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A comparison between Neumann and Steklov eigenvalues

Antoine Henrot and Marco Michetti

Abstract. This paper is devoted to a comparison between the normalized first (non-trivial)

Neumann eigenvalue j�j�1.�/ for a Lipschitz open set � in the plane and the normalized

first (non-trivial) Steklov eigenvalue P.�/�1.�/. More precisely, we study the ratio F.�/ WD
j�j�1.�/=P.�/�1.�/. We prove that this ratio can take arbitrarily small or large values if

we do not put any restriction on the class of sets �. Then we restrict ourselves to the class

of plane convex domains for which we get explicit bounds. We also study the case of thin

convex domains for which we give more precise bounds. The paper finishes with the plot of the

corresponding Blaschke–Santaló diagrams .x; y/ D .j�j�1.�/; P.�/�1.�//.

1. Introduction

Let � � R
2 be an open Lipschitz set. The Steklov problem on � consists in solving

the eigenvalue problem
´

�v D 0 in �;

@�v D �v in @�;

where � stands for the outward normal at the boundary. As the trace operator

H 1.�/ ! L2.@�/

is compact (when � is Lipschitz), the spectrum of the Steklov problem is discrete and

the eigenvalues (counted with their multiplicities) go to infinity

0 D �0.�/ � �1.�/ � �2.�/ � � � � ! C1:

We recall the classical variational characterization of the Steklov eigenvalues

�k.�/ D sup
Ek

inf
0¤v2Ek

R

� jrvj2dx
R

@� v2ds
; (1)
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where the infimum is taken over all k-dimensional subspaces of the Sobolev space

H 1.�/ which are L2-orthogonal to constants on @�.

The Neumann eigenvalue problem on � consists in solving the eigenvalue prob-

lem
´

��u D �u in �;

@�u D 0 in @�:

As the Sobolev embedding H 1.�/ ! L2.�/ is also compact here, the spectrum of

the Neumann problem is discrete and the eigenvalues (counted with their multiplicit-

ies) go to infinity

0 D �0.�/ � �1.�/ � �2.�/ � � � � ! C1:

We also have a variational characterization of the Neumann eigenvalues

�k.�/ D sup
Ek

inf
0¤u2Ek

R

� jruj2dx
R

� u2dx
; (2)

where the infimum is taken over all k-dimensional subspaces of the Sobolev space

H 1.�/ which are L2-orthogonal to constants on �.

Recently, several papers study the link between theses two families of eigenvalues.

Let us mention for example [14, 15, 17, 27]. A natural question is to compare the first

(non-trivial) eigenvalues suitably normalized, that is to say to compare j�j�1.�/ and

P.�/�1.�/, where � � R
2 is an open Lipschitz set in the plane, j�j is its Lebesgue

measure, and P.�/ is its perimeter. More precisely, in this paper we study the follow-

ing spectral shape functional:

F.�/ D �1.�/j�j
�1.�/P.�/

: (3)

We want to find bounds for F.�/ (if possible optimal) in the two following cases: the

set � � R
2 is just bounded and Lipschitz or the set � � R

2 is bounded and convex.

We now present the main results and the structure of the paper. In Section 2 we

will show that, if we do not put any restriction on the class of sets, the problem of

maximization and minimization of F.�/ is ill posed. Indeed we have

inf¹F.�/W � � R
2 bounded open set and Lipschitzº D 0;

sup¹F.�/W � � R
2 bounded open set and Lipschitzº D C1:

Thus, we will study the problem of minimizing or maximizing F.�/ in the class of

convex plane domains. It is well known that minimizing (or maximizing) sequences

of plane convex domains
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• either converge (in the Hausdorff sense) to an open convex set (and we will see

that, in this case, this set will be the minimizer or maximizer);

• or shrink to a segment which leads us to consider such particular sequences of

convex domains.

Therefore, in Section 3 we will study the behaviour of the functional F.�"/ where

�" is a special class of domains, called thin domains (see (6)). The main theorem of

this section gives the precise asymptotic behaviour of the functional F.�"/.

Theorem 1.1. Let �" � R
2 be a sequence of thin domains that converges to a seg-

ment in the Hausdorff sense. Then there exists a non-negative and concave function

h 2 L1.0; 1/ such that the following asymptotic behaviour holds:

F.�"/ ���!
"!0

F.h/ WD �1.h/
R 1

0 h.x/dx

�1.h/
;

where �1.h/ is the first non-zero eigenvalue of

8

ˆ

<

ˆ

:

� d

dx

�

h.x/
duk

dx
.x/

�

D �k.h/h.x/uk.x/ x 2 .0; 1/;

h.0/
duk

dx
.0/ D h.1/

duk

dx
.1/ D 0;

and �1.h/ is the first non-zero eigenvalue of

8

ˆ

<

ˆ

:

� d

dx

�

h.x/
dvk

dx
.x/

�

D �k.h/vk.x/ x 2 .0; 1/;

h.0/
dvk

dx
.0/ D h.1/

dvk

dx
.1/ D 0:

In order to obtain this result, in Lemma 3.2 and in Lemma 3.5 we prove general

asymptotic behaviours for Neumann and Steklov eigenvalues on collapsing domains.

Similar results for the Neumann eigenvalues, but in a different geometrical context,

where proved in [6, 24]. We want to highlight the fact that the limit eigenvalues prob-

lems in Lemma 3.2 and in Lemma 3.5 are non-standard: since the function h can

vanish at the boundary, they are non-uniformly elliptic. We are not aware of similar

asymptotic behaviour in the literature.

In the rest of Section 3 we are interested in studying in which way a sequence

of thin domains �" must collapse in order to obtain the lowest possible value of the

limit F.�"/. From Theorem 1.1, this problem is equivalent to study the minimization

problem for the one-dimensional spectral functional F.h/ in the class of L1.0; 1/,

concave and non-negative functions. In particular, in Theorem 3.8 we will show that

there exists a minimizer and also that the function h � 1 is a local minimizer.

Section 4 is devoted to the study of upper and lower bounds for the functionals

F.h/ and F.�/. We start by showing the following bounds for the functional F.h/.
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Theorem 1.2. For every non-negative and concave function h 2 L1.0; 1/ the follow-

ing inequalities hold:

�2

12
� F.h/ � 4:

Then we will prove the following bounds for the functional F.�/.

Theorem 1.3. There exists an explicit constant C1 such that, for every convex open

set � � R
2, the following inequalities hold:

�2

6
3
p

18
� F.�/ � C1 � 9:04:

The explicit constant C1 will be described in Section 4.

In the last section we are interested in plotting the Blaschke–Santaló diagrams

E D ¹.x; y/ where x D �1.�/P.�/; y D �1.�/j�j; � � R
2º;

E
C D ¹.x; y/ where x D �1.�/P.�/; y D �1.�/j�j; � � R

2; � convexº:

This kind of diagrams for spectral quantities has been recently studied by different

authors, let us mention for example [1, 7, 13, 28, 34]. In this section, we show that

the diagram E is, in some sense, trivial while the diagram E
C is more complicated

delimited by two unknown curves. We present some numerical experiments and give

some conjectures for this diagram.

2. Existence or non-existence of extremal domains

We show that, in general, the problem of minimization and maximization of the func-

tional F.�/ is ill posed, in the sense that one can construct sequences of domains

for which F.�"/ converge to 0 and sequences of domains for which F.�"/ converge

to C1.

Proposition 2.1. The following equalities hold:

inf¹F.�/W � � R
2 open and Lipschitzº D 0;

sup¹F.�/W � � R
2 open and Lipschitzº D C1:

In order to prove that the infimum is 0, we construct a sequence of domains �" for

which �1.�"/P.�"/ ! c > 0 and �1.�"/j�"j ! 0. We use similar ideas in order

to construct another sequence �" for which �1.�"/P.�"/ ! 0 and �1.�"/j�"j !
c > 0, proving in this way that the supremum is C1.
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We construct the desired sequences �" by perturbing a given set � by adding

oscillations on the boundary (see [10] for the details of the construction). Given two

compact sets �1;�2 2 R
2, we denote by dH .�1;�2/ the Hausdorff distance between

the two sets (see [20]). The key result is the following.

Theorem 2.2 (Bucur and Nahon [10]). Let �; ! � R2 be two smooth, conformal

open sets. Then there exists a sequence of smooth open sets .�"/">0 with uniformly

bounded perimeter and satisfying a uniform "-cone condition (see [20]) such that

lim
"!0

dH .@�"; @�/ D 0; (4a)

lim
"!0

P.�"/�k.�"/ D P.!/�k.!/; (4b)

lim
"!0

j�"j�k.�"/ D j�j�k.�/: (4c)

Proof of Proposition 2.1. Let ı > 0, let � be a simply connected domain for which

�1.�/j�j � ı (for example a dumbbell shape domain with the channel very thin

see [22]). Let ! be a disc, we know that �1.!/P.!/ D 2� . Using Theorem 2.2, we

can perturb the domain � in such a way that

lim
"!0

P.�"/�1.�"/ D 2�; lim
"!0

j�"j�1.�"/ � 2ı:

Thus, we can conclude that, for " small enough,

F.�"/ � 2ı

2� � 1
:

Since ı was arbitrary small we conclude that

inf¹F.�/W � � R
2 open and Lipschitzº D 0:

For the other case, we choose � as the unit disc. Then �1.�/j�j D �j 02
11 (j 0

11 is

the first zero of the derivative of the Bessel function J1). Let ! be a set for which

�1.!/P.!/ � ı (for example a dumbbell shape domain with the channel very thin

see [9]), Using arguments similar at the ones above we conclude that

�j 2
11 � 1

2ı
� F.�"/:

Since ı was arbitrary small we conclude that

sup¹F.�/W � � R
2 open and Lipschitzº D C1:

We mention that there exists another way to construct a sequence of domains such

that F.�"/ ! 0. This method is based on an homogenization technique. The key

result is the following:
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Theorem 2.3 (Girouard, Karpukhin, and Lagacé [15, Theorem 1.14]). There exists a

sequence of domains �" � R2 such that for every k 2 N the following holds:

�k.�"/P.�"/ ! 8�k; �k.�"/j�"j ! 0:

From now on, we will restrict ourselves to the class of convex domains. As recalled

in the introduction, a minimizing (or a maximizing) sequence of plane convex domains

�" has the following behaviour:

i. either the minimizing (maximizing) sequence �" converges to a segment (for

the Hausdorff metric);

ii. or the minimizing (maximizing) sequence �" converges to a convex open

set �.

In the second case, we deduce that there exists a minimizer (maximizer) for the

functional F.�/ in the class of convex domains. Indeed, the four quantities area, peri-

meter, �1 and �1 are continuous for Hausdorff convergence of plane convex domains

(see [20] for the first three and [3, 8] for Steklov eigenvalues).

3. Convex case: thin domains

We start by defining the following space of functions

L WD
²

h 2 L1.0; 1/W h non-negative, concave and

1
Z

0

h D 1

³

: (5)

Given two functions h� 2 L and hC 2 L, we define the class of thin domains �" in

the following way (see Remark 3.7 and Figure 1):

�" D ¹.x; y/ 2 R
2W 0 � x � 1; �"h�.x/ � y � "hC.x/º: (6)

We notice that the functional F.�/ is scale invariant, so without loss of generality

we can consider domains that have diameter D.�"/ ! 1 when " ! 0.

In the next lemma we give a compactness result for the space of functions L.

Lemma 3.1. Let hn 2 L be a sequence of functions. Then there exists a function

h 2 L such that, up to a subsequence that we still denote by hn, we have

hn ! h in L2.0; 1/;

hn ! h uniformly on every compact subset of .0; 1/:
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"hC.x/

�"h�.x/

.0; 0/ .1; 0/

Figure 1. Description of the thin domain �".

Proof. From the concavity of the functions hn and from khnkL1.0;1/ D 1, we conclude

that khnkL1.0;1/ � 2. Let us assume first that the functions hn are smooth, say C 1

inside .0;1/. We fix a parameter 0 < ı < 1 and we consider the interval Iı D Œı;1 � ı�.

The functions hn being uniformly bounded in Iı , from the concavity and the uniform

bound we conclude

�2

ı
� �hn.x/

ı
� h0

n.x/ � hn.x/

ı
� 2

ı
for all x 2 Iı :

We can now apply the Ascoli–Arzelà theorem and we conclude that there exists a

function h 2 C.Œ0; 1�/ such that, for every 0 < ı < 1, up to a subsequence that we still

denote by hn

hn ! h uniformly in Iı :

From the convergence above and from the fact that hn is concave for every n, we infer

that h is also concave in Iı . So, for every interval of the type Iı we found the limit

function h.

Now, we need to analyze what happens on the two extremities of the interval

Œ0; 1�. We consider the bounded sequence hn.0/, up to a subsequence. This sequence

has a limit. We extend the function h that we found above to be equal at that limit in

x D 0. So, h.0/ D limn!1 hn.0/. We use the same argument for the point x D 1. It

is straightforward to check (by passing to the limit in the concavity inequality for hn)

that h is a concave function on the interval Œ0; 1� and that

hn ! h in L2.0; 1/:

We finally argue by density to extend the previous result to a general sequence hn.

3.1. Asymptotic behaviour of eigenvalues

In this section we present some general results concerning the asymptotic behaviour

of �k and �k in a wide class of collapsing domains. We then apply this results in
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the particular case of thin domains in order to obtain the asymptotics given in The-

orem 1.1.

We start with the analysis of the Steklov eigenvalues:

Lemma 3.2. Let hC 2 L1.0; 1/ and h� 2 L1.0; 1/ be two non-negative functions.

We define the following collapsing domains:

�" D ¹.x; y/ 2 R
2W 0 � x � 1; �"h�.x/ � y � "hC.x/º:

Let h D hC C h�. If there exist K > 0 and p < 2 such that h.x/ � K.x.1 � x//p

a.e. in .0; 1/, then

�k.�"/ D �k.h/

2
" C o."/ as " ! 0;

where �k.h/ is the k-th non-trivial eigenvalue of

8

ˆ

<

ˆ

:

� d

dx

�

h.x/
dv

dx
.x/

�

D �.h/v.x/ x 2 .0; 1/;

h.0/
dv

dx
.0/ D h.1/

dv

dx
.1/ D 0:

(7)

Remark 3.3. In the previous lemma the problem (7) is understood in the weak sense.

The function h is allowed to vanish at the extremities of the interval; therefore the

operator � d
dx

.h.x/ dv
dx

/ is not uniformly elliptic and the existence of eigenvalues and

eigenfunctions does not follow in a classical way. For this reason in the first part of

the proof we will prove the existence of the eigenvalues, under the assumption that

we made on the function h.

Proof of Lemma 3.2. Let f 2 L2.0; 1/. The inverse of the operator � d
dx

.h.x/ dv
dx

/

with the boundary conditions h.0/v0.0/ D h.1/v0.1/ D 0 is given by the following

integral representation (see [33]):

v.x/ D
1

Z

0

g.x; y/f .y/dy with g.x; y/ D
min.x;y/

Z

0

t

h.t/
dt C

1
Z

max.x;y/

1 � t

h.t/
dt: (8)

From the assumption on the function h, it follows that g.x; y/ 2 L2.Œ0; 1� � Œ0; 1�/.

We conclude that the integral operator defined in (8) is an Hilbert–Schmidt integral

operator and so problem (7) posses a sequence of eigenvalues and eigenfunctions. In

particular, the eigenvalue �k.h/ admits the following variational characterization:

�k.h/ D inf
Ek

sup
0¤v2Ek

R 1

0
.v0/2hdx1

R 1

0
v2dx1

; (9)

where the infimum is taken over all k-dimensional subspaces of H 1.0; 1/ which are

L2-orthogonal to constants.
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Let fk be the eigenfunction of the problem (7) associated to the eigenvalue �k.h/.

We define the function Fk.x1; x2/ D fk.x1/ for every .x1; x2/ 2 �". We define the

mean value of the function Fk on @�":

MFk;" WD 1

P.�"/

Z

@�"

Fkds D 1

P.�"/

1
Z

0

fk.
p

1 C ."hC0/2 C
p

1 C ."h�0/2/dx1:

From (7), it is straightforward to check that
R 1

0 fk D 0, so we have the following limit

lim
"!0

MFk;" D 0: (10)

We introduce the subspace Ek D SpanŒF1 � MF1;"; : : : ; Fk � MFk;"�. We can use

this as a test subspace in the variational characterization (1). We obtain

�k.�"/

� max
v2Ek

R

�"
jvj2dx

R

@�"
v2ds

D max
ˇ2Rk

"
Pk

iD1 ˇ2
i

R 1

0 .f 0
i /2hdx1

R 1

0
.
Pk

iD1 ˇi .fi � MFi;"//2..1 C ."hC0/2/
1
2 C .1 C ."h�0/2/

1
2 /dx1

:

From (10) and the above inequality, we can conclude that, for " small enough,

�k.�"/ � "

2
max
ˇ2Rk

Pk
iD1 ˇ2

i

R 1

0 .f 0
i /2hdx1

Pk
iD1 ˇ2

i

R 1

0 f 2
i dx1

C o."/ D �k.h/

2
" C o."/; (11)

where the last equality is true because fk is the eigenfunction corresponding to �k.h/

On the other hand, let us denote by �1 the convex domain corresponding to " D 1.

Let vk;" be a Steklov eigenfunction associated to �k.�"/, normalized in such a way

that kvk;"kL2.@�"/ D 1. We define the following function:

Nvk;".x1; x2/ D vk;".x1; "x2/ for all .x1; x2/ 2 �1:

We start with the bound of kr Nvk;"kL2.�1/,

Z

�1

jr Nvk;"j2dx �
Z

�1

�@ Nvk;"

@x1

�2

C 1

"2

�@ Nvk;"

@x2

�2

dx

D 1

"

Z

�"

jrvk;"j2dy D �k.�"/

"
� C;

where we did the change of coordinates y1 D x1, y2 D "x2 and the last inequality is

true because of (11). We want now to bound k Nvk;"kL2.�1/. By the Poincaré–Friedrichs
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inequality or the variational characterization of Robin eigenvalues. (We denote by

�R
1 .�;ˇ/ the first Robin eigenvalue of the domain � with the boundary parameter ˇ.)

We get
Z

�"

v2
k;"dx � 1

�R
1 .�"; 1/

� Z

�"

jrvk;"j2dx C
Z

@�"

v2
k;"ds

�

: (12)

Using Bossel’s inequality (see [5]), we infer �R
1 .�"; 1/ � h.�"/ � 1, where h.�"/

is the Cheeger constant of �". Now, by monotonicity of the Cheeger constant with

respect to inclusion, we have h.�"/ � h.R"/, where R" is a rectangle of length 1 and

width 4". Now, the Cheeger constant of such a rectangle can be computed explicitly

(see [23]), and it turns out that, for any ", h.R"/ � 2=". Therefore, using (12) and the

normalization
R

@�"
v2

k;"
ds D 1, we finally get

Z

�"

v2
k;"dx � ".C " C 1/ � 2":

Now, coming back to Nvk;", we have

Z

�1

Nv2
k;"dx D 1

"

Z

�"

v2
k;"dx � 2:

Therefore, we conclude that there exists xVk 2 H 1.�1/ such that (up to a sub-sequence

that we still denote by Nvk;")

Nvk;" * xVk in H 1.�1/ and strongly in L2: (13)

We also know that xVk does not depend on x2. Indeed

Z

�1

�@ Nvk;"

@x2

�2

dx D "

Z

�"

�@vk;"

@x2

�2

dx � C "2 ! 0:

We define the function Vk as the restriction of xVk to the variable x1. We want to prove

that
R 1

0
Vkdx1 D 0 and Vk is not a constant function. By definition of Nvk;" and vk;",

the following equality holds:

0 D
Z

@�"

vk;"ds D
1

Z

0

Nvk;".x1; hC.x1//
p

1 C ."hC0/2dx1

C
1

Z

0

Nvk;".x1; h�.x1//
p

1 C ."h�0/2dx1:
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Now, Nvk;" converges strongly in L2 to xVk , while
p

1 C ."hC0/2 converges weakly in

L2 to 1. Thus, passing to the limit yields

1
Z

0

Vkdx1 D 0: (14)

Now, from the fact that kvk;"kL2.@�"/ D 1, using similar arguments we conclude that

1
Z

0

V 2
k dx1 D 2:

From this equality and (14) we conclude that Vk cannot be a constant function.

Using the convergence given in (13), the variational characterization and the rela-

tions that we have just obtained, we conclude that for " small enough we have the

following lower bound:

�k.�"/ D max
ˇ2Rk

Pk
iD1 ˇ2

i

R

�"
jrvi;"j2dx

Pk
iD1 ˇ2

i

R

@�"
v2

i;"ds

� "

2
max
ˇ2Rk

Pk
iD1 ˇ2

i

R 1

0
V 02

i hdx1
Pk

iD1 ˇ2
i

R 1

0 V 2
i dx1

C o."/

� �k.h/

2
" C o."/: (15)

The last inequality is true because of the variational characterization (9) for �k.h/.

From (11) and (15) we finally conclude that

�k.�"/ D �k.h/

2
" C o."/ as " ! 0:

We now specify the result above in the case of thin domains and we give also some

continuity results for �k.h/.

Lemma 3.4. Let �" be a sequence of thin domains. Then, Lemma 3.2 holds. Moreover,

let hn 2 L and h 2 L be such that hn ! h in L2.0; 1/. Then, we have

�k.hn/ ! �k.h/:

Proof. From the concavity and positivity of h 2 L, it follows that there exists a con-

stant K > 0 such that

h.x/ � Kx.1 � x/ for a.e. 0 � x � 1: (16)

In particular, the hypothesis of Lemma 3.2 are satisfied.
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Let hn 2 L and h 2 L be such that hn ! h in L2.0; 1/. We define

vn.x/ D
1

Z

0

gn.x; y/f .y/dy

with

gn.x; y/ D
min.x;y/

Z

0

t

hn.t/
dt C

1
Z

max.x;y/

1 � t

hn.t/
dt:

The aim is to prove that vn ! v in L2.0; 1/. This, by classical results (see [18]), will

imply the convergence of the spectrum. We know that up to a subsequence hn ! h a.e.

in Œ0; 1�. Now, using the lower bound (16), we obtain an upper bound gn.x; y/ � C

for every n 2 N and for every .x; y/ 2 Œ0; 1� � Œ0; 1�. We can apply the dominated

convergence on the sequence gn.x; y/ and we conclude that gn.x; y/ ! g.x; y/ for

every .x; y/ 2 Œ0; 1� � Œ0; 1�. Similarly, we can conclude also that vn.x/ ! v.x/ for

every x 2 Œ0; 1�. Combining this convergence with the uniform bound on gn.x;y/, we

can use the dominated convergence to conclude that

1
Z

0

.vn.x/ � v.x//2dx ! 0:

We now study the asymptotic behaviour for the Neumann eigenvalues:

Lemma 3.5. Let hC 2 L1.0; 1/ and h� 2 L1.0; 1/ be two non-negative functions.

We define the following collapsing domains:

�" D ¹.x; y/ 2 R
2W 0 � x � 1; �"h�.x/ � y � "hC.x/º:

Let h D hC C h�. If there exist K > 0 and p < 2 such that h.x/ � K.x.1 � x//p

a.e. in .0; 1/, then,

�k.�"/ D �k.h/ C o.1/ as " ! 0;

where �k.h/ is the k-th non-trivial eigenvalue of
8

ˆ

<

ˆ

:

� d

dx

�

h.x/
du

dx
.x/

�

D �.h/h.x/u.x/ x 2 .0; 1/;

h.0/
du

dx
.0/ D h.1/

du

dx
.1/ D 0:

(17)

Proof. Let f 2 L2.0; 1/. The inverse of the operator � 1
h.x/

d
dx

.h.x/ du
dx

/ with the

boundary conditions h.0/u0.0/ D h.1/u0.1/ D 0 is given by the integral represent-

ation

u.x/ D
1

Z

0

g.x; y/h.y/f .y/dy
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with

g.x; y/ D
min.x;y/

Z

0

t

h.t/
dt C

1
Z

max.x;y/

1 � t

h.t/
dt:

We can adapt the proof of Lemma 3.2 at this integral operator, and we conclude that

the problem (17) posses a sequence of eigenvalues and eigenfunctions. In particular,

the eigenvalue �k.h/ admit the following variational characterization:

�k.h/ D inf
Ek

sup
0¤v2Ek

R 1

0 .v0/2hdx1
R 1

0 v2hdx1

; (18)

where the infimum is taken over all k-dimensional subspaces of H 1.0; 1/ which are

L2-orthogonal to the function h.

Let gk be the eigenfunction associated to the eigenvalue �k.h/. We define the

function Gk.x1; x2/ D gk.x1/ for every .x1; x2/ 2 �". We define the mean value of

the function Gk

MGk;" WD 1

j�"j

Z

�"

Gkdx D 1

j�1j

1
Z

0

gkhdx1:

From (17), it is straightforward to check that
R 1

0 gkhdx1 D 0. So, we have

MGk;" D 0: (19)

We introduce the subspace Ek D SpanŒG1; : : : ;Gk �. We can use this as a test subspace

in the variational characterization (2). We obtain

�k.�"/ � max
ˇ2Rk

Pk
iD1 ˇ2

i

R

�"
jrGi j2dx

Pk
iD1 ˇ2

i

R

�"
G2

i dx

D max
ˇ2Rk

Pk
iD1 ˇ2

i

R 1

0 .u0
1/2hdx1

Pk
iD1 ˇ2

i

R 1

0 u2
1hdx1

D �k.h/; (20)

where the last equality is true by the variational characterization (18) for the eigen-

value �k.h/.

Let uk;" be a Neumann eigenfunction associated to �k.�"/, normalized in such a

way that kuk;"kL2.�"/ D 1. We define the following function:

Nuk;".x1; x2/ D "
1
2 uk;".x1; "x2/ for all .x1; x2/ 2 �1:
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We start with the bound of kr Nuk;"kL2.�1/,

Z

�1

jr Nuk;"j2dx � "

Z

�1

�@uk;"

@x1

�2

C 1

"2

�@uk;"

@x2

�2

dx

�
Z

�"

jruk;"j2dy � �k.h/;

where we did the change of coordinates y1 D x1, y2 D "x2. Using the same change

of variable, we obtain k Nu"kL2.�1/ D 1.

We conclude that there exists xUk 2 H 1.�1/ such that (up to a sub-sequence that

we still denote by Nuk;")

Nuk;" * xUk in H 1.�1/ and strongly in L2: (21)

We also know that xUk does not depend on x2. Indeed,

Z

�1

�@ xUk

@x2

�2

dx � lim inf

Z

�1

�@ Nuk;"

@x2

�2

dx D lim inf "2

Z

�"

�@uk;"

@x2

�2

dx D 0:

We define the function Uk that is the restriction of xUk to the variable x1. We want to

prove that
R 1

0 Ukhdx1 D 0 and Uk is not a constant function. By definition of Nuk;"

and uk;", the following equality holds:

Z

�1

Nuk;"dx D 1

"
1
2

Z

�"

uk;" D 0 for all "

From the convergence results (21), we know that, up to a subsequence, Nuk;" converge

a.e. to xUk . So, passing to the limit as " goes to zero, in the above equality we conclude

that
1

Z

0

Ukhdx1 D 0: (22)

Now, from the fact that k Nuk;"kL2.@�1/ D 1, using similar arguments we conclude that

1
Z

0

U 2
k hdx1 D 1:

From this equality, equation (22), and the fact that
R 1

0 h D 1, we conclude that U

cannot be a constant function.
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Using the convergence given in (21) and the relations that we have just obtained,

we conclude that for " small enough we have the following lower bound:

�k.�"/ D max
ˇ2Rk

Pk
iD1 ˇ2

i

R

�"
jrui;"j2dx

Pk
iD1 ˇ2

i

R

�"
u2

i;"ds

� max
ˇ2Rk

Pk
iD1 ˇ2

i

R 1

0 .U 0
i /2hdx1

Pk
iD1 ˇ2

i

R 1

0
U 2

i hdx1

C o.1/

� �k.h/ C o.1/: (23)

The last inequality is true because of the variational characterization (18) for �k.h/.

From (20) and (23) we finally conclude that

�k.�"/ D �k.h/ C o.1/ as " ! 0;

As we did for the Steklov eigenvalues, we now specify the result above in the case

of thin domains and we give also some continuity results for �k.h/.

Lemma 3.6. Let �" be a sequence of thin domains. Then Lemma 3.5 holds. Moreover,

let hn 2 L and h 2 L be such that hn ! h in L2.0; 1/. Then, we have

�k.hn/ ! �k.h/

Proof. Let f 2 L2.0; 1/. The inverse of the operator � 1
h.x/

d
dx

.h.x/ du
dx

/ with the

boundary conditions h.0/u0.0/ D h.1/u0.1/ D 0 is given by the integral represent-

ation

u.x/ D
1

Z

0

g.x; y/h.y/f .y/dy

with

g.x; y/ D
min.x;y/

Z

0

t

h.t/
dt C

1
Z

max.x;y/

1 � t

h.t/
dt:

The proof is a straightforward adaptation of the proof of Lemma 3.4 at this integral

operator.

Remark 3.7. We can consider the most general class of collapsing thin domains given

by the following parametrization:

�" D ¹.x; y/ 2 R
2W 0 � x � 1; �g�."/h�.x/ � y � gC."/hC.x/º;
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where hC 2 L1.0; 1/ and h� 2 L1.0; 1/ are two non-negative functions that satisfy

the conditions in Lemma 3.2 and Lemma 3.5, and g�."/, gC."/ are positive functions

that go to zero when " goes to zero. We define the following limit:

lim
"!0

g�."/

gC."/
D K < C1:

(If the limit above is C1 we consider the inverse and in what follows we replace

gC."/ with g�."/.) In this case, the asymptotics of the eigenvalues �k.�"/ and

�k.�"/ become

�k.�"/ � �k.hC C Kh�/

2
gC."/ C o.gC."// as " ! 0;

�k.�"/ � �k.hC C Kh�/ C o.1/ as " ! 0:

The proof of this asymptotics use the same arguments of the proofs of Lemma 3.2 and

Lemma 3.5. We prefer to give the statements and the proofs for gC."/ D g�."/ D " in

order to simplify the exposition and also because this kind of generality is not needed

to study the asymptotic behaviour of F.�"/.

3.2. Study of the asymptotic behaviour of F.�"/

The proof of Theorem 1.1 immediately follows from the above results.

Proof of Theorem 1.1. Without loss of generality, we can rescale the sequence �" in

such a way that D.�"/ D 1. We consider the sequence F.�"/. From Lemma 3.2, and

Lemma 3.5 we obtain the desired result by sending " to zero.

Let h 2 L. By Theorem 1.1, the functional

F.h/ D �1.h/
R 1

0 h.x/dx

�1.h/

describes the behaviour of the functional F.�"/, when �" is a sequence of thin

domains that converges to a segment in the Hausdorff sense. We want to study the

problem of finding in which way a sequence of thin domains �" must collapse in

order to obtain the lowest possible value of the limit F.�"/. For this reason, we prove

the following theorem:

Theorem 3.8. The minimization problem (resp. the maximization problem)

inf¹F.h/W h 2 Lº .resp. sup¹F.h/W h 2 Lº/ (24)

has a solution, moreover the constant function h � 1 is a local minimizer.
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Proof. The existence of the minimizer or the maximizer follows directly from the

compactness result given in Lemma 3.1. The continuity results given in Lemma 3.4

and Lemma 3.6.

The proof of the fact that h � 1 is a local minimizer is divided in two steps,

where we use first and second derivative respectively. In the first step, using the first

derivative, we prove that h � 1 satisfies a first order optimality condition; and in

the second step, using second derivative, we prove that it also satisfies the second

order optimality condition. First of all, we recall that the eigenvalues �0;� and �0;� ,

being the eigenvalues of a Sturm–Liouville problem, are simple eigenvalues, see, e.g.,

[12, Chapter 5]. In particular, they are twice differentiable. Before we start the proof

we fix the notation, we consider t > 0 a positive number, and we define the following

derivatives.

• For every � 2 L we define �t;� WD �1.1 C t�/ and we denote by ut;� the

corresponding eigenfunction. We use the following notation for the derivatives of the

eigenvalues:

P�� WD d

dt
�1.1 C t�/

ˇ

ˇ

ˇ

tD0
; R�� WD d2

dt2
�1.1 C t�/

ˇ

ˇ

ˇ

tD0
I

and the following notation for the derivative of the eigenfunctions:

Pu� WD d

dt
ut;�

ˇ

ˇ

ˇ

tD0
; Ru� WD d2

dt2
ut;�

ˇ

ˇ

ˇ

tD0
:

• For every � 2 L, we define �t;� WD �1.1 C t�/ and we denote by vt;� the cor-

responding eigenfunction. We use the following notation for the derivatives of the

eigenvalues:

P�� WD d

dt
�1.1 C t�/

ˇ

ˇ

ˇ

tD0
; R�� WD d2

dt2
�1.1 C t�/

ˇ

ˇ

ˇ

tD0
I

and the following notation for the derivative of the eigenfunctions:

Pv� WD d

dt
vt;�

ˇ

ˇ

ˇ

tD0
; Rv� WD d2

dt2
vt;�

ˇ

ˇ

ˇ

tD0
:

We notice that

�0;� D �0;� D �2 and u0;�.x/ D v0;�.x/ D
p

2 cos.�x/: (25)

Step 1. We start by proving the following inequality:

d

dt
F.1 C t�/

ˇ

ˇ

ˇ

tD0
� 0 for all � 2 L:
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The derivative of F.h/ has the following expression:

d

dt
F.1 C t�/

ˇ

ˇ

ˇ

tD0
D P��

�2
C

1
Z

0

�dx � P��

�2
: (26)

Since this kind of perturbation is classical (see, e.g., [20, Section 5.7]), we just per-

form a formal computation here. The complete justification would involve an implicit

function theorem together with Fredholm alternative. We start by computing P�� .

From (7), we know that

d

dt

h

� d

dx

�

.1 C t�/
dvt;�

dx

�iˇ

ˇ

ˇ

tD0
D d

dt
Œ�t;�vt;� �

ˇ

ˇ

ˇ

tD0
:

So, we obtain the following differential equation satisfied by Pv� :

�.�0v0
0;� C �v00

0;� C Pv00
�/ D P��v0;� C �0;� Pv� : (27)

Multiplying both side of the above equation by v0;� and integrating, recalling (25),

we obtain

P�� D 2�2

1
Z

0

� sin2.�x/dx: (28)

We now compute P�� . From (17) we know that

d

dt

h

� d

dx

�

.1 C t�/
dut;�

dx

�iˇ

ˇ

ˇ

tD0
D d

dt
Œ�t;�.1 C t�/ut;� �

ˇ

ˇ

ˇ

tD0
:

So, we obtain the following differential equation satisfied by Pu� :

�.�0u0
0;� C Pu00

�/ D P��u0;� C �0;� Pu� : (29)

Multiplying both side of the above equation by u0;� and integrating, recalling (25),

we obtain

P�� D 2�2

1
Z

0

�.sin2.�x/ � cos2.�x//dx: (30)

Using the explicit formulas given by (28) and (30) in (26) we finally obtain

d

dt
F.1 C t�/

ˇ

ˇ

ˇ

tD0
D �

1
Z

0

� cos.2�x/dx for all � 2 L:
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Now, it is well known (see [35]) that the first cosine Fourier coefficient of a concave

function is non-positive. Moreover, it is easy to check that if � 2 L then

1
Z

0

� cos.2�x/dx D 0

if and only if � is a linear function. So, we have two cases.

i. The function � 2 L is not a linear function. In this case,

d

dt
F.1 C t�/

ˇ

ˇ

ˇ

tD0
> 0

and we conclude that h � 1 is a local minimizer for this kind of perturbation.

ii. The function � is of the form �.x/ D B C Ax. In this case,

d

dt
F.1 C t.B C Ax//

ˇ

ˇ

ˇ

tD0
D 0:

In order to conclude the proof, we need to study the second variation of the functional

F.h/ for perturbation of the form �.x/ D B C Ax.

Step 2. Given two real numbers .A; B/ 2 R
2 n .0; 0/, we want to prove that

d2

dt2
F.1 C t.B C Ax//

ˇ

ˇ

ˇ

tD0
> 0: (31)

We start by noticing that, for every k 2 R different from zero, we have that F.kh/ D
F.h/. So, in order to prove inequality (31), it is enough to prove that

d2

dt2
F.1 C tAx/

ˇ

ˇ

ˇ

tD0
> 0: (32)

This second derivative has the following expression:

d2

dt2
F.1 C tAx/

ˇ

ˇ

ˇ

tD0
D R�Ax

�2
C P�AxA

�2
� P�AxA

�2
� 2 P�Ax P�Ax

�4
� R�Ax

�2
C 2 P�2

Ax

�4
: (33)

From (28) and (30) it is easy to check that

P�Ax D 0 and P�Ax D A�2

2
: (34)

We start by computing R�Ax . From (7) we know that

d2

dt2

h

� d

dx

�

.1 C tAx/
dvt;Ax

dx

�iˇ

ˇ

ˇ

tD0
D d2

dt2
Œ�t;Axvt;Ax �

ˇ

ˇ

ˇ

tD0
:
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After a similar computation as the one we did in order to compute P�� we obtain,

R�Ax D 2

1
Z

0

Ax Pv0
Axv0

0;Ax � P�Ax PvAxv0;Axdx: (35)

Now, we have to find the function PvAx and then compute the integral above. From

(27), (25), and (34), we can conclude that PvAx satisfies the following differential equa-

tion:

�Pv00
Ax.x/ � �2 PvAx.x/ D

�A�2

p
2

� Ax
p

2�2
�

cos.�x/ � A
p

2� sin.�x/:

We are free to choose a normalization for the eigenfunctions of the problem (7), so we

can assume that, for every t , we have
R 1

0 v2
t;Axdx D 1. From this, we conclude that

2

1
Z

0

PvAxv0;Axdx D d

dt

h

1
Z

0

v2
t;Axdx D 1

iˇ

ˇ

ˇ

tD0
D 0:

From the boundary conditions of the problem (7), we obtain the following boundary

conditions for PvAx :

Pv0
Ax.0/ D d

dt
Œv0

t;Ax.0/�jtD0 D 0; Pv0
Ax.1/ D d

dt
Œ.1 C tA/v0

t;Ax.1/�jtD0 D 0:

We finally obtain that PvAx must satisfy

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

� Pv00
Ax.x/ � �2 PvAx.x/

D
�A�2

p
2

� Ax
p

2�2
�

cos.�x/ � A
p

2� sin.�x/ x 2 .0; 1/;

Pv0
Ax.0/ D Pv0

Ax.1/ D 0;

1
Z

0

PvAxv0;Axdx D 0:

This problem admits a unique solution given by the following function:

PvAx.x/ D
� A

4
p

2
� A

2
p

2
x

�

cos.�x/ C
� A

2
p

2�
C A�

2
p

2
.x2 � x/

�

sin.�x/: (36)

Putting the expressions given by (25) and (36) in the formula (35), we finally obtain

R�Ax D A2

8
.3 � �2/: (37)
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We now compute R�Ax . From (17) we know that

d2

dt2

h

� d

dx

�

.1 C tAx/
dut;Ax

dx

�iˇ

ˇ

ˇ

tD0
D d

dt
Œ�t;Ax.1 C tAx/ut;Ax�

ˇ

ˇ

ˇ

tD0
:

After a similar computation as the one we did in order to compute P�� , we obtain

R�Ax D 2

1
Z

0

Ax. Pu0
Axu0

0;Ax � �2 PuAxu0;Ax/dx: (38)

Now, we have to find the function PuAx and then compute the integral above. From (30),

(25) and (34), we can conclude that PuAx must satisfy the following differential equa-

tion

� Pu00
Ax.x/ � �2 PuAx.x/ D �A

p
2� sin.�x/:

We are free to choose a normalization for the eigenfunction of the problem (17). So

we can assume that for every t we have
R 1

0 .1 C tAx/u2
t;Axdx D 1. By differentiating

with respect to t this relation and computing the derivative at zero, we conclude that

1
Z

0

PuAxu0;Axdx D A

1
Z

0

x cos.�x/dx:

Using the same argument as above for the boundary conditions for PuAx , we can con-

clude that PuAx must satisfy
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

� Pu00
Ax.x/ � �2 PuAx.x/ D �A

p
2� sin.�x/ x 2 .0; 1/;

Pu0
Ax.0/ D Pu0

Ax.1/ D 0;

1
Z

0

PuAxu0;Axdx D A

1
Z

0

x cos.�x/dx:

This problem admits a unique solution given by the following function:

PuAx.x/ D Ap
2

� 1

�
sin.�x/ � x cos.�x/

�

: (39)

Putting the expressions given by (25) and (39) in the formula (38), we finally obtain

R�Ax D 3

2
A2: (40)

Finally, putting (37), (40), and (34) inside (33), we obtain

d2

dt2
F.1 C tAx/

ˇ

ˇ

ˇ

tD0
D A2.9 C �2/

8�2
> 0: (41)

This concludes the proof.
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4. Convex case: upper and lower bounds for F.h/ and F.�/

In this section we prove Theorem 1.2 and Theorem 1.3. For every 0 < x0 < 1, we

define the following triangular shape function:

Tx0
D

8

ˆ

<

ˆ

:

x

x0

x 2 Œ0; x0�;

1 � x

1 � x0

x 2 Œx0; 1�:

Before proving Theorem 1.2, let us state the following lemma, that will be crucial

in the proof of the upper bound for F.h/.

Lemma 4.1. For every 0 < x0 < 1, the following equality holds:

�1.Tx0
/

�1.Tx0
/

D 4:

Proof. We want to compute the eigenvalue �1.Tx0
/; we introduce the parameter �

and we want to find a function v 2 C 1.0; 1/ such that

´

xv00.x/ C v0.x/ C x0�v.x/ D 0 x 2 Œ0; x0�;

.1 � x/v00.x/ � v0.x/ C .1 � x0/�v.x/ D 0 x 2 Œx0; 1�:
(42)

The idea will be to solve the equation first on the interval Œ0; x0�, then on the interval

Œx0; 1�, and then find the condition on the parameter � in order to have a good match-

ing in the point x0. Let J0; Y0 be the Bessel functions of the first and second kind,

respectively, with parameter 0. We start by noticing that all the solutions of the second

order ODE (42) (1st line) are given in the interval Œ0; x0� by

vl D C1J0.2
p

�x0x/ C yC1Y0.2
p

�x0x/:

Now, since uY 0
0.u/ ! 2=� when u ! 0, we see that, in order the boundary condition

Tx0
.x/v0

l
.x/ ! 0 be satisfied, we must choose yC1 D 0. Using the change of variable

y D 1 � x, it is straightforward to check that the solution of (42) (2nd line) is given

in the interval Œx0; 1� by

vr D C2J0.2
p

�.1 � x0/.1 � x//:

Now, we impose the following matching condition vl .x0/ D vr.x0/ and v0
l
.x0/ D

v0
r.x0/. This condition is equivalent to say that there exists a parameter � for which

the following system has a solution:

´

C1J0.2
p

�x0/ D C2J0.2
p

�.1 � x0//;

C1J 0
0.2

p
�x0/ D �C2J 0

0.2
p

�.1 � x0//:
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The system above has a solution if and only if the parameter � is a root of the follow-

ing transcendental equation:

J0.2
p

�x0/J 0
0.2

p
�.1 � x0// C J0.2

p
�.1 � x0//J 0

0.2
p

�x0/ D 0; (43)

So, �1.Tx0
/ will be the smallest non-zero root of the above equation.

Now, we want to compute the eigenvalue �1.Tx0
/, we introduce the parameter �

and we want to find a function u 2 C 1.0; 1/ such that

´

xu00.x/ C u0.x/ C �xu.x/ D 0 x 2 Œ0; x0�;

.1 � x/u00.x/ � u0.x/ C �.1 � x/u.x/ D 0 x 2 Œx0; 1�:
(44)

We will find the conditions on � by using the same arguments as before. For every

constant C1 the function

ul D C1J0.
p

�x/

is a solution for (44) in the interval Œ0; x0� (we can rule out the function Y0 by the

same argument). Using the change of variable y D 1 � x is straightforward to check

that, for every constant C2, the function

ur D C2J0.
p

�.1 � x//

is a solution for (44) in the interval Œx0; 1�. We impose the following matching condi-

tion: ul.x0/ D ur.x0/ and u0
l
.x0/ D u0

r.x0/ This condition is equivalent to say that

there exists a parameter � for which the following system has a solution

´

C1J0.
p

�x0/ D C2J0.
p

�.1 � x0//;

C1J 0
0.

p
�x0/ D �C2J 0

0.
p

�.1 � x0//:

The system above has a solution if and only if the parameter � is a root of the follow-

ing transcendental equation:

J0.
p

�x0/J 0
0.

p
�.1 � x0// C J0.

p
�.1 � x0//J 0

0.
p

�x0/ D 0; (45)

so �1.Tx0
/ will be the smallest non-zero root of the above equation.

Now, comparing the transcendental equations (43) and (45) we can conclude that

�1.Tx0
/

�1.Tx0
/

D 4:

We are now ready to prove Theorem 1.2.
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Proof of Theorem 1.2. We start by the lower bound.

Lower bound. Let h� D 6x.1 � x/. It is known (see for instance [33]) that, for every

h 2 L, the following inequality holds:

�1.h/ � �1.h�/ D 12: (46)

Now, we want to prove that, for every h 2 L, the following inequality holds:

�1.h/ � �2: (47)

Suppose by contradiction that there exists Nh 2 L such that

�1. Nh/ < �2I

by Lemma 3.5, we conclude that, for " small enough, there exists a thin domain �"

such that

�1.�"/ < �2:

We reach a contradiction because we know from Payne inequality (see [29]) that, for

every convex domain � with diameter 1,

�1.�/ � �2:

From (46) and (47), we conclude that, for every h 2 L, the following lower bound

holds:
�2

12
� F.h/:

Upper bound. We start by proving that, for every h 2 L, the following inequality

holds:

�1.h/ � �1.T 1
2
/: (48)

Suppose by contradiction that there exists Nh 2 L such that

�1. Nh/ > �1.T 1
2
/: (49)

We introduce the following family of thin domains. First �" defined thanks to this

function Nh; and then R" defined as follows:

R" D
°

.x; y/ 2 R
2W 0 � x � 1; �"

1

2
T 1

2
� y � "

1

2
T 1

2

±

:

This class of domains R" can be seen as flattering rhombi. By Lemma 3.5 and (49),

we conclude that, for " small enough, we have

�1.�"/ > �1.R"/:
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We reach a contradiction because we know from [2, 11] that, for every thin domain

�" and for every " small enough,

�1.�"/ � lim
"!0

�1.R"/ D 4j 2
01:

Now, we prove that, for every h 2 L, the following lower bound for �1.h/ holds:

�1.h/ � h
�1

2

�

�1.T 1
2
/: (50)

Let v be an eigenfunction associated to �1.h/. Using the variational characterization

for �1.h/, and using the fact that h is concave and positive we conclude that

�1.h/ D
R 1

0 .v0/2hdx
R 1

0 v2dx
� h

�1

2

�

R 1

0 .v0/2T 1
2
dx

R 1

0 v2dx
� h

�1

2

�

�1.T 1
2
/;

where in the last inequality we used the variational characterization for �1.T 1
2
/. From

(48) and (50) we conclude that

F.h/ �
�1.T 1

2
/

�1.T 1
2
/

R 1

0 hdx

h. 1
2
/

� 4; (51)

where the last inequality comes from the fact that h 2 L and Lemma 4.1.

We turn to the proof of Theorem 1.3. Let � 2 Œ0; 1� be a parameter. In order to

prove the upper bound in Theorem 1.3, we need to introduce the following family of

polynomials of degree four:

P� .y/ D 1

4
�y4 � 2y3 C 5�y2 � 4�2y C �3:

In the next lemma we prove that the polynomials P� have always positive roots and

we give some explicit estimates on its roots. These estimates will be useful in the

proof of the upper bound for F.�/.

Lemma 4.2. Let 0 < � < 1. The polynomial P� has four positive roots. Let ¹y1.�/;

y2.�/;y3.�/;y4.�/º be its roots ordered in increasing order. Then the following holds:

i. if 0 < � �
p

3
2

, then

y1.�/ 2
�

0;
2

3
�
�

; y2.�/ 2
�2

3
�; � C 1

2
�2

�

;

y3.�/ 2
�

� C 1

2
�2; 2 C

p
2

�

; y4.�/ 2 .2 C
p

2; C1/I

ii. if
p

3
2

� � � 0:9, then

y1.�/ 2
�

0;
1

2

�

; y2.�/ 2
�1

2
; � C 1

2
�2

�

;

y3.�/ 2
�

� C 1

2
�2; 2 C

p
2

�

; y4.�/ 2 .2 C
p

2; C1/I
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iii. if 0:9 � � < 1, then

y1.�/ 2
�

0; 2 �
p

2
�

; y2.�/ 2
�

2 �
p

2; � C 1

2
�2

�

;

y3.�/ 2
�

� C 1

2
�2; 2 C

p
2

�

; y4.�/ 2 .2 C
p

2; C1/:

Moreover, P� .y/ � 0 in Œ0; y1.�/� [ Œy2.�/; y3.�/� [ Œy4.�/; C1/.

Proof. We start by noticing that, for every 0 < � < 1, we have that P� .0/ > 0 and

limy!C1 P� .y/ D C1. The idea of the proof will be to find three consecutive points

0 < a < b < c < C1 for which P� .a/ < 0, P� .b/ > 0, and P� .c/ < 0. Before passing

to the three different cases, we give some inequalities that are true for every 0 < � < 1.

It is straightforward to check that the following inequalities hold:

P�

�

� C 1

2
�2

�

D 1

4
�6

�

1 C 3

2
� C 1

2
�2 C 1

4
�3

�

> 0 for all 0 < � < 1; (52)

P� .2 C
p

2/

D .� � 1/.�2 � .7 C 4
p

2/� C 40 C 28
p

2/ < 0 for all 0 < � < 1: (53)

We now prove separately the three cases.

i. If 0 < � �
p

3
2

, then the following inequality holds:

P�

�2

3
�
�

D 4

9
�3

��2

9
� 1

12

�

< 0:

The result follows from this inequality combined with (52) and (53).

ii. If
p

3
2

� � � 0:9, then the following inequalities hold:

P�

�1

2

�

D �3 � 2�2 C 81

64
� � 1

4
< 0;

1

2
< � C 1

2
�2:

The result follows from the inequalities above combined with (52) and (53).

iii. If 0:9 � � < 1, then the following inequalities hold:

P� .2 �
p

2/ D .� � 1/.�2 � .7 � 4
p

2/� C 40 � 28
p

2/ < 0;

2 �
p

2 < � C 1

2
�2:

The result follows from the inequalities above combined with (52) and (53).

We now state Theorem 1.3 in a more precise way, in order to give more informa-

tion about the explicit constant C1.
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Theorem 4.3. Let K be the following constant:

K D max
�2Œ0;1�

2��

y2.�/Œ2
p

1 � �2 C 2� arcsin.�/�
:

Then, for every bounded convex open set � � R2, the following inequalities hold:

�2

6
3
p

18
� F.�/ � 2.1 C K/ � 9:04:

Proof. We start by proving the lower bound.

Lower bound. Let ı 2 Œ2; ��. We define the following class of bounded convex

domains:

Cı WD ¹� � R
2W � is convex and P.�/ � ıD.�/º: (54)

We recall that the functional F.�/ is invariant under translation and rotation. So,

without loss of generality, we can assume that the origin is the center of mass of the

boundary of � and the x1 axis is parallel to (one of) the diameter(s). We know the

following inequalities for �1.�/ and �1.�/:

�1.�/ � �2

D.�/2
;

�1.�/ � j�j
R

@� x2
1ds

� 6j�j
D.�/3

:

The inequality for �1 is the Payne inequality (see [29]) and the inequality for �1.�/

is obtained by using the function u.x1; x2/ D x1 as a test function in (2) and then

using the fact that

Z

@�

x2
1ds �

D
2

Z

� D
2

x2
1dx1:

Let � 2 Cı . Using the inequalities above, we obtain

F.�/ � �2

6ı
: (55)

Now, we consider the class of domains C
c
ı
, i.e., convex domains such that P.�/ >

ıD.�/. We start by recalling the following result (see [30] for a geometric proof

or [16] for a proof based on Fourier series):

min

²

R

@�.x2
1 C x2

2/ds

P.�/3
W � � R

2 convex

³

D 1

54
; (56)
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and the minimum is achieved by the equilateral triangle. Assuming that the origin is

at the center of mass of the boundary, and using in the variational characterization (1)

the coordinates functions x1 and x2, we obtain after summing

�1.�/ � 2j�j
R

@�
.x2

1 C x2
2/ds

: (57)

Now, from the Payne inequality (�1.�/ � �2=D2), (56), and (57) we conclude that

for every � 2 C
c
ı

the following holds:

F.�/ � ı2�2

108
: (58)

We notice that the lower bounds in (55) and (58) coincide when ı D 3
p

18, so we

finally obtain

F.�/ � �2

6
3
p

18
:

Upper bound. Given a bounded convex set � � R
2, we denote by r.�/ its inra-

dius and by w.�/ its minimal width. We know the following estimate from below

for �1.�/ (see [26]):

�1.�/ � �1.�/r.�/

2.1 C
p

�1.�/D.�//
I

we also know the following upper bound for �1.�/ (see [19]):

�1.�/ � �2 w.�/2

j�j2 :

We also use the following geometric inequality (see [4]):

j�j
r.�/P.�/

� 1:

Using the three inequalities above, we conclude that

F.�/ � 2
�

1 C �w.�/D.�/

r.�/P.�/

�

: (59)

We introduce the parameter � D w.�/
D.�/

. We know the following geometric inequality

(see [25, 31]):
D.�/

P.�/
� 1

2
p

1 � �2 C 2� arcsin.�/
DW g.�/:

Now, in order to obtain an upper bound for the functional F.�/, we need an upper

bound for the quantity w.�/
r.�/

, where the quantity � D w.�/
D.�/

is fixed.
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The complete system of inequalities for the triplet .w.�/; D.�/; r.�// is known.

In [21], we can find the Blaschke–Santaló diagram where

x.�/ D � D w.�/

D.�/
and y.�/ D 2r.�/

D.�/
:

Let us fix the quantity � . In order to obtain an upper bound for w.�/
r.�/

, it is enough

to obtain a lower bound for y.�/. From [21], we know that the following inequality

holds:

P� .y.�// D 1

4
�y.�/4 � 2y.�/3 C 5�y.�/2 � 4�2y.�/ C �3 � 0:

In particular, from Lemma, 4.2 we know that

y.�/ 2 Œ0; y1.�/� [ Œy2.�/; y3.�/� [ Œy4.�/; C1/:

We now prove that y.�/ � y2.�/. Suppose by contradiction that y.�/ 2 Œ0; y1.�/�.

From the Blaschke–Santaló diagram .w.�/; D.�/; r.�//, we see that y.�/ � 2
3
� .

But now, from Lemma 4.2, we know that y1.�/ < 2
3
� , and this is a contradiction. Note

that we can prove in the same way that y.�/ < y4.�/.

We conclude that y.�/ � y2.�/, so we finally obtain the following upper bound:

�w.�/D.�/

r.�/P.�/
� 2�g.�/�

y2.�/
DW f .�/:

We introduce the following constant:

K D max
�2Œ0;1�

f .�/:

Numerically, one can check that K � 3:52 (see Figure 2). From (59), we finally con-

clude that
�2

6
3
p

18
� F.�/ � 2.1 C K/ � 9:04:

5. Blaschke–Santaló diagrams and open problems

A Blaschke–Santaló diagram is a convenient way to represent in the plane the possible

values taken by two quantities (geometric or spectral). As mentioned in the introduc-

tion, such a diagram has been recently established for quantities like .�1.�/; �2.�//

(the Dirichlet eigenvalues) in [1,7], .�1.�/�2.�// (the Neumann eigenvalues) in [1],

.�1.�/; �1.�// in [13], or .�1.�/; T .�// (where T .�/ is the torsion) in [28, 34].
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3:6

3:55

3:45

3:4

3:35

3:3

3:5

3:25

3:2

3:15

3:1
0 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1

Figure 2. Plot of the function f .�/.

Here we are interested in plotting the set of points .x; y/ with

E D ¹.x; y/ where x D �1.�/P.�/; y D �1.�/j�j; � � R
2º;

E
C D ¹.x; y/ where x D �1.�/P.�/; y D �1.�/j�j; � � R

2; � convex:º:

5.1. The Blaschke–Santaló diagram E

We start with the diagram E (no constraint on the sets �).

Theorem 5.1. The following equality holds:

xE D Œ0; 8�� � Œ0; �1.D/��;

where �1.D/ D j 02
11 is the first Neumann eigenvalue of the unit disc.

Proof. We recall the following classical result by Szegö (for the simply connected

case) and Weinberger [32, 36]:

max¹�1.�/j�jW � � R
2 bounded, open and Lipschitzº D �1.D/�:

From [15], we also know that

sup¹�1.�/P.�/W � � R
2 bounded, open and Lipschitzº D 8�:
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From the inequalities above, it is clear that E � Œ0; 8�� � Œ0; �1.D/��. Now we want

to prove that Œ0; 8�/ � Œ0; �1.D/�� � xE .

We start by proving that for every y 2 Œ0;�1.D/�� there exists a simply connected

domain �y for which �1.�y/j�yj D y. For that purpose, let us consider a dumbbell

domain D". We know that we can choose the width of the channel in order to have

�1.D"/jD"j D ", where " is a small quantity (see [22]). Now, we can gradually enlarge

the channel (preserving the "-cone condition) until we reach a stadium; then, we can

modify this stadium continuously until we reach the ball. In all that process, the eigen-

value �1 and the area vary continuously. So, we constructed a continuous path for the

value �1.�y/j�y j starting from " and arriving to �1.D/� . We conclude because "

was arbitrary small. Using the same argument (and [9]), we can prove that for every

x 2 Œ0; 2�� there exists a simply connected domain �x for which �1.�x/P.�x/ D x

(2� is the value of P.D/�1.D/).

Let .x; y/ 2 Œ0; 8�� � Œ0; �1.D/��. We want to prove that there exists a sequence

of domains �" such that �1.�"/P.�"/ ! x and �1.�"/j�"j ! y. From the dis-

cussion above, we know that there exists a simply connected domain �y for which

�1.�y/j�yj D y. We divide the proof in two cases.

Case 1. Suppose x > �1.�y/P.�y/. Let ˇ be a non-negative and non-trivial func-

tion. We introduce the following weighted Neumann eigenvalue:

�1.�; ˇ/ D min

²

R

� jruj2dx
R

� u2ˇdx
W u 2 H 1.�/;

Z

�

uˇdx D 0

³

:

From [15, Theorem 1.11], we know that for every domain � and every non-negative

and non-trivial function ˇ 2 L1.log L/1 (this space is a Orlicz space see [15] for the

details) there exists a sequence of subdomains �" � � such that

�1.�"/P.�"/ ! �1.�; ˇ/

Z

�

ˇdx;

�1.�"/j�"j ! �1.�/j�j:

Let us fix a parameter ı. From [15], we know that there exists a function ˇ1 such that

�1.�; ˇ1/

Z

�

ˇ1dx � 8� � ı:

We also know (see [27]) that there exists a function ˇ2 such that

j�1.�; ˇ2/

Z

�

ˇ2dx � �1.�/P.�/j � ı:
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Let 0 � t � 1. We consider the family of functions ˇt D tˇ1 C .1 � t/ˇ2 and we

introduce the measures d�t D ˇtdx. It is straightforward to check that the family of

measures d�t satisfies the conditions M1–M3 of [15, p. 26]. In particular, for every

z 2 Œ�1.�/P.�/ C ı;8� � ı�, there exists t 2 Œ0;1� such that �1.�;ˇt /
R

� ˇtdx D z.

We know that x 2 Œ�1.�y/P.�y/ C ı; 8� � ı�. Let t0 be such that

�1.�y ; ˇt0/

Z

�y

ˇt0dx D x:

From the previous results, we conclude that there exists a sequence of domains �" �
�y such that

�1.�"/P.�"/ ! �1.�y; ˇt0/

Z

�

ˇt0dx D x;

�1.�"/j�"j ! �1.�y/j�y j D y:

The result follows because ı was arbitrary.

Case 2. Suppose x � �1.�y/P.�y/. From the fact that �y is simply connected, we

know from [37] that x � 2� . By a previous step, we know that there exists a simply

connected domain ! such that �1.!/P.!/ D x. Now, from Theorem 2.2 (see [10] for

details), we know that there exists a sequence of smooth open sets �" such that

�1.�"/P.�"/ ! �1.!/P.!/ D x;

�1.�"/j�"j ! �1.�y/j�yj D y:

This concludes the proof.

We can give the following more precise conjecture:

Conjecture 1. E D .0; 8�/ � .0; ��1.D// [ ¹.0; 0/º [ ¹.2�; ��1.D//º:

The point ¹.0;0/º is attained by any disconnected domain. Moreover, the segments

¹0º � .0; ��1.D// and .0; 8�/ � ¹0º cannot be in the set E because if �1 or �1 are

zero, it means that the domain is disconnected, thus .�1; �1/ D .0; 0/. The segment

.0;8�/ � ¹��1.D/º only contains the point corresponding to the disc because the disc

is the only domain providing equality in the Szegö–Weinberger inequality. Finally, the

segment ¹8�º � .0; ��1.D// is not included in the diagram because the inequality

P.�/�1.�/ < 8� is strict, see [15]. Thus, the conjecture means that, except these

“boundary lines,” every point .x; y/ such that 0 < x < 8� and 0 < y < ��1.D/

should correspond to a set � in the sense that x D P.�/�1.�/ and y D j�j�1.�/.
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5.2. The Blaschke–Santaló diagram E
C

Now, we turn to the convex case. To have some idea about the shape of this diagram,

we produced random convex polygons in the plane and plot the corresponding quant-

ities x D �1.�/P.�/; y D �1.�/j�j.
Figure 3 shows the values of these quantities for 1000 random convex polygons.

Each of this polygon is constructed by choosing 15 random points in the plane and

then we compute the convex hull of this points. From Figure 3 it is natural to conjec-

ture that 1 � F.�/ � 2.

Now, we show some experiments that will give us some information about the

behaviour of the extremal sets in the class of convex domains. In the Figure 4 we

plotted the quantities �1.�/P.�/ and �1.�/j�j for random triangles in the plane.

From Figure 4 we see that for every triangle T � R
2 we have that F.T / is slightly

less than (and very close to) 2. Actually a more precise numerical computation shows

that it is not true that F.T / D 2 for every triangles. For example, let T1 be an equilat-

eral triangle of length 1. We know that �1.T1/ D 16�2

9
. Let T2 be a right triangle with

both cathetus equal to 1. We know that �1.T2/ D �2. A precise numerical computa-

tion of the first Steklov eigenvalue for T1 and T2 (using P 2 finite element methods)

gives us the following values �1.T1/ � 1:2908 and �1.T2/ � 0:7310. Using these

values inside the functional F.�/, we finally obtain

F.T1/ � 1:962 < 2; F.T2/ � 1:977 < 2:

The value 2 can be reached asymptotically. Let us consider the following sequence

of collapsing triangles:

�" D ¹.x; y/ 2 R
2W 0 � x � 1; 0 � y � "T 1

2
º:

From Theorem 1.1 and Lemma 4.1, we conclude that

F.�"/ ! F.T 1
2
/ D 2:

We remark that, from Theorem 1.1 and Lemma 4.1, F.�"/ ! 2 for every sequence

�" of collapsing thin domains for which h D hC C h� D Tx0
, where 0 < x0 < 1.

It remains to characterize the behaviour of the minimizing sequence. We introduce

the following family of collapsing rectangles:

C" D ¹.x; y/ 2 R
2W 0 � x � 1; 0 � y � "º:

We plot the values of �1.C"/P.C"/ and �1.C"/jC"j when " is approaching zero.

We know from Theorem 1.1 that F.C"/ ! 1, but from Figures 5 and 3 it seems

that F.�/ > 1 for every � � R
2 convex and the only way to approach the value 1 is

given by a sequence of collapsing rectangles.
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random polygons

11
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5

4

3

2

1

0

1
j

j

1

0 1 2 3 4 5 6 7

yDx

yD2x

Figure 3. Blaschke–Santaló diagram with random convex polygons.

random triangles

11

10

9

8

7

6

5

4

3

2

1

0

1
j

j

1

0 1 2 3 4 5 6 7

yDx

yD2x

Figure 4. Blaschke–Santaló diagram with random triangles.
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Supported by these numerical evidences we state the following conjectures:

Conjecture 2. For every bounded, convex and open set � � R2 the following bounds

hold:

1 � F.�/ � 2:

We now consider only convex quadrilaterals in R
2. In the following numerical

experiment, we will have in red random convex quadrilaterals and in green collapsing

rectangles, starting form a square S of unit area (corresponding to the farthest green

point from the origin) and asymptotically approach the segment.

From Figure 6 it is natural to state the following conjecture:

Conjecture 3. The following minimization problem has no solution:

inf¹F.�/W � � R
2 bounded, convex and openº:

In particular, every minimizing sequence �" must be of the form of collapsing rect-

angles.

Conjecture 4. For every 0 < C � 4�1.S/ the solution of the minimization problem

inf¹�1.�/j�jW � � R
2 convex quadrilateral s.t. �1.C"/P.C"/ D C º;

is given by a rectangle.

collapsing triangles

0

1
j

j

1

0

yDx

yD2x

0:5 1:51

0:5

1

1:5

Figure 5. Blaschke–Santaló diagram with collapsing rectangles.
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rectangles

random quadrilaterals

11

10

9

8

7

6

5

4

3

2

1

0

1
j

j

1

0 1 2 3 4 5 6 10 1187

yDx

yD2x

9

Figure 6. Blaschke–Santaló diagram with random convex quadrilaterals and collapsing rect-

angles.
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