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Weyl laws for open quantum maps

Zhenhao Li

Abstract. We find Weyl upper bounds for the quantum open baker’s map in the semiclassical

limit. For the number of eigenvalues in an annulus, we derive the asymptotic upper bound

O.N ı/, where ı is the dimension of the trapped set of the baker’s map and .2�N /�1 is the

semiclassical parameter, which improves upon the previous result of O.N ıC"/. Furthermore,

we derive a Weyl upper bound with explicit dependence on the inner radius of the annulus for

quantum open baker’s maps with Gevrey cutoffs.

1. Introduction

Open quantum maps provide simple finite-dimensional models of open quantum

chaos. This makes them especially conducive to numerical experimentation and thus

appealing in the study of scattering resonances. They quantize a symplectic relation on

a compact phase space. Such relations are toy models for Poincaré sections that arise

when considering scattering Hamiltonians with hyperbolic trapped sets. See papers

by Nonnenmacher, Sjöstrand, and Zworski [14, 15] for the precise description of the

reduction from specific open quantum systems to open quantum maps using Poincaré

sections. In this paper, the symplectic relation we consider is the classical baker’s map

on a 2-torus, which gives rise to the quantum open baker’s map. We find a Weyl upper

bound for the number of eigenvalues in an annulus.

The quantum open baker’s map is an operator on

`2
N D `2.ZN /; ZN D Z=.NZ/

defined by the triple

.M;A; �/; M 2 N; A � ¹0; : : : ;M � 1º; � 2 C1
0 ..0; 1/I Œ0; 1�/: (1.1)
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Here, M is the base, A is the alphabet, and � is the cutoff. Put N D KM where

K 2 N. Then the quantum open baker’s map is given by

BN D F
�

N

0
B@
�N=M FN=M�N=M

: : :

�N=M FN=M�N=M

1
CA IA;M :

Here, FN is the unitary discrete Fourier transform. IA;M is anN �N diagonal matrix

whose .j; j /-th entry is equal to one if bj=Kc 2 A and zero otherwise (b�c denotes

the floor). Finally, �N=M is the discretization of the cutoff �, see (2.1) for the precise

definition. For example, for the triple .3; ¹0; 2º; �/ and N D 3K, the corresponding

quantum open baker’s map is then

BN D F
�

N

0
B@
�KFK�K 0 0

0 0 0

0 0 �KFK�K

1
CA

Define the canonical relation on the torus T
2
x;�

by

~M;AW .y; �/ 7! .x; �/ D
�
My � a; �C a

M

�
; (1.2)

where

.y; �/ 2
� a
M
;
aC 1

M

�
� .0; 1/; a 2 A:

Then the corresponding semiclassical Fourier integral operator is given by

Uh WD
X

a2A

U
a
h;

where

U
a
hv.x/ D M

2�h

Z

R2

e
i
h

..xCa�My/�Cxa=M /�.M�/�.My � a/u.y/ dyd�:

The quantum open baker’s map can then be seen as the discrete analogue of this Four-

ier integral operator with the corresponding semiclassical parameter .2�N/�1. For

a rigorous analysis of the analogy, see papers of Degli Esposti, Nonnenmacher, and

Winn [5] and Nonnenmacher and Zworski [16]. Heuristics can be found in earlier

works of Balázs and Voros [1] and Saraceno and Voros [19]. In view of this analogy,

one would then expect that forward in time propagation by BN would lead to local-

ization in frequency space to the Cantor set and backward propagation by BN would

lead to localization in physical space to the Cantor set. Indeed, Figure 1 demonstrates

this property numerically.
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Figure 1. A demonstration of the localizing properties of BN for M D 3, A D ¹0; 2º, and

N D 37. An `2
N

normalized vector f was chosen uniformly at random. Plots (A)–(C) are the

frequency side of forward propagation, and (D)–(F) are the spatial side of backward propaga-

tion. Each figure plots the absolute value of the indicated vector as a map from ZN ! R.
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Figure 2. The Fourier side of a typical eigenvector. M D 4, A D ¹1; 2º, and � is identically

1 on the Cantor set generated by M and A. Here, N D 46, and the absolute value of Fnv is

plotted as a function from ZN ! R, where v is eigenvector with the 50th largest eigenvalue at

j�j � M�0:4869.

Following the above observations, we should expect the eigenfunctions to be loc-

alized in frequency near the .M;A/-Cantor set provided that the eigenvalues are not

too small (see Figure 2). The maximum number of eigenfunctions that can be packed

into such a region in phase space should then on the order of N ı where

ı D log jAj
logM

(1.3)

is the dimension of the Cantor set. Note that 0 � ı � 1. We have the degenerate case

ı D 0 when jAj D 1, see Figure 5. In non-degenerate cases, N ı is simply the size of

the discrete cantor set on N points. For instance, in the mid-third Cantor case (i.e.,

M D 3 and A D ¹0; 2º), we have ı D log 2
log 3

, and for N D 3k , N ı D 2k .

Our result uses such localization properties to provide rigorous upper bounds to

the number of eigenvalues of BN above a threshold. More specifically, consider the

eigenvalue counting function

NN .�/ D jSpec.BN / \ ¹j�j � M��ºj; (1.4)

defined for � � 0, where the eigenvalues are counted with multiplicities. Then we

have the following Weyl upper bound:
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Theorem 1. For each � > 0, we have as N D KM ! 1,

NN .�/ D O.N ı/: (1.5)

The proof of the theorem in Section 4.1 follows the methods used in [7], in which

the bound

NN .�/ D O.N ıC"/

for any " > 0 was proved. We obtain the "-improvement in this paper by using tighter

propagation estimates and a modified approximate inverse identity (see Section 3.1

for details).

With stronger assumptions on the decay of the cutoff function �, an explicit

dependence of the upper bound on the depth of the spectrum � can be extracted. In

particular, we consider Gevrey class functions, first introduced in [8] to study regular-

ity of solutions to the heat equation. Given s � 1, a function f 2 C
1.R/ is s-Gevrey

if for every compactK � R, there exists a constant CK;f such that

sup
x2K

j@˛f .x/j � C ˛C1
K;f

.˛Š/s

for all ˛ 2 Z
C. For s D 1, this is simply the space of real analytic functions, which

cannot be compactly supported. However, for every s > 1, there exist smooth and

compactly supported s-Gevrey functions. For s > 1, we write

G
s
c ..0; 1// D ¹f 2 C1

c .R/W f is s-Gevrey and suppf � .0; 1/º

Observe that if � 2 G s
c ..0; 1// for some s > 1, then

j O�.�/j � Ce�cj�j1=s

; (1.6)

for some positive constants C and c. Here, O� denotes the usual Fourier transform

given by

O�."/ D
Z

R

e�2�ix��.x/ dx: (1.7)

So, even though we cannot have exponential decay of the Fourier transform that comes

with analyticity, we can still get arbitrarily close. Finally, observe that for � > 0,

1Z

�

j O�.�/j d� � Ce�Qc�1=s

(1.8)

for some new constant Qc < c. See [18, Chapter 1] for a more detailed account on

Gevrey classes and their Fourier decay properties. With this stronger cutoff decay

assumption, we then have the following Weyl upper bound:
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Theorem 2. Assume that � 2 G
s
c ..0; 1// for some s > 1, then for all � � 1 and all

sufficiently large N D KM where K 2 N,

NN .�/ � CN ı�.1�ı/s (1.9)

where the constant C depend only on � and M .

In the study of quantum chaos, open quantum systems given by the Laplacian

on a noncompact Riemannian manifold whose geodesic flow is hyperbolic on

the trapped set provide an important mathematical model. In the papers by

Nonnenmacher, Sjöstrand, and Zworski [14, 15], the study of resonances for such

open quantum system is reduced to the open quantum map, so we should expect

our results to run parallel to previous Weyl upper bounds for open quantum systems.

We note that in the correspondence between quantum systems and quantum maps, if

! 2 C with Im! � 0 is a scattering resonance of the open quantum system, then

� D e�i! log M D M�i! (1.10)

is a corresponding eigenvalue of BN , which makes sense in view of the fact that

BN can be thought of as a toy model for the time t D logM propagator of an open

quantum system with expansion rate 1. This means that Weyl upper bounds in hori-

zontal strips below the real line should correspond to our Weyl law in an annulus.

Weyl upper bounds for resonances of the Laplacian in strips (which corresponds to

annuli for the open quantum maps by (1.10)) were first proved by Sjöstrand [20]. This

was done in the analytic category, which we cannot afford in our case since the cutoff

� is compactly supported. Using (1.10), the corresponding bound that Sjöstrand found

would give NN .�/D O.N ı�1�ı/where ı is the Minkowski dimension of the trapped

set. Since we can only assume Gevrey for s > 1 in our setting, we see a corresponding

loss in our result as we only have O.N ı�s.1�ı//. However, we remark that it appears

from numerical experiments in Section 5.2 that if the cutoff is identically 1 near the

trapped set, the Sjöstrand bound of O.N ı�1�ı/ is recovered for � not too large (Fig-

ure 4), but our methods do not appear to be able to account for this behavior.

Weyl upper bounds for the Laplacian in fixed strips have been proved in vari-

ous smooth settings by Guillopé, Lin, and Zworski [9], Zworski [23], Sjöstrand and

Zworski [21], Nonnenmacher, Sjöstrand, and Zworski [14, 15], and Datchev and

Dyatlov [4]. These give the corresponding bounds NN .�/ D O.N ı/, which aligns

with our result in Theorem 1. Physical microwave experiments on the Weyl law

asymptotics have been done by Potzuweit et al. [17], and various numerical exper-

iments can be found in Lu, Sridhar, and Zworski [12], Borthwick and Weich [3],

Borthwick [2], and Borthwick, Dyatlov, and Weich [6]. The main idea behind deriv-

ing the Weyl upper bounds is the localization of the eigenfunctions in phase space

(see Proposition 3.1), and this was observed numerically by Keating et al. [11].
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In the setting of the Walsh quantization, which uses a modified Fourier transform,

the localization was later proved by Keating et al. [10]. We also mention that Melrose

[13] derived polynomial bounds for the number of resonances in a ball centered at the

origin (instead of a strip) for the Schrödinger operator �C V on R
n for a potential

V 2 L1
0 .R

n/, and sharp polynomial bounds were proved by Zworski [22].

2. Open quantum maps

In this section, we establish some basic definitions and a general nonstationary phase

estimate. We then give a more detailed definition of the quantum open baker’s map,

and use the nonstationary phase estimate to prove the one-step propagation estimate

for the quantum open baker’s map BN that will be iterated in order to get propagation

of singularities estimates for long times.

2.1. Preliminaries

For N 2 N, we have the abelian group

ZN WD Z=NZ ' ¹0; : : : ; N � 1º;

and we have the associated `2
N D `2.ZN / space of functions uW ZN ! C equipped

with the norm

kuk2

`2
N

D
N �1X

j D0

ju.j /j2:

The unitary Fourier transform on `2
N is given by

FNu.j / D 1p
N

N �1X

`D0

exp
�
�2�ij`

N

�
u.`/:

Given a function 'W Œ0; 1�! C, its discretization is a function denoted 'N 2 `2
N given

by

'N .j / D '
� j
N

�
; j 2 0; : : : ; N � 1: (2.1)

We denote the corresponding Fourier multiplier by

'F

N D F
�

N'N FN (2.2)

For the distance function on Œ0; 1�, we consider the interval with 0 and 1 identified. In

particular,

d.x; y/ D min¹jx � yj; 1 � jx � yjº:
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For the distance between sets, we have the usual

d.U; V / D inf
x2U; y2V

d.x; y/:

Now, we have the following nonstationary phase estimate.

Lemma 2.1. Fix � 2 C1
c ..0; 1//. Assume that a 2 ZN and

d
� a
N
; 0

�
� r;

for some r 2 .0; 1=2/. Then

ˇ̌
ˇ

N �1X

mD0

exp
�2�iam

N

�
�

�m
N

�ˇ̌
ˇ � N � g�.Nr/; (2.3)

where

g�.x/ �
´
Cnx

�n for all n if ' 2 C1
c ..0; 1//;

Ce�cx1=s
if ' 2 G s

c ..0; 1//:
(2.4)

The positive constants Cn, C , and c depend only on the choice of �.

Proof. The Poisson summation formula gives

N �1X

mD0

exp
�2�iam

N

�
�

�m
N

�
D N

X

`2Z

O�.N`� a/:

Note that O� is rapidly decaying and by our assumption,N`� a > Nr . Therefore, for

every n � 0,
ˇ̌
ˇN

X

`2Z

O�.N`� a/
ˇ̌
ˇ � CN

X

`2Z

.N`� a/�n

� 2CN
X

`�0

.N.r C `//�n

� CnN.Nr/
�n;

where the constant depends only on n. Similarly, if � 2 G s
c ..0; 1// for some s > 1,

then in view of (1.6) and (1.8),
ˇ̌
ˇN

X

`2Z

O�.N` � a/
ˇ̌
ˇ � CN

X

`2Z

exp.�cjN`� aj 1
s /

� 2CN � exp.�c.Nr/ 1
s /C 2C

1Z

Nr

exp.�c� 1
s /d�

� zCN exp.�Qc.Nr/ 1
s /;
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where we interpret the sum as a lower Riemann sum to bound by the integral. Again,

all the constants above depend only on �. Therefore, we have both of the desired

estimates.

2.2. One-step propagation

Let the triple .M;A; �/ be as in (1.1), and put N D KM where K 2 N. Define the

projection…aW `2
N ! `2

N=M
, a 2 ¹0; : : : ;M � 1º, by

…au.j / D u.j C aK/; u 2 `2
N ; j 2 ¹0; : : : ; K � 1º: (2.5)

Then the open quantum map BN W `2
N ! `2

N can be written as

BN D
X

a2A

F
�

N…
�
a�N=M FN=M�N=M…a:

Expanding out the Fourier transforms, we have the formula

BNu.j / D
p
M

N

X

a2A

K�1X

m;`D0

exp
h
2�i

�.j �M`/m

N
C ja

M

�i

� �
�m
K

�
�

� `
K

�
u.`C aK/: (2.6)

It will be useful in the propagation estimates to define the expanding map

ˆ D ˆM;AW
G

a2A

� a
M
;
aC 1

M

�
! .0; 1/

given by

ˆ.x/ D Mx � a; x 2
� a
M
;
aC 1

M

�
: (2.7)

We will obtain estimates in terms of the constants Cn for the propagation of sin-

gularities. In particular, we start by showing that by applying BN once, the resulting

function will be roughly microlocalized to ~M;A..0; 1/
2/, and by applying B�

N once,

the resulting function will be roughly microlocalized to ~�1
M;A

..0; 1/2/ (of course, this

is imprecise since our setting is discrete). This localization behavior is clear in the

classical open baker’s map ~M;A. In the discrete setting, it is then natural to consider

BN as a matrix consisting of blocks that reflect the classical structure of the baker’s

map, and each block will be rapidly decaying away from the diagonal, so then we can

apply Schur’s bound to control the norm. To make precise the above heuristics, we

have the following estimate.
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Proposition 2.2. Assume that '; W Œ0; 1� ! Œ0; 1� such that,

d.supp ;ˆ�1.supp'// � r (2.8)

where ˆ is the expanding map as defined in (2.7) and r is a small gap satisfying

0 < Mr � 2d.supp�; 0/: (2.9)

Let  F

N and 'F

N are Fourier multipliers as defined in (2.2). Then

k'NBN N k`2
N

!`2
N

� Qg�.Nr/ k F

N BN'
F

N k`2
N

!`2
N

� Qg�.Nr/;

where

Qg�.x/ �
´
Cnx

�n for all n if ' 2 C1
c ..0; 1//;

Ce�cx1=s
if ' 2 G

s
c ..0; 1//;

(2.10)

where Cn, c, and C are positive constants depending only on �.

Proof. 1. We computed each entry of 'NBN N as an N �N matrix, N D KM for

some K 2 N. From the expansion (2.6) for BN , we can write

'NBN Nu.j / D
X

a2A

K�1X

`D0

Aa
j`u.`C aK/;

where

Aa
j` D

p
M

N
'

� j
N

�
exp

�2�iaj
M

�
�

� `
K

�
 

� `
N

C a

M

�
zAj`;

zAj` D
K�1X

mD0

exp
�2�im.j � `M/

N

�
�

�m
K

�
:

Observe that Aa
j`

can be nonzero only when

a 2 A;
j

N
2 supp';

`

N
C a

M
2 supp ;

`

K
2 supp�: (2.11)

For j and ` such that condition (2.11) holds, it follows from (2.8) that

d
�j � `M

N
; 0

�
� min¹M � r; 2d.supp�; 0/º � M � r: (2.12)

Here, note that we crucially used condition (2.9) on r , which controls the case that

supp contains a neighborhood of ak=M and suppˆ�1.'/ contains a neighborhood

of .aC 1/k=M or vice versa for some a 2 A.
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2. We now use Schur’s bound (see for instance [24, Section 4.5.1]) to bound the

operator of 'NBN N . In particular, it suffices to show that

max
0�j �N �1

X

a2A

K�1X

`D0

jAa
j`j � Qg�.Nr/; max

a2A
0�`�N=M �1

N �1X

j D0

jAa
j`j � Qg�.Nr/

for some Qg� that satisfies (2.10) in order to conclude k'NBN N k`2
N

!`2
N

� Qg�.Nr/.

Let g D g�M
as in Lemma 2.1 where �M .x/ D �.Mx/. Then for any a 2 A and

j 2 ¹0; : : : ; N � 1º, (2.11) and (2.12) means that the conditions of Lemma 2.1 are

satisfied, so

K�1X

`D0

jAa
j`j �

p
M

N

K�1X

`D0

j zAj`j

�
p
M

X

`Wd. j �`M
N

;0/�M r

g.j � `M/:

� 2
p
M

X

`�Nr

g.`M/ (2.13)

Similarly, for any ` and a, we have that

N �1X

j D0

jAa
j`j �

p
M

N

N �1X

j D0

j zAj`j

�
p
M

X

j Wd. j �`M
N ;0/�M r

g.j � `M/

� 2M 3=2
X

j �NM r

g.j /: (2.14)

3. Now, we substitute in the relevant g� into the bounds from Step 2 to recover the

desired estimates. With no extra assumptions on �, g decays rapidly. Then it follows

from (2.13) and (2.14)

X

a2A

K�1X

`D0

jAa
j`j � Cn

X

`�Nr

.`M/�n�1 � Cn.Nr/
�1;

N �1X

j D0

jAa
j`j � Cn

X

j �NM r

g.j / � Cn.Nr/
�1; (2.15)
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where Cn can change from line to line but depends only on n, �, andM . On the other

hand, if � 2 G s
c ..0; 1//, then g � C exp.�cx 1

s /. Therefore, it follows from (2.13)

and (2.14) that

X

a2A

K�1X

`D0

jAa
j`j � C

1Z

Nr

exp.�cx 1
s / dx � zC exp.�Qcx 1

s /; (2.16a)

N �1X

j D0

jAa
j`j � C

1Z

NM r

exp.�cx 1
s / dx � zC exp.�Qcx 1

s /; (2.16b)

where the constants depend only on � and M . Here, the sum can be seen as a lower

Riemann sum, which is bounded by the corresponding integral. Therefore, by Schur’s

estimate, (2.15) and (2.16) yield the desired estimates on 'NBN N . To obtain the

estimates on the Fourier side, we simply have

k F

N BN'
F

N k`2
N

!`2
N

D kF
�

N .'NBN N /
�
FN k`2

N
!`2

N
� k'NBN N k`2

N
!`2

N
;

which gives the identical bounds for the Fourier side.

The manifestation of this propagation estimate is clear in Figure 1. Each time a

random function over ZN is propagated by BN , it localizes in frequency space to the

next Cantor iterate, and similarly propagation by B�
N yields localization in physical

space to the next Cantor iterate.

3. Propagation of singularities

Now, we are in a position to iteratively apply the one-step propagation estimate Pro-

position 2.2 to obtain bounds on propagation for a long time. First, we will derive a

general estimate for long time propagation. The general estimate will then be applied

to the case � 2 C1
c ..0; 1//, and then to the Gevrey case � 2 G

s
c ..0; 1// for s > 1.

3.1. Long-time propagation

Let N D KM forK 2 N and let ˆ denote the expanding map as defined in the (2.7).

Define the fattened Cantor set

Xj WD ¹ˆ�j .x/C y mod 1W x 2 .0; 1/; jyj < aj º
Dˆ�j ..0; 1//C .�aj ; aj / mod 1: (3.1)

The gap aj will be adjusted later. For now, we only need to assume that aj >aj �1=M .
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Set

Aj D .1lXj
/FN : (3.2)

Roughly speaking, Aj is a localizing operator on the Fourier side that localizes

N � aj -close to the j -th discrete Cantor subset in ZN . We remark that the discrete

Cantor subsets of ZN are generally not defined in our setting since we do not assume

thatN is a power of M . We only assume thatN is a multiple ofM in order to ensure

that BN is well-defined. However, this is not a problem since the fattened Cantor sets

are simply defined on the continuum and then discretized.

Note that

d.ˆ�1.Xj �1/; Œ0; 1� nXj / � aj � aj �1

M
:

Define the gap distance by d1 D a1 and

dj D N �
�
aj � aj �1

M

�
(3.3)

for j � 2. Therefore, by Proposition 2.2, we have estimates of the form

.1 �Aj /BNAj �1 D Rj (3.4)

where

kRj k`2
N

!`2
N

� Qg�.dj /;

provided that condition (2.9) holds, i.e.,

0 <
dj

N
� 2

M
d.supp�; 0/: (3.5)

We propagate the estimate (3.4) to obtain long time estimates in the following pro-

position.

Define the annular domain

�� WD ¹M�� < j�j < 5º � C: (3.6)

Proposition 3.1. Let N D KM for some K 2 N. Fix a sequence

¹dj º`
j D1; ` � logN

logM

such that the condition (3.5) holds. Then there exists a Fourier multiplier

AW `2
N ! `2

N

and families of operators

Z.�/W `2
N ! `2

N ; R.�/W `2
N ! `2

N
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that satisfy the identity

I D Z.�/.BN � �/C R.�/C A (3.7)

such that

1. we have the remainder estimate

kR.�/k`2
N

!`2
N

�
`�1X

j D0

j�j�j �1 Qg�.d`�j /; (3.8)

where Qg� is the same as in (2.10).

2. A has rank bounded by

rankA � 2M `ı
h N
M `

C 2
X̀

kD1

dk

M `�k

i
: (3.9)

Proof. We obtain the identity from iterating propagation estimate (3.4). Put

aj D 1

N

jX

kD1

dk

M j �k
(3.10)

so that

dj D N �
�
aj � aj �1

M

�
:

Then we can form the fattened Cantor sets Xj as in (3.1) with the corresponding

Fourier localizers Aj defined in (3.2). Iterating the estimate eq. (3.4) `-times, we find

.1� A`/B
`
N D .1 �A`/BNA`�1B

`�1
N C .1� A`/BN .1 �A`�1/B

`�1
N

D
`�1X

j D0

.1� A`/BN .1�A`�1/BN : : : .1 �A`�j /BNA`�j �1B
`�j �1
N

DE`.BN � �/

C
`�1X

j D0

�`�j �1.1 �A`/BN .1 �A`�1/BN : : : .1� A`�j /BNA`�j �1;

where

E` D
`�1X

j D0

`�j �2X

kD0

.1�A`/BN .1�A`�1/BN : : : .1�A`�j /BNA`�j �1.�
kB`�j �2�k/:
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Now, we have the desired approximate inverse identity given by

I D �
� X

0�k<`

��1�k.I �A`/.BN /
k
�
.BN � �/C ��`.1� A`/.BN /

` C A`

D �
� X

0�k<`

��1�k.I �A`/.BN /
k
�
.BN � �/C ��`E`.B � �/

C ��`

`�1X

j D0

�`�j �1.1 �A`/BN .1� A`�1/BN : : : .1� A`�j /BNA`�j �1 C A`

D Z`.BN � �/C R` C A`; (3.11)

where

Z` D �
� X

0�k<`

��1�k.I � A`/.BN /
k
�

C �`E`

R` D
`�1X

j D0

��j �1B
j
N .1� A`�j /BNA`�j �1:

By assumption, condition (3.5) is satisfied, so eq. (3.4) gives the desired remainder

bound

kR`k`2
N

!`2
N

�
`�1X

j D0

j�j�j �1 Qg
�
N �

�
a`�j � a`�j �1

M

��
:

To bound the rank of A`, we observe that ˆ�`.Œ0; 1�/ is the union of M ı` copies

of intervals of lengthM�`. Then from (3.1), the measure of X` can be bounded by

jX`j � M ı`.M�` C 2a`/:

By (3.10), we then obtain the desired bound

rankA` � 2N � jX`j � 2M `ı
h N
M `

C 2
X̀

kD1

dk

M `�k

i
:

Note that the above inequality holds sinceM�` � 1=N by assumption, and the factor

of 2 here is merely to account for the discretization. The proposition then follows by

putting

A D A`; Z.�/ D Z`; R.�/ D R`:
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3.2. Propagation with smooth cutoff

Ultimately, we want to find the asymptotics of the eigenvalue counting function as

N ! 1 for a fixed � > 0. Therefore, we need some uniform control over the iden-

tity (3.7) for all sufficiently large N at a fixed �. In particular, we choose dj so that

R` will be uniformly small for all large N and the rank of A will be on the orderN ı .

In the case that � 2 C1
c ..0; 1/, recall that Qg D Qg� is rapidly decaying. Then,

provided that the gaps d`�j are chosen so that (3.5) holds, the identity (3.7) holds

with the remainder estimate (3.8) given by

kR`k`2
N

!`2
N

� Cn

`�1X

j D0

��j �1dn
`�j (3.12)

for constantsCn depending only on �. Note that for j�j< 1, the factor ��j �1 in (3.12)

increases exponentially as j increases. In order for R` to be small in norm, this growth

needs to be tempered by d`�j . The strategy is to choose d`�j in such a way so that

the sum in (3.12) becomes exponentially decreasing in j .

Therefore, we put

d`�j D L �M j

1:5j
: (3.13)

We will choose L > 0. Meanwhile, let the time of propagation be

` D
j logN

logM

k
: (3.14)

Since M � 2, there exists a sufficiently large n so that

1:5n

Mn��
<
1

2
: (3.15)

Then, choose L so that

Ln > 4M �Cn; (3.16)

where the constant Cn is as in (3.12). Note that the choice of L depends only on �

and M . Next,
d`�j

N
� L

1:5j

M j

N
� L

1:5`
:

Therefore, for all sufficiently large ` (and thus for all sufficiently large N ), con-

dition (3.5) will be satisfied. Therefore, Proposition 3.1 applies and we have the

remainder estimate

kR`k`2
N

!`2
N

� Cn

`�1X

j D0

��j �1d�n
`�j � CnM

�

Ln

`�1X

j D0

� 2n

M .n��/

�j

� 1

2
: (3.17)
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Furthermore, equation (3.9) gives the rank bound

rankA � 2N ı
�
1C 2

X̀

kD1

L

1:5`�k

�
� CN ı ;

where C depends only on �, � and M . In summary, we have the following corollary

of Proposition 3.1:

Corollary 3.2. Consider the quantum open maps given by the triple .M;A; �/ and
fix � > 0. For all sufficiently large N D KM whereK 2 N there exists operators A,
Z.�/, and R.�/ on `2

N as in Proposition 3.1 that satisfies the identity (3.7). Further-
more, they satisfy the remainder estimate

kR.�/k`2
N

!`2
N

� 1=2

and the rank bound
rankA � CN ı

where C does not depend on N .

3.3. Propagation with Gevrey cutoff

In the previous section, we fixed some � and could not have extracted dependence

of the rank estimates on � since we do not know how the constants Cn behave. In

particular, the dependence on � is buried the choice of L in (3.16). However, if we

assume that � 2 G
s
c ..0; 1//, we get more explicit control over the decay of Qg.

For N � �s � 1, put the time of propagation as

` D
�

log.N
�s /

logM

�
: (3.18)

With � 2 G s
c ..0; 1// for s > 1, the remainder bound (3.8) then gives

kR`k`2!`2 � C

`�1X

j D0

��j �1e
�cd

1=s

`�j D
`�1X

j D0

e
�.j C1/ log M �cd

1=s

`�j ; (3.19)

where C and c depend only on �. Again, the remainder bound holds only if dj =N

is sufficiently small for all j according to (3.5). This condition will eventually be

fulfilled using the choice of propagation time given by (3.18) and choosing N to be

sufficiently large. First, we need to choose the gap distances. We see from (3.19) that

we should put

d
1=s

`�j
D

�� logM C �

c

�
.j C 1/; (3.20)
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where � is chosen to be sufficiently large so that

C

1X

j D0

e��.j C1/ � 1

2
:

Then, if d`�j satisfies (3.5), then the estimate (3.19) gives the desired remainder

bound

kR`k`2!`2 � 1=2:

Indeed, note that d`�j takes its maximum value at j D ` � 1; so (3.5) is satisfied if

2d.supp�; 0/

M
� N�1d1 D N�1

�� logM C �

c

j log.N
�s /

logM

k�s

: (3.21)

For 1 � �s < N , the above is indeed satisfied for all sufficiently large N , and the

threshold depends only on �, M , and ". Finally, to estimate the rank of A in (3.7), we

see from (3.9) that

rankA � 2
N ı

�sı

h
�s C 2

�� logM C �

c

�s
`�1X

j D0

.j C 1/s

M j

i
� CN ı�s.1�ı/ (3.22)

Note analysis above yields the following corollary of Proposition 3.1.

Corollary 3.3. Consider the quantum open maps given by the triple .M;A; �/ where
� 2 G s

c ..0; 1// for an s > 1. Then, for all 1 � �s < N , there exists a constant C�;M;"

such that for all N D KM > C�;M;" where K 2 N, there exists operators A, Z.�/,
and R.�/ on `2

N as in Proposition 3.1 that satisfies the identity (3.7). Furthermore,
they satisfy the remainder estimate

kR.�/k`2
N

!`2
N

� 1=2

and the rank bound
rankA � CN ı�s.1�ı/

where C does not depend on N or �.

4. Weyl bounds

Now, we proceed to bounding the number of eigenvalues in�� as defined in (3.6). To

do so, we will eventually pass to Jensen’s formula from complex analysis:
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Lemma 4.1. Let f .z/ be a holomorphic function on a connected open set � � C.
Let K � � be a compact subset. Suppose there exists a constant L > 0 and a point
z0 2 K such that

sup
z2�

jf .z/j � eL; jf .z0/j � e�L: (4.1)

Then the number of zeros of f .z/ in K counted with multiplicity is bounded by

j¹z 2 KW f .z/ D 0ºj � CL; (4.2)

where the constant C depends only on the geometry, i.e., z0, �, and K.

See [7, Lemma 4.4] for a proof of the lemma.

We want to apply Lemma 4.1 to some expression involving a factor of the determ-

inant det.BN � �/ in the region�� (defined in (3.6)) in order to count the number of

eigenvalues in �� . To get the lower bound at a point in �� required in Lemma 4.1,

we first modify the approximate inverse identity (3.7) as follows:

I D ��1BN � ��1.BN � �/
D Z.BN � �/C R C ��1ABN � ��1A.BN � �/
D .Z � ��1A/.BN � �/C R C ��1ABN ; (4.3)

where Z and R depend holomorphically on �. In either the general cutoff setting

and the Gevrey cutoff setting, Corollary 3.2 and Corollary 3.3 both give the bound

kR.�/k`2
N

!`2
N

� 1=2. Therefore, we can define

BN .�/ WD ��1ABN .I � R/�1; F .�/ WD det.I � BN /: (4.4)

Note that F.�/ is holomorphic in the annulus�� . From (4.3), we have

F.�/ D det.I � R/ det.I � R � ��1ABN /

D det.I � R/ det.Z � ��1Z/ det.BN � �/:

Therefore, if � is an eigenvalue, it must also be a zero of F.�/ considered with mul-

tiplicity. Thus, it suffices to bound the number of zeros of F .

4.1. Proof of Theorem 1

By Corollary 3.2, we see that for all � 2 �� ,

jF.�/j � .kBN k`2
N

!`2
N

C 1/rank BN � .2M � C 1/rank A � eCN ı

(4.5)

where the constant C does not depend on N . Now, we want to find a lower bound on

F.�/ at a single point. Observe that at � D 4,

kBN .4/k`2
N

!`2
N

� 1

2
;
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and so

jF.4/j�1 D j det..I � BN .4//
�1/j

D j det.I C BN .4/.I � BN .4//
�1/j

� kI C BN .4/.I � BN .4//
�1krank BN

`2
N

!`2
N

� eCN ı

; (4.6)

where again the constant C does not depend on N . Therefore, Theorem 1 follows

from applying Lemma 4.1 to (4.6) and (4.5).

4.2. Proof of Theorem 2

We modify the definition of the domain �� slightly to ensure the geometry scales

correctly later. Take

�� D ¹zWM�� � jzj � e5�º:

Clearly, counting zeros of F.�/ for � 2 �� suffices, and as long as e5� � 4, we will

be able to find a lower bound at a single point of F.�/.

By Corollary 3.3, for all j�j � M�� ,

jF.�/j � .2M � C 1/rank A � MC��N ı�s.1�ı/

: (4.7)

where the constant C is independent of N and �. For a lower bound on large �, note

that for all � � 4,

kB.�/k`2!`2 � 1

2
;

and thus for such �,

jF.�/j�1 D j det..I � B.�//�1/j
D j det.I C B.�/.I � B.�//�1/j

� MC��N ı �s.1�ı/

; (4.8)

where again the constant does not depend on N or �. The domain �� in which we

wish to upper bound the number of zeros varies with �, and the constant in Lemma 4.1

depends on the geometry of the domain. Therefore, in order to capture the dependence

on �, consider the function
zF.!/ WD F.e!/: (4.9)

In particular, the number of zeros of F.�/ for � 2 �� is the same as the number of

zeros of zG.!/ for

! 2 ¹aC bi W a 2 Œ�� logM; 5��; b 2 Œ2�k; 2�.k C 1//º
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for any k 2 Z. Let

��� D ¹aC bi W a 2 Œ� logM; 5��; b 2 Œ0; 2��/º:

Let N .�/ denote the number of zeros of F.�/ for � 2 �� and let zN .�/ denote the

number of zeros of zF.!/ for ! 2 ��� . Note that 1
�

��� is the same domain independent

of �. Then applying Lemma 4.1 with (4.7) and (4.8), where the latter is taken at the

point e4� , then for all sufficiently large �, we have the upper bound

N .�/ � C

�
zN .�/ D C

�

ˇ̌
ˇ
°

zeros of zF.�!/ for ! 2 1

�
��

±ˇ̌
ˇ � CN ı�s.1�ı/;

where the constant C does not depend on N or �. This concludes the proof.

5. Numerical discussion

In this section, we look at how the Weyl upper bounds derived in this paper perform

against numerical data. All plots were made using MATLAB, version R2021b.

We use the same smooth cutoff function as in [7] and observe that it is 2-Gevrey.

The cutoff is constructed as follows. Let

f .x/ D c

1:02�x�0:01Z

�1

1lŒ0;1� exp
�
� 1

t.1 � t/
�
dt;

where c is chosen so that f .x/D 0 for x > 1. More precisely, with this normalization,

we have that f .x/ D 0 for x � 0:01
1:02

and f .x/ D 1 for x � 1:01
1:02

. Given a tightness

parameter � 2 .0; 1=2�, we then define the cutoff

� D f
�x
�

�
f

�1 � x

�

�
:

� is 2-Gevrey and is identically 1 near the interval Œ�; 1� ��.

The MATLAB function eig() was used to compute eigenvalues. We note that

column j ofBN;� is identically zero if bj �M=N c 2 A. We cut these columns as well

as the corresponding rows from the matrixBN;� to form anKjAj �KjAj matrix zBN;�

and compute the eigenvalues of the trimmed matrix using MATLAB. The nonzero

eigenvalues of BN;� are identical to those of zBN;�, so for the sake of counting the

number of eigenvalues greater than M�� , using the trimmed matrix only speeds up

the computation.
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Figure 3. M D 5, A D ¹1; 2; 3º, � D 0:05. Left: log NN .�/= log M is plotted against

log N= logM for K D N=M D ¹125; 175; 225; : : : ; 625º given various fixed values of �.

From top to bottom, the corresponding values of � are 1:5; 1:4; : : : ; 1:0. Right: the corres-

ponding slope of the linear regression of each curve is plotted against �, and the red line is at

ı D log jAj= logM .

5.1. Dependence on N

For a fixed �, the counting function NN .�/ is asymptotically upper bounded byN ı as

N DKM ! 1. For the numerical experiment in Figure 3 we plot logNN .�/= logM

against logN= logM for several different values of �, and for each �, we compute the

slope of the linear regression. The numerically computed slopes are all fairly close to

ı D log jAj
log M

. Similar numerical results can be obtained for other quantum open baker’s

maps. This is in numerical agreement with the upper bound derived in this paper,

and suggests that there could be matching lower bound, although no such bounds are

known.

The numerics depicted in Figure 3 is fairly stable under perturbations on the order

10�5 in the given range of K and �. In particular, for each N D K � M , we also

computed the spectrum of zBN;� C P where P is a random matrix whose entries

are i.i.d. random Gaussians, and the whole matrix is normalized so that kP k`2!`2 D
10�5. Running the same experiment as in Figure 3 with each of the matrices perturbed

by a random matrix of norm 10�5, the differences in the resulting slopes are on the

order 10�3, which suggests a lack of strong pseudo-spectral effects in the range of N

and � of concern.
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0:1 0:2 0:3 0:4 0:5 0:6 0:70

Figure 4. M D 5, A D ¹1; 2; 3º, � D 0:05, N D 55. The blue data set is log NN .�/ plotted

against log� for � D 1:0; 1:1; 1:2; : : : ; 3:0. The red line is the same experiment for the perturbed

matrix zBN;� C P where P is a randomly chosen matrix normalized so that kP k`2!`2 �
10�10. The yellow line is the linear regression for the experiment in blue, and has a slope of

0:3308, which is fairly close to 1 � ı � 0:3174.

5.2. Dependence on �

Now, we fix a large N D KM and see how the counting function NN .�/ varies

with �. Since we have the asymptotic upper bound � �s.1�ı/, we plot log �= logM

against log NN .�/= logM . The numerical data for NN .�/ becomes more unstable

as � becomes large. In Figure 4, we fix N D 55 and go to largest � for which a

perturbation on the order 10�10 yields no discernible difference. The line of best fit

as depicted in Figure 4 has a slope of 0:3308, which is much closer to 1� ı � 0:3174

than to s.1� ı/. We note that the alphabet and � we chose is such that � is identically

1 on the Cantor set associated with the alphabet. In fact, similar experiments with the

cutoff identically one near the Cantor set has similar behavior in that NN .�/ behaves

like �1�ı . However, the Weyl bound � N ı�s.1�ı/ holds for all choices of alphabets

and s-Gevrey cutoffs.

In the edge case where we take the alphabet to be a single point and ı D 0, we

should see that the magnitude of the first few eigenvalues to decrease exponentially,

which would exhibit the NN .�/. �2 behavior. Indeed, this is what we see in Figure 5.
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Figure 5. M D 3, A D ¹1º, � D 0:1, N D 36. In particular, this is the degenerate case where

the dimension of the trapped set is ı D 0. Left: a plot of the eigenvalues in the complex unit

circle. Right: log of the magnitude of the five largest eigenvalues.

We remark that essentially the same values for the top eigenvalues is obtained if we

take other values of N , which makes sense in light of the fact that the upper bound

we derived is independent of N for the degenerate case ı D 0.
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