen-

tial spectrum. The perturbation Bt in AEZ is Hilbert—Schmidt and thus compact.
Hence, O'(A]l;’ M) = oess(A]};J[L). It follows that for all T < TCR(U) we have

sup U(A%'L) > supo(A]};i,M) > 1/v,

which implies (1.4).

Remark 2.5. Choosing Neumann instead of Dirichlet boundary conditions amounts
to changing the minus sign in (2.5) into a plus sign.

It is possible to give a more explicit expression for sup G(A]$ M). The following is
proved in Section 6.1.

Lemma 2.6. Forall p € R
/ Bru(p.q)dq < / Br,.(0,9)dg.
R R

Consequently,

ar, ‘= supa(A ) = —/BTM(O q)dq.
R

Hence, in the translation invariant case superconductivity is equivalent to ar , > %
and the critical temperature is determined by (1.3). Note that ar,, is decreasingin T'.
Therefore, TCR(U) is a monotonically increasing function of v.
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3. Existence of boundary superconductivity

From now on, we assume that ¢ > 0. In this section, we show that for weak coupling
the half-line critical temperature is higher than the bulk critical temperature. The idea
is to prove that for 7' below a threshold 7y > 0 we have

supo(Ay ) > ar. 3.1)

Then consider v < ¥ := a}ol, - We must have TR(v) < Ty by the monotonicity of
TR (v). By definition and continuity of inf 0(H$ in T,
1

Ry — - _
SUPO(AT(RﬂL(v),M) == ATR (), -

IfTR(v) = Tc]R+ (v), we would get a contradiction to (3.1). Thus, TR (v) # Tc]R+ (v)
and, together with (1.4), part (i) of Theorem 1.1 follows.

To prove (3.1), we use the variational principle with a trial function mimicking the
ground state found in [16]. We choose ¥2(x) = e™¢*l + Ag(x), where A € R and
the cosine Fourier transform g(p) = JLE fooo g(x) cos(px)dx is real, continuous and
centered at 2, /.

Proposition 3.1. Ler g(p) = e~ (pI=2y?/b for some constant b > 0. For u > 0,
there exists Ty > O such that for T < Ty

. A R4 A
mfxslgr(l)(l/fg | AT,LL —ar, | ¥l) >0.
As discussed above, Theorem 1.1 (i) follows directly from Proposition 3.1.
Proof. Let hg(x) = e €|, The cosine Fourier transform of the trial state is
I (p) = he(p) + 28(p).

where ﬁg(p) = ﬁﬁ We have

. R
= Ell_rf(l)(hs | AT’—; _aT,p,]I | hs)

. R
+ 24 lim (g | A7S, —ar,l | he)

: A R A
lim (7 | A7 —ar,l | 92)

R
+2%(g | Apt —ar,ul | g).
In Lemma 3.3 we show (g | Anﬁz —ar,,l | g) <0.Maximizing over A thus yields
. A Ry A 1 Ry
mfxgg}})(% | AT,,u —ar, | yr) = g%(ha | AT,,u —ar,.ll | he)

. R
limg—0(g | AT:; —ar,l | he)?

(3.2)
R
(g Ar), —arul|g)
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We now compute the two limits. Note that for bounded continuous functions f,
we have

lim

a—>0/ \/Egz_l’_ Zf(p)dp_\/_f(o)

L)

Moreover, for bounded functions f such that hmp_>0 exists,

m (L& L0
glil})/n(gz_i_pz)zf( )d P——hm—,
R

. . Ry . .
With the momentum space representation of AT’/: in Lemma 2.4, we thus obtain

lim(he | 477, ~ar,l | 8) = fimy [ dp Re(E() (AL, (p) = A7, (©)
lim [ dph dg B g
—Eg})/ P a(p)/ 95— T..(P,9)8&(q)
R R

1 o
= —m dg BT,M(O’ q)8(q). (3.3)
R

Moreover,

hm( e | A —aT,M]I | he)

e—>0

. A 1
= lim [ ap i) [ 40 2= (Bru(p.0) = Bru0.0)

. n 1 I
~tim / dphe(p) / 4q 5= Bru(p. )he(@)
R R

1

1 . 1 1
= ;l}l_f)%; dg E(BT,M(P,CI) BTM(O q) — _BTM(O 0). 3.4
R

In the first summand, we want to interchange limit and integration using dominated
convergence. The following Lemma is proved below.

Lemma 3.2. The function f(p,q) = %(BT,M(p, q) — Br,.(0,9))
i.  is continuous at p = 0 and satisfies f(0,q) = 0 forall q;

ii. thereisag e L'(R) N L®(R) such that | f(p,q)| < g(q) for all p and q.

By dominated convergence the first term on the right-hand side of (3.4) vanishes
and thus limg ¢ (A, | A“;f,; —ar,ul | he) = —%Br,,(0,0). Combining this with (3.2)
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and (3.3) yields
. A R A
max lim (y;" | A, —ar,d | ¥7)
1 (g Br.u(0,9)&(q)dg)?

(3.5)
R
16 (g | Azl —aru | g)

1
= —ZBT,M(O, 0) —

For T' — 0 the term Br (0, 0) is bounded while the second summand diverges log-
arithmically, which is content of the following Lemma.

R (rl1—2/m)2
Lemma 3.3. Let g(p) = e~ e for some b > 0. Then,

. —4_M 1 - g
i. %e b < limr_o(In %) e BT,M(O’Q)g(Q)dq<%"

3 . _ R
ii. 0>limroo(n )~ g | A7l —aru | g) > —oo.

Therefore, the last term in (3.5) dominates for small 7" and makes the right-hand
side positive. This completes the proof of Proposition 3.1. |

Remark 3.4. For Neumann boundary conditions, one obtains

. R 1
b}gr(l)(hs | AT:; —arull | he) = ZLT,M(O,O) > 0.

Hence, the trial state /. suffices to prove sup o(A]};iIL) >ar,y, forall T > 0.

Proof of Lemma 3.2. Using (2.1), one obtains the series representation

T 8up — p> +2pqg? — 16iqw
S =352 5 z,

nez

where

w= (20 i) (52 )

() (9

and w, = (2n 4+ 1)z T. From this, claim (i) is easy to see. For part (ii), note that, by
Lemma 2.1, | f(p.q)| < 5= =: 81(¢) for |p| > (/L. For |p| < (T,

sup 18up — p* + 2pq?|
parer? |((B52)” — p — iwa) ((252)" — i + iwn)|
lpl<m

- 8ulpl +1pI* +2|plg® .
< sup - i — - - = 1 < o0
ok (250"~ + ud[(559) ] +ud




C. Hainzl, B. Roos, and R. Seiringer 1518

and
16|qwn|
Sup +g\2 . —q\2 .
paoer? [(572)" = —iwn)((572)" — 1+ iwn)|
16]q|

< sup
(p,q)eR?2 \/[(\plg\q\)z _ N]Z + w(z)

With these estimates, one obtains for |p| < /i

|f(p.9)| < T(Clg+ 2) > :

wer (G5 =) +wi

=:Cy < Q.

Using that the summands are decreasing in n, we can estimate the sum by an integral

[e.e]
T(er+ea)[ 1 1
ol = = ——— +/ — dx

L (4 — )" + wd 2 (& — )" + 4n2T2x2

a 14—l
_ Tl +c) 1 N arctan(—-—) (@)
4 ﬁ _ 2 5 oxT ﬁ _ - 829).

(G — )"+ wg 7T % —

Clearly, g = max{gi, g2} € L'(R) N L®(R). n

The logarithmic divergence in Lemma 3.3 originates from the following asymp-
totics proved in Section 6.2.

Lemma3.5. Letu > 0.As T — 0,

2 (1 1 8
/ Fru(p)dp = ﬁ(ln Tty +n ;) +o(1)
R
V21
:/FT,M(P)dP + 0(1), (3.6)
where y denotes the Euler—Mascheroni constant.

Proof of Lemma 3.3. (i) On the interval [—2/2t,2+/21t] the minimum of g is et
We estimate

221
_4n ~
/ Br,(0. pye—tdp < / Br..(0. p)8(p)dp
_zm R

221 _Upl—2ym?
e b

f/BTM(O’p)dp+/‘X|p>2~/2u dp,
’ (p/2)*—
—2./21 R
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where we used g(k) < 1 and tanh(x) < 1. The last summand is some constant inde-
pendent of 7. Using that Br (0, p) = Fr,,(p/2) and Lemma 3.5 the asymptotic
behavior for T — 0 is

Ve Ve N \
[ Bra0.pap = [ Fraipap =2 [ Fruap = i+ 0w,
—24/2u —24/2u —21

and the claim follows.
(i) Recall that

R N
(e 457 —aru | &) = [ ap 2 Ura(p) - ar,)
R

1
—/dp gf(p)/dq EBT,M(P’Q)g’(Q)-
R R

By Lemma 2.6, the first summand is negative and thus also (g | AEL —ar, | g) <0.
Moreover, using Lemma 2.6 and 0 < g(p) < 1, we have

R R R 1
g1 47 —anu | &) 1= [ dpePar, + [ pir) [ da = Bru0.0)
R R R

In both terms, the integral over p gives a finite constant independent of 7. The claim
follows from the asymptotics in Lemma 3.5. ]

4. Weak coupling limit

In [16] it was observed by numerical and non-rigorous analytical computations that
the effect of boundary superconductivity disappears in the weak coupling limit, in the
T2t ()-TR ()
TR ()
Recall that the bulk critical temperature Tc]R (v) is the unique 7 > 0 such that

sense that — 0 for v — 0. In this section we shall verify this claim.

ar,y, = % For the system on the half-line, we have by continuity of O'(H$ )
Ry o Ry, . —1
T " (v) = min{T € [0,00) | supo(Ay),) =v" }.

We want to invert this function and view v as function of Tc]R *. We define v(T) :=
(supO(AEJ;))_I. Note thatv o Tc]R+ =1id and for all T > 0 we have Tc]R+ (v(T)) <T.

. . R .
The claim can be reformulated in terms of the operator AT; and ar,, in the
following way.
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Te T ()-TE @)

20) =0 < limr¢info(ar,,l— AT,Z) =0.

Lemma 4.1. lim,_,¢

Proof. By definition, we have supo(A]lﬁ;: = U(IT) = A7k o(ry).,.- Hence,

R
. Reo e TR (o(T))
fim o arl = A7) = fim e —arry.) = - fm ()
where in the last equality we used Lemma 3.5 and that
Ry R
T'=T. " (o(T)) = T."(o(T)) = 0,

and thus lim7_.o TR (v(7')) = 0. Therefore,

R
o e . T—TR0(T)) _
Thglo info(ar I — AT,;L) =0 = Thglo W B

There exists a sequence (75) such that 7, — 0 asn — oo and TcRﬁL (0v(T,)) = T, for
all n. Therefore,

T-TROT) _ T ) - TR ()
T TE@T) 10 TEED)

Since limz_o TR (v(T)) = 0, also limr—_. v(7T) = 0. Thus,

T (1) - TR(T) . Tt () — TR ()

li =l
70 TR(o(T)) w20 TR(u)
and the claim follows. n

Recall the definition of A7, in (2.4). With the notation

Er,u(p) = 4n(ar,u — At (P)),
we have, for all ¥ € L2((0, 00)),
sntar,d = ATV = Erapv () + [ Bro(p.ov@da.
R

For the proof of Theorem 1.1 (ii), we need the following intermediate results
which are proved in Section 4.1.

Lemma 4.2. Let ;1 > 0. Then supy || BT, || < 00.
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Lemma 4.3. Let [, denote multiplication with the characteristic function of the
interval [—e, €] in momentum space. Let 1 > 0. Then

lim sup||I<; Br,; I <¢||< lim sup||I<; Bt ;I <¢|lus= 0,
e—>0 T e—>0 1
where ||-||us denotes the Hilbert—Schmidt norm.

Lemma4.4. Let0 < e <2,/ For |p| > & we have

E7,.(p) > c1 ln(%)

for constants cy,cy > 0 and T small enough.

Proof of Theorem 1.1 (i1). By Lemma 4.1, it suffices to prove
o Ry, .. 1.
0= 71"1210 info(ar,, I — AT,LL) = 71‘1210 P info(ET, + Br,.)-
By (1.4), we only need to show that

Tlimo info(Er,, + Br,y) > 0.

For § > 0, we can write

ET,M + BT,M + 8

:,/ET,;L+5(]I+ \/ﬁBT’M\/ﬁ>VET’M+& (4.1)

since E1,;,(p) > 0 by Lemma 2.6. We shall show that for all § > 0

lim
T—0

1
BT, H =0. 4.2)
\/ET,;/,"‘S M\/ET,M+5
Hence, the operator in the bracket in (4.1) is positive for small 7. This implies that
for all § > O for T small enough we have info (Er,;, + Bt + ) > 0. Since § can
be arbitrarily small, the theorem follows.
To prove (4.2), we use the notation of Lemma 4.3 and estimate for an arbitrary

O0<e<2/m

1 1 1 1
PSP N Y F WP
”\/ET,M+5 " VEr.+38 “VEru+8 JEr,+8
1 1
4+ (|T BT’ I
= VErp+8 " JEr.+8
1 1
4+ (T BT’ H
e ET,M+5 M\/ET,M—{—S
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Now, we use that 7, > 0 and Lemma 4.4 to obtain

1

1
B
VErp+8 " JErp+9 H

< lim —||]I<sBTMH<a|| + lim

lim
T—0

1/2
1

o Glintes/ T2 127

With Lemma 4.2 it follows that the second term vanishes and

Sup ||H<SBT wl<ell.

ETM ETM

Since ¢ > 0 was arbitrary, (4.2) follows from Lemma 4.3. [ ]

Remark 4.5. In the case of Neumann boundary conditions, the same argument proves
equation (1.5).

4.1. Proofs of intermediate results

Proof of Lemma 4.2. In order to bound B, (p, q), we apply the following inequality
proved in Section 6.3.

Lemma 4.6. Forall x,y € Rand T > 0, it holds that

tanh(x/7T) + tanh(y/T) 2
x+y x|+ [yl

Hence, Bt . (p. q) is bounded above by
2
2 —g\2 :
(259)" = ul +1(25%)" —

The function f has singularities at the four points where {| p|, ||} = {0,2,/t}. Since
f diverges linearly at those points, the idea is to do a Schur test with a test function
of the form d(p)*, where d(p) is the distance from the singularities in variable p and
a € (0, 1). We choose the function 4(p) = min{|p|, [2,/x — |p| |3/2_ The Schur test
gives

f(p.q) =

TM(P q)

supl B, < supsup h(p) / b Dy,
f(p.q) f(p, 61)
h dg = 2 ph 43
ESI;P (p)R/ Q) q= (p)/ Q) (4.3)

h s h , .
where we used that (pl)z{q(f’ 2 — hlp %26 19D for the last equality.
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q
1 2
3
20
5 6
4

N

7 8 9

0 ﬁzﬁ 3ﬁ N P

Figure 1. The nine regions of the domain of p, ¢ in the proof of Lemma 4.2.

Region Expression Upper bound | Proof
1 hp) [y oy p TR dg % (4.4)
2 h(p )fni:/\;jg,p—zf) Lt dg % *-3)
3 ho) f3 Y g = | @9
4 h(p) fzf RAvEINY 2 “.7)
5 (p)f ax{Zf P S P—2 ST I(z(q))dq % (4-8)
6 h(p) [P T2 L ag —E | 49)
7 h(p )/‘mm{\/_2\/_ P} f(p q)d % (4.10)
8 h(p)flg/jﬁ_pl L) g 2 @.11)
9 h(p )fmln<fp 21y f(p q)dq % (4.12)

Table 1. Overview of the estimates used in the proof of Lemma 4.2.

In order to estimate A(p) f h( ))dq, we split the domain into nine regions as
indicated in Figure 1. The finiteness of the right-hand side of (4.3) follows from the
bounds listed in Table 1. In the following, we prove the bounds in Table 1.
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In region 1, we have

f(p,q)dq: / 4 1

d
P2+q?—4u(g—2/m)'? 1
2./i+p 2J/u+p

o0

4
dg
/ (¢ + 2/ (q —2/R)**>
2 /u+p

1 2

1 [e.e]
=7 | g e
2 /u+p

In region 2, we have

2/n+p 2/n+p
/ f(p.9) dg = / 2 dg
h(q) pq(q —2 /)2
max{2./it,p—2./i} max{2./i,p—2./i}

2/n+p

- 2 / 1 d

== " —1,%

P q(q —2/m)1/?
N/ Vi)
2/n+p

1 / 1 2
< — dg = . (45)
N RN O UL e
2/

In region 3, we have p > 4, /i and

P2/ P21k
JP4) . _ / 4 1 dg
h(q) Pr+q* —4p (g —2ym?
2 /I 21
P21
<2 f S — q— (p 4ym'?
- p2 q 2 )1/2
2 /I Vi
8 2
P32 = \/—pl/Z (4.6)

where we used p > 4,/ in the last inequality.
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In region 4, we have p < /it and

2. /A—p 2/n—p
f.q ., _ / 4 1

dg dg
h(q) 4p—p?—q? 2w —q)V/?

JVE

Ji
2J—p

/ - : dq
A T e LN e

2. /uu—p
1 4 1
== / 1/2dq
Vi (Vi —p*—q) VIt —4q)
w
2./i—p
1 4
<— / dg
VE o (VAu—p2—q)?
B 8
V(4= p? =2/ + p)i/?

8
JEQJE— DR JRE+ PV = i - p) P
_8[eymE+ )2+ 2 yE— p)/A?
B VEQJI = p)V4(2p)1/?
8(4M1/4)1/2 8 ‘21/2

< = , (4.7)
JERVEQp)Z Japt/?
where we used p < /i in the last inequality.
In region 5, we have
2./t 2.1
f(p.q) 2 1
dq - - 1/2 dq
h(q) rq 21 —q)
max{2./i—p,/1t,p—2./1L} max{2.,/i—p,/1t,p—2./1L}
2/
2 1
]
PV 2yr—q)
max{2./i—p, /i, P—2/1L}
4
= —— min{p, .4/t — p}'/?
PV Vi
4
4.8)

<
~ Jup'/?
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In region 6, we have p > 3,/ and

min{2,/i, p—2./1t} min{2/it, p—2./1t}
/ f(p.9) dg = 4 ! dg
h(q) Pr+q?—4uQym—q)?
Vi Vi

2

4 / 1
=< dg
I A N

8

_ 5 1/2
o 3M( Vi)

8 1/2
0+ R — v Y
8

= ARG e G T G VP

21/28

= JRG -3 pi @9

In region 7, we have

min{,/[t,2./it—p}

f(p.q)
/ g

min{,/1t,2/it—p}

B 4 Ly
- pr -2 q 2
0

min{/i,2/i—p}

4
< . —7z 49
4p — p? — min{ /I, 2 /& — p}? q'/?

_ Smin{ym.2/m—p}'?
4p — p? —min{ /i, 2 /it — p}?

8 1/4
o if p < JA.

3u— p?
itp> ./

4
pQ2m— p)/?

4 1/4
= if p < VL
® (4.10)

4 .
JRCJi= ) if p> /u.

IA
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In region 8, we have p > /i and

Vi Vi
/ SP.4) 4, _ / 21,
h(q) pq q'?
12/f—pl 12v/i—pl
[e.e]
- 2 1 d
S
[2/1i—p
4 -
= ﬁlzﬂ—pl 1z, (4.11)
In region 9, we have p > 2, /u and
min{ /1L, p—2./it} min{,/{t,p—2./it}
fp.q) 4 1
dg = dg
h(q) P?+q*> —4uq'l?
0 0
A min{ /1, p—2./it}
= il
0

_ 8 . 1/4 _ 1/2
(p+2m(p_2mmln{u Ap =217}
2

< . 4.12)
V(P =2/m)'?
n
Proof of Lemma 4.3. Let0 < & < ,/i. For 0 < |p|,|q| < &, we have
P+q\? (P —4g)\? 2
2 — ( ) - ( ) > 2u — 262,
H 2 2 ) =HTE
Together with 0 < tanh(x) < 1 for x > 0, we obtain
1
0<B ,q) < .
< Bru(p.q) = P
Using this estimate, we bound the Hilbert—Schmidt norm as
& &
) ) 42
[T<e Brul<ellns= Bt (p.q)"dpdg < m u

—& —¢€

Proof of Lemma 4.4. Recall that E1,,(p) = 4mwar,, — [g Br,u(p.q)dq. The idea is

to show that the supremum sup,,... 7~ Jg Br,u(p.q)dg < oo. Then, for T — 0 we
4

have inf, |~ E1,,(p) ~ dmar,, ~ Vi

23
lnT.
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We shall prove that the following four expressions are finite:

o0

Iy ;= sup / Br,,.(p.q)dq,
p>&,T>0
pt2/n
2./—p
I = sup / Br,.(p,q)dq,
2 /m>p>e,T>0 o
=21
I3:=  sup / Br u(p.q)dq,
p>2/w, T>0
p+2. /1
Iy := sup / Br . (p.q)dg.
p>&,T>0
|p—2 /1l

From this, together with Bt ;,(p,q) = Br, (| p|, |q]) it follows that

sup / Br . (p.q)dq
|p\>19,T>0]R

o0 o0

§2maX{ sup / Br . (p.q)dgq,  sup / BT,M(p,q)dq}
2 /m>p>e,T>0 0 p>2/u, T>0 o

§2max{12 + 14+ 11,15 +[4+11} < 00.

The following inequality is proved in Section 6.3.

Lemma 4.7. Forx,y > 0,

tanh(x) — tanh(y) <4
X—=y -

¢~ 2mintx.y} (4.13)
Applying Lemmas 4.6 and 4.7, we estimate

- exp(omin{(p + )" — 41, 45 — (p — 4)°}/4T)

Bru(p.q) < for|p—2/ul <q < p+2Jn,
8
(p +q)% —dul+ |(p —q)% — 4ul

otherwise.

(4.14)
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With (4.14), we have

N 4 T 4
I, <su ——— dg < dg < oo.
P / T / g7
p+2. /1 e+2./1
Furthermore,
2. /i—p

4
I, < sup / ————dg
2/F>p>e ) dp—p*—q*

4 2 2
= s 2Vp—p)y = sup —=-.
2./u>p>¢ _p2_(2\/ﬁ_p)2 f>p>sp €
Moreover,
-2 P21
) P21 1 ; 4arctan( p+2ﬁ)
3= sup / ——————dg = sup
P2 P> +q*—4p P2 VP2 —4n
- arctan (x) 1

< sup <,
0<x<l1 \/_)C ﬁ

In order to estimate /4, note that

(P+q9’—dp<dp—(p—q)° < q<in—p2

Let
4p—p?
Is=  sup = / oM T=(p+aP /4T 4,
e<p<2/w, T>0 T
2, /u—p
2. /i+p
lei=  sup = / oa—PPAT-u/T g,
T b
e<p<2,/u, T>0
v/ 4u—p?
5 P2
I; = sup - / e(q—p)2/4T—u/qu'
p>2/w,T>0

P21k

1529
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Then we have 14 < max{[ls + I¢, [7}. We can bound both /¢ and /7 using

5 P2/
lg, 17 = sup = / =P /4T—u/T 4,
p>e,T>0
P21
2/
= supz / 44T/ T 4q
T>0T
4 —u/T
= Sup Lerﬁ( ﬁ)
T>0 \/T T
4

T
= sup xe_xzerﬁ(x).
M x>0

Since /7 limy_ 00 xe_xzerﬁ(x) =1, it follows that /¢, I7 < oo.
Finally,

au—p>+p
26“‘/T 2 4T
Is = sup T e 1 / dg
2/, T>0
e<p<2/u,T> 2
w/T 7
< sup 2 / e_q2/4qu
T>0 T
2w
2 w/T
= sup ﬁ—eerfc( ﬁ)
T>0 \/T T
2
= el sup xexzerfc(x).
\/ﬁ x>0
—x2
Since 0 < erfc(x) < 1 and for x — oo asymptotically erfc(x) ~ iﬁ + o(e_xz/x),
we have sup,.. xe* erfe(x) < oo and obtain Is < co. [

5. Strong coupling limit

The goal of this section is to prove part (iii) of Theorem 1.1. As for the weak coupling
limit, we first translate the question about the relative temperature difference into a
condition on A]};J/; and ar,;,. While the weak coupling limit turned out to be equivalent
to a low temperature limit, the strong coupling limit corresponds to a high temperature
limit. In this limit, the relevant quantities behave as follows.
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Lemma 5.1. Let v > 0. Then
i limyseo TNT
i, lim7—oeo TR(0(T)) = oo;

iii. limr—eo TY2ar,, = ao;

(v) = oo;

iv. limr_eo T2 sup o(A%) = squ(A]f{,K :

1531

The proof is provided in Section 5.1. We can reformulate Theorem 1.1 (iii) as

follows.

T+ )-TR ()

R
R) =0 = supo(Al’g) = aip.

Lemma 5.2. limy_
Proof. By Lemma 5.1(iv) and the definition of v(7") we have
Ryyv 1/2 Rev s 1/2
supo (A4, y) = Tlglloo T/ “supo(Ay,) = Th_r)nooT AR (o(T).

By Lemma 5.1 (ii) and (iii) we get

lim T1/2a R =di,0 lim (L>1/2
rm T (o(T)), 11 U T—o00 TCR(U(T))

TS (v)\1/2
TR (v) )

=dai1,0 lim (

where we used Lemma 5.1(i) and t)(Tc]R *(v)) = v for the second equality. Since

ai,o > 0, the claim follows.
Remark 5.3. In the case of Neumann boundary conditions,
d .= supo(A]ﬁg) —aro > 0.

With the argument in Lemma 5.2, we have

Ry _ 7R 2
T. " (v) - T, (v):(i+1) —1>0.
aio

lim
vl>oo TC].R(U)
We are thus left with showing that sup o(A]EaL) = aj,0. Recall that
R
supoeSS(Al’g) =aj .

Hence, it suffices to prove that for all ¥ € L2((0, o0))

1
W 14550 = - [ [ Brotaalv ) - v@)Pdpdg
R R

IA

1
= [P [ 51000130 = ¥1Earo
R

R

(5.1
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In order to show this, we shall bound B o by a positive definite kernel K, in such a
way that the right-hand side of (5.1) does not change.

Lemma 5.4. Let K be the operator on L*>(R?) with integral kernel

K(p’ Q) = min{Bl,O(p7 0)7 Bl,O(q7 0)}

Then K satisfies
i.  Bio(p,q) < K(p,q)forall p,q € R;
ii. K(p,q) = K(q,p)forall p,q eR;
iii. K is positive definite;
iv. [g K(p.q)dg < [g K(0,q)dq forall p € R;
v. Bi1,o(p,0) = K(p,0)forall p € R.

This implies (5.1) and hence part (iii) of Theorem 1.1 since

%//mm%mwwrme@w
R R

s%//ﬂnwwm—ww%mq
R

R

=/W@W/meM@—WMW)
R R
s/www/Kmmww

R R

§WM/K@@M=WM/Bm@@M
R

R

Proof of Lemma 5.4. Property (ii) is obvious. Properties (iv) and (v) follow from the
fact that

K(p.q) = min{F1,0(p/2), F1,0(q/2)} = Fio(max{|p|.|ql}/2),

where Fy0(p) = mnh;# has a maximum at p = 0 and is monotonously decreasing
for p > 0. For (i) consider the following inequality, which is proved in Section 6.4.

Lemma 5.5. Forall p,q € R

tanh (2242

Bio(p.g) < v
p)
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Together with the monotonicity of tanh(p)/p for p > 0, it implies (i). For prop-
erty (iii), it suffices to show that there is a real-valued function g such that

K(p.q) = / g(r, p)g(r,q)dr. (5.2)
R

In fact, let g(r, p) = /h(r) X, p2 With
d tanh(x/2)

h(r) = 0.
") dx x =t
‘With this choice, (5.2) holds since
o0
[eopsaer= [ hoyr
R max{p2,g2}
—max{p?,q°}
d tanh(x/2)
= I E— dr
dx X —r
—00
tanh(max{p>, ¢°}/2)
= > = K(p.q). =
max{p>.q?}
5.1. Proof of Lemma 5.1
Ry

Proof of Lemma 5.1. For (i) we have limy_oo Ty T (v) > limyoo TR(v) = o0
by (1.4).
(ii) follows easily from (iv). Clearly, (iv) implies that

. R
1 ATy =0.
fim, o (7))
Since arr (1)), = supa(A]l;’l:) this is equivalent to

Am agk ey, = 0-

Using that ar,, is strictly decreasing in 7' with limr . ar,, = 0, this in turn is
equivalent to

lim TR(o(T)) = cc.

T—o00

For (iii) we have after substituting ¢/271/2 — ¢

dqg.

/ tanh(—qz_z“/T)

1
lim T2 = — 1
im ar,u 7 im 72— /T

T—00 7T T—o0



C. Hainzl, B. Roos, and R. Seiringer 1534

Fix some Ty > 0. Since tanh(x)/x is decreasing for x > 0 and bounded by 1, the

integrand is bounded by %X|q|<2\/m + mx\q\ﬂm for T > Tpy. This is an
L! function, so by dominated convergence we can pull the limit into the integral and
arrive at the claim.

(iv) Let Ur denote the unitary transformation Ury(p) = T4y (T2 p)
on L?(R?). We shall prove that

. R R
dim [Ur T2 475 UL — 475 =0,

which implies the claim. Note that

R4
Lu/T"

1/2 Ry 77t
UrT'?4; U = 4
Therefore, we have
. Ry, f R
Jim U T2 A7 UL - A

— T Ry Ry
= ;}EH)”AI““ - Al,o [

1 1

L B 1 B

= g pim,sup /(Bl,u(p,q) Bl,o(p,q))dq' + 47 Jim [[B1u = Buoll-
R

(5.3)

For the second term on the second line of (5.3), we bound the operator norm by the
Hilbert—Schmidt norm:

1Brye — Buol® < [Biy— Brolls = / dp f dq(B1.,(p-q) — Bro(p.4))’.
R R

Using that Br,;,(p.q) < 1/2T and | tanh(x)| < 1, one can bound

Bi,.(p.q)*

16

1 (1
< pr2+q254u(p,q) + Xp24q2>au (P> 9) mm{z, TRy 4#)2} = fu(p.q).

By the monotonicity of f}, in p, we have for all v < u that
(B1,v(p.q) — B1.o(p.9))* < 2fu(p.q).
Since f}, is an L! function, dominated convergence implies

lim||B;, — B
M—>0” 1, 1,0

| =o0.
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For the first term in the second line of (5.3) we estimate

hm sup

/(31 w(psq) — B1,o(p, q))dq‘

/ / = Biap. q)dvdq‘

< lim psup sup /‘ Bi,(p. q)‘dq, (5.4)
K=>0" b yefo,u] dv

= lim sup
n—>0 p

where we used the triangle inequality and Fubini’s theorem in the last step. By (2.1),
we may write

1 1

ad
—Biru(p.q) =2 ~ ;
on ;((i) —n—iwa)” (5)° — i,
1 1
L) . —g\2 N2
(550)" —p—iws ((55%)" = +iwy)
where w, = 7w (2n + 1). Observe that

P+ q\? .
(F51) i

’

> Wn X |ql<2 g + \/(612/4 — )% + w212

and

— 2
‘(P—2C]) —§Fiwy| > wy.

Applying Fubini’s theorem to swap integration and summation, we have for all p
and

/‘%Bl,M(P’Q)‘d‘I

X|q|>2ﬂ
R G N e e

nez
¥ Xla|>2. /7 )
wiy/(q2/4— p)? + w}
[e.e]
BVE 2 1
=2 [ /ds
,2 wy'? ) (<s2+1)¢s+u/wn
1

i V2 +)(s + u/wn)ﬂ’
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where we substituted s = w;, ' (¢%/4 — ). For i < 1 we therefore obtain a y-inde-
pendent bound

sup sup /‘_Blv(p q)‘dq
p veO,u,]

T 1 1
<2Z|:w3 S/ZO/.dS((SZ_F])\/E—i_ /(s2+1)s):| =

Thus, the last expression in (5.4) vanishes and the claim follows. |

6. Proofs of auxiliary results

6.1. From Section 2

Proof of Lemma 2.1. Note that for all p,q € R

1 2
Lratpo sminl b 21
g 2T |p? +q% — 24
Hence,
14+4T +2u
Lru(p, )0+ p* +¢%) < —————
2T
and
5T +2u
Lru(p. (T + p? +¢%) = ——=—.
2T
So, with Cy (T, p) = m and C3(Ty, n) = T, 7;2 m the respective inequalities

hold.
For the remaining inequality, note that L7, vanishes only at infinity. Let & > 0.

There is a constant ¢q such that L1, (p,q) > c¢; forall |p|, |q| < y/max{2u,0} + €.

Moreover, if | p| or |q| > /max{2u, 0} + &, we have

Lra(p.a) > tanh((|u| + €)/2T) — tanh(u/2T) 1
Twip P> +q>—2u = D7+ 7 + max{—2, 0}
In particular, L7, (p, ¢)(1 + p* + ¢%) > min{cy, ¢z, ¢2/ max{—2u, 0}}. ]

Proof of Lemma 2.6. First, we show that for every x, y € R

(6.1)

tanh(x) + tanh(y) tanh(x) tanh(y)
x4y 2( x y )
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Since changing x — —x, y — —y does not change the expressions, we may assume
without loss of generality that x > |y|. Note that

tanh(x) + tanh(y) [ tanh(x)  tanh(y)
= (x + y)( + )
xX+y 2(x + ) x y
tanh(x) tanh(y)
+l- y)( x oy )]

Since tanh(x)/x < tanh(y)/y, the last term is not positive and the inequality (6.1)
follows.
For p € R, we therefore have

/BT,M(p7Q)dq < %/[FTM(p_erq) + FT,M(%)]dCI = / Fru(q/2)dq.

R R R

Since Fr,(q/2) = B(0, g), the claim follows. ]

6.2. From Section 3

Proof of Lemma 3.5. Substituting by p?> — u =t for p?> > w and u — p? =t for
p? < |1 we get
1) > 00 “w
tanh (-4 tanh(z /2T tanh(z /2T
/FTM(p)dp:2/—( o7 )dp:2/—an URT) 4y 1o [(RONC2T)
’ 2 2t/ +t 2t /i —1
0 0

pT— K
R

0

It was shown in [13, Lemma 1] that

1%

tanh(t /2T
lim ([%/)dz—ln%) —y—InZ.

T—0 2

By monotone convergence, we observe that
"

h(/2T) ; 1 1 1, 1 1 In4
Tlino()/tan T (m_ﬁ)dt:/E(m_ﬁ)d’: znﬁ

0

as well as
w
tanh(r/27) 1 1 1 1 1
Thﬁlo/ 21 (m_ﬁ>d“/5(m_ﬁ)m
0 0
_ In(2(v2-1))
= 7\@ ,
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Using monotone convergence once more, we obtain

o0 o0
i / tanh(z /2T) » / 1 ” In(+/2 + 1)
m B — = = .
T—0) 2t /u+t 2t/ + 1 VI
2 2

Combining all the terms we arrive at the first equality in (3.6). Observe that

[o¢]
1
0< / Xpi>varfru(p)dp <2 / 2 _udp < 00.
R V21
Therefore, this term is of order one for T — 0 and
&M
/FT,M(P)C]P = / Fru(p)dp + O(1). =

R -2

6.3. From Section 4

Proof of Lemma 4.6. In the case xy > 0, the inequality follows immediately from the
fact that | tanh(z)| < 1 for all z € R. In the case xy < 0, let us replace y — —y and

assume without loss of generality that x > y > 0. Since the function s > e~2* is
convex, we have
-2y —2x
e —e d _ _
— < — —eF =27, (6.2)
xX—y ds s=y

We estimate

x+y 20x+y) e —e2¥
tanh(x) — tanh =
xX—y (tanh(x) — tanh()) 1+e 2 (x—y)(1+e2%)
2 2y
< Mmm{z, }
1+e2y X—y

_ 4@y +1/9)e™
- 14 e 2y ’

where we maximized over x in the last step. The maximum of the last expression over
y is attained at the value y = j satisfying e=2” = 23 — 1/2. Therefore, we get

);i—;)(tanh(x) — tanh(y)) < 4(25 — 1/2).

The function e~2” is decreasing in y and 2y — 1/2 is increasing. For y = 1/2, we have

_1 . . . ~ . ~ +
e~ ! <1/2, hence the intersection point y satisfies 0 < y < 1/2. Thus, %(tanh(x) -

tanh(y)) < 2, which proves the claim. ]
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Proof of Lemma 4.7. Without loss of generality, we may assume that y < x. We have

e¥ —e™™ eV —e7Y
tanh(x) — tanh = —
(x) ) eX e * e¥+teV
ex—y _ ey—x
(e* +e™¥)(e¥ +e7?)
ex—y _ ey—x

_ -2y _ ,—2x
< Ziexﬂ’ =2(e e ).

Applying (6.2) the claim follows. |

6.4. From Section 5

Proof of Lemma 5.5. By concavity of tanh(x) for x > 0 for x, y > 0 it holds that

tanh(x) + tanh(y) _ . h(x + y) tanh(x) + tanh(y) _ tanh(*£2)
anh( —— .
2 - 2 2(x + y) T x4y
Choosing x = (p + ¢)?/8 and y = (p — q)?/8 gives the desired inequality. ]
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