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On periodic and antiperiodic spectra

of non-self-adjoint Dirac operators

Alexander Makin

Abstract. The necessary and sufficient conditions are given for a sequence of complex numbers

to be the periodic (or antiperiodic) spectrum of non-self-adjoint Dirac operator.

1. Introduction

One of the important classes of inverse spectral problems is the problem of recovering

a system of differential equations from spectral data. The solution of such problems

are considered in many papers, see [12,18,29–35] and the references therein. The most

studied cases are for the Dirac and the Dirac-type differential operators. In particular,

such problems for the canonical Dirac system on a finite interval

By 0 C V y D �y ; (1.1)

where y D col.y1.x/; y2.x//,

B D

�

0 1

�1 0

�

; V .x/ D

�

p.x/ q.x/

q.x/ �p.x/

�

;

in the self-adjoint case have been studied in detail. In the cases of the Dirichlet and the

Neumann boundary conditions, the reconstruction of a continuous potential from two

spectra was carried out in [6], from one spectrum and the norming constants in [5],

and from the spectral function in [15]. The analogous results for the Dirac operator

with summable potentials were established in [1]. The case of more general separ-

ated boundary conditions was considered in [3]. In the case of unseparated boundary

conditions (including periodic, antiperiodic, and quasi-periodic conditions), the con-

sidered problem was solved in [17,19–22]. In the non-self-adjoint case, the problem of

reconstructing the potential V.x/ from spectral data is much more complicated, since

many methods successfully used to study self-adjoint operators are inapplicable. For
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example, the characterization of the spectra of the periodic (antiperiodic) problem

for the operator (1.1) with real coefficients is given in [17] in terms of special con-

formal mappings, which do not exist for complex-valued potentials. The property that

the eigenvalues of the corresponding Dirichlet and Neumann problems are interlaced,

which is often used to prove the solvability of the basic equation, loses its meaning

in the complex case. Non-self-adjoint inverse problems for the system (1.1) with reg-

ular boundary conditions and sufficiently smooth complex-valued coefficients were

investigated in [24]. Analogous problems for non-self-adjoint Dirac systems with sin-

gularities in interior points were studied in [8]. In [2], for the integro-differential Dirac

system with complex-valued coefficients, the authors obtained necessary and suffi-

cient conditions of solvability of the inverse spectral problem. Various types of inverse

spectral problems in the non-self-adjoint case were considered in the book [29]. A sur-

vey of papers on inverse problems of spectral analysis for non-self-adjoint systems of

ordinary differential equations is given in [36].

Questions of uniqueness in inverse problems for operators of type (1.1) on a finite

interval were studied in several papers (see, for instance, [28] and the references

therein). In particular, the uniqueness of the inverse problem for general Dirac-type

systems of order 2n was established in [13, 14]. Also, inverse theory was intensively

developed for Dirac-type operators on the axis and semiaxis by many authors. A new

inverse approach to such differential systems on the semiaxis based on the A-function

concept was recently considered in [7].

The aim of this paper is to find necessary and sufficient conditions of solvability

of the periodic (antiperiodic) inverse spectral problem for the system (1.1) with a

nonsmooth complex-valued potential V.x/.

The paper is organized as follows. Section 2 contains some basic facts and defin-

itions related to the considered problems. In Section 3, by using a modified version

of the Gelfand–Levitan–Marchenko method, we prove the solvability of the basic

equation and establish necessary and sufficient conditions for an entire function to

be the characteristic determinant of the considered problem. The theory of sine-type

entire functions is substantially used; in particular, deep results [10,11] on the zeros of

these functions. Also, we repeatedly use the properties of the entire functions from the

Paley–Winer class established in [26]. To prove sufficiency, we construct the Gelfand–

Levitan type kernel F.x; t/ and obtain the unique solvability of the homogeneous

Gelfand–Levitan type equation.

Further, we obtain necessary and sufficient conditions for a set of complex num-

bers to be the spectrum of the mentioned problem. Our reasoning is based on the

properties of the entire functions of exponential type and the infinite products estab-

lished, for example, in [9, 23].
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2. Preliminaries

In the present paper, we consider the system (1.1), where complex-valued functions

p; q 2 L2.0; �/ .V 2 L2/, with periodic (antiperiodic) boundary conditions

U1.y/ D y1.0/ � .�1/�y1.�/ D 0; U2.y/ D y2.0/ � .�1/�y2.�/ D 0; (2.1)

where � D 0; 1. In what follows, we introduce the Euclidean norm

kfk D .jf1j2 C jf2j2/1=2

for vectors f D col.f1; f2/ 2 C2 and set

hf ; gi D f1 Ng1 C f2 Ng2:

If W is 2 � 2-matrix, then we set

kW k D sup
kfkD1

kW fk

and denote by L2;2.a; b/ and L
2;2
2;2.a; b/, respectively, the spaces of 2-coordinate vec-

tor functions f .t/ D col.f1.t/; f2.t// and 2 � 2-matrix functions W.t/ with finite

norms

kfkL2;2.a;b/ D

�

b
Z

a

kf .t/k2dt

�1=2

; kW k
L2;2

2;2
.a;b/

D

�

b
Z

a

kW.t/k2dt

�1=2

:

The operator Ly D By 0 C V y is regarded as a linear operator in the space

L2;2.0; �/ with the domain

D.L/ D ¹y 2 W 1
1 Œ0; �� � W 1

1 Œ0; ��W Ly 2 L2;2.0; �/; Uj .y/ D 0 .j D 1; 2/º:

Denote by

E.x; �/ D

�

c1.x; �/ �s2.x; �/

s1.x; �/ c2.x; �/

�

(2.2)

the matrix of the fundamental solution system to equation (1.1) with boundary condi-

tion E.0; �/ D I , where I is the unit matrix.

It is well known that the entries of the matrix E.x; �/ are related by the identity

c1.x; �/c2.x; �/ C s1.x; �/s2.x; �/ D 1; (2.3)

which is valid for any x; �. The eigenvalues of problem (1.1), (2.1) are the roots of

the characteristic equation

�.�/ D 0;
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where

�.�/ D

ˇ

ˇ

ˇ

ˇ

U1.EŒ1�.�; �// U1.EŒ2�.�; �//

U2.EŒ1�.�; �// U2.EŒ2�.�; �//

ˇ

ˇ

ˇ

ˇ

;

and EŒk�.x; �/ is the k-th column of matrix (2.2).

The matrix E.�; �/ is called the monodromy matrix of the operator Ly . For its

entries, we introduce the notation cj .�/ D cj .�; �/, sj .�/ D sj .�; �/, j D 1; 2. We

denote also the class of entire functions f .z/ of exponential type � � such that

kf kL2.R/ < 1 by PW� . It is known [27] that the functions cj .�/; sj .�/ admit the

representation

cj .�/ D cos �� C gj .�/; sj .�/ D sin �� C hj .�/; (2.4)

where gj ; hj 2 PW� , j D 1; 2. For functions of type (2.4), the following statement is

true:

Lemma 1 ([17]). The functions u.�/ and v.�/ admit the representations

u.�/ D sin �� C h.�/; v.�/ D cos �� C g.�/;

where h; g 2 PW� , if and only if

u.�/ D ��.�0 � �/

1
Y

nD�1
n¤0

�n � �

n
;

where �n D n C �n; ¹�nº 2 `2.Z/,

v.�/ D

1
Y

nD�1

�n � �

n � 1=2
;

where �n D n � 1=2 C �n; ¹�nº 2 `2.Z/.

It is well known that the characteristic determinant of problem (1.1), (2.1) can be

reduced to the form

�.�/ D .�1/�C1 C
c1.�/ C c2.�/

2
; (2.5)

and the eigenvalues are specified by the asymptotic formulas

�n;j D 2n C � C "n;j ; (2.6)

where ¹"n;j º 2 `2.Z/, n 2 Z, j D 1; 2.
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Denote by E0.x; �/ the fundamental-solution system to the equation By 0 D �y

with boundary condition E0.0; �/ D I . Obviously,

E0.x; �/ D

�

cos �x � sin �x

sin �x cos �x

�

:

Denote also the second column of the matrix E0.x; �/ by

Y0.x; �/ D

�

� sin �x

cos �x

�

:

Further, �.z; r/ denotes a disk of radius r centered at the point z.

3. Main results

3.1. Characteristic determinant

Theorem 3.1. For a function ‰.�/ to be the characteristic determinant of prob-

lem (1.1), (2.1), it is necessary and sufficient that it can be represented in the form

‰.�/ D .�1/�C1 C cos �� C f .�/;

where f 2 PW� , and
1

X

nD�1
jf .n/j < 1: (3.1)

Proof. Necessity. Evidently, relations (2.4) and (2.5) imply that f 2 PW� . To check

inequality 3.1, we consider the monodromy matrix of problem (1.1), (2.1). Let the

corresponding function s2.�/ have the roots �n; hence, by [26, Lemma 2.2],

�n D n C ın; (3.2)

where ¹ınº 2 `2.Z/, n 2 Z. Since

cj .�n/ D cos ��n C gj .�n/; (3.3)

it follows from (2.4) and [26, Lemma 2.1] that

1
X

nD�1
jgj .�n/j2 < 1: (3.4)

Denote

�.�/ D ‰.�/ � .�1/�C1 D cos �� C f .�/: (3.5)
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By virtue of (2.5),

c1.�n/ C c2.�n/ D 2�.�n/:

It follows from (2.3) that c1.�n/c2.�n/ D 1I consequently, the numbers c1.�n/;c2.�n/

are the roots of the quadratic equation

w2 � 2�.�n/w C 1 D 0: (3.6)

Therefore, we have

c1.�n/; c2.�n/

D �.�n/ ˙
p

�2.�n/ � 1

D cos ��n C f .�n/ ˙
p

.cos ��n C f .�n//2 � 1

D cos ��n C f .�n/ ˙
p

cos2 ��n C 2 cos ��nf .�n/ C f 2.�n/ � 1

D cos ��n C f .�n/ ˙

q

2 cos ��nf .�n/ C f 2.�n/ � sin2 ��n: (3.7)

It follows from (3.3) and (3.7) that

.g1.�n/ � f .�n//2 D 2 cos ��nf .�n/ C f 2.�n/ � sin2 ��nI

hence,

2 cos ��nf .�n/ D g2
1.�n/ � 2g1.�n/f .�n/ C sin2 �ın: (3.8)

It follows from (3.2) that for all sufficiently large jnj the inequality j cos ��nj > 1=2

holds. This, together with (3.2), (3.4), and [26, Lemma 2.1] implies

1
X

nD�1
jf .�n/j < 1: (3.9)

Since f 0 2 PW� , then

jf .n/j � jf .�n/j C jf .n/ � f .�n/j

� jf .�n/j C jınjj�nj

� jf .�n/j C .jınj2 C j�nj2/=2;

where

�n D max
�2�.n;jınj/

jf 0.�/j:

By [26, Lemma 2.1], ¹�nº 2 `2.Z/. This and (3.9) imply (3.1).

Sufficiency. Let f 2 PW� satisfy condition (3.1). It follows from the Paley–Wiener

theorem and [16, Lemma 1.3.1] that

lim
j�j!1

e��jIm �jf .�/ D 0; (3.10)
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hence there exists a positive integer N0 large enough that jf .�/j < 1=100 if

Im � D 0, jRe �j � N0. Let �n .n 2 Z/ be a strictly monotone increasing sequence

of real numbers such that for any n ¤ 0 �n D ��n, j�n � .N0 C 1=2/j < 1=100 if

0 � n � N0, and �n D n if n > N0. Denote

s.�/ D ��.�0 � �/

1
Y

nD�1
n¤0

�n � �

n
: (3.11)

It follows from Lemma 1 that

s.�/ D sin �� C h.�/; (3.12)

where h 2 PW� ; hence,

js.�/j � C1e�jIm �j (3.13)

if jIm �j � M , where M is sufficiently large. It follows from (3.11) that

Ps.�0/ D �

1
Y

nD�1
n¤0

�n � �0

n
> 0:

One can readily see that the inequality Ps.�n/Ps.�nC1/ < 0 holds for all n 2 Z. It follows

from the two last inequalities that

.�1/n Ps.�n/ > 0: (3.14)

Relation (3.12) and [26, Lemma 2.1] imply that

Ps.�n/ D �.�1/n C �n; (3.15)

where ¹�nº 2 `2.Z/; hence,

1

Ps.�n/
D

.�1/n

�
C �n; (3.16)

where ¹�nº 2 `2.Z/.

Equation (3.6) has the roots

c˙
n D �.�n/ ˙

p

�2.�n/ � 1

D cos ��n C f .�n/ ˙
p

.cos ��n C f .�n//2 � 1

D cos ��n C f .�n/ ˙
p

cos2 ��n C 2 cos ��nf .�n/ C f 2.�n/ � 1

D cos ��n C f .�n/ ˙

q

2 cos ��nf .�n/ C f 2.�n/ � sin2 ��n: (3.17)
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It follows from (3.17) that if 0 < jnj � N0, then the numbers cC
n are contained within

the disk �.i;1=10/ and the numbers c�
n are contained within the disk �.�i; 1=10/; and

if jnj > N0, then the numbers c˙
n are contained within the disk �.1; 1=10/ for even

n and the numbers c˙
n are contained within the disk �.�1; 1=10/ for odd n. Denote

cn D cC
n for even n and cn D c�

n for odd n. Denote also

zn D
cn

Ps.�n/
:

It follows from (3.14) that the numbers zn lie strictly above the line l W Im � D � Re �.

Evidently,

�n D n C �n; (3.18)

where ¹�nº 2 `2.Z/. It follows from (3.17), (3.18), and condition (3.1) that

cn D .�1/n C #n; (3.19)

where ¹#nº 2 `2.Z/. Let ˇn D cn � cos ��n; then ¹ˇnº 2 `2.Z/. Let us consider the

function

g.�/ D s.�/

1
X

nD�1

ˇn

Ps.�n/.� � �n/
:

By [9, p. 120], g 2 PW� and g.�n/ D ˇn. Denote c.�/ D cos �� C g.�/. Then

c.�n/ D cn ¤ 0; hence, the functions s.�/ and c.�/ have disjoint zero sets.

Denote

F.x; t/ D

1
X

nD�1

� cn

Ps.�n/
.Y0.x; �n/Y T

0 .t; �n// �
1

�
Y0.x; n/Y T

0 .t; n/
�

:

It follows from [27] that

kF.�; x/k
L

2;2
2;2

.0;�/
C kF.x; �/k

L
2;2
2;2

.0;�/
< C2;

where C2 not depending on x.

Using the properties of the numbers zn established above, we prove that for every

x 2 Œ0; �� the homogeneous Gelfand–Levitan type equation

f T .t/ C

x
Z

0

f T .s/F.s; t/ds D 0; (3.20)

where f .t/ D col.f1.t/; f2.t//, f 2 L2;2.0; x/, f .t/ D 0 if x < t � � , has the trivial

solution only.
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Multiplying equation (3.20) by f T .t/ and integrating the resulting equation over

segment Œ0; x�, we obtain

kfk2
L2;2.0;x/ C

x
Z

0

�

x
Z

0

f T .s/F.s; t/ds; f T .t/

�

dt D 0: (3.21)

Simple computations show

f T .s/F.s; t/ D

1
X

nD�1
¹znŒf1.s/ sin �ns sin �nt � f2.s/ cos �ns sin �nt;

� f1.s/ sin �ns cos �nt C f2.s/ cos �ns cos �nt �

�
1

�
Œf1.s/ sin ns sin nt � f2.s/ cos ns sin nt;

� f1.s/ sin ns cos nt C f2.s/ cos ns cos nt�º

D

1
X

nD�1
¹znŒf1.s/ sin �ns sin �nt � f2.s/ cos �ns sin �nt �

�
1

�
Œf1.s/ sin ns sin nt � f2.s/ cos ns sin nt�;

znŒ�f1.s/ sin �ns cos �nt C f2.s/ cos �ns cos �nt �

�
1

�
Œ�f1.s/ sin ns cos nt C f2.s/ cos ns cos nt�º; (3.22)

therefore, substituting the right-hand side of (3.22) into the second term in the left-

hand side of (3.21), transforming the iterated integrals into products of integrals, and

using the reality of all numbers �n, we obtain

x
Z

0

�

x
Z

0

f T .s/F.s; t/ds; f T .t/

�

dt

D

1
X

nD�1

x
Z

0

�

x
Z

0

¹znŒf1.s/ sin �ns sin �nt � f2.s/ cos �ns sin �nt �

�
1

�
Œf1.s/ sin ns sin nt � f2.s/ cos ns sin nt�ºds

�

f1.t/dt

C

1
X

nD�1

x
Z

0

�

x
Z

0

¹znŒ�f1.s/ sin �ns cos �nt C f2.s/ cos �ns cos �nt �

�
1

�
Œ�f1.s/ sin ns cos nt C f2.s/ cos ns cos nt�ºds

�

f2.t/dt



A. Makin 1576

D

1
X

nD�1

�

zn

x
Z

0

Œf1.s/ sin �ns � f2.s/ cos �ns�ds

x
Z

0

sin �ntf1.t/dt

�
1

�

x
Z

0

Œf1.s/ sin ns � f2.s/ cos ns�ds

x
Z

0

sin ntf1.t/dt

�

C

1
X

nD�1

�

zn

x
Z

0

Œ�f1.s/ sin �ns C f2.s/ cos �ns�ds

x
Z

0

cos �ntf2.t/dt

�
1

�

x
Z

0

Œ�f1.s/ sin ns C f2.s/ cos ns�ds

x
Z

0

cos ntf2.t/dt

�

D

1
X

nD�1
zn

�

x
Z

0

Œf1.s/ sin �ns � f2.s/ cos �ns�ds

x
Z

0

sin �ntf1.t/dt

C

x
Z

0

Œ�f1.s/ sin �ns C f2.s/ cos �ns�ds

x
Z

0

cos �ntf2.t/dt

�

�

1
X

nD�1

1

�

�

x
Z

0

Œf1.s/ sin ns � f2.s/ cos ns�ds

x
Z

0

sin ntf1.t/dt

C

x
Z

0

Œ�f1.s/ sin ns C f2.s/ cos ns�ds

x
Z

0

cos ntf2.t/dt

�

D

1
X

nD�1
zn

�

x
Z

0

Œf1.t/ sin �nt � f2.t/ cos �nt �dt

x
Z

0

sin �ntf1.t/dt

C

x
Z

0

Œ�f1.t/ sin �nt C f2.t/ cos �nt �dt

x
Z

0

cos �ntf2.t/dt

�

�

1
X

nD�1

1

�

�

x
Z

0

Œf1.t/ sin nt � f2.t/ cos nt�dt

x
Z

0

sin ntf1.t/dt

C

x
Z

0

Œ�f1.t/ sin nt C f2.t/ cos nt�dt

x
Z

0

cos ntf2.t/dt

�

D

1
X

nD�1
zn

x
Z

0

Œf1.t/ sin �nt � f2.t/ cos �nt �dt

�

x
Z

0

Œf1.t/ sin �nt � f2.t/ cos �nt �dt
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�

1
X

nD�1

1

�

x
Z

0

Œf1.t/ sin nt � f2.t/ cos nt�dt

x
Z

0

Œf1.t/ sin nt � f2.t/ cos nt�dt

D

1
X

nD�1
zn

ˇ

ˇ

ˇ

ˇ

x
Z

0

hf .t/; Y0.t; �n/idt

ˇ

ˇ

ˇ

ˇ

2

�

1
X

nD�1

1

�

ˇ

ˇ

ˇ

ˇ

x
Z

0

hf .t/; Y0.t; n/idt

ˇ

ˇ

ˇ

ˇ

2

:

(3.23)

It is well known that the function system ¹ 1p
�

Y0.t; n/º .n 2 Z/ is an orthonormal

basis in L2;2.0; �/; hence it follows from the Parseval equality that

kfk2
L2;2.0;x/ D

1
X

nD�1

1

�

ˇ

ˇ

ˇ

ˇ

x
Z

0

hf .t/; Y0.t; n/idt

ˇ

ˇ

ˇ

ˇ

2

: (3.24)

It follows from (3.21), (3.23), and (3.24) that

1
X

nD�1
zn

ˇ

ˇ

ˇ

ˇ

x
Z

0

hf .t/; Y0.t; �n/idt

ˇ

ˇ

ˇ

ˇ

2

D 0:

Since all the numbers zn are located strictly in the same half-plane relative to a line

which passes through the origin, we see that

x
Z

0

hf .t/; Y0.t; �n/idt D 0

for all n 2 Z. It follows from (3.12) that the function s.�/ is a sin-type function [10],

therefore [1, Lemma 5.3], the system Y0.t; �n/ is a Riesz basis of L2;2.0; �/; hence

the system Y0.t; �n/ is complete in L2;2.0; �/. It follows now that f .t/ � 0.

By [27, Theorem 5.1], the functions c.�/ and �s.�/ are the entries of the first line

of the monodromy matrix

zE.�; �/ D

�

Qc1.�; �/ �Qs2.�; �/

Qs1.�; �/ Qc2.�; �/

�

for problem (1.1), (2.1) with a potential zV 2 L2, i.e.,

c.�/ D Qc1.�; �/; s.�/ D Qs2.�; �/: (3.25)

The corresponding characteristic determinant is

z�.�/ D .�1/�C1 C . Qc1.�; �/ C Qc2.�; �//=2 D .�1/�C1 C cos �� C Qf .�/;
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where Qf 2 PW� . It follows from (2.3), (3.5), (3.6), and (3.25) that

z�.�n/ D .�1/�C1 C . Qc1.�; �n/ C Qc2.�; �n//=2

D .�1/�C1 C
�

Qc1.�; �n/ C
1

Qc1.�; �n/

�

=2

D .�1/�C1 C
�

c.�n/ C
1

c.�n/

�

=2

D .�1/�C1 C �.�n/ D ‰.�n/:

This implies that the function

ˆ.�/ D
‰.�/ � z�.�/

s.�/
D

f .�/ � Qf .�/

s.�/

is an entire function in the whole complex plane. Since, by the Paley–Wiener theorem,

jf .�/ � Qf .�/j < C3e�jIm �j; (3.26)

then by (3.13) jˆ.�/j � C4 if jIm �j � M . We denote by � the set

�.N0 C 1=2; 1=10/ [ �.�N0 � 1=2; 1=10// [ �jnj>N0
.n; 1=10/:

Since the function s.�/ is a sin-type function [11], then js.�/j > C5 > 0 if � … �.

From this inequality, (3.26), and the Maximum Principle, we obtain that jˆ.�/j < C6

in the strip jIm �j � M ; hence the function ˆ.�/ is bounded in the whole complex

plane and, by virtue of Liouville theorem, it is a constant. Let jIm �j D M ; then

it follows from (3.10) that limj�j!1.f .�/ � Qf .�// D 0. Consequently ˆ.�/ � 0;

therefore ‰.�/ � z�.�/.

Remark 3.1. The necessity of condition (3.1) for the Dirac operators with skew-sym-

metric potentials by another method was established in [26].

Remark 3.2. An analysis of the function f .�/ D sin ��
�

shows that condition (3.1) is

not equivalent to condition kf kL1.R/ < 1.

Remark 3.3. We had to impose an additional condition (3.1) on the function f .�/,

in order to correctly construct the kernel F.x; t/, namely to obtain relation (3.19).

3.2. Spectrum

Theorem 3.2. For a set ƒ to be the spectrum of some Dirac operator (1.1), (2.1) with

a complex-valued potential V 2 L2.0;�/, it is necessary and sufficient that it consists

of two sequences of eigenvalues �n;j satisfying condition (2.6) and the inequality

1
X

kD�1

ˇ

ˇ

ˇ

1
X

nD�1

"n;1 C "n;2

2n � 2k � 1

ˇ

ˇ

ˇ < 1: (3.27)
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Proof. The proof of the theorem is carried out in the same lines for the periodic

and the antiperiodic cases, and here we present the reasoning only for the periodic

one. The main idea of our reasoning is to prove that the difference between the char-

acteristic determinant of problem (1.1), (2.1) and the characteristic determinant of

corresponding nonperturbed problem is an entire function, satisfying all conditions of

the Theorem 3.1.

Sufficiency. Let two sequences �n;j satisfy conditions (2.6) and (3.27). Evidently,

there exists a constant M such that

sup
n;j

j"n;j j < M;

1
X

nD�1

2
X

j D1

j"n;j j2 < M: (3.28)

It is well known that

sin �� D ��

1
Y

nD�1
n¤0

n � �

n
D ��

1
Y

nD�1
n¤0

�

1 �
�

n

�

I

hence,

sin2 ��

2
D

�2�2

4

1
Y

nD�1
n¤0

�2n � �

2n

�2

D
�2�2

4

1
Y

nD�1
n¤0

�

1 �
�

2n

�2

:

Therefore, the function �0.�/ D �1 C cos �� has the representation

�0.�/ D �
�2�2

2

1
Y

nD�1
n¤0

.2n � �/.2n � �/

4n2
: (3.29)

Evidently,

j�0.�/j < c1e�jIm �j: (3.30)

Denote

�.�/ D �
�2

2
.�0;1 � �/.�0;2 � �/

1
Y

nD�1
n¤0

.�n;1 � �/.�n;2 � �/

4n2
:

Let f .�/ D �.�/ � �0.�/. Let us prove that f 2 PW� and satisfies condition (3.1).

Our investigation of the properties of the function f .�/ is based on the following pro-

positions.

Proposition 1. The function f .�/ is an entire function of exponential type not exceed-

ing � .
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Denote � the union of the disks �.2n; 1=4/ .n 2 Z/. If � … � , then

f .�/ D ��0.�/
�

1 �
�.�/

�0

�

D ��0.�/.1 � �.�//; (3.31)

where

�.�/ D
.�0;1 � �/.�0;2 � �/

�2

1
Y

nD�1
n¤0

.�n;1 � �/.�n;2 � �/

.2n � �/.2n � �/

D
�

1 �
�0;1

�

��

1 �
�0;2

�

�

1
Y

nD�1
n¤0

2
Y

j D1

�

1 C
"n;j

2n � �

�

D

1
Y

nD�1

2
Y

j D1

.1 C ˛n;j .�//;

where ˛0;j .�/ D
��0;j

�
, ˛n;j .�/ D

"n;j

2n��
. Let us estimate the function �.�/. It follows

from (3.28) that

1
X

nD�1

2
X

j D1

j˛n;j .�/j � c2 C

1
X

nD�1
n¤0

2
X

j D1

.j"n;j j2 C j2n � �j�2/=2 < c3: (3.32)

It is easy to see that, for all jnj > n0, where n0 is a sufficiently large number, we have

j˛n;j .�/j < 1=4 (3.33)

for all � … � . If jnj � n0, then inequality (3.33) holds for all sufficiently large j�j;

hence inequality (3.33) is valid for all j�j � C0. It follows from (3.32), (3.33), and the

elementary inequality

j ln.1 C z/j � 2jzj; (3.34)

which is valid if jzj � 1=4, that

1
X

nD�1

2
X

j D1

j ln.1 C ˛n;j .�//j � c4:

Here and throughout the following, we choose the branch of ln.1 C z/ that is zero for

z D 0. In view of [9, p. 433], we rewrite the last relation in the form

j�.�/j �

1
Y

nD�1

2
Y

j D1

j1 C ˛n;j .�/j � ec4 : (3.35)
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It follows from (3.30), (3.31), (3.35) that

jf .�/j < c5e�jIm �j (3.36)

outside the domain � 0 D � [ ¹j�j < C0º. In particular, inequality (3.36) is valid if �

belongs the lines Im � D ˙C0 and the vertical segments with vertexes .2k � 1; �C0/,

.2k � 1; C0/, j2k � 1j > C0, k 2 Z. By the Maximum Principle, inequality (3.36)

holds in the whole complex plane. This completes the proof of Proposition 1.

Proposition 2. The function f belongs to PW� .

Denote

W.�/ D ln �.�/ D

1
X

nD�1

2
X

j D1

ln.1 C ˛n;j .�//;

then

f .�/ D ��0.�/.1 � eW.�//: (3.37)

Let us estimate the function W.�/ if � … � 0. It follows from (3.28), (3.31), and (3.34)

that

jW.�/j �

1
X

nD�1

2
X

j D1

j ln.1 C ˛n;j .�//j

� 2

1
X

nD�1

2
X

j D1

j˛n;j .�/j

�
2M

j�j
C

1
X

nD�1
n¤0

2
X

j D1

� j"n;j j2

10M
C

10M

j2n � �j2

�

�
2M

j�j
C 1=10 C 20M

1
X

nD0

1

n2 C jIm �j2

�
2M

j�j
C 1=10 C 20M

�

2

jIm �j2
C

1
Z

1

dx

x2 C jIm �j2

�

�
2M

jIm �j
C 1=10 C 20M

� 2

jIm �j2
C

�

2jIm �j

�

:

The last inequality implies that

jW.�/j < 1=4 (3.38)
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if jIm �j � M1 D 10.� C 2 C 22M/ C C0. Then, from the trivial inequality

jzj

2
� j1 � ez j � 2jzj; (3.39)

which holds for jzj � 1=4, we obtain the inequality j1 � eW.�/j � 2jW.�/j, which,

together with (3.30) and (3.37) implies that

jf .�/j � c6jW.�/j (3.40)

for � 2 l , where l is the line Im � D M1. Let us prove that

Z

l

jW.�/j2d� < 1: (3.41)

From the elementary inequality j ln.1 C z/ � zj � jzj2 true for jzj � 1=2, we obtain

ln.1 C z/ � z D r.z/;

where jr.z/j � jzj2; hence,

W.�/ D S1.�/ C S2.�/; (3.42)

where

S1.�/ D

1
X

nD�1

2
X

j D1

˛n;j .�/; jS2.�/j �

1
X

nD�1

2
X

j D1

j˛n;j .�/j2:

Evidently,

jW.�/j � jS1.�/j C jS2.�/j: (3.43)

Set

Im D

Z

l

jSm.�/j2d� .m D 1; 2/:

First, consider the integral I1. It follows from [25, p. 221] that

I1 D

Z

l

ˇ

ˇ

ˇ

1
X

nD�1

"n;1 C "n;2

2n � �

ˇ

ˇ

ˇ

2

d� < 1: (3.44)

It is readily seen that

jS2.�/j �

1
X

nD�1

j"n;1j2 C j"n;2j2

j2n � �j2
< c7I
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hence,

I2 � c7

Z

l

�

1
X

nD�1

j"n;1j2 C j"n;2j2

j2n � �j2

�

d�

D c8

1
X

nD�1
.j"n;1j2 C j"n;2j2/

Z

l

d�

j2n � �j2

< c9

1
X

nD�1
.j"n;1j2 C j"n;2j2/ < c10: (3.45)

Relations (3.43)–(3.45) imply (3.41). It follows from (3.40), (3.41), and [23, p. 115]

that
Z

R

jf .�/j2d� < 1: (3.46)

The validity of the Proposition 2 is proved.

Proposition 3. The function f .�/ satisfies condition (3.1).

Obviously, �0.2k/ D 0; hence f .2k/ D �.2k/. Since the function �.�/ is

bounded in the strip jIm �j � 1, and for all sufficiently large jkj the inequality j"k;j j <

1=2 takes place, by the Maximum Principle, we have

jf .2k/j D j�.2k/j � j"k;1jj"k;2j max
j2k��jD1

ˇ

ˇ

ˇ

�.�/

.�k;1 � �/.�k;2 � �/

ˇ

ˇ

ˇ

� c11.j"k;1j2 C j"k;2j2/: (3.47)

Let us estimate jf .2k C 1/j. Obviously, �0.2k C 1/ D �2. Denote

�n D max.j"n;1j; j"n;2j/:

There exists a number n0 > 0 such that

X

jnj>n0

�2
n < 1=1000;

and for any jnj > n0 the inequality �
2=3
n < 1=1000 holds. Let � … � 0. Supplementary

suppose that

j�j > M2 D 1000.2n0 C 1/n0M:

Then, using the well-known inequality

ab �
ap

p
C

bq

q
.a; b > 0; p; q > 1; 1=p C 1=q D 1/;
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we obtain

1
X

nD�1

2
X

j D1

j˛n;j .�/j � 2
�

X

jnj�n0

�n

j2n � �j
C

X

jnj>n0

�n

j2n � �j

�

� 2M
X

jnj�n0

1

j2n � �j
C 2

X

jnj>n0

�

�2
n C

�
2=3
n

j2n � �j4=3

�

� 1=50 C 1=500

1
X

nD1

1

n4=3
< 1=10I (3.48)

hence inequality (3.38) is valid for all � belonging to the considered domain. Arguing

as above, we see that

jf .�/j � c12

�ˇ

ˇ

ˇ

1
X

nD�1

2
X

j D1

˛n;j .�/
ˇ

ˇ

ˇ C

1
X

nD�1

2
X

j D1

j˛n;j .�/j2
�

: (3.49)

The last inequality implies that for all j2k C 1j > k0, where k0 D max.C0; M2/,

jf .2k C 1/j � c13

�ˇ

ˇ

ˇ

1
X

nD�1

"n;1 C "n;2

2n � 2k � 1

ˇ

ˇ

ˇ C

1
X

nD�1

j"n;1j2 C j"n;2j2

j2n � 2k � 1j2

�

: (3.50)

Clearly,

1
X

kD�1

1
X

nD�1

j"n;1j2 C j"n;2j2

j2n � 2k � 1j2
D

1
X

nD�1
.j"n;1j2 C j"n;2j2/

1
X

kD�1

1

j2n � 2k � 1j2

< c14

1
X

nD�1
.j"n;1j2 C j"n;2j2/ < c15: (3.51)

It follows from (3.27), (3.47), (3.50), and (3.51) that (3.1) holds. This completes the

proof of Proposition 3.

Thus, the function f .�/ satisfies all conditions of Theorem 3.1, and the function

�.�/ is the characteristic determinant of some problem (1.1), (2.1).

Remark 3.4. The proof of an inequality similar to (3.40), carried out in [25], is based

on the boundedness of the Hilbert transformation in `2.Z/.

Necessity. If a set ¹ƒº is the spectrum of a Dirac operator (1.1), (2.1), then rela-

tion (2.6) takes place [4, Theorem 6.5]. Let us prove that condition (3.27) holds. Since

f .�/ D �.�/ � �0.�/, then, by Theorem 3.1, relation (3.1) is valid.

Let � D 2k C 1, k 2 Z, j2k C 1j > k0, hence inequality (3.48) holds. Since

�0.2k C 1/ D �2, it follows from (3.37) and (3.39) that

jW.2k C 1/j � jf .2k C 1/j:
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This, together with (3.42), implies

jS1.2k C 1/j � jf .2k C 1/j C

1
X

nD�1

2
X

j D1

j˛n;j .2k C 1/j2: (3.52)

Using (3.51), we find that

1
X

nD�1

2
X

j D1

j˛n;j .2k C 1/j2 < c16: (3.53)

It follows from (3.52), (3.53), and (3.1) that

X

j2kC1j>k0

jS1.2k C 1/j < c17:

It is easy to see that
X

j2kC1j�k0

jS1.2k C 1/j < k0c18:

The last two inequalities imply (3.27).

Remark 3.5. One can see that, in addition to the well-known asymptotic formulas

for the eigenvalues, the formulation of the theorem contains an additional condi-

tion (3.27). In fact, this condition means that the Hilbert transform of the sequence

¹"n;1 C "n;2º is bounded in `1.Z/. Inequality (3.27) is essentially used to prove the

satisfiability of condition (3.1), which in turn is required for the correct construction

of the Gelfand–Levitan type kernel F.x; t/.

Example. We give an example when (2.6) holds, but (3.27) does not. Let "n;1 D

"n;2 D 1=m if n D 2m and "n;1 D "n;2 D 0 if n ¤ 2m, m D 1; 2; : : :, n 2 Z. Denote


k D

1
X

nD�1

"n;1 C "n;2

2n � 2k � 1
; k 2 ZI

hence,


k D 2

1
X

mD1

1

m.2mC1 � 2k � 1/
:

Let k D 2p, p 2 N. Then


2p D 2

1
X

mD1

1

m.2mC1 � 2pC1 � 1/
D �

2

p
C �p;1 C �p;2;
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where

�p;1 D 2

p�1
X

mD1

1

m.2mC1 � 2pC1 � 1/
; �p;2 D 2

1
X

mDpC1

1

m.2mC1 � 2pC1 � 1/
:

A simple computation shows that

j�p;1j �
1

2p

p�1
X

mD1

1

m.1 � 2m�p � 1=2pC1/
�

4

2p

p�1
X

mD1

1

m
�

4.1 C ln p/

2p
(3.54)

and

j�p;2j � 2

1
X

lD1

1

.l C p/.2lCpC1 � 2pC1 � 1/

�
1

p2p

1
X

lD1

1

2l � 1 � 1=2pC1
�

4

p2p
: (3.55)

It follows from (3.54) and (3.55) that j�p;1 C �p;2j � 1=p if p � 10; hence j
2p j >

1=p. Therefore, the series
X

k2Z

j
kj

diverges.
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