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A growth estimate for the monodromy matrix

of a canonical system

Raphael Pruckner and Harald Woracek

Abstract. We investigate the spectrum of 2-dimensional canonical systems in the limit cir-

cle case. It is discrete and, by the Krein–de Branges formula, cannot be more dense than the

integers. But in many cases it will be more sparse. The spectrum of a particular selfadjoint

realisation coincides with the zeroes of one entry of the monodromy matrix of the system.

Classical function theory thus establishes an immediate connection between the growth of the

monodromy matrix and the distribution of the spectrum.

We prove a general and flexible upper estimate for the monodromy matrix, use it to prove

a bound for the case of a continuous Hamiltonian, and construct examples which show that this

bound is sharp. The first two results run along the lines of earlier work by R. Romanov, but

significantly improve upon these results. This is seen even on the rough scale of exponential

order.

1. Introduction

We investigate the spectral theory of 2-dimensional canonical systems

y 0.t/ D zJH.t/y.t/; t 2 I; (1.1)

where

• I D Œ˛; ˇ� is a finite interval with nonempty interior,

• H W I ! R
2�2 is a (Lebesgue-) measurable function which is integrable and does

not vanish on any set of positive measure,

• H.t/ � 0 for almost all t 2 I ,

• J is the symplectic matrix J ´
�
0 �1
1 0

�

,

• z is a complex parameter (the eigenvalue parameter).
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The function H is called the Hamiltonian of the system (1.1). Systems of this form

are intensively investigated since they can be seen as a unifying framework which

includes, e.g., Schrödinger operators, Jacobi matrices, Dirac operators, and many oth-

ers. Some recent standard literature is [1, 20, 21].

With the system (1.1) one can associate an operator model. It consists of a Hilbert

space L2.H/, the maximal and minimal operators Tmax.H/ and Tmin.H/, and a

boundary value map �.H/WTmax.H/!C
2 �C

2 (here we understand Tmax.H/ as its

graph). Selfadjoint realisations of (1.1) have compact resolvents, and are obtained by

specifying boundary conditions on the right and left endpoints ˛ and ˇ. Each two of

them are finite rank perturbations of each other, and the rank of the perturbation is at

most 2. Pick one and denote its eigenvalues as (this sequence need not be two-sided

infinite)

� � � � ��2 � ��1 < 0 � �1 � �2 � �3 � � � �

By the Krein–de Branges formula, we have (understanding the limit for a finite

sequence as 0)

lim
n!1

n

�jnj

D 1

�

ˇZ

˛

p

detH.t/ d t; (1.2)

cf. [7, Theorem VI.6.1, (6.50)] (and [4, Lemma 1.5.1]). If H.t/ is invertible on some

set of positive measure, this formula gives good information about the distribution of

the eigenvalues. On the other hand, if detH.t/ D 0 almost everywhere, then it does

not say anything other than that �.A/ is sparse compared to the integers.

Denote �˛ ´
�

cos˛
sin˛

�

. A Hamiltonian with zero determinant can always be written

in the form

H.t/ D trH.t/ � ��.t/�T�.t/;

where �W I ! R is a measurable function (determined up to integer multiples of �).

We shall refer to � as the rotation angle of H .

The basic question is how the distribution (density, asymptotics, etc.) of eigenval-

ues of selfadjoint realisations of (1.1) relate to the rotation angle of H .

Let us view this question from another angle which allows us to invoke function

theory. We denote by W.t; z/W I �C ! C
2�2 the unique solution of the initial value

problem
8

<̂

:̂

@

@t
W.t; z/J D zW.t; z/H.t/; t 2 I a.e.;

W.˛; z/ D I;

and call W.t; z/ the fundamental solution of the system (for technical reasons we

have passed to transposes, so that the rows of W.t; z/ give the solutions of (1.1)).
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The matrixWH .z/´ W.ˇ; z/ is called the monodromy matrix of the system. It is an

entire function in the spectral parameter z.

Understanding spectral properties amounts to understanding the monodromy

matrix as an entire function because of the following central connection: there exists

a selfadjoint realisation, call it AH , such that all eigenvalues of AH are simple and

�.AH / D ¹x 2 R j w22.x/ D 0º where w22.z/´ .0; 1/WH .z/

�
0

1

�

:

Hence, using classical theorems of complex analysis (see e.g. [4, 14]), we have the

immediate connection

spectral distribution of selfadjoint realisations

 !
growth of the monodromy matrix

and the correlation is that the slower the monodromy matrix grows, the less dense the

spectrum will be.

In the present paper we prove results which provide bounds for the growth of

WH .z/. Our main results are the three theorems described below.

Theorem 4.1. In this theorem we provide a general method to obtain upper bounds

for log kWH .z/k. It should be seen as an improvement of [22, Theorem 1]. For-

mulation and proof are fairly similar, still Theorem 4.1 turns out to be a significant

improvement of Romanov’s Theorem. This can be witnessed even on the rough scale

of exponential order, cf. Remark 5.4. As in Romanov’s Theorem there is a lot of free-

dom when applying the result, and using this freedom in a clever way is essential to

obtain strong estimates.

Theorem 5.2. We give an upper bound for the growth of logkWHk for a Hamiltonian

with continuous rotation angle. This is a perfect example for a (not too complicated)

application of Theorem 4.1.

Theorem 6.1. In our third theorem we prove that the bound given in Theorem 5.2 is

nearly sharp: we construct examples where the bound coming from Theorem 5.2 is

equal to the maximum modulus up to a logarithmic factor. The proof requires major

effort; among other things it relies on an auxiliary operator theoretic result which is

of interest on its own right, cf. Theorem 3.4.

The sharpness result Theorem 6.1 is related to the following – still open – prob-

lem: is it always possible to obtain the exact growth of WH by an application of

the bound obtained from Romanov’s Theorem (naturally, in the form of the present

improvement Theorem 4.1)? There are several hints which indicate that the answer

may be affirmative: [22, Theorem 2] which deals with diagonal Hamiltonians,
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[18, Theorem 2.22] which deals with piecewise constant Hamiltonians, and the present

Theorem 6.1 which deals with continuous Hamiltonians.

To close this introduction, let us briefly describe the organisation of the content.

We start with two sections containing auxiliary results. Those are needed only in the

proof of the sharpness theorem, and therefore the reader may skip Sections 2 and 3

until reaching Theorem 6.1. Then we proceed to the stated main results: in Section 4

we give the improvement of Romanov’s Theorem, in Section 5 we apply it to obtain

an upper bound for continuous rotation angles, and in Section 6 we prove sharpness

for this case.

2. Revisiting a lower bound for a Hamburger Hamiltonian

In this section we discuss a lower bound for the growth of the monodromy matrix of

Hamiltonians of a special form. This bound was used previously in [18, 19] and (in a

different language and with a different proof) in [2]. A weaker variant appears already

in [15].

Recall that a Hamburger Hamiltonian is a Hamiltonian of the form

H.t/ D trH.t/ � ��.t/�T�.t/

whose rotation angle �.t/ is piecewise constant with constancy intervals accumulat-

ing only at the right endpoint. More precisely:

2.1 Definition. Let .lj /
1
jD1 be a summable sequence of positive numbers and .�j /

1
jD1

be a sequence of real numbers. Set L´
P1
jD1 lj , and define a Hamiltonian Hl;� on

the interval Œ0; L� as

Hl;�.t/´ ��j
�T�j

for j 2 N and

j�1
X

iD1

li � t <
j

X

iD1

li :

A HamiltonianHl;� thus can be pictured as

��1
�T

�1
��2
�T

�2
��3
�T

�3
� � �

Hl;�W
0 l1 l1Cl2 l1Cl2Cl3 � � � L D

1
X

jD1

lj

We refer to the numbers lj and �j defining a Hamburger Hamiltonian as its lengths

and angles.1

1Angles are determined only up to integer multiples of � .
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This terminology is motivated from the connection with the Hamburger moment

problem, see e.g., [12].

The intuition concerning the growth of the monodromy matrix is that it grows

slow if lengths decay fast, jumps of angles are small, and angles converge quickly.

This reflects in the following result, which is the announced lower bound (it will also

perfectly reflect in our later upper bounds).

2.2 Proposition. LetH be a Hamburger Hamiltonian with lengths .lj /
1
jD1 and angles

.�j /
1
jD1, and assume that �1 6� �

2
mod � . Set

F.z/´
1

X

nD0

h n
Y

jD1

ljC1lj sin2.�jC1 � �j /
i

zn; (2.1)

then

log.max
jzjDr
kWH .z/k/ �

1

2
logF.r2/C O.log r/:

The assumption on �1 is no loss of generality, since adding a certain offset to the

sequences of angles does not change the function (2.1) and changes logkWH .z/k only

up to a summand which is a O.log jzj/.
The proof of Proposition 2.2 is obtained by repeating the “Alternative proof of

Proposition 2.15” given in the extended preprint [17, p. 15].

Proof of Proposition 2.2 (cf. [17]). For t � 0; � 2 R and z 2 C set

W�.t; z/ D I � zt���T� J;

and note that W�.t; z/�� D �� . Set tn ´
Pn
jD1 lj ; then the fundamental solution of

H is given as

WH .t; z/ D W�1
.l1; z/W�2

.l2; z/ : : :W�n�1
.ln�1; z/W�n

.t � tn�1; z/;

for n 2 N; tn�1 � t � tn. The function .1; 0/WH .t; z/��n
is constant on the interval

Œtn�1; tn�, and hence we can compute (writing WH .z/ D .wij .z//2i;jD1)

w12.z/w11.z/ � w11.z/w12.z/
z � z D

�
1

0

�T
LZ

0

WH .t; z/H.t/WH .t; z/
� d t

�
1

0

�

D
1

X

nD1

tnZ

tn�1

.1; 0/WH .t; z/��n
� ��
�n
WH .t; z/

�

�
1

0

�

d t

D
1

X

nD1

ˇ
ˇ.1; 0/WH .tn�1; z/��n

ˇ
ˇ
2 � ln:
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The function pn.z/´ .1; 0/WH .tn�1; z/��n
is a polynomial of degree n � 1 with

real coefficients and has only real zeroes. Therefore, we have the estimate

jpn.iy/j � yn�1jcn�1j; y > 0;

where cn�1 denotes the leading coefficient of pn.z/. This coefficient computes as

cn�1´ .�1/n�1l1 � � � � � ln�1 � .1; 0/ � ��1
�T�1
J � � � � � ��n�1

�T�n�1
J � ��n

D
� n�1

Y

jD1

lj

�

� cos�1 �
� n�1

Y

jD1

sin.�jC1 � �j /
�

:

It follows that

jw11.iy/j2

D
� 1

y
Im
w12.iy/

w11.iy/

��1

� w12.iy/w11.iy/� w11.iy/w12.iy/
2iy

�
� 1

y
Im
w12.iy/

w11.iy/

��1

�
1

X

nD1

y2.n�1/
h

cos�1

n�1
Y

jD1

lj sin.�jC1 � �j /
i2

ln

D
� 1

y
Im
w12.iy/

w11.iy/

��1

� l1 cos2 �1 �
1

X

nD0

y2n
h n

Y

jD1

ljC1lj sin2.�jC1 � �j /
i

:

Each quotient of the entries of a line or a column ofWH .z/ is (up to a sign) a Herglotz

function. We obtain

log.max
jzjDr
kWH .z/k/ � log kWH .ir/k

D log jw11.ir/j C O.log r/

� 1

2

�

logF.r2/C O.log r/
�

C O.log r/:

In Section 5 we use this lower bound for Hamburger Hamiltonians whose lengths

and angles are nicely behaving in the sense of regular variation (in Karamata’s sense).

For the theory of regular variation we refer to the monograph [3]; precise references

will be given in course of the presentation. One can think of regularly varying func-

tions as functions which behave roughly like a power. In this place, let us just recall

the definition: a function f W Œr0;1/! .0;1/ defined on some ray is called regularly

varying, if there exists � 2 R such that

lim
r!1

f .�r/

f .r/
D �� for all � > 0:

The number � is called the index of f , and we shall write Ind f for it.
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One example which illustrates that regularly varying functions behave like powers

in many respects is that they satisfy a variant of Stirlings approximation formula. We

do not know an explicit reference and hence provide a proof.2

2.3 Lemma. Let f be regularly varying with index � 2 R. Then

� n
Y

jD1

f .j /
� 1

n � f .n/

e�
:

Proof. Write f .r/ D r� � l.r/ with l slowly varying. By Stirlings formula we have

� n
Y

jD1

j �
� 1

n �
�n

e

��

;

hence we only have to deal with the slowly varying part.

By the representation theorem [3, Theorem 1.3.1] we can write l as

l.r/ D c.r/ exp

� rZ

1

".u/

u
du

�

;

where c and " are bounded measurable functions such that limr!1 c.r/ exists in

.0;1/ and limr!1 ".r/ D 0. We obtain

1

l.n/

� n
Y

jD1

l.j /
� 1

n

D 1

c.n/

� n
Y

jD1

c.j /
� 1

n � exp

�
1

n

n
X

jD1

jZ

1

".u/

u
du �

nZ

1

".u/

u
d u

�

: (2.2)

2Here, and throughout the paper, we shall use the following shorthand notations:

f � g () f

g
! 1;

f � g () f

g
! 0

f . g () there exists C > 0 such that f � Cg;
f � g () .f . g ^ g . f /:
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The first factor on the right side tends to 1 because c.r/ has a positive and finite limit.

We estimate, for j0 � 1 and n > j0,

ˇ
ˇ
ˇ
ˇ

1

n

n
X

jD1

jZ

1

".u/

u
du �

nZ

1

".u/

u
du

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

1

n

n
X

jD1

nZ

j

".u/

u
du

ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ

1

n

j0X

jD1

nZ

j

".u/

u
du

ˇ
ˇ
ˇ
ˇ
C

ˇ
ˇ
ˇ
ˇ

1

n

n
X

jDj0C1

nZ

j

".u/

u
d u

ˇ
ˇ
ˇ
ˇ

� j0 logn

n
� sup
r2Œ1;1/

j".r/j C 1

n

n
X

jD2

nZ

j

1

u
du � sup

r2Œj0C1;1/

j".r/j;

and
n

X

jD2

nZ

j

1

u
du �

nZ

1

nZ

j

1

u
du d j D

nZ

1

uZ

1

1

u
d j du � n:

Hence, also the second factor on the right side of (2.2) tends to 1.

Further, recall an elementary lim-inf variant of the classical formula [14, Theo-

rem I.20] for the type with respect to a proximate order.

2.4 Lemma. Let A.z/ D P1
nD0 anz

n be an entire function, let r0; s0 > 0 and

gW Œr0;1/! Œs0;1/ be an increasing bijection. Then

lim inf
r!1

1

g.r/
.log max

jzjDr
jA.z/j/ � lim inf

n!1
log.g�1.n/janj

1
n /:

Proof. For all r > 0 and n 2 N it holds that maxjzjDr jA.z/j � rnjanj, and in turn

1

n
log.max

jzjDr
jA.z/j/ � log.r janj

1
n /:

Using this for rn ´ g�1.n/ gives

lim inf
n!1

1

n
log

�

max
jzjDrn

jA.z/j
�

� lim inf
n!1

log.g�1.n/janj
1
n /:

Let r � r1 and take n 2 N such that rn � r < rnC1. Then

1

g.r/
log.max

jzjDr
jA.z/j/ � 1

nC 1 log. max
jzjDrn

jA.z/j/

D n

nC 1 �
1

n
log. max

jzjDrn

jA.z/j/;
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and it follows that

lim inf
r!1

1

g.r/
log.max

jzjDr
jA.z/j/ � lim inf

n!1

1

n
log. max

jzjDrn

jA.z/j/:

Combining the above results yields the following lower bound for the maximum

modulus of the monodromy matrix when lengths and angles (in common) cannot have

excessive downward drops.

2.5 Corollary. Let H be a Hamburger Hamiltonian with lengths .lj /
1
jD1 and angles

.�j /
1
jD1. Let f be a regularly varying function, and choose g regularly varying with

.f ı g/.x/ � .g ı f /.x/ � x, see [3, Theorem 1.5.12]. If

ljC1lj sin2.�jC1 � �j / &
1

f .j /
; j 2 N; (2.3)

then

log max
jzjDr
kWH .z/k & g.r2/: (2.4)

Proof. Since the sequence .lj /
1
jD1 is summable, we also have

P1
jD1

�
1

f.j /

� 1
2 <1.

This implies that the index of f , call it �, is at least 2.

Passing from f to another regularly varying function Qf with f � Qf changes g only

up to “�”, and hence does not change the truth value of either (2.3) or (2.4). We may

use this freedom to assume without loss of generality that

i. f is an increasing bijection of Œ1;1/ onto itself,

ii. g D f �1,

iii. the assumption (2.3) holds with “�” instead of “&”.

Using Lemma 2.3, we obtain

� n
Y

jD1

ljC1lj sin2.�jC1 � �j /
� 1

n �
� n

Y

jD1

1

f .j /

� 1
n � e�

f .n/
;

and hence

lim inf
n!1

log
h

f .n/ �
� n

Y

jD1

ljC1lj sin2.�jC1 � �j /
� 1

n
i

� � � 2:

It follows from Lemma 2.4 that the function F.z/ from Proposition 2.2 satisfies

lim inf
r!1

1

g.r/
logF.r/ � 2:
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Note here that F.z/ has positive coefficients, and hence maxjzjDr jF.z/j D F.r/.

Now, Proposition 2.2 gives

log.max
jzjDr
kWH .z/k/ �

1

2
logF.r2/C O.log r/

& g.r2/C O.log r/ & g.r2/:

3. An auxiliary theorem from operator theory

In this section we provide an auxiliary theorem about the operator model of a canon-

ical system. It establishes a very intuitive fact, namely, that cutting out pieces of a

Hamiltonian cannot increase the growth of the monodromy matrix.

3.1. The operator model of a canonical system

To start with we briefly recall the definition and some properties of the operator model

of the equation (1.1). Our standard reference in this respect is [8] and [1, Chapter 7].

The operator theory behind (1.1) goes back to B. C. Orcutt [16] and I. S. Kac [10,

11] (see also [13]), and in a different language to L. de Branges [5]. Further recent

references are [20, 21].

Intervals where H has constant nontrivial kernel require particular attention.

3.1 Definition. Let � 2 R. A nonempty interval .a; b/ � I is calledH -indivisible of

type �, if

H.t/ D trH.t/ � ���T� ; t 2 .a; b/ a.e.

The type � of anH -indivisible interval is unique up to integer multiples of � . We

shall assume throughout this section that the whole interval I is not H -indivisible.

This case is in some respects trivial: the monodromy matrix is a linear polynomial.

We denote by L2.H.t/ d t/ the usual L2-space of equivalence classes of 2-vector

functions generated by the 2�2-matrix measureH.t/d t , see e.g. [6, pp. 1337–1346].

To simplify notation, we shall always suppress explicit distinction between equiva-

lence classes and their representants. However, one must keep in mind that sometimes

it is important to make this distinction (for example when talking about boundary val-

ues further below).

Now, we can define the model space associated with a HamiltonianH .

3.2 Definition. The model spaceL2.H/ is the linear subspace ofL2.H.t/d t/ which

consists of all functions f having the following property:

if .a; b/ is H -indivisible of type �, then �T� f .t/ is constant a.e. on .a; b/.
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The space L2.H/ is a closed subspace of L2.H.t/ d t/, hence itself a Hilbert

space, see, e.g., [8, Lemma 3.7].3

Next we define the minimal- and maximal-model operators.

3.3 Definition. Write I D .˛; ˇ/. The maximal and the minimal operators Tmax.H/

and Tmin.H/ are defined in terms of their graphs as

Tmax.H/´
²

.f; g/ 2 L2.H/ �L2.H/
ˇ
ˇ
ˇ
ˇ

f has an absolutely continuous

representant with f 0 D JHg a.e.

³

;

Tmin.H/´
²

.f; g/ 2 Tmax.H/

ˇ
ˇ
ˇ
ˇ

f has an absolutely continuous

representant with f .˛/ D f .ˇ/ D 0

³

:

They have the following properties.

• For each .f;g/ 2 Tmax.H/, the first component has a unique absolutely continuous

representant with f 0 D JHg. Thus, the boundary values f .˛/ and f .ˇ/ are well-

= defined.

• An abstract Green’s identity holds:

.g1; f2/L2.H/ � .f1; g2/L2.H/ D f2.˛/�Jf1.˛/ � f2.ˇ/�Jf1.ˇ/

for all .f1; g1/; .f2; g2/ 2 Tmax.H/.

• In some situations, Tmax.H/may be a multivalued operator. Despite this technical

difficulty, it always holds that Tmax.H/ D Tmin.H/
�.

• Tmin.H/ is a closed symmetric operator, is completely nonselfadjoint (i.e., satis-

fies
T

z2CnR
ran.Tmin.H/ � z/ D ¹0º), and has deficiency index .2; 2/.

As a consequence of the above, selfadjoint extensions of Tmin.H/ can be described

by boundary conditions at the left and right endpoints. We use the following two

extensions:

BH ´ ¹.f; g/ 2 Tmax.H/ j f .˛/ D 0º;
dRH ´ B�1

H ;

AH ´ ¹.f; g/ 2 Tmax.H/ j .1; 0/f .˛/ D .0; 1/f .ˇ/ D 0º:

The operator RH is the Volterra integral operator

.RHf /.t/´
tZ

˛

JH.t/f .t/ d t; f 2 L2.H/;

3Caution: the notation in [8] is different. The space L2.H.t/ d t / is what is there called

L2.H;RC/, and our space L2.H/ there is L2
s .H;R

C/.
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while AH is selfadjoint. Note that BH and AH are invertible since ker Tmax.H/ D
span¹

�
1
0

�

;
�
0
1

�

º, and that A�1
H is a rank-one perturbation of RH .

3.2. Cutting out pieces of a Hamiltonian

The theorem announced at the beginning of this section reads as follows.

3.4 Theorem. LetH be a Hamiltonian on I D Œ˛;ˇ�. Let�� Œ˛;ˇ� be a (Lebesgue-)

measurable set with positive measure, and assume that for every H -indivisible inter-

val .a; b/ � Œ˛; ˇ� either .a; b/\� or .a; b/ n� has measure zero. Set

�.t/´
tZ

˛

1�.u/ du; t 2 Œ˛; ˇ�;

zL´ �.ˇ/;

�.s/´ min¹t 2 Œ˛; ˇ� j �.t/ D sº; s 2 Œ0; zL�;
zH ´ H ı �:

Then the following statements hold.

i. zH is a Hamiltonian on Œ0; zL�, and satisfies

. zH ı �/ � 1� D H � 1� a.e. (3.1)

ii. The map V acting as

V W f 7! .f ı �/ � 1�
induces an isometry of L2. zH/ into L2.H/.

iii. Denote by M1�
the multiplication operator with 1�. Then we have that

ranM1�
RHV � ranV and R zH D V �1M1�

RHV .

L2.H/ L2.H/ ran.M1�
RHV /

L2. zH/ L2. zH/ ranV

 !RH  !
M1�

 ! �

 !
R zH

 !V

 !V

Š  !

V�1

Proof. The proof of (i) relies on some measure theoretic considerations. Let us denote

the maximal constancy intervals which contain more than one point (if any) as �j .

There exist at most countably many such intervals and �j \� is a zero set for all j .

We now show that (the complement is understood in Œ˛; ˇ�)

�.�c/ is a zero set:
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Since � is absolutely continuous, the set �.�c/ is (Lebesgue-) measurable. The change

of variables formula gives

zLZ

0

1�.�c/.s/ d s D
ˇZ

˛

�

1�.�c/ ı �
�

.t/ � 1�.t/ d t D
ˇZ

˛

1��1.�.�c//\�.t/ d t:

We have

��1.�.�c// D �c [
S
¹�j j �j \� ¤ ;º;

and hence the integral on the right vanishes.

In the second step we show that the function �W Œ0; zL�! Œ˛; ˇ�, which is defined

as

�.s/´ min¹t 2 Œ˛; ˇ� j �.t/ D sº; s 2 Œ0; zL�;
is Lebesgue-to-Lebesgue measurable. Clearly, � is nondecreasing and a right inverse

of �. Monotonicity implies that it is Borel-to-Borel measurable. Let E be a Lebesgue

measurable subset of Œ˛; ˇ�, and choose Borel sets A; B � Œ˛; ˇ� with A � E � B
and B n A being a zero set. Then ��1.A/ � ��1.E/ � ��1.B/ and

��1.B/ n ��1.A/ D ��1.B n A/ � �.B n A/:

The set on the right is a zero set since � is absolutely continuous, and we conclude

that ��1.E/ is Lebesgue measurable.

Now, we define
zH ´ H ı �W Œ0; zL�! R

2�2:

Obviously, zH takes nonnegative matrices as values and is (Lebesgue-) measurable.

Moreover, we have

¹t 2 Œ˛; ˇ� j .� ı �/.t/ ¤ tº �
[

j

�j ;

and hence

. zH ı �/.t/1�.t/ D H.� ı �.t//1�.t/ D H.t/1�.t/ a.e.

This is (3.1). We need to check that zH is a Hamiltonian. LetB � Œ0; zL� be measurable;

then

zLZ

0

tr zH.s/1B.s/ d s D
ˇZ

˛

tr. zH ı �/.t/.1B ı �/.t/1�.t/ d t

D
ˇZ

˛

trH.t/1��1.B/\� d t:
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Choosing B D Œ0; zL� already shows that zH is integrable. Assume now that B is

some set with positive measure. Since trH.t/ > 0 a.e., measurability of the inte-

grand in the last integral implies that the set ��1.B/ \� is measurable. Moreover,

B n �.��1.B/\�/ is a zero set since it is contained in �.�c/. Therefore, ��1.B/\
� must have positive measure, and the integral on the right is positive.

We come to the proof of (ii). The first step is to observe that V is isometric. This

follows simply by making a change of variable. Let f W Œ0; zL�!C
2 be any measurable

function, then we have

zLZ

0

f .s/� zH.s/f .s/ d s D
ˇZ

˛

.f ı �/.t/�. zH ı �/.t/.f ı �/.t/ � 1�.t/ d t

D
ˇZ

˛

.Vf /.t/�H.t/.Vf /.t/ d t:

Note that isometry implies

zHf1 D zHf2 a.e. H) H.Vf1/ D H.Vf2/ a.e. (3.2)

We have to check the constancy condition from Definition 3.2 for indivisible intervals.

Let f W Œ0; zL�! C2 be a measurable function which satisfies the condition for zH . We

have to show that Vf satisfies it for H .

Let .a; b/ � Œ˛; ˇ� be an H -indivisible interval, and let � be its type. By the

assumption of the theorem, either .a; b/ \ � or .a; b/ n � is a zero set. In the first

case, we have .Vf /.t/D 0 for t 2 .a; b/ a.e., and are done. Consider the second case.

Then 1�.t/ D 1 for t 2 .a; b/ a.e., and hence

zH.�.t// D H.t/ D trH.t/ � ���T� ; t 2 .a; b/ a.e. (3.3)

Since � is absolutely continuous and nondecreasing, we have .�.a/;�.b//� �..a;b//
and the image of the exceptional set in (3.3) is a zero set. Hence,

zH.s/ D tr zH.s/ � ���T� ; s 2 .�.a/; �.b// a.e.

This means that .�.a/; �.b// is zH -indivisible of type �, and hence that �T� f .s/ is

constant on .�.a/; �.b// a.e. Say, we have �T� f .s/ D  for a.a. s 2 .�.a/; �.b//. It

follows that zH.s/f .s/ D zH.s/.��/ for a.a. s 2 .�.a/; �.b//, in other words, the

functions

f1´ 1.�.a/;�.b//f; f2 ´ 1.�.a/;�.b//.��/

satisfy zHf1 D zHf2 for a.a. s 2 Œ0; zL�. Applying (3.2) yields

H.t/Œ.1.�.a/;�.b// ı �/.t/.f ı �/.t/1�.t/� D H.t/Œ.1.�.a/;�.b// ı �/.t/��1�.t/�
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for a.a. t 2 Œ˛; ˇ�. Since .a; b/ n� is a zero set, we have 1�.t/D 1 for a.a. t 2 .a; b/.
The function � is strictly increasing on .a; b/, and hence .1.�.a/;�.b// ı �/.t/ D 1 for

all t 2 .a; b/. It follows that

trH.t/ � �T� .Vf /.t/ D trH.t/ � �T� .��/; t 2 .a; b/ a.e.;

and hence �T� .Vf /.t/ D  again for t 2 .a; b/ a.e.

Finally, we come to the proof of (iii). First note that, by our assumption on indi-

visible intervals, M1�
maps L2.H/ into itself (in fact, is an orthogonal projection).

Now, let f 2 L2. zH/. Then

�

.RH ı V /.f /
�

.t/ D
tZ

˛

JH.u/ � .f ı �/.u/1�.u/ du

D
tZ

˛

J. zH ı �/.u/.f ı �/.u/1�.u/ du

D
�.t/Z

0

J zH.r/f .r/ d r D Œ.R zHf / ı ��.t/:

We see thatM1�
RHV D VR zH , and the assertion follows.

Let us note that zH defined above is the unique Hamiltonian with (3.1). To see this,

assume we have yH with (3.1). Then

yH � .1� ı �/ D Œ. yH ı �/ � 1�� ı � D .H � 1�/ ı � D zH � .1� ı �/:

We have 1� ı � D 1��1.�/, and since ��1.�c/ � �.�c/ this is equal to 1 a.e.

Passing to growth properties of WH can easily be done using the usual function

theoretic tools.

3.5 Corollary. Consider the situation described in Theorem 3.4. Moreover, let f be a

regularly varying function with index � 2 .0; 1/. Then

lim sup
jzj!1

log kW zH .z/k
f .jzj/ . lim sup

jzj!1

log kWH .z/k
f .jzj/ :

The constant implicit in this relation depends only on �.

Proof. For a compact operator T , we denote by sn.T / its n-th s-number and let nT .r/

be the counting function

nT .r/´ #
°

n
ˇ
ˇ
ˇ sn.T / �

1

r

±

; r > 0:
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Due to Theorem 3.4, we have sn.R zH / � sn.RH / for all n, and hence nR zH
.r/ �

nRH
.r/ for all r > 0.

The operator A�1
H is a rank-one perturbation of RH , and the same for A�1

zH
and

R zH . Hence, we have

nA�1
zH

.r/ � nR zH
.r/C 1 � nRH

.r/C 1 � nA�1
H
.r/C 2:

The spectrum of AH coincides with the zero set of the entire function w22.z/´
.0;1/WH .z/

�
0
1

�

, and the spectrum ofA zH with the zero set of Qw22.z/´ .0;1/ zW.z/
�
0
1

�

.

Thus, we have (now using the notation nf .r/ for the counting function of the zeroes

of an entire function f )

n Qw22
.r/ � nw22

.r/C 2; r > 0:

Due to [3, Proposition 7.4.1], we can assume without loss of generality that f is a

proximate order. Now, [14, Theorem I.17] is applicable, and yields

lim sup
jzj!1

log j Qw22.z/j
f .jzj/ � lim sup

r!1

n Qw22
.r/

f .r/
� lim sup

r!1

nw22
.r/

f .r/
� lim sup

jzj!1

log j Qw22.z/j
f .jzj/ :

By the proof of [14, Theorem I.17], the constants implicit in this relation depend only

on the index of f .

4. A general estimate from above

In the below theorem we provide a method to estimate the monodromy matrix of a

canonical system. This result is an improvement of a theorem due to R. Romanov

in [22]. The proof follows the very same idea as [22, Theorem 1] and – despite the

result being stronger – the argument is equally simple: it merely uses multiplicativity

of the fundamental solution and Grönwall’s lemma. Similar as for [22, Theorem 1],

the power of Theorem 4.1 is its flexibility. Applying it in a clever way is at least as

important as the theorem itself.

For practical reasons, we throughout use the spectral norm on C
2�2. This norm

has the advantage to be invariant under unitary transformations.

4.1 Theorem. LetH be a Hamiltonian on a compact interval I with detH D 0 a.e.,

and write H.t/ D trH.t/ � ��.t/�T�.t/ with a measurable function �W I ! R. Assume

we are given

• a partition .y0; : : : ; yN / of I , i.e.,

N 2 N; min I D y0 < y1 < � � � < yN D max I;
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• rotation parameters  1; : : : ;  N 2 R,

• distortion parameters a1; : : : ; aN 2 .0; 1�,
and set

A1´
N

X

jD1

a2j

yjZ

yj �1

cos2.�.t/�  j / � trH.t/ d t;

A2´
N

X

jD1

1

a2j

yjZ

yj �1

sin2.�.t/�  j / � trH.t/ d t;

A3´
N�1
X

jD1

log
�

max
° aj

ajC1

;
ajC1

aj

±

� j cos. j �  jC1/j C
j sin. j �  jC1/j

ajajC1

�

;

A4´ � log a1 � log aN :

Then

log kWH .z/k � jzj � .A1 C A2/C A3 C A4 for all z 2 C; (4.1)

where k k denotes the spectral norm on C
2�2.

The following remark is essential for successful application of Theorem 4.1.

4.2 Remark. On first sight, the estimate (4.1) may seem quite useless. We know from

the Krein–de Branges formula that WH .z/ is of minimal exponential type, and hence

of course an estimate log kWH .z/k . jzj holds. The significance of Theorem 4.1 lies

in a quantitative aspect. Namely, (4.1) holds for all choices of data yj ;  j ; aj for all

complex numbers z.

Now, reverse the viewpoint. Consider z as fixed, choose the data yj .z/,  j .z/,

and aj .z/ in dependence of z, and use (4.1) only for the given point z. If we manage

to make the z-dependent choice of data in such a way that A1 and A2 decay when

jzj increases to1, and that A3 and A4 do not grow too fast, we may get a bound for

log kWH .z/k which is significantly smaller than jzj.

For the proof of Theorem 4.1, we start with an application of Grönwall’s lemma.

4.3 Lemma. Let H be a Hamiltonian on a compact interval I . Assume we are given

a partition .y0; : : : ; yN / of I and matrices �1; : : : ; �N 2 GL.2;R/. Then (for any

submultiplicative norm),

kWH .z/k � exp

�

jzj
N

X

jD1

yjZ

yj �1

k�jH.t/J��1
j k d t

�

k��1
1 kk�N k

N�1
Y

jD1

k�j��1
jC1k:

(4.2)
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Proof. For j 2 ¹1; : : : ; N º let Wj .t; z/ be the fundamental solution of H jŒyj �1;yj �,

and let Wj ´ Wj .yj ; z/ be the corresponding monodromy matrices. Then

WH .z/ D W1.z/ �W2.z/ � � � � �WN .z/:

We insert the matrices �j and get

WH .z/ D ��1
1 � .�1W1.z/��1

1 / ��1��1
2 � � � � � .�NWN .z/��1

N / ��N :

Applying Grönwall’s lemma to the differential equation

@

@x
�jWj .x; z/�

�1
j D �z ��jWj .x; z/��1

j ��jH.x/J��1
j ; x 2 Œyj�1; yj �;

yields that

k�jWj .z/��1
j k � exp

�

jzj
yjZ

yj �1

k�jH.t/J��1
j k d t

�

:

The assertion of the lemma follows.

There happens no loss in precision when using only matrices �j of a particular

form.

4.4 Definition. For a; b > 0 set D.a; b/´
�
a 0
0 b

�

and denote, for a > 0 and  2 R,

�.a; /´ D.a; a�1/ exp.� J / D
�
a 0

0 a�1

��
cos sin 

� sin cos 

�

:

Geometrically, the matrix �.a; / is a rotation followed by a distortion.

4.5 Remark. To see that we may restrict to matrices of the form �.a;  /, observe

that the right side of (4.2) remains unchanged when the matrices �j are multiplied

with real nonzero scalars j̨ or multiplied from the left with matrices Cj 2 GL.2;R/

satisfying kCj k D kC�1
j k D 1. Using these two transformations, every matrix � 2

GL.2;R/ can be brought to the form �.a; /.

In the next lemma we compute the relevant norms for matrices �.a; /.

4.6 Lemma. Let a; b > 0 and  ; � 2 R.

i. k�.a; /k D k�.a; /�1k D max¹a; a�1º:
ii. k�.a; /���T� J�.a;  /�1k D a2 cos2.� �  /C 1

a2 sin2.� �  /:
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iii. Set

vC ´
�

max¹a
b
; b
a
ºj cos.� �  /j

max¹ab; 1
ab
ºj sin.� �  /j

�

;

v� ´
�

min¹a
b
; b
a
ºj cos.� �  /j

min¹ab; 1
ab
ºj sin.� �  /j

�

;

and denote by k kp , p 2 ¹1; 2º, the p-norm on R2. Then

kvCk22 � k�.a; /�.b; �/�1k2

D 1C kvC � v�k2 �
kvC � v�k2 C kvC C v�k2

2

� kvCk21 � 2kvCk22:

Proof. For the proof of (i), it is enough to note that exp.� J / is unitary. This implies

that

k�.a; /k D kD.a; a�1/ exp.� J /k D kD.a; a�1/k D max¹a; a�1º;

and the analogous formula for �.a; /�1.

We come to the proof of (ii). Note the relations J exp.�J / D exp.�J /J and

���
T
� D exp.�J /

�
1 0
0 0

�

exp.��J /, which are easily verified. Moreover, set

� ´ � �  :

Then

B ´�.a; /���
T
� J�.a;  /

�1

DD.a; a�1/ exp.� J /���T� J exp. J /D
�

a�1; a
�

DD.a; a�1/ exp.� J / exp.�J /
�
1 0
0 0

�

exp.��J / exp. J /JD.a�1; a/

DD.a; a�1/���
T
� JD

�

a�1; a
�

D
�

cos.�/ sin.�/ �a2 cos2.�/
1
a2 sin2.�/ � cos.�/ sin.�/

�

:

A direct computation shows

BTB D
� 1
a4 sin4.�/C cos2.�/ sin2.�/ �

� a4 cos4.�/C cos2.�/ sin2.�/

�

;

from which we see that tr.BTB/D .a2 cos2.�/C 1
a2 sin2.�//2. Since detB D 0, we

have kBk D
p

tr.BTB/.
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Finally, we turn to (iii). We compute

C ´�.a; /�.b; �/�1 D D.a; a�1/ exp..� �  /J /D.b�1; b/

D
� a
b

cos� �ab sin �
1
ab

sin � b
a

cos �

�

D cos �

�a
b

0

0 b
a

�

C sin �

�
0 �ab
1
ab

0

�

:

The asserted estimate from above follows:

kCk � j cos� j �





�
a
b

0

0 b
a

�



C j sin � j �






�
0 �ab
1
ab

0

�




D j cos� j �max
°a

b
;
b

a

±

C j sin � j �max
°

ab;
1

ab

±

D kvCk1:

A calculation shows

C TC D
�

cos2.�/
�
a
b

�2 C sin2.�/
�
1
ab

�2 �
� cos2.�/

�
b
a

�2 C sin2.�/.ab/2

�

;

and we see that

tr.C TC/ D cos2 � �
h�a

b

�2

C
�b

a

�2i

C sin2 � �
h

.ab/2C
� 1

ab

�2i

:

We have det.C TC/ D 1, and hence the eigenvalues of C TC are the solutions of the

equation

�C 1

�
D tr.C TC/: (4.3)

To shorten notation, set � ´ tr.C TC/. Computing the larger of the solutions of (4.3)

gives

kC TCk D 1

2
.� C

p
�2 � 4/

D 1C 1

2

�

.� � 2/C
p

.� � 2/.� C 2/
�

D 1C .� � 2/ 1
2 � .� � 2/

1
2 C .� C 2/ 1

2

2
:

Now, note that

� � 2D cos2 � �
�a

b
� b
a

�2

C sin2 � �
�

ab � 1

ab

�2

D kvC � v�k22;

� C 2D cos2 � �
�a

b
C b

a

�2

C sin2 � �
�

ab C 1

ab

�2

D kvC C v�k22:

It remains to show the estimate from below. To this end, we use that the function

f W Œ1;1/! Œ2;1/; x 7! x C 1

x
;
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is increasing, continuous, and convex. Its inverse function f �1 thus exists and is

concave, and we obtain

kCk2 D kC TCk
D f �1.tr.C TC//

D f �1
�

cos2 � � f
�

max
°�a

b

�2

;
�b

a

�2±�

C sin2 � � f
�

max
°

.ab/2;
� 1

ab

�2±��

� cos2 � �max
°�a

b

�2

;
�b

a

�2±

C sin2 � �max
°

.ab/2;
� 1

ab

�2±

D kvCk22:

The proof of the theorem is now easily completed.

Proof of Theorem 4.1. Given data as in the theorem, we apply Lemma 4.3 with the

matrices

�j ´ �.aj ;  j /; j D 1; : : : ; N;

and use Lemma 4.6. This yields

log kWH .z/k

� jzj
N

X

jD1

yjZ

yj �1

k�.aj ;  j /H.t/J�.aj ;  j /�1k d t

C
N�1
X

jD1

log k�.aj ;  j /�.ajC1;  jC1/
�1k

C log k�.a1;  1/�1k C log k�.aN ;  N /k

� jzj
N

X

jD1

�
yjZ

yj �1

�

a2j cos2.�.t/ �  j /C
1

a2j
sin2.�.t/ �  j /

�

� trH.t/ d t

�

C
N�1
X

jD1

log
�

max
° aj

ajC1

;
ajC1

aj

±

� j cos. j �  jC1/j C
j sin. j �  jC1/j

ajajC1

�

C log
1

a1
C log

1

aN

D jzj.A1 C A2/C A3 C A4:

4.7 Remark. The estimate stated in the theorem could be slightly improved on the

cost of writing a much more cumbersome expression A0
3 instead of A3. Namely, by

using the exact value for the norm in Lemma 4.6 (iii) instead of the upper estimate
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given there. Doing this would turn the inequality on the fourth line of the above esti-

mate into an equality.

The upper and lower bounds for the norm in Lemma 4.6 (iii) differ only at most by

the universal multiplicative constant
p
2. Hence, the potential improvement is limited

by

A3 � A0
3 C .N � 1/ �

1

2
log 2:

Let us now show that [22, Theorem 1] can indeed be deduced from Theorem 4.1.

Recall the statement (for convenience we formulate Romanov’s theorem in a notation

already fitting Theorem 4.1).

4.8 Theorem ([22]). Let H.t/ D ��.t/�T�.t/ be a Hamiltonian on an interval Œ0; L�,

and let d 2 .0;1/. Assume that we are given a constantC > 0, and for each sufficiently

large R

• a partition .y0; : : : ; yN.R// of Œ0; L�,

• rotation parameters  1.R/; : : : ;  N.R/.R/ 2 R,

• distortion parameters a1.R/; : : : ; aN.R/.R/ 2 .0; 1�,
such that

N.R/
X

jD1

1

aj .R/2

yj .R/Z

yj �1.R/

kH.t/ � � j .R/�
T
 j .R/

k d t � CRd�1;(1)

N.R/
X

jD1

aj .R/
2
�

yj .R/� yj�1.R/
�

� CRd�1;(2)

N.R/�1
X

jD1

log
�

1C j sin. j .R/ �  j�1.R//j
aj .R/ajC1.R/

�

� CRd ;(3)

log
1

a1.R/
C log

1

aN.R/
C
N.R/�1

X

jD1

ˇ
ˇ
ˇlog

ajC1.R/

aj .R/

ˇ
ˇ
ˇ � CRd�1:(4)

Then there exists a constantK > 0 such that

log kWH .z/k � Kjzjd for all z 2 C: (4.4)

Deduction from Theorem 4.1. LetR>0 and assume that we have data yj .R/, j .R/,

and aj .R/ satisfying (i)–(iv). We are going to estimate the expressions A1; : : : ; A4

from Theorem 4.1.
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First, it is clear that

A1.R/ D
N.R/
X

jD1

aj .R/
2

yjZ

yj �1

cos2
�

�.t/ �  j .R/
�

d t

�
N.R/
X

jD1

aj .R/
2
�

yj .R/� yj�1.R/
�

� CRd�1:

Next, observe that for all �; 2 R

���
T
� � � �T D sin.� �  / �

�� sin.� C  / cos.� C  /
cos.� C  / sin.� C  /

�

:

Since the matrix on the right side is unitary, it follows that

k���T� � � �T k D j sin.� �  /j:

From this, we obtain

A2.R/ D
N.R/
X

jD1

1

aj .R/2

yjZ

yj �1

sin2
�

�.t/ �  j .R/
�

d t

�
N.R/
X

jD1

1

aj .R/2

yjZ

yj �1

j sin.�.t/�  j .R//j d t � CRd�1: (4.5)

Finally, we have

A3.R/C A4.R/ �
N.R/�1

X

jD1

log
h

max
° aj .R/

ajC1.R/
;
ajC1.R/

aj .R/

±�

1C j sin. j �  jC1/j
aj .R/ajC1.R/

�i

� log a1.R/� log aN.R/.R/

D
N.R/�1

X

jD1

ˇ
ˇ
ˇlog

ajC1.R/

aj .R/

ˇ
ˇ
ˇC

N.R/�1
X

jD1

�

1C j sin. j �  jC1/j
aj .R/ajC1.R/

�

C log
1

a1.R/
C log

1

aN.R/.R/
� 2CRd :

Now, (4.1) yields

log kWH .z/k � jzj � 2CRd�1 C 2CRd for all z 2 C:

We use this for z 2 C with jzj D R and obtain

log kWH .z/k � 4CRd for jzj D R:
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By the assumption of the theorem, the above argument can be made for all sufficiently

large R. Hence, (4.4) follows.

4.9 Remark. The improvement of Theorem 4.1 compared to [22, Theorem 1] mainly

happens in (4.5): clearly,

sin2.�.t/�  j .R//�
ˇ
ˇ sin.�.t/ �  j .R//

ˇ
ˇ

when  j .R/ is a good approximation of �.t/.

For this reason, we also refer to Theorem 4.1 as the sine-square improvement of

Romanov’s Theorem 1. We will see in Remark 5.4 below that it is indeed a significant

improvement.

5. Hamiltonians with continuous rotation angle

In this section we consider Hamiltonians of the form

H.t/ D trH.t/ � ��.t/�T�.t/; t 2 I; (5.1)

with a continuous rotation angle �WI!R, and prove an upper bound for logkWH .z/k.
As a corollary, we obtain a bound for the exponential order of the monodromy matrix

of a Hölder continuous Hamiltonian which improves [22, Corollary 4 (1)]. The proof

of the upper estimate is an application of Theorem 4.1, and nicely illustrates how

concrete growth estimates can be deduced from the general estimate.

We use the following notation which involves the modulus of continuity of a func-

tion �. The case that � is constant will be excluded, but this is no loss of generality:

if � in (5.1) is constant, then W is a linear polynomial and hence log kWH .z/k D
O.log jzj/.

5.1 Definition. For ˛ 2 R n ¹0º denote by p˛ W .0;1/! .0;1/ the power function

p˛.t/´ t˛.

i. Let !W Œ0;1/! Œ0;1/ be a nondecreasing continuous function with !.0/D 0
and !.ı/ > 0 for all ı > 0. Then we define an increasing bijection �!W .0;1/ !
.0;1/ as

�! ´ p�1 ı .p1 � !/�1 ı p�1; (5.2)

where .p1 � !/�1 denotes the inverse function of p1 � ! (note here that p1 � ! is an

increasing bijection of Œ0;1/ onto itself).

ii. Let H be a Hamiltonian of the form (5.1) with continuous and non-constant

rotation angle �. Then we write !H for the modulus of uniform continuity of �, i.e.

!H .ı/´ sup¹j�.t/ � �.s/j j t; s 2 I; jt � sj � ıº; ı � 0;
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and let �H ´ �!H
be the function corresponding to !H by the construction in

item (i).

The assignment ! 7! �! defined by (5.2) is injective. In fact, ! can be recovered

from �! by the formula

! D p�1 � .p�1 ı ��1
! ı p�1/:

Moreover, we have the following monotonicity property:

!1 � !2 H) �!1
� �!2

:

Given a Hamiltonian H , the growth of the functions !H and �H is limited: simply

because !H is the modulus of uniform continuity of some continuous function on a

compact interval, we have

!H .ı/ D o.1/ and ı D O.!H .ı// for ı ! 0:

From this, it follows that

�H .r/ D o.r/ and
p
r D O.�H .r// for r !1: (5.3)

Our bound for the monodromy matrix can now be formulated as follows.

5.2 Theorem. LetH.t/D trH.t/ � ��.t/�T�.t/ be a Hamiltonian on a compact interval

I D Œ˛; ˇ� whose rotation angle � is continuous and not constant. Set l ´ ˇ � ˛ and

L´
R

I trH.t/ d t . Then

log kWH .z/k � 3l � �H
�L

l
jzj

�

C O.log jzj/: (5.4)

Proof. We are going to apply Theorem 4.1. Let ı 2 .0; l/ and a 2 .0; 1�; a specific

choice will be made later in dependence of jzj. The data yj ;  j ; aj in Theorem 4.1

are now specified as follows.

• Let N be the unique positive integer with N � 1 < l
ı
� N , and define a partition

.y0; : : : ; yN / of I as

yj ´
´

˛ C j � ı if j 2 ¹0; : : : ; N � 1º;
ˇ if j D N:

• Rotation parameters are

 j ´ �.yj /; j D 1; : : : ; N:

• Distortion parameters are aj ´ a, j D 1; : : : ; N .



R. Pruckner and H. Woracek 1648

The choice of rotation parameters implies that

j�.t/�  j j � !H .ı/; t 2 Œyj�1; yj �:

The constants A1; A2; A3 from Theorem 4.1 can be estimated as follows:

A1 � a2Lµ B1.a/;

A2 �
1

a2
!H .ı/

2Lµ B2.a; ı/;

A3 �
N�1
X

jD1

log
�

1C j sin. j �  jC1/j
a2

�

� .N � 1/ 1
a2
!H .ı/ <

l

ı

1

a2
!H .ı/µ B3.a; ı/:

Given z 2 C; we specify the parameters ı and a as

ı´
h

�H

�L

l
jzj

�i�1

; a´ !H .ı/
1
2 : (5.5)

These formulas are found by minimising the maximum of the expressions B1.a/,

B2.a; ı/, B3.a; ı/. Observe that, by the properties of �H noted in (5.3), we have

ı < l and a � 1 for all sufficiently large jzj. We have

B1.a/ D B2.a; ı/ D !H .ı/L; B3.a; ı/ D
l

ı
; ı!H .ı/ D

l

Ljzj ; (5.6)

and hence

jzjB2.a; ı/ D jzjB1.a/ D jzj!H .ı/L D
l

ı
D B3.a; ı/:

Theorem 4.1 implies that

log kWH .z/k � jzj
�

B1.a/C B2.a; ı/
�

C B3.a; ı/C log
1

a2

D 3 � l�H
�L

l
jzj

�

C log
1

!H .ı/
:

By the last relation in (5.6),

log
1

!H .ı/
D log

L

l
C log ı

„ƒ‚…

<log l

C log jzj D log jzj C O.1/ D O.log jzj/;

and the bound (5.4) follows.
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Applying Theorem 5.2 to Hölder continuous functions leads to the following

corollary. To fix notation, recall that a function �W I ! R is called Hölder contin-

uous with exponent ˛ 2 Œ0; 1� if there exists c > 0 such that

j�.t/ � �.s/j � cjt � sj˛ for all t; s 2 I: (5.7)

The Hölder exponent ˛1.�/ of � is

˛1.�/´ sup¹˛ 2 Œ0; 1� j � is Hölder continuous with exponent ˛º:

5.3 Corollary. Let ˛ 2 .0; 1� and let H.t/ D trH.t/ � ��.t/�T�.t/, t 2 I , be a Hamil-

tonian on a compact interval I whose rotation angle is Hölder continuous with expo-

nent ˛. Then

log.max
jzjDr
kWH .z/k/ . r

1
1C˛ :

Consequently, the exponential order ofW.z/ does not exceed 1
1C˛1.�/

.

Proof. Let c; ˛ be as in (5.7) and set !.ı/´ cı˛ . Then �!.r/ D c
1

1C˛ r
1

1C˛ . We

have !H � !, and thus also �H � �! . Theorem 5.2 gives

log.max
jzjDr
kW.z/k/ . �H

�L

l
r
�

C O.log r/

� �!
�L

l
r
�

C O.log r/ � r 1
1C˛ :

This corollary shows that the present general estimate is an improvement of Roma-

nov’s Theorem even on the scale of exponential order.

5.4 Remark. In [22, Corollary 4 (1)] it is shown that for a Hölder continuous (trace

normed) Hamiltonian with Hölder exponent ˛ 2 .0; 1� the order of the entire function

WH .z/ does not exceed 1 � ˛
2

. The above corollary improves this:

1

1C ˛ < 1 �
˛

2
for all ˛ 2 .0; 1/:

Theorem 5.2 is limited to orders in Œ1
2
; 1�: due to (5.3) the bound (5.4) cannot go

below r
1
2 . To show that this really is a limitation, we should give an example of a

Hamiltonian with continuous rotation angle and small order.

5.5 Example. We start from the example given in [22, Section 7.3]. Let p 2 .0;1/, and

let � be a probability measure on Œ0; 1� which has no point masses, whose topological

support has zero Lebesgue measure and is such that the connected components of

Œ0; 1� n supp�, call them Ij D . j̨ ; ǰ /, satisfy

X

j

. ǰ � j̨ /
p <1:
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Set �´ S

j

�

�.Œ0; j̨ �/C Ij
�

� Œ0; 2�, and note that � has measure 1. Let us show

that � is dense in Œ0; 2�. By our assumption that � has no point masses, the function

f .x/´ �.Œ0; x�/ C x is continuous. Given t 2 Œ0; 2�, we thus find x 2 Œ0; 1� with

f .x/D t . The support of� has empty interior, hence we can choose xn 2 Ijn
such that

limn!1 xnD x. It follows that t D f .x/D limn!1 f .xn/, and since the distribution

function of � is constant on intervals Ij

f .xn/ D �.Œ0; xn�/C xn D �.Œ0; j̨n
�/C xn 2 �.Œ0; j̨n

�/C Ijn
� �:

Let H W Œ0; 2�! R
2�2 be the Hamiltonian defined as

H.t/´
´ �

1 0
0 0

�

if t 2 �;
�
0 0
0 1

�

if t 2 Œ0; 2� n�:

We set h1 D 1� and h2 D 1�c , so thatH D
�
h1 0
0 h2

�

. By [22, Section 7.3] (we write

�.�/ for the order of an entire function),

�.WH / �
2p

p C 1:

Now, we apply the general procedure [9, Section 4] to construct a non-diagonal

Hamiltonian. Set

mj .t/´
tZ

0

hj .s/ d s; j D 1; 2:

Then mj W Œ0; 2� ! Œ0; 1� are continuous, nondecreasing, and surjective. Since � is

open and dense, its intersection with any nonempty open interval has positive mea-

sure. Hence,m1 is even an increasing bijection. This allows us to define a continuous

Hamiltonian zH W Œ0; 1�! R
2�2 by

m´ m2 ım�1
1 ;

zH ´
�
1 �m
�m m2

�

:

By [9, Lemma 4.1], we have

.0; 1/WH .z/

�
0

1

�

D .0; 1/W zH .z
2/

�
0

1

�

;

and it follows that

�.W zH / �
p

p C 1 :

Making an approriate choice of p, this becomes arbitrarily small.

Note that we can write zH in the form (5.1) with the continuous rotation angle

Q�.x/´ � arctanm.x/; x 2 Œ0; 1�:
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One interesting observation about the statement in Theorem 5.2 is that passing

from H to a reparameterisation does not change the monodromy matrix, but may

drastically change the modulus of continuity of the rotation angle and with it the

bound on the right side of (5.4). This fact can be used to improve the bound.

Methodologically, this is not a surprise; it reflects that in the proof of Theorem 5.2

we applied the general estimate only with equidistant partitions and the modulus of

uniform continuity. Making a change of scale, we can try to flatten out the rotation

angle on sections where it heavily oscillates, and by this make the quality of its conti-

nuity more even across the whole interval. The other way to achieve this effect would

be to use arbitrary partitions. Maybe this would be more effective, but certainly it is

computationally harder to handle.

At this point let us just illustrate by an example that working with reparameterisa-

tions indeed can leed to a significant improvement.

5.6 Example. For ; ˇ > 0, let �;ˇ W Œ0; 1�! R be the chirp function

�;ˇ .t/´
´

t sin. 1
tˇ
/ if t 2 .0; 1�;

0 if t D 0;

and consider the Hamiltonian

H;ˇ .t/´ ��;ˇ
�T�;ˇ

; t 2 Œ0; 1�:

We require in the following that  � ˇ, so that �;ˇ is not of bounded variation. This

is done to rule out an application of [22, Corollary 4 (2)] which would imply at once

that the order of the monodromy matrix is at most 1
2

(and we could not go below order
1
2

anyway). Our aim is to show that the order of the monodromy matrix WH;ˇ
.z/ is

bounded by

�.WH;ˇ
/ � ˇ

ˇ C  : (5.8)

The Hölder exponent of �;ˇ is

ˇC1

. Hence, Corollary 5.3 gives

�.WH;ˇ
/ � 1

1C 
ˇC1

D ˇ C 1
ˇ C  C 1 :

For � > 1, set  �.t/´ t� . Then  � is an absolutely continuous increasing bijection

of Œ0; 1� onto itself whose derivative is positive almost everywhere. It thus qualifies

for being used as a reparameterisation. Denote

H
Œ��

;ˇ
.t/´ .H;ˇ ı  �/.t/ �  0

�.t/; t 2 Œ0; 1�:
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Apparently,H
Œ��

;ˇ
D �t��1 �H�;ˇ� , and hence

�.WH;ˇ
/ D �.W

H
Œ��

;ˇ

/ � ˇ� C 1
ˇ� C � C 1 D

ˇ C 1
�

ˇ C  C 1
�

:

Sending � to infinity, (5.8) follows.

6. Sharpness in Theorem 5.2

Remember Example 5.5 where the bound from Theorem 5.2 cannot possibly give

the correct growth of the monodromy matrix. Our aim in this section is to construct

examples where (5.4) gives the correct growth, at least up to an error of logarithmic

size. In particular, in these examples, (5.4) will give the correct order. We formulate

this fact in a fairly general way.

6.1 Theorem. Let g and m be regularly varying function with

1

2
< Ind g < 1 and

1Z

1

1

m.t/
d t <1;

and let n be regularly varying with .n ım/.x/ � .m ı n/.x/ � x.

Then there exists a Hamiltonian H.t/ D ��.t/�T�.t/ whose rotation angle �.t/ is

continuous, such that

.n ı g/.r/ . log.max
jzjDr
kWH .z/k/ . g.r/: (6.1)

Note that the gap left by (6.1) is indeed rather small: we could choose for exam-

ples m.r/´ r.log r/.log log r/2. Then n.r/ � r
.log r/.log log r/2

, and hence the lower

bound (6.1) satisfies

.n ı g/.r/ � g.r/

.log r/.log log r/2
:

In particular, we see that in the Hölder continuous situation the bound for order given

in Corollary 5.3 is sharp.

For the proof of Theorem 6.1, we have to construct a function �.t/whose modulus

of continuity is prescribed and such that the growth of the corresponding monodromy

matrix can be estimated from below.

Finding just some function with given modulus of continuity is of course easy.

Every continuous increasing and subadditive function !W Œ0;1/ ! Œ0;1/ with

!.0/ D 0 is the modulus of continuity of itself. However, using such functions for
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the rotation angle �.t/ of a Hamiltonian will not lead to a required example: the order

of the monodromy matrix cannot exceed 1
2

by [22, Corollary 4 (2)].

It turns out that the following example of an oscillating function with prescribed

modulus of continuity does the job. We want to point out that placing constancy inter-

vals is crucial, at least for our argument.

6.2 Example. Assume we are given

i. a sequence .lj /
1
jD1 of positive numbers with

P1
jD1 lj <1,

ii. a nonincreasing sequence .mj /
1
jD1 of positive numbers with mj � lj for all

j 2 N,

iii. a continuous function �W .0;1/ ! .0;1/, such that � is nondecreasing

on .0; m1/, the function p�1 � � (again p˛.x/´ x˛) is nonincreasing on

.0;m1/, and

lim
x!0

�.x/ D 0; sup
j2N

�.mj /

�.mjC1/
<1; �.m1/ <

�

2
:

Set

rn ´
n�1
X

jD1

.lj Cmj /;

sn´ rn C ln;

L´
1

X

jD1

.lj Cmj /;

�n ´
n�1
X

jD1

.�1/jC1�.mj /;

and let �W Œ0; L/! Œ0; �
2
/ be the piecewise linear path connecting the points

.r1; �1/; .s1; �1/; .r2; �2/; .s2; �2/; .r3; �3/; : : : :

�1

�2

�3

�4

0 D r1 s1 r2 s2 r3 s3 r4 � � � L
l1 m1 l2 m2 l3 m3

.t/
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We assert that the modulus of uniform continuity !� of the function � satisfies

!�.ı/ � �.ı/ for ı � m1: (6.2)

In order to prove this, we first show that

!�.mn/ D �.mn/: (6.3)

The inequality “�” follows since we have

rnC1 � sn D mn and j�.rnC1/ � �.sn/j D j�nC1 � �nj D �.mn/:

Consider two points t; s with t < rn and t � s � t Cmn. Then s � sn. The function

�jŒ0;sn� is a polygonal path with maximal slope �.mn�1/
mn�1

, and we obtain

j�.t/ � �.s/j � �.mn�1/

mn�1

�mn � �.mn/:

For each two points t; s with rn � t � s � t Cmn we have

j�.t/ � �.s/j � j�nC1 � �nj D �.mn/;

and “�” in (6.3) follows.

For the proof of (6.2), let ı �m1 be given. Let n2N be such thatmnC1 < ı�mn,

then
�.mnC1/

�.mn/
D �.mnC1/

!�.mn/
� �.ı/

!�.ı/
� �.mn/

!�.mnC1/
D �.mn/

�.mnC1/
:

Proof of Theorem 6.1. Based on [3, Theorems 1.8.2 and 1.8.5] we may assume with-

out loss of generality that g and m are increasing bijections of .0;1/ onto itself.

Moreover, we may say that m.1/ is as large as it pleases us (and a concrete request

will be put later).

We use Example 6.2 with the data

mj D lj ´
1

m.j /
; � ´ p�1 �

�

p�1 ı g�1 ı p�1

�

:

We have to check that the conditions required in Example 6.2 (i)–(iii) are fulfilled.

First,
1

X

jD1

lj � l1 C
1Z

1

1

m.t/
d t <1;

andmj (D lj ) is decreasing. Second, � is continuous and regularly varying (at 0) with

Ind� D 1

Ind g
� 1 2 .0; 1/:
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Hence, sufficiently close to 0, � is increasing and p�1 ı � is decreasing. Now, we

assume (without loss of generality) that m.1/ is so large that 1
m.1/

is already suf-

ficiently close to 0 in the above sense and < �
2

. Also, the function � ı p�1 ım is

regularly varying, and hence

lim
j!1

�.mj /

�.mjC1/
D lim
j!1

.� ı p�1 ım/.j /

.� ı p�1 ım/.j C 1/ D 1:

In particular, the quotient is bounded.

Let � be the function constructed in Example 6.2. Then !� � � , and since � is

regularly varying it follows that �!�
� �� . The latter function computes as

�� D p�1 ı .p1 � �/�1 ı p�1 D g:

Let H be the Hamiltonian H.t/´ ��.t/�
T
�.t/

. The upper bound in (6.1) is just (5.4).

In order to show the lower bound, we aim at an application of Corollaries 2.5 and 3.5.

We use the set

�´
1
[

jD1

.sj ; rj /

in Corollary 3.5. The Hamiltonian zH constructed there is in our situation the Ham-

burger Hamiltonian with lengths .lj /
1
jD1 and angles .�j /

1
jD1. Now, Corollary 2.5

comes into play: we have

ljC1lj sin2.�jC1 ��j /D
1

m.j C 1/m.j / sin2.�.mj //�
1

m.j /2
.� ıp�1 ım/.j /2;

and hence we can use

f ´ p�2 ı .p1 � �/ ı p�1 ım

in (2.3). The right side of (2.4) then is

f �1 ı p2 Dm�1 ı p�1 ı .p1 � �/�1 ı p� 1
2
ı p2 Dm�1 ı g:

Thus, by Corollary 2.5,

log max
jzjDr
kW zH .z/k & .m�1 ı g/.r/:

Corollary 3.5 implies that also

log max
jzjDr
kWH .z/k & .m�1 ı g/.r/:

Note here that Ind m � 1, and hence Ind.m�1 ı g/ 2 .0; 1/.
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