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Discrete approximations to Dirac operators

and norm resolvent convergence

Horia Cornean, Henrik Garde, and Arne Jensen

Abstract. We consider continuous Dirac operators defined on R
d , d 2 ¹1; 2; 3º, together with

various discrete versions of them. Both forward-backward and symmetric finite differences

are used as approximations to partial derivatives. We also allow a bounded, Hölder continu-

ous, and self-adjoint matrix-valued potential, which in the discrete setting is evaluated on the

mesh. Our main goal is to investigate whether the proposed discrete models converge in norm

resolvent sense to their continuous counterparts, as the mesh size tends to zero and up to a nat-

ural embedding of the discrete space into the continuous one. In dimension one we show that

forward-backward differences lead to norm resolvent convergence, while in dimension two and

three they do not. The same negative result holds in all dimensions when symmetric differences

are used. On the other hand, strong resolvent convergence holds in all these cases. Neverthe-

less, and quite remarkably, a rather simple but non-standard modification to the discrete models,

involving the mass term, ensures norm resolvent convergence in general.

1. Introduction

We study in detail in what sense continuous Dirac operators [8] can be approximated

by a family of discrete operators indexed by the mesh size. To investigate spectral

properties based on the discrete models, it is essential to know whether we can obtain

norm resolvent convergence or only strong resolvent convergence of the discrete mod-

els (suitably embedded into the continuum) to the continuous Dirac operators.

In this paper we present a remarkable new phenomenon. In dimensions two and

three we cannot obtain norm resolvent convergence of the discrete operators (embed-

ded into the continuum) as the mesh size tends to zero, if we use the natural discret-

izations based on either symmetric first order differences or a pair of forward-back-

ward first order differences. The models require a simple modification to obtain norm

resolvent convergence. In dimension one the discretization using a pair of forward-

backward first order differences does lead to norm resolvent convergence, whereas

the model based on symmetric first order differences does not.
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These results are now described in some detail. To unify the notation, we define

�.1/ D �.2/ D 2 and �.3/ D 4. The Hilbert spaces used for the continuous Dirac

operators are

H
d D L2.Rd /˝ C

�.d/; d D 1; 2; 3:

For mesh size h > 0, the corresponding discrete spaces are denoted by

H
d
h D `2.hZ

d /˝ C
�.d/; d D 1; 2; 3:

The norm on H
d
h

is given by

kuhk2

H
d
h

D hd
X

k2Zd

juh.k/j2; uh 2 H
d
h :

Here j � j denotes the Euclidean norm on C
�.d/. We index uh by k 2 Z

d ; the h depend-

ence is in the subscript of uh.

To relate the spaces H
d
h

and H
d , we introduce embedding operators JhW H

d
h

!
Hd and discretization operators KhW Hd ! H

d
h

, constructed from a pair of biortho-

gonal Riesz sequences, as in [2, Section 2]. We describe the construction briefly, with

further details and assumptions given in Section 2. Let '0;  0 2 L2.Rd / and assume

that ¹'0. � � k/ºk2Zd and ¹ 0. � �k/ºk2Zd are a pair of biorthogonal Riesz sequences

in L2.Rd /. Define 'h;k.x/ D '0..x � hk/=h/, and  h;k.x/ D  0..x � hk/=h/,

x 2 Rd , k 2 Zd , h > 0. The embedding operator Jh is then defined as

.Jhuh/.x/ D
X

k2Zd

'h;k.x/uh.k/:

Note that here 'h;k.x/ is a scalar multiplying a vector uh.k/ 2 C
�.d/. To construct

the discretization operator, let zJh be defined as Jh with '0 replaced by  0. The dis-

cretization operator is then defined as Kh D . zJh/
�. For d D 1; 2, it can be written

explicitly as

.Khf /.k/ D 1

hd

�h h;k ; f
1i

h h;k ; f
2i

�
; f D

�
f 1

f 2

�
2 H

d :

A similar formula holds for d D 3. We have KhJh D Ih, where Ih is the identity in

H
d
h

, and JhKh is a projection in H
d onto JhH

d
h

.

Let H0 be the free Dirac operator in H
d , d D 1; 2; 3, and let H0;h be an approx-

imation defined on H
d
h

. We compare the operators

Jh.H0;h � zIh/
�1Kh and .H0 � zI /�1

acting on H
d . The question of interest is in what sense will Jh.H0;h � zIh/

�1Kh

converge to .H0 � zI /�1 as h! 0. We now summarize the results obtained. First we

briefly define the operators considered.
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Let �j , j D 1; 2; 3, denote the Pauli matrices

�1 D
�
0 1

1 0

�
; �2 D

�
0 �i

i 0

�
; �3 D

�
1 0

0 �1

�
: (1.1)

Let m � 0 denote the mass. To simplify, we do not indicate dependence on the mass

in the notation for operators. In dimension d D 1, the free Dirac operator is given by

the operator matrix

H0 D �i
d

dx
�1 Cm�3

on H
1. We consider two discrete approximations based on replacing �i d

dx
by finite

difference operators. Let Ih denote the identity operator on `2.hZ/. We define

H fb
0;h D

�
mIh D�

h

DC
h

�mIh

�
and H s

0;h D
�
mIh Ds

h

Ds
h

�mIh

�
:

Here the forward and backward finite difference operators are defined as

.DC
h
uh/.k/ D 1

ih
.uh.k C 1/� uh.k//; (1.2a)

.D�
h uh/.k/ D 1

ih
.uh.k/ � uh.k � 1//; (1.2b)

and satisfies .DC
h
/� DD�

h
. The symmetric difference operator is the self-adjoint oper-

ator Ds
h

D 1
2
.DC

h
CD�

h
/, i.e.,

.Ds
huh/.k/ D 1

2ih
.uh.k C 1/� uh.k � 1//: (1.3)

In dimension d D 2, the free Dirac operator is defined as

H0 D �i
@

@x1

�1 � i
@

@x2

�2 Cm�3

on H2. As in the d D 1 case, there are two natural discrete models given by

H fb
0;h D

�
mIh D�

hI1 � iD�
hI2

DC
hI1 C iDC

hI2 �mIh

�

and

H s
0;h D

�
mIh Ds

hI1 � iDs
hI2

Ds
hI1 C iDs

hI2 �mIh

�
:

HereD˙
hIj andDs

hIj are the corresponding finite differences in the j ’th coordinate. It

turns out that these two discrete models do not lead to norm resolvent convergence,
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so we also define two modified versions. Let ��h denote the discrete Laplacian;

see (2.4). Then the modified operators are given by

zH fb
0;h D H fb

0;h � h�h�3 and zH s
0;h D H s

0;h � h�h�3:

Here �h�h�3 is understood to be the operator matrix

��h�h 0

0 h�h

�
:

The details on the discretizations in dimension d D 3 can be found in Section 5.

Let K1 and K2 be two Hilbert spaces. The space of bounded operators from K1

to K2 is denoted by B.K1;K2/. If K1 D K2 D K , we write B.K/ D B.K;K/.

In the following theorem, we collect the positive results obtained on norm resolvent

convergence in B.Hd /. We use the convention .�0; 0/ D ; in the statements of res-

ults.

Theorem 1.1. LetH0;h be equal toH fb
0;h

, d D 1, or equal to zH fb
0;h

, d D 2; 3, or equal

to zH s
0;h

, d D 1; 2; 3. Let H0 denote the free Dirac operator in the corresponding

dimension. Then the following result holds.

Let K � .C n R/[ .�m;m/ be compact. Then there exists C > 0 such that

kJh.H0;h � zIh/
�1Kh � .H0 � zI /�1kB.Hd / � Ch (1.4)

for all z 2 K and h 2 .0; 1�.

Theorem 1.1 can be generalized to also include a potential, by following the

approach in [2]. Let V W R
d ! B.C�.d// be bounded and Hölder continuous. Assume

V.x/ is self-adjoint for each x 2 R
d . Define the discretization as Vh.k/ D V.hk/

for k 2 Z
d . Then we can define self-adjoint operators H D H0 C V on H

d and

Hh D H0;h C Vh on H
d
h

for all the discrete models. The results in Theorem 1.1 then

generalize to H and Hh, with an estimate Ch� 0

, where 0 < � 0 < 1 depends on the

Hölder exponent for V ; see Section 7.

In the next theorem we summarize some negative results with non-convergence in

the B.Hd /-operator norm in part (i), and in part (ii) a result using the Sobolev spaces

H 1.Rd / ˝ C�.d/ is given. In particular, the estimate (1.5) implies strong resolvent

convergence in B.Hd /.

Theorem 1.2. LetH0;h be equal toH fb
0;h

, d D 2; 3, or equal toH s
0;h

, d D 1; 2; 3. Let

H0 denote the free Dirac operator in the corresponding dimension. Then the following

results hold.

i. Let z 2 .C n R/ [ .�m;m/. Then Jh.H0;h � zIh/
�1Kh does not converge

to .H0 � zI /�1 in the operator norm on B.Hd / as h ! 0.
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ii. Let K � .C n R/[ .�m;m/ be compact. Then there exists C > 0 such that

kJh.H0;h � zIh/
�1Kh � .H0 � zI /�1kB.H 1.Rd /˝C�.d/;Hd / � Ch (1.5)

for all z 2 K and h 2 .0; 1�.

The estimate (1.4) implies results on the spectra of the operatorsH0;h andH0 and

their relation, see [2, Section 5]. Such results are not obtainable from the strong con-

vergence implied by the estimate (1.5). Thus, we are in the remarkable situation that

in dimensions d D 2;3we need to modify the natural discretizations in order to obtain

spectral information. Furthermore, in dimension d D 1 to obtain spectral information

we must use either the forward-backward discretizations or the modified symmetric

discretizations. Moreover, this is relevant for resolving the unwanted fermion doub-

ling phenomenon that is present in some discretizations of Dirac operators [1].

Results of the type (1.4) were first obtained by Nakamura and Tadano [5] for

H D �� C V on L2.Rd / and Hh D ��h C Vh on `2.hZ
d / for a large class of

real potentials V , including unbounded V . They used special cases of the Jh and Kh

as defined here, i.e., the pair of biorthogonal Riesz sequences is replaced by a single

orthonormal sequence. Recently, their results have been applied to quantum graph

Hamiltonians [3]. In [4] the continuum limit is studied for a number of different prob-

lems. Here strong resolvent convergence is proved up to the spectrum and scattering

results are derived.

In [2] the authors proved results of the type (1.4) for a class of Fourier multi-

pliers H0 and their discretizations H0;h, and obtained results of the type (1.4) for

perturbations H D H0 C V and Hh D H0;h C Vh with a bounded, real-valued, and

Hölder continuous potential. Note that the results in [2] do not directly apply to Dirac

operators, since the free Dirac operators do not satisfy an essential symmetry con-

dition [2, Assumption 3.1(4)]. In [7] Schmidt and Umeda proved strong resolvent

convergence for Dirac operators in dimension d D 2 using the discretization H fb
0;h

.

They allow a class of bounded non-self-adjoint potentials and also state correspond-

ing results for dimensions d D 1; 3.

The remainder of this paper is organized as follows. Section 2 introduces addi-

tional notation and operators used in the paper. Sections 3, 4, and 5 prove Theorem 1.1

and Theorem 1.2(i) in the one-, two-, and three-dimensional cases, respectively. Since

some of the arguments are very similar in the different dimensions, we will give the

full details in dimension two, and omit parts of the proofs in dimensions one and three

that are essentially the same verbatim. Theorem 1.2 (ii) is proved in Section 6. Finally,

we show how a potential V can be added to our results in Section 7.
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2. Preliminaries

In this section we collect a number of definitions and results used in the sequel.

2.1. Notation for identity operators

We use the following notation for identity operators on various spaces: I on H
d , Ih

on H
d
h

, I on L2.Rd /, Ih on `2.hZ
d /, 1 on C

2, and 1 on C
4. In Section 5, in the

definitions of the operator matrices for the free Dirac operator and its discretizations,

1 denotes the identity onL2.R3/˝ C2 and 1h denotes the identity on `2.hZ3/˝ C2.

2.2. Finite differences

The forward, backward, and symmetric difference operators on H
1
h

are defined in (1.2)

and (1.3). Let ¹e1; e2; e3º be the canonical basis in Z3. The forward partial difference

operators for mesh size h are defined by

.DC
hIjuh/.k/ D 1

ih
.uh.k C ej /� uh.k//; j D 1; 2; 3; (2.1)

and backward partial difference operators by

.D�
hIjuh/.k/ D 1

ih
.uh.k/ � uh.k � ej //; j D 1; 2; 3: (2.2)

The symmetric difference operators are given by

.Ds
hIjuh/.k/ D 1

2ih
.uh.k C ej / � uh.k � ej //; j D 1; 2; 3: (2.3)

Note that .DC
hIj /

� D D�
hIj and .Ds

hIj /
� D Ds

hIj .

The discrete Laplacian acting on `2.hZd / is given by

.��hvh/.k/ D 1

h2

dX

j D1

.2vh.k/ � vh.k C ej / � vh.k � ej //: (2.4)

2.3. Fourier transforms

We use Fourier transforms extensively. They are normalized to be unitary. Write
yHd D L2.Rd /˝ C

�.d/ and let F W H
d ! yHd be the Fourier transform given by

.F f /.�/ D 1

.2�/d=2

Z

Rd

e�ix��f .x/ dx; � 2 R
d ;
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with adjoint F
�W yHd ! H

d . We suppress their dependence on d in the notation, as

it will be obvious in which dimension they are used.

Let Td
h

D Œ��
h
; �

h
�d , d D 1;2; 3, and yHd

h
D L2.Td

h
/˝ C�.d/. The discrete Four-

ier transform FhW H
d
h

! yHd
h

and its adjoint F�
h
W yHd

h
! H

d
h

are given by

.Fhuh/.�/D hd

.2�/d=2

X

k2Zd

uh.k/e
�ihk�� ; � 2 T

d
h ;

.F�
hg/.k/D 1

.2�/d=2

Z

T
d
h

eihk��g.�/ d�; k 2 Z
d ;

for d D 1; 2; 3.

2.4. Embedding and discretization operators

We describe in some detail how the the embedding and discretization operators in [2,

Section 2] are adapted to the Dirac case.

Let K be a Hilbert space. Let ¹ukºk2Zd and ¹vkºk2Zd be two sequences in K .

They are said to be biorthogonal if

huk; vni D ık;n; k; n 2 Z
d ;

where ık;n is Kronecker’s delta.

A sequence ¹ukºk2Zd is called a Riesz sequence if there exist A > 0 and B > 0

such that

A
X

k2Zd

jckj2 � k
X

k2Zd

ckukk2 � B
X

k2Zd

jckj2

for all ¹ckºk2Zd 2 `2.Zd /.

Assumption 2.1. Let d D 1; 2; or 3. Let '0;  0 2 L2.Rd/. Define

'h;k.x/ D '0..x � hk/=h/;  h;k.x/ D  0..x � hk/=h/; h > 0; k 2 Z
d :

Assume further that ¹'1;kºk2Zd and ¹ 1;kºk2Zd are biorthogonal Riesz sequences

in L2.Rd /.

To simplify, we omit the dependence on d in the notation for embedding and

discretization operators. The embedding operators JhW H
d
h

! Hd are defined by

Jhuh D
X

k2Zd

'h;kuh.k/; uh 2 H
d
h : (2.5)
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For d D 1; 2, and

uh.k/ D
�
u1

h
.k/

u2
h
.k/

�
;

the notation above means

'h;kuh.k/ D
�
u1

h
.k/'h;k

u2
h
.k/'h;k

�
;

with an obvious modification in case d D 3. As a consequence of the Riesz sequence

assumption we get a uniform bound

sup
h>0

kJhk
B.Hd

h
;Hd / < 1:

The operators zJh are defined as above by replacing 'h;k by  h;k in (2.5). Then the

discretization operators are defined as Kh D . zJh/
�. Explicitly, for d D 1; 2,

.Khf /.k/ D 1

hd

�h h;k ; f
1i

h h;k ; f
2i

�
; k 2 Z

d ;

with an obvious modification for d D 3. We have the uniform bound

sup
h>0

kKhk
B.Hd ;Hd

h
/ < 1:

Biorthogonality implies that

KhJh D Ih

and that JhKh is a projection onto JhH
d
h

in H
d . A further assumption on the func-

tions '0 and  0 is needed.

Assumption 2.2 ([2, Assumption 2.8]). Let O'0; O 0 2 L2.Rd / be essentially bounded

and satisfy Assumption 2.1. Assume further that there exists c0 > 0 such that

supp. O'0/ �
h
�3�
2
;
3�

2

id

and j O'0.�/j � c0; � 2
h
��
2
;
�

2

id

;

and

supp. O 0/ �
h
�3�
2
;
3�

2

id

and j O 0.�/j � c0; � 2
h
��
2
;
�

2

id

:

For examples of '0 and  0 satisfying Assumption 2.2, see [2, Section 2.1].
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2.5. Two lemmas

We often use the following elementary result, where the identity matrix is denoted

by I .

Lemma 2.3. Let G 2 B.Cn/ be a self-adjoint n � n matrix. Then

kG � iIkB.Cn/ D kG2 C Ik1=2

B.Cn/
; (2.6)

k.G � iI /�1kB.Cn/ D k.G2 C I /�1k1=2

B.Cn/
: (2.7)

Proof. It suffices to prove (2.6). We use the C �-identity in B.Cn/ to get

kG � iIk2
B.Cn/ D k.G C iI /.G � iI /kB.Cn/ D kG2 C IkB.Cn/:

The following lemma will be used in the proofs related to the non-convergence

results; see, e.g., [6, Theorem XIII.83].

Lemma 2.4. Let d D 1, 2, or 3. Assume that MhW Td
h

! B.C�.d// is a continuous

matrix-valued function. Let TMh
denote the operator of multiplication by Mh,

TMh
D

Z̊

T
d
h

Mh.�/ d�;

on yHd
h

' L2.Td
h

I C
�.d//. Then

kTMh
k

B. yH
d
h

/
D max

�2T
d
h

kMh.�/kB.C�.d//: (2.8)

3. The 1D free Dirac operator

We state and prove results for the 1D Dirac operator. On H
1 the one-dimensional free

Dirac operator with mass m � 0 is given by the operator matrix

H0 D �i
d

dx
�1 Cm�3 D

2
64

mI �i
d

dx

�i
d

dx
�mI

3
75 ;

where I denotes the identity operator on L2.R/.
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3.1. The 1D forward-backward difference model

Using (1.2), the forward-backward difference model of H0 is defined as

H fb
0;h D

�
mIh D�

h

DC
h

�mIh

�
;

where Ih denotes the identity operator on `2.hZ/. The operators H0 and H fb
0;h

are

given as multipliers in Fourier space by the functionsG0 andGfb
0;h

, respectively, where

G0.�/ D
�
m �

� �m

�
(3.1)

and

Gfb
0;h.�/ D

2
64

m � 1

ih
.e�ih� � 1/

1

ih
.eih� � 1/ �m

3
75 : (3.2)

We define

g0.�/ D m2 C �2; (3.3)

and

gfb
0;h.�/ D m2 C 4

h2
sin2

�h
2
�
�
: (3.4)

Then

G0.�/
2 D g0.�/1 and Gfb

0;h.�/
2 D gfb

0;h.�/1: (3.5)

Lemma 3.1. Assume � ¤ 0. Then we have

k.G0.�/� i1/�1kB.C2/ � 1

j�j : (3.6)

There exists C > 0 such that for h� 2 Œ�3�
2
; 3�

2
� we have

k.Gfb
0;h.�/� i1/�1kB.C2/ � C

j�j : (3.7)

Proof. Using Lemma 2.3 together with (3.3) and (3.5), we get

k.G0.�/� i1/�1kB.C2/ D k.G0.�/
2 C 1/�1k1=2

B.C2/
D 1

.1Cm2 C �2/1=2
� 1

j�j ;

proving (3.6).
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To prove (3.7), we use Lemma 2.3, (3.4), and (3.5) to get

k.Gfb
0 .�/� i1/�1kB.C2/ D k.Gfb

0 .�/
2 C 1/�1k1=2

B.C2/

D
�
1Cm2 C 4

h2
sin2

�h
2
�
���1=2

�
� 4
h2

sin2
�h
2
�
���1=2

:

There exists c > 0 such that for j� j � 3�
4

we have jsin.�/j � cj� j. For h� 2 Œ�3�
2
; 3�

2
�

then (3.7) follows.

Lemma 3.2. There exists C > 0 such that

k.G0.�/� i1/�1 � .Gfb
0;h.�/� i1/�1kB.C2/ � Ch

for h� 2 Œ�3�
2
; 3�

2
�.

Proof. We have

.G0.�/� i1/�1 � .Gfb
0;h.�/� i1/�1

D .G0.�/ � i1/�1.Gfb
0;h.�/�G0.�//.G

fb
0;h.�/ � i1/�1:

To estimate the 12 and 21 entries in Gfb
0;h
.�/�G0.�/ we use Taylor’s formula:

eih� D 1C ih� C .ih�/2
1Z

0

eiht�.1� t/ dt:

It follows that the 12 and 21 entries are estimated by Chj�j2. Using Lemma 3.1 the

result follows.

Using Lemmas 3.1 and 3.2, we can adapt the arguments in [2] to obtain the follow-

ing result. We omit the details here, and refer the reader to the proof of Theorem 4.4

where details of the adaptation are given.

Theorem 3.3. LetK � .C n R/[ .�m;m/ be compact. Then there exists C > 0 such

that

kJh.H
fb
0;h � zIh/

�1Kh � .H0 � zI /�1kB.H1/ � Ch

for all z 2 K and h 2 .0; 1�.
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3.2. The 1D symmetric difference model

The discrete model based on the symmetric difference operator (1.3) is

H s
0;h D

�
mIh Ds

h

Ds
h

�mIh

�
: (3.8)

In Fourier space, it is a multiplier with symbol

Gs
0;h.�/ D

�
m 1

h
sin.h�/

1
h

sin.h�/ �m

�
: (3.9)

We have

Gs
0;h.�/

2 D gs
0;h.�/1 where gs

0;h.�/ D m2 C 1

h2
sin2.h�/: (3.10)

Lemma 3.4. There exists c > 0 such that

max
�2T

1
h

k.Gfb
0;h.�/� i1/�1 � .Gs

0;h.�/� i1/�1kB.C2/ � c (3.11)

for all h 2 .0; 1�.

Proof. We have

.Gfb
0;h.�/� i1/Œ.Gs

0;h.�/� i1/�1 � .Gfb
0;h.�/� i1/�1�.Gs

0;h.�/ � i1/

D Gfb
0;h.�/�Gs

0;h.�/ D 1

h
.1 � cos.h�//�2: (3.12)

From (3.5) and (3.10),

.1C gfb
0;h.�//

�1=2.Gfb
0;h.�/� i1/ and .1C gs

0;h.�//
�1=2.Gs

0;h.�/� i1/

are unitary matrices for all � 2 T
1
h

. Since �2 is also unitary, (3.12) gives the norm

equality

k.Gfb
0;h.�/� i1/�1 � .Gs

0;h.�/� i1/�1kB.C2/ D 1 � cos.h�/

h.1C gfb
0;h
.�//1=2.1C gs

0;h
.�//1=2

:

If we take h� D � , the right-hand side becomes

2p
.1Cm2/h2 C 4

p
1Cm2

:

Thus, for 0 < h � 1 one can take c D 2..1Cm2/2 C 4.1Cm2//�1=2 in (3.11). This

concludes the proof.
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Using Lemmas 2.4 and 3.4 together with Theorem 3.3 and properties of Jh and

Kh, we get the following result.

Theorem 3.5. Let z 2 .C n R/[ .�m;m/. Then Jh.H
s
0;h

� zIh/
�1Kh does not con-

verge to .H0 � zI /�1 in the operator norm on B.H1/ as h ! 0.

We can introduce a modified operator zH s
0;h

given by

zH s
0;h D H s

0;h C
��h�h 0

0 h�h

�
;

where ��h is the 1D discrete Laplacian; see (2.4). We obtain norm resolvent conver-

gence for the modified symmetric difference model, similar to the results in dimen-

sions two and three; see Theorems 4.4 and 5.1. The proof is omitted as it is nearly

identical to the proof of Theorem 4.4.

Theorem 3.6. LetK � .C n R/[ .�m;m/ be compact. Then there exists C > 0 such

that

kJh. zH s
0;h � zIh/

�1Kh � .H0 � zI /�1kB.H1/ � Ch

for all z 2 K and h 2 .0; 1�.

4. The 2D free Dirac operator

In two dimensions, the free Dirac operator on H2 with mass m � 0 is given by

H0 D �i
@

@x1

�1 � i
@

@x2

�2 Cm�3 D

2
64

mI �i
@

@x1

� @

@x2

�i
@

@x1

C @

@x2

�mI

3
75 ; (4.1)

where the Pauli matrices are given in (1.1). In yH2 it is a Fourier multiplier with

symbol

G0.�/ D
�

m �1 � i�2

�1 C i�2 �m

�
: (4.2)

The corresponding discrete Dirac operator can be obtained by replacing the derivat-

ives in (4.1) by finite differences.

4.1. The 2D symmetric difference model

We first consider the model obtained by using the symmetric difference operators;

see (2.3) for the definition.

H s
0;h D

�
mIh Ds

hI1 � iDs
hI2

Ds
hI1 C iDs

hI2 �mIh

�
: (4.3)



H. Cornean, H. Garde, and A. Jensen 1602

In, yH2
h

it acts as a Fourier multiplier with symbol

Gs
0;h.�/ D

2
64

m
1

h
sin.h�1/ � i

h
sin.h�2/

1

h
sin.h�1/C i

h
sin.h�2/ �m

3
75 : (4.4)

The 2D discrete Laplacian is defined in (2.4). We introduce the modified symmet-

ric difference model as

zH s
0;h D H s

0;h C
��h�h 0

0 h�h

�
:

We will show that Jh. zH s
0;h

� zIh/
�1Kh converges in norm to .H0 � zI /�1.

In yH2
h

, the operator zH s
0;h

acts as a Fourier multiplier with symbol

zGs
0;h.�/ D Gs

0;h.�/C fh.�/

�
1 0

0 �1

�
(4.5)

where

fh.�/ D 4

h
sin2

�h
2
�1

�
C 4

h
sin2

�h
2
�2

�
: (4.6)

Related to the symbols G0, Gs
0;h

, and zGs
0;h

, we define

g0.�/ D m2 C �2
1 C �2

2 ; (4.7)

gs
0;h.�/ D m2 C 1

h2
sin2.h�1/C 1

h2
sin2.h�2/; (4.8)

and

Qgs
0;h.�/ D .mC fh.�//

2 C 1

h2
sin2.h�1/C 1

h2
sin2.h�2/: (4.9)

We have

G0.�/
2 D g0.�/1; Gs

0;h.�/
2 D gs

0;h.�/1; and zGs
0;h.�/

2 D Qgs
0;h.�/1: (4.10)

Lemma 4.1. For � ¤ 0, we have

k.G0.�/� i1/�1kB.C2/ � 1

j�j : (4.11)

There exists C > 0 such that for h� 2 Œ�3�
2
; 3�

2
�2 we have

k. zGs
0;h.�/� i1/�1kB.C2/ � C

j�j : (4.12)



Discrete approximations to Dirac operators and norm resolvent convergence 1603

Proof. Lemma 2.3 and (4.10) imply

k.G0.�/� i1/�1kB.C2/ D 1

.1C g0.�//1=2
� 1

j�j ;

such that (4.11) holds.

To prove (4.12), we first use Lemma 2.3 and (4.10) to get

k. zGs
0;h.�/� i1/�1kB.C2/ D 1

.1C Qgs
0;h
.�//1=2

:

Then note that there exists c > 0 such that jsin.�/j � cj� j for � 2 Œ�3�
4
; 3�

4
�. Thus,

for jh�j j � 3�
4

, j D 1; 2, we have

1

h2
sin2.h�j / � c1j�j j2; j D 1; 2:

For 3�
4

� jh�j j � 3�
2

we have

1

h
sin2

�h
2
�j

�
� c1hj�j j2 � c2j�j j; j D 1; 2:

Combining these estimates, we get

Qgs
0;h.�/ � cj�j2; h� 2

h
�3�
2
;
3�

2

i2

:

The estimate (4.12) follows.

Lemma 4.2. There exists C > 0 such that

k.G0.�/� i1/�1 � . zGs
0;h.�/� i1/�1kB.C2/ � Ch

for h� 2 Œ�3�
2
; 3�

2
�2.

Proof. We have

.G0.�/� i1/�1 � . zGs
0;h.�/� i1/�1

D .G0.�/ � i1/�1. zGs
0;h.�/�G0.�//. zGs

0;h.�/ � i1/�1:

The 11 entry in zGs
0;h
.�/�G0.�/ is estimated using jsin.�/j � j� j. We get

jŒ zGs
0;h.�/�G0.�/�11j � jfh.�/j � Chj�j2: (4.13)

The same estimate holds for the 22 entry.
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Taylor’s formula yields

sin.�/ D � � 1

2
�3

1Z

0

cos.t�/.1� t/2 dt: (4.14)

This result implies the estimates

ˇ̌
ˇ1
h

sin.h�j / � �j
ˇ̌
ˇ � Ch2j�j j3; j D 1; 2;

that are used to estimate the 12 and 21 entries in zGs
0;h
.�/�G0.�/.

Combining these results with the estimates from Lemma 4.1, we get

k.G0.�/� i1/�1 � . zGs
0;h.�/� i1/�1kB.C2/ � C

hj�j2 C h2j�j3
j�j2

D C.hC h2j�j/ � Ch;

for h� 2 Œ�3�
2
; 3�

2
�2.

We state [2, Lemma 3.3] in a form adapted to the Dirac operators and outline its

proof.

Lemma 4.3. Let d D 1; 2, or 3. Let H0 be the free Dirac operator in H
d . Let '0

and  0 satisfy Assumption 2.2. Let K � .C n R/ [ .�m;m/ be compact. Then there

exists C > 0 such that

k.JhKh � I /.H0 � zI /�1kB.Hd / � Ch;

for all z 2 K and h 2 .0; 1�.

Proof. We assume d D 2. It suffices to considerKD ¹iº, since .H0 � iI /.H0 � zI /�1

is bounded uniformly in norm for z 2 K. Let u 2 �.R2/˝ C
2, the Schwartz space.

Going through the computations in [2, Section 2] using that '0 and  0 are scalar

functions, we get the result

.F .JhKh � I /.H0 � iI /�1
F

�u/.�/

D .2�/d O'0.h�/
X

j 2Z2

O 0.h� C 2�j /
�
G0

�
� C 2�

h
j

�
� i1

��1

u
�
� C 2�

h
j

�

� .G0.�/� i1/�1u.�/; � 2 R
2:

Here G0 is given by (4.2). If h� 2 Œ��
2
; �

2
�2, then the j D 0 term is the only non-zero

term in the sum. Using [2, Lemma 2.7], we conclude that this term and the last term

cancel. For h� … Œ��
2
; �

2
�2, we use Lemma 4.1 to get k.G0.�/� i1/�1kB.C2/ � Ch,
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0 < h � 1. Since O'0 and O 0 are assumed essentially bounded, we conclude that the

j D 0 term in the sum and the last term are bounded by Chkuk OH2 .

Due to the support assumptions on O'0 and O 0, only the terms in the sum with

jj j � 1 contribute. Assume jj j D 1 and h� 2 supp. O'0/ \ supp. O 0.� C 2�j //. Then

for some c0 > 0 we have j� C 2�
h
j j � c0

h
, which by Lemma 4.1 implies


�
G0

�
� C 2�

h
j

�
� i1

��1
B.C2/

� Ch:

Again, using the boundedness of O'0 and O 0 we conclude that

ˇ̌
ˇ.2�/d O'0.h�/ O 0.h� C 2�j /

�
G0

�
� C 2�

h
j

�
� i1

��1

u
�
� C 2�

h
j

�ˇ̌
ˇ

� Ch
ˇ̌
ˇu

�
� C 2�

h
j

�ˇ̌
ˇ;

0 < h � 1, � 2 R
2. Squaring and integrating the result gives an estimate of the form

Chkuk yH2 . By density, adding up the finite number of terms corresponding to jj j � 1

gives the final result.

We have now established the estimates necessary to repeat the arguments from [2].

Using the embedding operators Jh and discretization operators Kh defined in Sec-

tion 2, we state the result and then show in some detail how the arguments in [2] are

adapted to the Dirac case.

Theorem 4.4. LetK � .C n R/[ .�m;m/ be compact. Then there exists C > 0 such

that

kJh. zH s
0;h � zIh/

�1Kh � .H0 � zI /�1kB.H2/ � Ch

for all z 2 K and h 2 .0; 1�.

Proof. We start by proving the result for K D ¹iº. We have

Jh. zH s
0;h � iIh/

�1Kh � .H0 � iI /�1

D Jh. zH s
0;h � iIh/

�1Kh � JhKh.H0 � iI /�1 C .JhKh � I /.H0 � iI /�1:

The last term is estimated using Lemma 4.3.

To estimate the remaining terms we go to Fourier space. We have

F .Jh. zH s
0;h � iIh/

�1Kh � JhKh.H0 � iI /�1/F �

D F JhF
�
hFh. zH s

0;h � iIh/
�1
F

�
hFhKhF

� � F JhKhF
�
F .H0 � iI /�1

F
�:

(4.15)
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Let u 2 �.R2/ ˝ C
2. We now use a modified version of the computation leading

to [2, equation (2.11)]. For the first term we get

ŒF JhF
�
hFh. zH s

0;h � iIh/
�1
F

�
hFhKhF

�u�.�/

D .2�/d O'0.h�/. zGs
0;h.�/ � i1/�1

X

j 2Z2

O 0.h� C 2�j /u
�
� C 2�

h
j

�
: (4.16)

For the second term we get

ŒF JhKhF
�
F .H0 � iI /�1

F
�u�.�/

D .2�/d O'0.h�/
X

j 2Z2

O 0.h� C 2�j /
�
G0

�
� C 2�

h
j

�
� i1

��1

u
�
� C 2�

h
j

�
:

(4.17)

We need to rewrite (4.16). First, we note that

zGs
0;h.�/ D zGs

0;h

�
� C 2�

h
j

�
; j 2 Z

2:

Next, we can rewrite part of (4.16) as follows, since O 0 is a scalar-valued function:

. zGs
0;h.�/� i1/�1

X

j 2Z2

O 0.h� C 2�j /u
�
� C 2�

h
j

�

D
X

j 2Z2

O 0.h� C 2�j /
�

zGs
0;h

�
� C 2�

h
j

�
� i1

��1

u
�
� C 2�

h
j

�
:

We now insert (4.17) and the rewritten (4.16) into (4.15) to get

F .Jh. zH s
0;h � iIh/

�1Kh � JhKh.H0 � iI /�1/F �u D
X

j 2Z2

qj;h;

where

qj;h.�/ D .2�/d O'0.h�/ O 0.h� C 2�j /

�
��

zGs
0;h

�
� C 2�

h
j

�
� i1

��1

�
�
G0

�
� C 2�

h
j

�
� i1

��1�

� u
�
� C 2�

h
j

�
:

Due to the support conditions on O'0 and O 0 in Assumption 2.2, only terms with jj j � 1
contribute. First, consider j D 0. We have assumed supp. O'0/, supp. O 0/� Œ�3�

2
; 3�

2
�2.

Using Lemma 4.2 and Assumption 2.2, we get

kq0;hk yH2 � Chkuk yH2 :
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Fix j 2 Z
2 with jj j D 1. Define

M D supp. O'0/ \ supp. O 0. � C 2�j //:

From the supports of O'0 and O 0 we have

M �
°
� 2

h
�3�
2
;
3�

2

i2

W j� C 2�j j � �

2

±
:

Assume h� 2 M , then Lemma 4.1 implies


�
G0

�
� C 2�

h
j

�
� i1

��1
B.C2/

� Ch;

and 
�

zGs
0;h

�
� C 2�

h
j

�
� i1

��1
B.C2/

� Ch:

These estimates imply

kqj;hk yH2 � Chkuk yH2 ; jj j D 1:

Since we have a finite number of j with jj j � 1 and since u is in a dense set, the

estimate in Theorem 4.4 follows in theK D ¹iº case. For the general case, we use the

estimates

k.G0.�/� z1/.G0.�/� i1/�1kB.C2/ � C

and

k. zGs
0;h.�/� z1/. zGs

0;h.�/� i1/�1kB.C2/ � C

for z 2 K where K � .C n R/ [ .�m;m/ is compact. Combining these estimates

with Lemma 4.2, we get for h� 2 Œ�3�
2
; 3�

2
�2

k. zGs
0;h.�/� z1/�1 � .G0.�/� z1/�1kB.C2/ � Ch; z 2 K:

This is the crucial estimate used above. Further details are omitted.

Next, we show that, without modification to the symmetric difference model, the

norm convergence stated in the theorem fails.

Lemma 4.5. There exists c > 0 such that

max
�2T

2
h

k.Gs
0;h.�/� i1/�1 � . zGs

0;h.�/� i1/�1kB.C2/ � c (4.18)

for all h 2 .0; 1�.
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Proof. Using the notation from (4.5) we have

.Gs
0;h.�/� i1/Œ.Gs

0;h.�/� i1/�1 � . zGs
0;h.�/� i1/�1�. zGs

0;h.�/ � i1/

D zGs
0;h.�/�Gs

0;h.�/ D fh.�/�3:

From the same reasoning as in the proof of Lemma 3.4, we obtain

k.Gs
0;h.�/� i1/�1 � . zGs

0;h.�/� i1/�1kB.C2/

D fh.�/

.1C gs
0;h
.�//1=2.1C Qgs

0;h
.�//1=2

: (4.19)

Here gs
0;h
.�/ is given by (4.8), Qgs

0;h
.�/ by (4.9), and fh.�/ by (4.6).

Take h�1 D � and h�2 D � , and insert them in the last term in (4.19). We get

max
�2T

2
h

k.Gs
0;h.�/� i1/�1 � . zGs

0;h.�/� i1/�1kB.C2/

� 8p
1Cm2

p
h2 C .8C hm/2

:

The result (4.18) then holds for 0 < h � 1 with c D 8Œ.1Cm2/.1C .8Cm/2/��1=2.

Combining Theorem 4.4 with Lemma 2.4 and Lemma 4.5, we obtain the following

result using the operators Jh andKh introduced in Section 2.

Theorem 4.6. Let z 2 .C n R/[ .�m;m/. Then Jh.H
s
0;h

� zIh/
�1Kh does not con-

verge to .H0 � zI /�1 in the operator norm on B.H2/ as h ! 0.

4.2. The 2D forward-backward difference model

We now consider the model for the discrete Dirac operator obtained by using the

forward and backward difference operators; see (2.1) and (2.2) for definitions. The

discretized operator is given by

H fb
0;h D

�
mIh D�

hI1 � iD�
hI2

DC
hI1 C iDC

hI2 �mIh

�
: (4.20)

In H
2
h

it is a Fourier multiplier with the symbol

Gfb
0;h.�/ D

2
64

m � 1

ih
.e�ih�1 � 1/C 1

h
.e�ih�2 � 1/

1

ih
.eih�1 � 1/C 1

h
.eih�2 � 1/ �m

3
75 :
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We also consider the modified model, where the modification is the same as in the

symmetric case, i.e.,

zH fb
0;h D H fb

0;h C
��h�h 0

0 h�h

�
:

The corresponding Fourier multiplier is

zGfb
0;h.�/ D Gfb

0;h.�/C fh.�/

�
1 0

0 �1

�
;

where fh.�/ is given by (4.6). We recall the expression

fh.�/ D 4

h
sin2

�h
2
�1

�
C 4

h
sin2

�h
2
�2

�
:

Define

gfb
0;h.�/ D m2 C 4

h2
sin2

�h
2
�1

�
C 4

h2
sin2

�h
2
�2

�

C 2

h2
sin.h.�1 � �2// � 2

h2
sin.h�1/C 2

h2
sin.h�2/ (4.21)

and

Qgfb
0;h.�/ D .mC fh.�//

2 C 4

h2
sin2

�h
2
�1

�
C 4

h2
sin2

�h
2
�2

�

C 2

h2
sin.h.�1 � �2//� 2

h2
sin.h�1/C 2

h2
sin.h�2/: (4.22)

Straightforward computations show that

Gfb
0;h.�/

2 D gfb
0;h.�/1 and zGfb

0;h.�/
2 D Qgfb

0;h.�/1:

We now prove the analogue of (4.12) for zGfb
0;h
.�/.

Lemma 4.7. There exists C > 0 such that for h� 2 Œ�3�
2
; 3�

2
�2 we have

k. zGfb
0;h.�/� i1/�1kB.C2/ � C

j�j :

Proof. We will show that we have a lower bound

Qgfb
0;h.�/ � cj�j2; h� 2

h3�
2
;
3�

2

i2

: (4.23)

The result then follows from Lemma 2.3. We start with the estimate

Qgfb
0;h.�/ � 4

h2
sin2

�h
2
�1

�
C 4

h2
sin2

�h
2
�2

�

C 2

h2
sin.h.�1 � �2// � 2

h2
sin.h�1/C 2

h2
sin.h�2/: (4.24)
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We have

2

h2
sin.h.�1 � �2//� 2

h2
sin.h�1/C 2

h2
sin.h�2/

D 2

h2
.sin.h�1/.cos.h�2/ � 1/C sin.h�2/.1� cos.h�1///:

We recall the elementary estimates

jsin.�/j � j� j and 1 � cos.�/ � 1

2
�2

for all � 2 R. Using these estimates we get

2

h2
jsin.h�1/.cos.h�2/ � 1/C sin.h�2/.1� cos.h�1//j � hj�1jj�2j2 C hj�2jj�1j2:

Recall that there exists c0 > 0 such that 4
h2 sin2.h

2
�j / � c0j�j j2 for all hj�j j � 3�

2
,

j D 1; 2. Thus, using these estimates and (4.24), we find

Qgfb
0;h.�/ � .c0 � hj�2j/j�1j2 C .c0 � hj�1j/j�2j2 � 1

2
c0j�j2

for hj�j j � 1
2
c0, j D 1; 2.

For 1
2
c0 � hj�j j � 3�

2
, j D 1; 2, the estimate (4.23) is obtained as in the proof of

Lemma 4.1. We omit the details.

Lemma 4.8. There exists C > 0 such that

k.G0.�/� i1/�1 � . zGfb
0;h.�/� i1/�1kB.C2/ � Ch

for h� 2 Œ�3�
2
; 3�

2
�2.

Proof. We have

.G0.�/� i1/�1 � . zGfb
0;h.�/� i1/�1

D .G0.�/ � i1/�1. zGfb
0;h.�/�G0.�//. zGfb

0;h.�/ � i1/�1:

The 11 and 22 entries in zGfb
0;h
.�/ � G0.�/ are estimated by Chj�j2; see (4.13). To

estimate the 12 and 21 entries we use Taylor’s formula:

eih�j D 1C ih�j C .ih�j /
2

1Z

0

eiht�j .1� t/ dt: (4.25)

It follows that the 12 and 21 entries also are estimated by Chj�j2. Using Lemmas 4.1

and 4.7 the result follows.
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We can now state the analogue of Theorem 4.4. The proof is omitted, since it

is almost identical to the proof of Theorem 4.4; indeed the key ingredients are the

estimates in Lemmas 4.7 and 4.8, that correspond to the results from Lemmas 4.1

and 4.2 with the modified symmetric difference model.

Theorem 4.9. LetK � .C n R/[ .�m;m/ be compact. Then there exists C > 0 such

that

kJh. zH fb
0;h � zIh/

�1Kh � .H0 � zI /�1kB.H2/ � Ch

for all z 2 K and h 2 .0; 1�.

The negative result in Theorem 4.6 for the symmetric model holds also in the

forward-backward case.

Lemma 4.10. There exists c > 0 such that

max
�2T

2
h

k.Gfb
0;h.�/� i1/�1 � . zGfb

0;h.�/� i1/�1kB.C2/ � c

for all h 2 .0; 1�.

Proof. As in the proof of Lemma 4.5 we get

k.Gfb
0;h.�/� i1/�1 � . zGfb

0;h.�/� i1/�1kB.C2/ D fh.�/

.1C gfb
0;h
.�//1=2.1C Qgfb

0;h
.�//1=2

:

Using (4.6), (4.21), and (4.22) we get

fh

� �
2h
;� �

2h

�
D 4

h
; gfb

0;h

� �
2h
;� �

2h

�
Dm2; and Qgfb

0;h

� �
2h
;� �

2h

�
D

�
mC 4

h

�2

:

It follows that we have a lower bound

max
�2T

2
h

k.Gfb
0;h.�/� i1/�1 � . zGfb

0;h.�/� i1/�1kB.C2/

� 4

.1Cm2/1=2.h2 C .4C hm/2/1=2

� 4

.1Cm2/1=2.1C .4Cm/2/1=2

for 0 < h � 1.

Theorem 4.9 combined with Lemma 2.4 and Lemma 4.10 gives the following

result.

Theorem 4.11. Let z 2 .C n R/ [ .�m; m/. Then Jh.H
fb
0;h

� zIh/
�1Kh does not

converge to .H0 � zI /�1 in the operator norm on B.H2/ as h ! 0.

This result implies that the strong convergence result in [7] cannot be improved to

a norm convergence result, without modifying the discretization.



H. Cornean, H. Garde, and A. Jensen 1612

5. The 3D free Dirac operator

Write � D .�1; �2; �3/. Let 0 and 1 denote the 2 � 2 zero and identity matrices, and

let 0 and 1 denote the corresponding 4 � 4 matrices.

For U;W 2 C
3, there is the following identity related to the Pauli matrices, where

the “dot” does not involve complex conjugation:

.U � �/.W � �/ D .U �W /1 C i.U �W / � �: (5.1)

The Dirac matrices ˛ D .˛1; ˛2; ˛3/ and ˇ satisfy

j̨˛k C ˛k j̨ D 2ıj;k1;

j̨ˇ C ˇ j̨ D 0;

ˇ2 D 1:

We can choose

ˇ D
�
1 0

0 �1

�
; j̨ D

�
0 �j

�j 0

�
; j D 1; 2; 3:

The free Dirac operator with mass m � 0 in H3 is given by

H0 D �i˛ � r Cmˇ D
�

m1 �i� � r
�i� � r �m1

�
; (5.2)

see, for instance, [8], where 1 in the context of (5.2) denotes the identity operator on

L2.R3/˝ C2. In Fourier space yH3 it is a multiplier with symbol

G0.�/ D
�
m1 � � �
� � � �m1

�
; � 2 R

3: (5.3)

Define

g0.�/ D m2 C �2
1 C �2

2 C �2
3 ; (5.4)

then

G0.�/
2 D g0.�/1: (5.5)

As in dimension two there are two natural discretizations of (5.2), using either the pair

of forward-backward partial difference operators or the symmetric partial difference

operators.
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5.1. The 3D symmetric difference model

The symmetric partial difference operators are defined in (2.3). We use the notation

D
s
h D .Ds

hI1;D
s
hI2;D

s
hI3/

for the discrete symmetric gradient. The symmetric discretization of the 3D Dirac

operator is defined as

H s
0;h D

�
m1h D

s
h

� �
D

s
h

� � �m1h

�
; (5.6)

where 1h is the identity operator on `2.hZ
3/˝ C

2. In Fourier space this operator is

a multiplier with symbol

Gs
0;h.�/ D

�
m1 S

s
h
.�/ � �

S
s
h
.�/ � � �m1

�
; (5.7)

where

S
s
h.�/ D

�1
h

sin.h�1/;
1

h
sin.h�2/;

1

h
sin.h�3/

�
:

We have

Gs
0;h.�/

2 D gs
0;h.�/1;

where

gs
0;h.�/ D m2 C 1

h2
sin2.h�1/C 1

h2
sin2.h�2/C 1

h2
sin2.h�3/:

As in the two-dimensional case we also define a modified discretization. Let ��h

denote the 3D discrete Laplacian; see (2.4). Let ��h1 denote the 2 � 2 diagonal

operator matrix with the discrete Laplacian on the diagonal elements. Then define

zH s
0;h D H s

0;h C
��h�h1 0

0 h�h1

�
:

Its symbol is

zGs
0;h.�/ D Gs

0;h.�/C fh.�/

�
1 0

0 �1

�
;

where

fh.�/ D 4

h
sin2

�h
2
�1

�
C 4

h
sin2

�h
2
�2

�
C 4

h
sin2

�h
2
�3

�
: (5.8)

We have
zGs

0;h.�/
2 D Qgs

0;h.�/1;

where

Qgs
0;h.�/ D .mC fh.�//

2 C 1

h2
sin2.h�1/C 1

h2
sin2.h�2/C 1

h2
sin2.h�3/:
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Since g0, gs
0;h

, and Qgs
0;h

have similar expressions in dimensions d D 2; 3, one can

directly repeat the computations leading to Theorems 4.4 and 4.6, which yield the

following results.

Theorem 5.1. LetK � .C n R/[ .�m;m/ be compact. Then there exists C > 0 such

that

kJh. zH s
0;h � zIh/

�1Kh � .H0 � zI /�1kB.H3/ � Ch

for all z 2 K and h 2 .0; 1�.

Theorem 5.2. Let z 2 .C n R/[ .�m;m/. Then Jh.H
s
0;h

� zIh/
�1Kh does not con-

verge to .H0 � zI /�1 in the operator norm on B.H3/ as h ! 0.

5.2. The 3D forward-backward difference model

Using the definitions (2.1) and (2.2), we introduce the discrete forward and backward

gradients as

D
˙
h D .D˙

hI1;D
˙
hI2;D

˙
hI3/:

The forward-backward difference model is then given by

H fb
0;h D

�
m1h D

�
h

� �
D

C
h

� � �m1h

�
: (5.9)

The symbols of D˙
hIj in Fourier space are

˙ 1

ih
.e˙ih�j � 1/; j D 1; 2; 3:

The symbols of the discrete gradients are then

S
˙
h .�/ D

�
˙ 1

ih
.e˙ih�1 � 1/;˙ 1

ih
.e˙ih�2 � 1/;˙ 1

ih
.e˙ih�3 � 1/

�
; (5.10)

such that the symbol of H fb
0;h

is

Gfb
0;h.�/ D

�
m1 S

�
h
.�/ � �

S
C
h
.�/ � � �m1

�
:

We also define the modified discretization as

zH fb
0;h D H fb

0;h C
��h�h1 0

0 h�h1

�

which has the symbol

zGfb
0;h.�/ D Gfb

0;h.�/C fh.�/

�
1 0

0 �1

�
;

with fh given in (5.8).
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The arguments for norm resolvent convergence of the 3D modified forward-back-

ward difference model do not follow as straightforwardly as in the symmetric differ-

ence case, since in particular zGfb
0;h
.�/2 is not a diagonal matrix. A computation reveals

that
�

0 S
�
h
.�/ � �

S
C
h
.�/ � � 0

��
1 0

0 �1

�
D

��1 0

0 1

��
0 S

�
h
.�/ � �

S
C
h
.�/ � � 0

�

which implies

zGfb
0;h.�/

2 D .mC fh.�//
2
1C

�
.S�

h
.�/ � �/.SC

h
.�/ � �/ 0

0 .SC
h
.�/ � �/.S�

h
.�/ � �/

�
:

(5.11)

We proceed to show the required estimates related to zGfb
0;h
.�/ in detail.

Lemma 5.3. Assume � ¤ 0. Then we have

k.G0.�/� i1/�1kB.C4/ � 1

j�j : (5.12)

There exists C > 0 such that for h� 2 Œ�3�
2
; 3�

2
�3 we have

k. zGfb
0;h.�/� i1/�1kB.C4/ � C

j�j : (5.13)

Proof. The estimate (5.12) follows from (5.4) and (5.5), together with Lemma 2.3.

To prove the estimate (5.13) use Lemma 2.3 and note that

k. zGfb
0;h.�/� i1/�1kB.C4/ D 1

. Q�min.�//1=2

where Q�min.�/ is the smallest eigenvalue of 1C zGfb
0;h
.�/2. Estimating Q�min.�/ � cj�j2

for h� 2 Œ�3�
2
; 3�

2
�3 will conclude the proof.

The matrices .S�
h
.�/ � �/.SC

h
.�/ � �/ and .SC

h
.�/ � �/.S�

h
.�/ � �/ have the same

spectrum, so by (5.11) it is enough to focus on one of these blocks. Applying (5.1)

to the top left block of (5.11), and noticing that SC
h
.�/ D S

�
h
.�/, we thereby need to

investigate the smallest eigenvalue of

.1C .mC fh.�//
2 C jS�

h .�/j2/1 C i.S�
h .�/ � S

�
h
.�// � �:

The smallest eigenvalue of the last term is �jS�
h
.�/ � S

�
h
.�/j, so we have

Q�min.�/ D 1C .mC fh.�//
2 C jS�

h .�/j2 � jS�
h .�/ � S

�
h
.�/j: (5.14)

If 0 < ı � hj�j and h� 2 Œ�3�
2
; 3�

2
�3 for some ı > 0, and as jS�

h
.�/ � S

�
h
.�/j �

jS�
h
.�/j2, then (5.14) and (5.8) imply the lower bound

Q�min.�/ � fh.�/
2 � cj�j2:
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What remains is an estimate when hj�j � ı for some small ı > 0. Here we first

need a bound on jS�
h
.�/ � S

�
h
.�/j, where

S
�
h .�/ � S

�
h
.�/ D 2i

h2

2
64

sin.h.�3 � �2//� sin.h�3/C sin.h�2/

sin.h.�1 � �3//� sin.h�1/C sin.h�3/

sin.h.�2 � �1//� sin.h�2/C sin.h�1/

3
75 : (5.15)

Using the same estimate as in the proof of Lemma 4.7, we have

2

h2
jsin.h.x � y//� sin.hx/C sin.hy/j � hjxjjyj2 C hjyjjxj2 � 2ıj�j2;

for hj.x; y/j � hj�j � ı. We have jS�
h
.�/ � S

�
h
.�/j � 2

p
3ıj�j2.

For hj�j � ı0 < 1 there exists c0 > 0 such that jS�
h
.�/j2 � c0j�j2. A fixed ı with

0 < ı < min¹ c0

2
p

3
; ı0º gives the estimate

Q�min.�/ � jS�
h .�/j2 � jS�

h .�/ � S
�
h
.�/j � cj�j2

for hj�j � ı.

Lemma 5.4. There exists C > 0 such that

k.G0.�/� i1/�1 � . zGfb
0;h.�/� i1/�1kB.C4/ � Ch

for h� 2 Œ�3�
2
; 3�

2
�3.

Proof. We have

.G0.�/� i1/�1 � . zGfb
0;h.�/� i1/�1

D .G0.�/� i1/�1. zGfb
0;h.�/�G0.�//. zGfb

0;h.�/ � i1/�1:

We estimate the entries in zGfb
0;h
.�/ �G0.�/ as in the proof of Lemma 4.8. Thus, the

entries are estimated by Chj�j2. Using Lemma 5.3 the result follows.

Using Lemmas 5.3 and 5.4, we can adapt the arguments in [2] to obtain the follow-

ing result. We omit the details here, and refer the reader to the proof of Theorem 4.4

where details of the adaptation are given.

Theorem 5.5. LetK � .C n R/[ .�m;m/ be compact. Then there exists C > 0 such

that

kJh. zH fb
0;h � zIh/

�1Kh � .H0 � zI /�1kB.H3/ � Ch

for all z 2 K and h 2 .0; 1�.

As in dimension two, the unmodified forward-backward difference model does

not lead to norm resolvent convergence.
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Lemma 5.6. There exists c > 0 such that

max
�2T

3
h

k.Gfb
0;h.�/� i1/�1 � . zGfb

0;h.�/� i1/�1kB.C4/ � c

for all h 2 .0; 1�.

Proof. Consider �h D . �
2h
;� �

2h
; 0/ and notice that �h 2 T

3
h

for h > 0. From (5.8),

(5.10), and (5.15) then

fh.�h/ D 4

h
and jS�

h .�h/j2 D jS�
h .�h/ � S

�
h
.�h/j D 4

h2
:

From (5.14), the smallest eigenvalues e�min.�h/ of 1 C zGfb
0;h
.�h/

2 and �min.�h/ of 1 C
Gfb

0;h
.�h/

2 are

e�min.�h/ D 1C .mC fh.�h//
2 C jS�

h .�h/j2 � jS�
h .�h/ � S

�
h
.�h/j D 1C

�
mC 4

h

�2

;

�min.�h/ D 1Cm2 C jS�
h .�h/j2 � jS�

h .�h/ � S
�
h
.�h/j D 1Cm2:

Thus, by Lemma 2.3 we have

k. zGfb
0;h.�h/ � i1/�1kB.C4/ D 1

.z�min.�h//1=2
D h

.h2 C .mhC 4/2/1=2

and

k.Gfb
0;h.�h/ � i1/�1kB.C4/ D 1

.�min.�h//1=2
D 1

.1Cm2/1=2
;

which conclude the proof with

c D 1

.1Cm2/1=2
� 1

.1C .mC 4/2/1=2
> 0:

Combining Theorem 5.5 with Lemma 2.4 and Lemma 5.6 gives the following

non-convergence result.

Theorem 5.7. Let z 2 .C n R/[ .�m;m/. Then Jh.H
fb
0;h

� zIh/
�1Kh does not con-

verge to .H0 � zI /�1 in the operator norm on B.H3/ as h ! 0.

6. Sobolev space estimates and strong convergence

In Sections 3–5 we have shown that Jh.H0;h � zIh/
�1Kh converges in the B.Hd /-

operator norm to .H0 � zI /�1 for several choices of discrete modelH0;h, and we have

also shown that in other cases this norm convergence does not hold. This section is
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dedicated to the cases where Jh.H0;h � zIh/
�1Kh does not converge to .H0 � zI /�1

in the B.Hd /-operator norm, and instead we will prove that convergence holds in

the B.H 1.Rd / ˝ C
�.d/;Hd /-operator norm. These latter results obviously imply

strong convergence. In particular, we recover the result in [7] for d D 2 with the

discretizationH fb
0;h

.

6.1. The 1D model

The 1D symmetric modelH s
0;h

is defined in (3.8) and its symbolGs
0;h
.�/ in (3.9). The

symbol for the continuous Dirac operator G0.�/ is defined in (3.1).

Lemma 6.1. There exists C > 0 such that

..Gs
0;h.�/� i1/�1 � .G0.�/� i1/�1/.G0.�/� i1/�1


B.C2/

� Ch

for h� 2 Œ�3�
2
; 3�

2
�.

Proof. Note that Lemma 2.3 and (3.10) imply the estimate

k.Gs
0;h.�/� i1/�1kB.C2/ � .1Cm2/�1

and that this estimate cannot be improved for h� 2 Œ�3�
2
; 3�

2
�. We have

..G0.�/� i1/�1 � .Gs
0;h.�/� i1/�1/.G0.�/� i1/�1

D .Gs
0;h.�/� i1/�1.Gs

0;h.�/�G0.�//.G0.�/ � i1/�2:

Now

Gs
0;h.�/�G0.�/ D

2
64

0
1

h
sin.h�/ � �

1

h
sin.h�/ � � 0

3
75 :

Using Taylor’s formula (4.14) together with the estimates

k.G0.�/� i1/�1kB.C2/ � 1

j�j and k.Gs
0;h.�/� i1/�1kB.C2/ � 1;

we get
..Gs

0;h.�/� i1/�1 � .G0.�/� i1/�1/.G0.�/� i1/�1


B.C2/
� Ch2j�j � Ch

for h� 2 Œ�3�
2
; 3�

2
�.

Proposition 6.2. Let K � .C n R/ [ .�m;m/ be compact. Then there exists C > 0

such that

kJh.H
s
0;h � zIh/

�1Kh � .H0 � zI /�1kB.H 1.R/˝C2;H1/ � Ch (6.1)

for all z 2 K and h 2 .0; 1�.
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Remark 6.3. The estimate (6.1) implies

s-lim
h!0

Jh.H
s
0;h � zIh/

�1Kh D .H0 � zI /�1

uniformly in z 2 K.

Proof. The result follows if we prove the estimate

k.Jh.H
s
0;h � zIh/

�1Kh � .H0 � zI /�1/.H0 � iI /�1kB.H1/ � Ch:

The proof is very similar to the proof of Theorem 4.4. In the arguments one replaces

F
�u by F

�.H0 � iI /�1u and uses Lemma 6.1. Further details are omitted.

6.2. The 2D model

Consider first the symmetric difference model. The continuous 2D free Dirac operator

is denoted byH0 and its symbol byG0.�/; see (4.2). The symmetric difference model

is denoted by H s
0;h

; see (4.3). Its symbol is denoted by Gs
0;h
.�/; see (4.4).

Lemma 6.4. There exists C > 0 such that

k..Gs
0;h.�/� i1/�1 � .G0.�/� i1/�1/.G0.�/� i1/�1kB.C2/ � Ch

for h� 2 Œ�3�
2
; 3�

2
�2.

Proof. The proof is almost the same as the proof of Lemma 6.1. It follows from

Lemma 2.3 and (4.8) that we have k.Gs
0;h
.�/� i1/�1kB.C2/ � 1 for h� 2 Œ�3�

2
; 3�

2
�2.

We have

Gs
0;h.�/�G0.�/ D

�
0 . 1

h
sin.h�1/��1/�i. 1

h
sin.h�2/��2/

. 1
h

sin.h�1/��1/Ci. 1
h

sin.h�2/��2/ 0

�
:

Then (4.14) implies kGs
0;h
.�/�G0.�/kB.C2/ � Ch2j�j3. The remaining parts of the

argument in the proof of Lemma 6.1 can then be repeated.

The proof of the next result is almost identical to the proof of Proposition 6.2 and

is omitted.

Proposition 6.5. Let K � .C n R/ [ .�m;m/ be compact. Then there exists C > 0

such that

kJh.H
s
0;h � zIh/

�1Kh � .H0 � zI /�1kB.H 1.R2/˝C2;H2/ � Ch

for all z 2 K and h 2 .0; 1�.
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Next we consider the forward-backward difference model. The arguments are

almost identical to those for the symmetric model. We state the result without proof.

The discretization H fb
0;h

is defined in (4.20).

Proposition 6.6. Let K � .C n R/ [ .�m;m/ be compact. Then there exists C > 0

such that

kJh.H
fb
0;h � zIh/

�1Kh � .H0 � zI /�1kB.H 1.R2/˝C2;H2/ � Ch

for all z 2 K and h 2 .0; 1�.

6.3. The 3D model

In this section H0 denotes the free 3D Dirac operator. The symmetric difference

model H s
0;h

is given by (5.6) and the forward-backward difference model H fb
0;h

is

given by (5.9).

We state the following results without proofs, since they are very similar to the

proofs of Propositions 6.2, 6.5, and 6.6.

Proposition 6.7. Let K � .C n R/ [ .�m;m/ be compact. Then there exists C > 0

such that

kJh.H
s
0;h � zIh/

�1Kh � .H0 � zI /�1kB.H 1.R3/˝C4;H3/ � Ch

and

kJh.H
fb
0;h � zIh/

�1Kh � .H0 � zI /�1kB.H 1.R3/˝C4;H3/ � Ch

for all z 2 K and h 2 .0; 1�.

7. Perturbed Dirac operators

In this section we state results on perturbed Dirac operators and their discretizations,

with respect to norm resolvent convergence. We use the following condition on the

perturbation.

Assumption 7.1. Assume that V WRd ! B.C�.d// is bounded and Hölder continuous

with exponent � 2 .0; 1�. Assume .V .x//� D V.x/, x 2 R
d .

We require another assumption on  0 in addition to Assumption 2.2. We emphas-

ize that concrete examples of  0 satisfying these assumptions are given in [2, Sec-

tion 2.1].
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Assumption 7.2. Assume there exists � > d such that

j 0.x/j � .1C jxj/�� ; x 2 R
d :

Define a discretization of V by

Vh.k/ D V.hk/; k 2 Z
d : (7.1)

Let H0;h be one of the discretizations of H0 from Sections 3–5. Then we define self-

adjoint operatorsH D H0 C V andHh D H0;h C Vh.

The following result is an adaptation of [2, Proposition 4.3] to the present frame-

work.

Lemma 7.3. Let V satisfy Assumption 7.1 and let  0 satisfy Assumption 7.2. Define

1

� 0 D 1

�
C 1

� � d : (7.2)

Then

kVhKh �KhV k
B.Hd ;Hd

h
/ � Ch� 0

:

Proof. The proof in [2] can be directly adapted to the current framework. We omit the

details. Note that  0.x/ is a scalar, such that  0.x/V .x/f .x/ D V.x/ 0.x/f .x/,

f 2 H
d .

We can then state our main result on the perturbed Dirac operators, which follows

from Lemma 7.3 and a direct adaptation of the proof of [2, Theorem 4.4].

Theorem 7.4. Let Jh andKh be the operators defined in Section 2, and let  0 satisfy

Assumption 7.2. Let V satisfy Assumption 7.1 and define Vh by (7.1). Let H0;h equal

either of 8
ˆ̂<
ˆ̂:

H fb
0;h
; d D 1;

zH fb
0;h
; d D 2; 3;

zH s
0;h
; d D 1; 2; 3:

Let Hh D H0;h C Vh. Let H D H0 C V , where H0 is the free Dirac operator in the

relevant dimension. Assume V 6� 0 and let � 0 be given by (7.2). Then the following

result holds.

Let K � C n R be compact. Then there exist C > 0 and h0 > 0 such that

kJh.Hh � zIh/
�1Kh � .H � zI /�1kB.Hd / � Ch� 0

for all z 2 K and h 2 .0; h0�.
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