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Gelfand’s inverse problem for the graph Laplacian

Emilia Blåsten, Hiroshi Isozaki, Matti Lassas, and Jinpeng Lu

Abstract. We study the discrete Gelfand’s inverse boundary spectral problem of determining a
finite weighted graph. Suppose that the set of vertices of the graph is a union of two disjoint sets:
X D B [G, where B is called the “set of the boundary vertices” and G is called the “set of the
interior vertices.” We consider the case where the vertices in the setG and the edges connecting
them are unknown. Assume that we are given the set B and the pairs .�j ; �j jB/, where �j
are the eigenvalues of the graph Laplacian and �j jB are the values of the corresponding eigen-
functions at the vertices in B . We show that the graph structure, namely the unknown vertices
in G and the edges connecting them, along with the weights, can be uniquely determined from
the given data, if every boundary vertex is connected to only one interior vertex and the graph
satisfies the following property: any subset S � G of cardinality jS j > 2 contains two extreme
points. A point x 2 S is called an extreme point of S if there exists a point z 2 B such that x
is the unique nearest point in S from z with respect to the graph distance. This property is valid
for several standard types of lattices and their perturbations.

1. Introduction

In this paper, we consider the discrete version of Gelfand’s inverse boundary spectral
problem, defined for a finite weighted graph and the graph Laplacian on it. We assume
that we are given the Neumann eigenvalues of the graph Laplacian and the values of
the corresponding Neumann eigenfunctions at a pre-designated subset of vertices,
called the boundary vertices.

Gelfand’s inverse boundary spectral problem was originally formulated in [42]
for partial differential equations. For partial differential operators, one considers an
n-dimensional Riemannian manifold .M; g/ with boundary and the Neumann eigen-
value problem

��g ĵ .x/ D !j ĵ .x/; for x 2M;

@� ĵ j@M D 0; (1.1)

2020 Mathematics Subject Classification. Primary 05C50; Secondary 52C25, 05C22.
Keywords. Inverse boundary spectral problem, graph Laplacian.

https://creativecommons.org/licenses/by/4.0/


E. Blåsten, H. Isozaki, M. Lassas, and J. Lu 2

where �g is the Laplace–Beltrami operator with respect to the Riemannian metric
g on M , and ĵ WM ! R are the eigenfunctions corresponding to the eigenvalues
!j 2 R. In local coordinates .xi /niD1, the Laplacian has the representation

�gu D det.g/�
1
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nX
i;jD1

@

@xi

�
det.g/

1
2gij

@

@xj
u
�
; (1.2)

where g.x/ D Œgij .x/�ni;jD1, det.g/ D det.gij .x// and Œgij �ni;jD1 D g.x/
�1.

Gelfand’s inverse problem is to find the topology, differential structure and
Riemannian metric of .M; g/ when one is given the boundary @M and the pairs
.!j ; ĵ j@M /; j D 1;2; : : : ;where !j are the Neumann eigenvalues and ĵ j@M are the
Dirichlet boundary values of the corresponding eigenfunctions. Here, the eigenfunc-
tions ĵ are assumed to form a complete orthonormal family in L2.M/. We review
earlier results on this problem and the related problems in Section 1.2.

To formulate the discrete Gelfand’s inverse problem, we consider a finite weighted
graph. We use the following terminology. When X is the set of vertices of a finite
graph, we can declare any subsetB �X to be the set of the boundary vertices, denoted
by B D @G, and call the set G D X�B the set of the interior vertices of X . This
terminology is motivated by inverse problems where one typically aims to reconstruct
objects in a set � � Rn using observations on the boundary @�. In our case, we aim
to reconstruct objects in a vertex set G � X from observations on the boundary @G.

For x; y 2 X D G [ @G, we denote x � y if there is an edge in the edge set E
connecting x to y, that is, ¹x; yº 2 E. Every edge ¹x; yº 2 E has a weight gxy D
gyx > 0 and every vertex x 2G has a measure �x > 0. For a function uWG [ @G!R

defined on the whole vertex set, the graph Laplacian �G on G is defined by

.�Gu/.x/ D
1

�x

X
y�x

y2G[@G

gxy.u.y/ � u.x//; x 2 G; (1.3)

and the Neumann boundary value @�u of u is defined by

.@�u/.z/ D
1

�z

X
x�z
x2G

gxz.u.x/ � u.z//; z 2 @G: (1.4)

We consider the Neumann eigenvalue problem

��G�j .x/ D �j�j .x/; for x 2 G;

@��j j@G D 0: (1.5)

The discrete Gelfand’s inverse problem is to find the set of interior vertices G, the
edge structure of .G [ @G;E/ and the weights g; �, when one is given the boundary
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@G and the pairs .�j ; �j j@G/; j D 1; 2; : : : ; N , N D jGj, where jGj is the number
of elements in G. Here, ¹�j ºNjD1 is a complete orthonormal family of eigenfunctions
and their Dirichlet boundary values, �j j@G D .�j .z//z2@G , are vectors in Rj@Gj.

We mention that with suitable choices of g; �, our definition of the graph Lapla-
cian (1.3) includes widely used Laplacians in graph theory, in particular, the combi-
natorial Laplacian when g; � � 1, and the normalized Laplacian when g � 1; �x D
deg.x/. The spectra of these two particular operators are mostly unrelated for general
graphs and were usually studied separately.

Solving the discrete Gelfand’s inverse problem is not possible without further
assumptions due to the existence of isospectral graphs, see [35, 40, 68]. One of the
main difficulties we encounter in solving the problem is that the graph Laplacian can
have nonzero eigenfunctions which vanish identically on a part of the graph. This
phenomenon, intuitively caused by the symmetry of the graph, can make one part of
the graph invisible to the spectral data measured at another part. Therefore, one needs
to impose appropriate assumptions. On one hand, the assumptions have to break some
symmetry of the graph to make the inverse problem solvable, and also designate suf-
ficiently many boundary vertices to measure data on. On the other, the assumptions
need to include a large class of interesting graphs besides trees, since trees are already
well understood. In this paper, we introduce the two-points condition (Assumption 1),
and prove that the inverse boundary spectral problem on finite graphs is solvable with
this assumption. Our result can be applied to detect local perturbations and recover
potential functions on periodic lattices ([3,4]), in particular, to probe graphene defects
from the scattering matrix. We will address potential applications in another work.

We start by defining the notations for undirected simple graphs, where weights
on vertices and edges are considered. These weights are related to physical situations
where graph models are applicable.

1.1. Finite graphs

A graph is generally denoted by a pair .X; E/ with X being the set of vertices and
E being the set of edges between vertices. A graph .X; E/ is finite if both X and
E are finite. A graph is said to be simple if there is at most one edge between any
pair of vertices and no edge between the same vertex. For undirected simple graphs,
edges are two-element subsets of X . We endow a general graph with the following
additional structures that affect wave propagation on the graph.

Definition 1.1 (Weighted graph with boundary). We say that G D .G; @G; E; �; g/

is a weighted graph with boundary if the following conditions are satisfied.
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• G [ @G is the set of vertices (points),G \ @GD;;E is the set of edges. Elements
of G are called interior vertices and elements of @G are called boundary vertices.
We require .G [ @G;E/ to be an undirected simple graph.

• �WG [ @G ! RC is the weight function on the set of vertices.

• gWE ! RC is the weight function on the set of edges.

We use the following terminology. A graph with boundary G is finite if
.G [ @G;E/ is finite. Vertices x and y are adjacent, denoted by x � y, if ¹x; yº 2 E,
i.e., there is an edge connecting x to y. When x � y, we denote by gxy , or equiva-
lently gyx , the weight of the edge connecting x to y. We write �x short for �.x/.

The degree of a vertex x of G is defined as the number of vertices connected to x
by edges in E, denoted by degE .x/ or degG.x/. The neighborhood N.@G/ of @G is
defined by

N.@G/ D ¹x 2 GW x � z for some z 2 @Gº [ @G:

When the weights are not relevant in a specific context, we make use of the notation
.G; @G;E/ for an unweighted graph with boundary.

Definition 1.2 (Paths and metric). Let x; y 2 G [ @G. A path of .G [ @G;E/ from
x to y is a sequence of vertices .vj /JjD0 satisfying v0 D x, vJ D y and vj � vjC1 for
j D 0; : : : ; J � 1. The length of the path is J . The distance between x and y, denoted
by d.x; y/, is the minimal length among all paths from x to y. In other words, the
distance d.x; y/ is the minimal number of edges in paths that connect x to y. The
distance is defined to be infinite if there is no path from x to y. An undirected graph
.G [ @G;E/ can be considered as a discrete metric space equipped with the distance
function d . An undirected graph is connected if there exists a path between any pair
of vertices.

A graph with boundary G is said to be connected if .G [ @G; E/ is connected.
We say that G is strongly connected, if it is still connected after one removes all edges
connecting boundary vertices to boundary vertices (see Definition 2.4).

We remark that in our setting, any pair of adjacent vertices has distance 1, while
different choices of distances appear in other settings. If the graph sits in a manifold,
it is more natural to use the intrinsic distance of the underlying manifold. For this type
of graphs, additionally with geometric choices of weights, the graph Laplacian (1.3)
can be used to approximate the standard Laplacians on the manifold, as long as the
graphs are sufficiently dense ([20–22, 59]).

Definition 1.3. Given a subset S � G, we say a point x0 2 S is an extreme point of
S with respect to @G, if there exists a point z 2 @G such that x0 is the unique nearest
point in S from z, with respect to the distance d on .G [ @G;E/.
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Assumption 1. We impose the following assumptions on the finite graph .G;@G;E/.

(1) For any subset S � G with cardinality at least 2, there exist at least two
extreme points of S with respect to @G. We refer to this condition as the
two-points condition.

(2) For any z 2 @G and any pair of distinct points x; y 2 G, if x � z; y � z, then
x � y.

Note that Assumption 1 (2) is void if every boundary point is connected to only
one interior point. Hence any graph can be adjusted to satisfy (2) by attaching an
additional edge to every boundary point and declaring the added vertices as the new
boundary points. We remark that (2) is essential for proper wavefront behavior (see
Lemma 3.5).

One can view the two-points condition (Assumption 1 (1)) as a criterion of choos-
ing appropriate boundary points for solving the inverse boundary spectral problem.
As an intuitive example in the continuous setting, any compact subset of a square in
R2 has at least two extreme points unless it is a single point set. In this case, two
extreme points can be chosen by taking a point achieving the maximal height and
a point achieving the minimal height with respect to one edge of the square. The
boundary points realizing the extreme point condition are the vertical projections of
those two chosen points to the proper edges (see Figure 1). Several types of graphs
satisfying the two-points condition are discussed in Section 1.3.

Figure 1. Any non-singleton compact subset of the unit square in R2 has at least two extreme
points with respect to the boundary of the square.

From now on, let G be a finite weighted graph with boundary. For a function
uWG [ @G! R, its graph Laplacian on G is defined by the formula (1.3). Recall that
the Neumann boundary value of u is defined by the formula (1.4), see e.g. [27, 30].
For u1; u2WG [ @G ! R, we define the L2.G/-inner product by

hu1; u2iL2.G/ D
X
x2G

�xu1.x/u2.x/: (1.6)
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For a finite graph with boundary, the function space L2.G/ is exactly the space of
real-valued functions on G [ @G equipped with the inner product (1.6). Note that the
inner product is calculated only on the interior G and not on the boundary @G. The
main reason for such consideration is that we mostly deal with functions u satisfying
@�uj@G D 0, in which case the values of u on @G are uniquely and linearly determined
by the values on G, see (3.2).

Let qWG ! R be a potential function, and we consider the following Neumann
eigenvalue problem for the discrete SchrRodinger operator ��G C q.´

.��G C q/u.x/ D �u.x/; x 2 G; � 2 R;

@�uj@G D 0 :
(1.7)

Note that all Neumann eigenvalues are real, because the Neumann graph Laplacian is
a self-adjoint operator on real-valued functions on G with respect to the inner prod-
uct (1.6) due to Lemma 2.1. In particular, the number of Neumann eigenvalues is
equal to jGj, the number of interior vertices.

Definition 1.4. Let G be a finite weighted graph with boundary, and qWG ! R be a
potential function. A collection of data .�j ; �j j@G/NjD1 is called the Neumann bound-
ary spectral data of .G; q/, if

• �j 2 R, �j WG [ @G ! R, N D jGj is the number of interior vertices of G;

• the functions �j are Neumann eigenfunctions with respect to Neumann eigenval-
ues �j for the equation (1.7), namely

.��G C q/�j D �j�j ; @��j j@G D 0I (1.8)

• the functions �j form an orthonormal basis of L2.G/.

Remark 1.5. There are multiple choices of Neumann boundary spectral data for a
given graph. More precisely, given two choices of Neumann boundary spectral data
.�j ; �j j@G/

N
jD1 and . Q�j ; Q�j j@G/NjD1 of .G; q/, they are equivalent if

(i) there exists a permutation � of ¹1; : : : ; N º such that Q��.j / D �j for all j ;

(ii) for any fixed k, there exists an orthogonal matrix O such that

Q��.i/j@G D
X
j2Lk

Oij�j j@G ;

for all i 2 Lk , where Lk D ¹j j �j D �kº and the matrixO is of dimension
jLkj.

In fact, this is the only non-uniqueness in the choice of Neumann boundary spectral
data (a linear algebra fact). In other words, there is exactly one equivalence class of
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Neumann boundary spectral data on any given finite weighted graph with boundary,
and any representative of that class is a choice of Neumann boundary spectral data.
We mention that the Neumann boundary spectral data is related to other types of data
on graphs, such as the Neumann-to-Dirichlet map (see [48,49] for the manifold case).

Next, we define our a priori data. In order to uniquely determine the graph struc-
ture, not only do we need to know the Neumann boundary spectral data, but some
structures related to the boundary also need to be known. In essence, this extra knowl-
edge is the number of interior points connected to the boundary, and the edge structure
between the boundary and its neighborhood.

Definition 1.6. Let G;G0 be two finite graphs with boundary. We say that G;G0

are boundary-isomorphic, if there exists a bijection ˆ0WN.@G/! N.@G0/ with the
following properties:

(i) ˆ0j@G W @G ! @G0 is bijective;

(ii) for any z 2 @G, y 2 N.@G/, we have y � z if and only if ˆ0.y/ �0 ˆ0.z/,
where �0 denotes the edge relation of G0.

We call ˆ0 a boundary-isomorphism.

Definition 1.7. Let G;G0 be two finite weighted graphs with boundary, and q; q0 be
real-valued potential functions on G; G0. We say .G; q/ is spectrally isomorphic to
.G0; q0/ (with a boundary-isomorphism ˆ0), if

(i) there exists a boundary-isomorphism ˆ0WN.@G/! N.@G0/;

(ii) the Neumann boundary spectral data of .G; q/ and .G0; q0/ have the same
number of eigenvalues counting multiplicities;

(iii) there exists a choice of Neumann boundary spectral data of .G; q/ and
.G0; q0/, such that �j D �0j and �j j@G D �0j ıˆ0j@G for all j .

Note that if .G; q/ and .G0; q0/ are assumed to be spectrally isomorphic, in par-
ticular to have the same number of Neumann eigenvalues, then G and G0 necessarily
have the same number of interior vertices. Moreover, the existence of a boundary-
isomorphism from the definition (i) implies that the number of boundary vertices is
also necessarily the same.

Now, we state our main results, Theorems 1 and 2.

Theorem 1. Let G D .G; @G; E; �; g/;G0 D .G0; @G0; E 0; �0; g0/ be two finite,
strongly connected, weighted graphs with boundary satisfying Assumption 1. Let q; q0

be real-valued potential functions on G;G0. Suppose .G; q/ is spectrally isomorphic
to .G0; q0/ with a boundary-isomorphism ˆ0. Then there exists a bijection

ˆWG [ @G ! G0 [ @G0
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such that

(1) ˆj@G D ˆ0j@G ,

(2) for any pair of vertices x1; x2 of G, we have

x1 � x2 () ˆ.x1/ �
0 ˆ.x2/:

Remark. It may happen that ˆ and ˆ0 differ on G \ N.@G/, for example if there
exist points y1; y2 2 G \ N.@G/ which are connected to the same set of boundary
vertices but connected to different parts in the interior.

Theorem 2. Take the assumptions of Theorem 1, and identify vertices of G with ver-
tices of G0 via the bijection ˆ. Assume furthermore that �z D �0z , gxz D g0xz for
all z 2 @G, x 2 G, where �0; g0 denote the weights of G0. Then the following two
conclusions hold:

(1) if � D �0, then g D g0 and q D q0;

(2) if q D q0 D 0, then � D �0 and g D g0.

In particular, if � D degG and �0 D degG0 , then g D g0 and q D q0.

1.2. Earlier results and related inverse problems

Gelfand’s inverse problem [42] for partial differential equations has been a paradigm
problem in the study of the mathematical inverse problems and imaging problems
arising from applied sciences. The combination of the boundary control method,
pioneered by Belishev on domains of Rn [9] and by Belishev and Kurylev on man-
ifolds [15], and the Tataru’s unique continuation theorem [69] gave a solution to the
inverse problem of determining the isometry type of a Riemannian manifold from
given boundary spectral data. Generalizations and alternative methods to solve this
problem have been studied e.g. in [1, 10, 14, 24, 45, 51, 54, 56], see additional refer-
ences in [12, 48, 55, 70]. The inverse problems for the heat, wave and Schrödinger
equations can be reduced to Gelfand’s inverse problem, see [10, 48]. In fact, all these
problems are equivalent, see [49]. Also, for the inverse problem for the wave equation
with the measurement data on a sufficiently large finite time interval, it is possible
to continue the data to an infinite time interval, which makes it possible to reduce
the inverse problem to Gelfand’s inverse problem, see [48, 53]. The stability of the
solutions of these inverse problems has been analysed in [1, 18, 23, 39, 65]. Numer-
ical methods to solve Gelfand’s inverse problems have been studied in [13, 36, 37].
The inverse boundary spectral problems have been extensively studied also for ellip-
tic equations on bounded domains of Rn. In this setting, Gelfand’s problems can be
solved by reducing it, see [60, 61], to Calderón’s inverse problems for elliptic equa-
tions that were solved using complex geometrical optics, see [67].
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An intermediate model between discrete and continuous models is the quantum
graphs, namely graphs equipped with differential operators defined on the edges. In
this model, a graph is viewed as glued intervals, and the spectral data that are mea-
sured are usually the spectra of differential operators on edges subject to the Kirchhoff
condition at vertices. For such graphs, two problems have attracted much attention.
In the case where one uses only the spectra of differential operators as data, Yurko
([71–73]) and other researchers ([5,19,52]) have developed so called spectral methods
to solve inverse problems. Due to the existence of isospectral trees, one spectrum is
not enough to determine the operator and therefore multiple measurements are neces-
sary. It is known in [73] that the potential can be recovered from appropriate spectral
measurements of the Sturm–Liouville operator on any finite graph. An alternative
setting is to consider inverse problems for quantum graphs when one is given the
eigenvalues of the differential operator and the values of the eigenfunctions at some
of the nodes. Avdonin and Belishev and other researchers ([5–8, 11, 16]) have shown
that it is possible to solve a type of inverse spectral problem for trees (graphs without
cycles). With this method, one can recover both the tree structures and differential
operators.

In this paper, we consider inverse problems in the purely discrete setting, that is,
for the discrete graph Laplacian. In this model, a graph is a discrete metric space
with no differential structure on edges. The graph can be additionally assigned with
weights on vertices and edges. The spectrum of the graph Laplacian on discrete graphs
is an object of major interest in discrete mathematics ([27, 35, 66]). It is well known
that the spectrum is closely related to geometric properties of graphs, such as the
diameter (e.g. [28–30]) and the Cheeger constant (e.g. [25,26,41]). There were inverse
problems, especially the inverse scattering problem, considered on periodic graphs
(e.g. [2, 46, 50]). However, due to the existence of isospectral graphs ([35, 40, 68]),
few results are known regarding the determination of the exact structure of a discrete
graph from spectral data.

There have been several studies with the goal of determining the structure or
weights of a discrete weighted graph from indirect measurements in the field of
inverse problems. These studies mainly focused on the electrical impedance tomogra-
phy on resistor networks ([17, 34, 58]), where electrical measurements are performed
at a subset of vertices called the boundary. However, there are graph transformations
which do not change the electrical data measured at the boundary, such as changing a
triangle into a Y-junction, which makes it impossible to determine the exact structure
of the inaccessible part of the network in this way. Instead, the focus was to determine
the resistor values of given networks, or to find equivalence classes of networks (with
unknown topology) that produce a given set of boundary data ([31–33]).
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Figure 2. Left. Finite hexagonal lattice. The white vertices are considered to be the boundary
vertices for the set of the blue (interior) vertices. Right. A finite hexagonal lattice with one blue
edge removed. Theorems 1 and 2 show that the exact structure of such graphs can be uniquely
recovered from the boundary spectral data.

Figure 3. Left. Finite triangular lattice. The white vertices are the boundary vertices; the blue
vertices are the interior vertices. Right. Finite two-level square ladder, made out of two layers
of square lattices.

1.3. Examples

As primary examples, we consider several standard types of graphs satisfying the
two-points condition (Item 1 of Assumption 1).

Example 1. All finite trees satisfy the two-points condition, with the boundary ver-
tices being all vertices of degree 1.

This fact can be shown as follows. Recall that a tree is a connected graph con-
taining no cycles. Take any subset S of the interior vertices (i.e., vertices of degree
at least 2) of a tree with jS j > 2. If jS j D 2, say S D ¹v1; v2º, then both vertices in
S are extreme points. This can be argued as follows. Take the (unique) shortest path
between v1; v2, remove the edge incident to v1 on this path, and one gets two disjoint
subtrees. Consider the subtree containing v1. One can see that any boundary vertex on
this subtree realizes the extreme point condition for v1. If jS j > 2, pick two arbitrary
points in S , say again ¹v1; v2º, then in the same way, consider the subtree containing
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v1 after removing the edge incident to v1 on the shortest path between v1; v2. If this
subtree does not intersect with S � ¹v1º, then any boundary vertex on this subtree
realizes the extreme point condition for v1. Otherwise if the subtree intersects with
S � ¹v1º at another vertex v01 2 S , then consider further the subtree containing v01
by the same construction. Repeat this procedure until one finds a subtree that only
intersects with S at one vertex, and the procedure stops in finite steps since the graph
is finite. Repeating this procedure from v2 gives another extreme point, which verifies
the two-points condition.

For general cyclic graphs (i.e., graphs containing at least one cycle), it is often not
easy to see if the two-points condition is satisfied. The following proposition shows a
concrete way to test for the two-points condition.

Proposition 1.8. For a finite graph with boundary .G; @G;E/, the two-points condi-
tion follows from the existence of a function hWG [ @G ! R satisfying the following
conditions:

(1) the Lipschitz constant of h is bounded by 1, i.e.,

x � y H) jh.x/ � h.y/j 6 1I

(2) jN˙.x/j D 1 for all x 2 G, and jN˙.z/j 6 1 for all z 2 @G, where

NC.x/ D ¹y 2 G [ @GWy � x; h.y/ D h.x/C 1º;

N�.x/ D ¹y 2 G [ @GWy � x; h.y/ D h.x/ � 1º:

We call NC.x/ the discrete gradient of h at x, and N�.x/ the discrete gradient of �h
at x.

Proof. For any S � G with jS j > 2, take the points where the function h achieves
maximum and minimum in S . Let x0 2 S be any maximal point. By condition (2),
we can take the unique path, denoted by 
x0 , starting from x0 such that each step
increases the function h by 1. This path 
x0 can only pass each point of the graph at
most once, and therefore the path must end somewhere since the whole graph is finite.
Let z0 be the point where the path 
x0 ends. By construction we know jNC.z0/j D 0,
which indicates z0 2 @G by condition (2). Observe that h.z0/� h.x0/ > d.x0; z0/ as

x0 may not be distance-minimizing.

We claim that x0 is the unique nearest point in S from z0 (i.e., x0 is an extreme
point of S ). Suppose not, and there exists another x12S; x1¤x0 such that d.x1; z0/6
d.x0; z0/. Then condition (1) implies that

jh.x1/ � h.z0/j 6 d.x1; z0/ 6 d.x0; z0/: (1.9)
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We claim that the two equalities in (1.9) cannot hold at the same time. Suppose both
equalities are achieved. We take the shortest path from z0 to x1, and then the length
of this path is equal to d.x0; z0/ by the second equality. The function h can only
change d.x0; z0/ times along the shortest path from z0 to x1, and hence every change
must be decreasing by 1 in order to make both equalities hold. However, there can
only exist one such path starting from z0 due to condition (2), which is exactly the
backward direction from z0 to x0. Along this path, x0 would be reached in exactly
d.x0; z0/ steps and hence x1 D x0. Hence, the equalities in (1.9) cannot hold at the
same time, and we have h.x1/ > h.z0/ � d.x0; z0/. On the other hand, we already
know h.x0/ 6 h.z0/ � d.x0; z0/ indicating h.x1/ > h.x0/, which is a contradiction
to the maximality of x0. This shows x0 is an extreme point of S .

The same argument shows that any minimal point is also an extreme point of S .
Therefore, the two-points condition follows from the condition jS j > 2.

Example 2. Finite square, hexagonal (Figure 2, Left), triangular (Figure 3, Left),
graphite and square ladder (Figure 3, Right) lattices satisfy the two-points condition
with the set of boundary vertices being the domain boundary.

We can apply Proposition 1.8 to verify this. For the square, hexagonal, graphite
and square ladder lattices, the function h can be chosen as the standard height function
with respect to a proper floor. Note that for these lattices, it suffices to choose only
the floor and the ceiling as the boundary. For triangular lattices, the function h can
be constructed as a group action, such that h changes by 1=2 along the horizontal
direction and changes by 1 along one of the other directions.

Example 3. In the finite square, hexagonal, triangular, graphite and square ladder
lattices, any horizontal edges can be removed and the obtained graphs still satisfy the
two-points condition. Here, the horizontal edges refer to the edges in the non-gradient
directions with respect to the function h. See Figure 2 (Right). This is because remov-
ing such edges does not affect the conditions for the function h in Proposition 1.8.

A finite square lattice with an interior vertex and all its edges removed also satis-
fies the two-points condition. Essentially, one can repeat the proof of Proposition 1.8
to show this particular situation. However, it is necessary to choose all four sides as
the boundary and use two different choices of the function h. (Intuitively speaking,
removing one small square does not affect the ability to find maximal and minimal
points in at least two directions.) More generally, removing one square of any size
from a finite square lattice does not affect the two-points condition.

Example 4. Assume that a function hWG [ @G ! R satisfies the conditions (1, 2) in
Proposition 1.8 for a finite graph with boundary .G; @G;E/. Then one can add to the
graph .G;@G;E/ additional edges ¹x;yº that connect any two vertices x;y 2G [ @G
satisfying jh.x/ � h.y/j < 1. Similarly, one can remove from the graph any edges
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¹x;yº that connect vertices x;y 2G [ @G satisfying jh.x/� h.y/j< 1. The obtained
graph and the function h satisfy the conditions (1, 2) in Proposition 1.8, and hence
the two-points condition. This procedure can be used, for example, to add additional
horizontal edges in the finite hexagonal lattice in Figure 2.

Example 5. Graphs that satisfy the conditions given in Proposition 1.8 can be con-
nected together so that these conditions stay valid. To do this, assume that real-valued
functions h1 and h2, defined on disjoint finite graphs with boundary .G1; @G1; E1/
and .G2; @G2;E2/, satisfy the conditions (1, 2) in Proposition 1.8, respectively. More-
over, assume that there are c 2R and ordered setsX1 D ¹x11 ; x

1
2 ; : : : ; x

1
k
º �G1 [ @G1

and X2 D ¹x21 ; x
2
2 ; : : : ; x

2
k
º � G2 [ @G2, such that jh2.x2j /C c � h1.x

1
j /j < 1 for all

j D 1; 2; : : : ; k. (In particular, such sets and c always exist for k D 1.) Then we con-
sider .G; @G; E/ for G D G1 [ G2, @G D @G1 [ @G2 and E D E1 [ E2 [ E12,
where E12 D ¹¹x1j ; x

2
j ºW j D 1; 2; : : : ; kº. We define a function h on G [ @G by

h.x/ D

´
h1.x/ for x 2 G1 [ @G1;

h2.x/C c for x 2 G2 [ @G2:
(1.10)

Then this function h satisfies the conditions (1) and (2) in Proposition 1.8 for
.G; @G; E/, and therefore the graph .G; @G; E/ satisfies the two-points condition.
Figure 3 is a special case of this example.

However, the two-points condition does not hold (without declaring more bound-
ary vertices) if one adds an additional vertex and connects it to any interior vertex
with an additional edge. This is because the set of the two endpoints of that additional
edge violates the two-points condition. Let us also mention an example where the
two-points condition is not satisfied: the Kagome lattice.

This paper is organized as follows. We introduce relevant definitions and basic
facts in Section 2. In Section 3, we define the discrete wave equation and study the
wavefront propagation. Section 4 is devoted to proving our main results.

2. Preliminaries

In this section, let G D .G; @G; E; �; g/ be a finite weighted graph with boundary.
First, we derive an elementary but important Green’s formula.
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Lemma 2.1 (Green’s formula). For two functions u1; u2 W G [ @G ! R, we haveX
x2G

�x.u1.x/�Gu2.x/ � u2.x/�Gu1.x//

D

X
z2@G

�z.u2.z/@�u1.z/ � u1.z/@�u2.z//:

Proof. By definition (1.3),X
x2G

�xu1.x/�Gu2.x/ D
X
x2G

X
y�x

y2G[@G

gxyu1.x/.u2.y/ � u2.x//

D

X
x2G

� X
y�x;y2G

C

X
y�x;y2@G

�
gxyu1.x/.u2.y/ � u2.x//:

Observe that the indices and summations can be switched in the following way:X
x2G

X
y�x;y2G

gxyu1.x/u2.y/ D
X
y2G

X
x�y;x2G

gyxu1.y/u2.x/

D

X
x�y;x2G

X
y2G

gyxu1.y/u2.x/:

Hence, the summation over x; y 2 G cancels out, and we getX
x2G

�x.u1.x/�Gu2.x/ � u2.x/�Gu1.x//

D

X
x2G

X
y�x;y2@G

gxy.u1.x/u2.y/ � u2.x/u1.y//;

where we have used the fact that the weights are symmetric: gxy D gyx . Then the
lemma follows from (1.4) and the following identity:

u1.x/u2.y/� u2.x/u1.y/D u2.y/.u1.x/� u1.y//C u1.y/.u2.y/� u2.x//:

Next we consider the boundary distance functions and the closely related resolv-
ing sets of a graph, see [44, 64] and their generalizations in [43].

Definition 2.2. Let .G; @G; E/ be a finite connected graph with boundary. We say
@G D ¹ziº

m�1
iD0 is a resolving set for .G; @G;E/, if the boundary distance coordinate

.d.�; z0/; d.�; z1/; : : : ; d.�; zm�1//WG ! Rm

is injective, where d denotes the distance on .G [ @G;E/.
For any point x 2 G, we denote by rx the boundary distance function

rx W @G ! R; rx.z/ D d.x; z/: (2.1)
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The set of boundary distance functions of a graph G is denoted by R.G/. If @G is a
resolving set, the map x 7! rx from G to R.G/ is a bijection.

The minimal cardinality of resolving sets for a graph is called the metric dimen-
sion of the graph [44]. The boundary distance functions are extensively used in the
study of inverse problems on manifolds, see e.g. [38, 47, 48, 57, 63].

The concept of resolving sets gives a rough idea on how to choose boundary points
such that the inverse problem may be solvable. If the chosen boundary points do not
form a resolving set, then there is little hope to solve the inverse problem from spectral
data measured at those points.

Lemma 2.3. The two-points condition (Assumption 1 (1)) implies that @G is a resolv-
ing set for .G; @G;E/.

Proof. Suppose that @G is not a resolving set for .G; @G;E/. Then by Definition 2.2,
there exist two points x1; x2 2 G such that d.x1; z/ D d.x2; z/ for all z 2 @G.
However, the set S D ¹x1; x2º is a contradiction to the two-points condition for
.G; @G;E/.

We point out that the Neumann spectral data for the equation (1.7) are not affected
at all by edges between boundary points, since the Neumann boundary value (1.4)
only counts edges from boundary points to interior points. In other words, the edges
between boundary points are invisible to our Neumann spectral data. However, this
limitation does not matter to us since the structure of the boundary is a priori given.
What we will reconstruct in the next few sections is actually the reduced graph of G,
which is defined as follows.

Definition 2.4 (Reduced graph). Let G D .G; @G;E;�; g/ be a weighted graph with
boundary. The reduced graph of G is defined as Gre D .G; @G;Ere; �; gjEre/; where

Ere D E � ¹¹x; yº 2 E j x 2 @G and y 2 @Gº:

A graph with boundary being strongly connected is equivalent to its reduced graph
being connected. Note that G and Gre have identical Neumann spectral data due to
the definition of the Neumann boundary value (1.4).

Reducing a graph affects distances as paths along edges between boundary points
become forbidden. In the same way as Definition 1.2, the distance dre.x; y/ on the
reduced graph .G [ @G;Ere/ is defined through paths of .G [ @G;Ere/ from x to y,
instead of along paths of the original graph .G [ @G; E/. Then clearly dre.x; y/ >
d.x; y/ for any x; y 2 G [ @G. The change of distances also affects the r-neighbor-
hood Nre.x; r/ of x 2 G [ @G, which is defined by

Nre.x; r/ D ¹y 2 G [ @G j dre.y; x/ 6 rº:
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However, reducing a graph does not affect the two-points condition.

Lemma 2.5. If x0 2 S is an extreme point of a subset S �G realized by some z 2 @G,
then there exists z0 2 @G also realizing the extreme point condition of x0 such that
none of the shortest paths from x0 to z0 pass through any other boundary point.

As a consequence, we deduce that if .G; @G;E/ satisfies the two-points condition
(Assumption 1 (1)), then so does .G; @G;Ere/ with respect to its distance function dre.

Proof. If any shortest path from x0 to z passes through another boundary point
z0 2 @G, then x0 is an extreme point also realized at z0. Then we consider the set
of all the boundary points with respect to which x0 is an extreme point, and take a
point z0 (not necessarily unique) in this set with the minimal distance from x0. It fol-
lows that z0 is the desired boundary point; otherwise there is another boundary point
in the set with a smaller distance from x0.

Let x0 2 S be an extreme point of S with respect to @G realized by z0 2 @G. By
the argument above, we may assume that none of the shortest paths from x0 to z0
pass through any boundary point except for z0. Reducing the graph will not affect this
path or its length. On the other hand, no distances between points may decrease in
the reduction. So, this path is still the shortest path between S and z0 in the reduced
graph. Hence, x0 is also an extreme point of S with respect to @G in the reduced
graph.

3. Wave equation

Definition 3.1 (Time derivatives). For a function u W G � N ! R, we define the
discrete first and second time derivatives at .x; t0/ by

Dtu.x; t0/D u.x; t0 C 1/ � u.x; t0/; t0 > 0;

Dt t .x; t0/D u.x; t0 C 1/ � 2u.x; t0/C u.x; t0 � 1/; t0 > 1:

These are sometimes called the forward difference and the second-order central dif-
ference in time.

We consider the following initial value problem for the discrete wave equation
with the Neumann boundary condition:8̂̂̂̂

<̂
ˆ̂̂:
Dt tu.x; t/ ��Gu.x; t/C q.x/u.x; t/ D 0; x 2 G; t > 1;

@�u.x; t/ D 0; x 2 @G; t > 0;

Dtu.x; 0/ D 0; x 2 G;

u.x; 0/ D W.x/; x 2 G [ @G;

(3.1)
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where the values of u on @G are uniquely determined by the values on G via the
Neumann boundary condition at each time step. More precisely, using the definition
of the Neumann boundary value (1.4) gives

u.z/ D
X
x�z
x2G

gxzu.x/
.X
x�z
x2G

gxz; z 2 @G: (3.2)

We require @�W j@G D 0 for the compatibility of the initial value and Neumann bound-
ary condition. The initial conditions and the boundary condition imply that u.x; 1/ D
u.x; 0/ D W.x/ for all x 2 G [ @G.

Definition 3.2 (Waves). Given W WG [ @G ! R satisfying @�W j@G D 0, denote by
uW W .G [ @G/ � N ! R the solution of the discrete wave equation (3.1) with the
initial condition u.�; 0/DW.�/ onG [ @G. The functionW is called the initial value.
In this paper, a wave refers to a solution of the wave equation (3.1).

Lemma 3.3. Given any initial value W WG [ @G ! R satisfying @�W j@G D 0, the
discrete wave equation (3.1) has a unique solution.

Proof. The discrete wave equation is solved in the following way. The solution on
G [ @G at times t D 0 and t D 1 are determined by the initial conditions. Afterwards,
the value on G at time t > 2 is calculated from the value on .G [ @G/ � ¹t � 1º and
on G � ¹t � 2º by the equationDt tu��GuC quD 0. Then the formula (3.2) gives
the value on @G at time t .

The main purpose of this section is to prove a wavefront lemma which will be
used frequently in the next section. Assumption 1 (2) is essential for the wavefront
lemma, as the wave propagation may “speed up” due to the instantaneous effect of
the boundary condition if a shortest path goes through the boundary. Under Assump-
tion 1 (2), distances of the reduced graph are realized by avoiding boundary points,
which is essential to guarantee proper wave behaviour.

Lemma 3.4. Let G be a finite connected graph with boundary satisfying Assump-
tion 1 (2). Suppose the reduced graph of G is connected. Let x 2 G and z 2 @G. If
x � z, then dre.x; p/ 6 dre.z; p/ for any p 2 G [ @G � ¹zº.

Proof. Let x0 2 G be a point such that x0 � z and dre.x
0; p/ D dre.z; p/ � 1. This

point exists since distances are realized by paths in a connected graph. Such a point x0

cannot be in @G, because there are no edges between boundary points in the reduced
graph. We have x; x0 2 G and x � z, x0 � z. Then by Assumption 1 (2), we have
x � x0 if x ¤ x0. Hence, the triangle inequality yields that dre.x; p/ 6 dre.x; x

0/C

dre.x
0; p/ D dre.z; p/. If x D x0, then dre.x; p/ D dre.z; p/ � 1 < dre.z; p/.
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Recall that the Neumann boundary value (1.4) does not take into account the edges
between boundary points. This means that waves cannot propagate from one boundary
point to another without going through the interior. Hence, the wavefront propagates
by the distance function dre of the reduced graph, instead of the distance function of
the original graph.

Lemma 3.5 (Wavefront). Let G be a finite connected weighted graph with boundary
satisfying Assumption 1(2). Suppose the reduced graph of G is connected. Let x 2 G;
z 2 @G and t0 D dre.x; z/. Suppose W WG [ @G ! R is an initial value satisfying
@�W j@G D 0; W.z/ D 0 and

¹y 2 Nre.z; t0/ \G j W.y/ ¤ 0º � ¹xº: (3.3)

Then the following properties hold for the wave uW generated by W :

(1) If W.x/ > 0, then t0 > 2, uW .z; t0/ > 0 and uW .z; t/ D 0 for all t < t0;

(2) If W.x/ D 0, then uW .z; t/ D 0 for all t 6 t0.

Proof. Let us prove the first claim of the lemma withW.x/>0. To start with, we show
that t0 D dre.x; z/ > 2. Suppose dre.x; z/ D 1. Let x; y1; : : : ; yJ 2 G be the interior
points connected to z 2 @G. The boundary conditions W.z/ D 0 and @�W.z/ D 0

imply that X
y�z
y2G

gyzW.y/ D 0:

On the other hand, (3.3) implies thatW.yj /D 0 for j D 1; : : : ; J . Hence, the equation
above reduces to gxzW.x/D 0, which is a contradiction as g is defined to be positive.
Hence dre.x; z/ > 2.

Let z0 2 @G, z0 ¤ z. If dre.z
0; z/ 6 t0 � 1, then for any x0 2 G with x0 � z0,

Lemma 3.4 implies that dre.x
0; z/6 dre.z

0; z/6 t0 � 1, and henceW.x0/D 0 by (3.3).
Since this holds for all the interior points connected to z0, the Neumann boundary
condition yields that W.z0/ D 0. On the other hand, if dre.z

0; z/ D t0, then for any
x0 2 G with x0 � z0, Lemma 3.4 implies that dre.x

0; z/ 6 t0, and hence W.x0/ > 0.
Note thatW.x0/may be nonzero in this case since possibly x0D x. Then the Neumann
boundary condition givesW.z0/ > 0. Combining these observations, for any p 2 G [
@G, we have

W.p/

8̂̂<̂
:̂
D 0; p 2 G [ @G; dre.p; z/ 6 t0 � 1;

> 0; p 2 G [ @G; dre.p; z/ D t0;

> 0; p D x:

(3.4)
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By the initial conditions of the wave equation (3.1), uW .p; 1/ D uW .p; 0/ D W.p/
for all p 2 G [ @G. Hence, (3.4) gives the wavefront behavior of the wave uW .�; t /
at time t D 0; 1.

To study the wavefront behavior of the wave uW .�; t / at t > 2, it is convenient to
use an induction formulation where (3.4) serves as the base case. The formulation is
as follows: prove the following statement, by induction on � D 1; 2; : : : ; t0 � 1, that
for any p 2 G [ @G,

uW .p; �/

´
D 0; p 2 G [ @G; dre.p; z/ 6 t0 � �;

> 0; p 2 G [ @G; dre.p; z/ D t0 � � C 1;
(3.5)

and that
uW .x� ; �/ > 0; (3.6)

for some x� 2 G satisfying dre.x� ; z/ D t0 � � C 1. For � D 1, the claims (3.5)
and (3.6) reduce to (3.4) by choosing x� D x. This verifies the initial conditions for
the induction. Assume that (3.5) and (3.6) hold for some � 2 ¹1; 2; : : : ; t0 � 2º, we
need to prove that (3.5) and (3.6) hold for � C 1. We will spend most of the proof to
argue this. Once (3.5) and (3.6) are proved, we will show in the end that the lemma
can be proved from the � D t0 � 1 case.

By the wave equation (3.1), we have

uW .p; � C 1/D 2uW .p; �/� uW .p; � � 1/C�Gu
W .p; �/� q.p/uW .p; �/; (3.7)

when p 2 G and � > 1. This formula and the Neumann boundary condition are what
the induction is based on. First, we prove that (3.5) holds for � C 1.

Let p 2 G satisfying dre.p; z/ 6 t0 � .� C 1/. We see that the terms 2uW .p; �/;
uW .p; � � 1/, and q.p/uW .p; �/ in (3.7) are all equal to zero by the induction
assumption. Moreover, since uW .p; �/ D 0, we have

�Gu
W .p; �/ D

1

�p

X
y�p

y2G[@G

gpyu
W .y; �/:

Let y 2G [ @G be any point connected to p. Then dre.y; z/6 dre.y;p/C dre.p;z/6
1C t0 � .� C 1/D t0 � � , and hence uW .y;�/D 0 by the induction assumption. Thus,
(3.7) shows that uW .p; � C 1/ D 0 for all p 2 G, dre.p; z/ 6 t0 � .� C 1/.

On the other hand, if p 2G satisfying dre.p; z/D t0 � .� C 1/C 1D t0 � � , then
for the same reason as above, we see that

uW .p; � C 1/ D �Gu
W .p; �/ D

1

�p

X
y�p

y2G[@G

gpyu
W .y; �/:
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If y 2 G [ @G satisfies y � p, then dre.y; z/ 6 dre.y; p/C dre.p; z/ D 1C t0 � � ,
and hence uW .y; �/ > 0 by the induction assumption. Thus uW .p; � C 1/ > 0. It
remains to consider the case of p 2 @G, and find x�C1 for (3.6).

Let p 2 @G. Instead of using (3.7) which is valid only in the interior, we can deter-
mine the sign of uW .p; � C 1/ by using the Neumann boundary condition @�uW .p;
� C 1/ D 0. Namely,

uW .p; � C 1/ D
X
y�p
y2G

gypu
W .y; � C 1/

.X
y�p
y2G

gyp: (3.8)

Suppose p ¤ z and dre.p; z/6 t0 � .� C 1/. Any interior point y with y � p satisfies
that dre.y;z/6 dre.p;z/6 t0 � .� C 1/ by Lemma 3.4. Since we have already showed
that uW .y; � C 1/ D 0 for any x 2 G satisfying dre.y; z/ 6 t0 � .� C 1/, it follows
from (3.8) that uW .p; � C 1/ D 0. In the case of p D z, for any interior point y
adjacent to z (i.e., dre.y; z/ D 1), we have uW .y; � C 1/ D 0 if dre.y; z/ D 1 6
t0 � .� C 1/ is satisfied. This is applicable to all our induction steps since � 6 t0 � 2,
and therefore we have uW .z; � C 1/ D 0 due to (3.8).

For the second line in (3.5), let p 2 @G satisfying dre.p; z/D t0 � .� C 1/C 1D

t0 � � . In particular, p ¤ z since � < t0. As in the previous case, we see that any
interior point x with x � p satisfies dre.x; z/ 6 dre.p; z/ D t0 � � . Since we have
already showed that uW .x; � C 1/ > 0 for such x, we get uW .p; � C 1/ > 0. This
concludes the proof of (3.5) by induction.

Next, we prove that (3.6) holds for � C 1. The induction assumption gives that
uW .p; �/ > 0 for any p 2 G [ @G satisfying dre.p; z/D t0 � � C 1. Moreover, there
exists one such p 2 G, denoted by x� , so that uW .x� ; �/ > 0. Let 
 be a shortest
path of length t0 � � C 1 from x� to z in the reduced graph. Since � 6 t0 � 2, this
path is at least of length 3. Let x�C1 be the second vertex along this path, and then
dre.x�C1; z/ D t0 � � > 2. Observe that x�C1 is also an interior point: if not, then
Lemma 3.4 implies that dre.x� ; z/ 6 dre.x�C1; z/ D t0 � � as x� � x�C1, contradic-
tion.

To prove (3.6), it remains to prove that uW .x�C1; � C 1/ > 0. We consider the for-
mula (3.7) with pDx�C1. The induction assumption for (3.5) shows that uW .x�C1; �/,
uW .x�C1; � � 1/ and q.x�C1/uW .x�C1; �/ are all equal to zero, since dre.x�C1; z/ 6
t0 � � . Thus, by (3.7),

uW .x�C1; � C 1/ D �Gu
W .x�C1; �/ D

1

�x�C1

X
y�x�C1

y2G[@G

gyx�C1
uW .y; �/:

For a point y 2 G [ @G connected to x�C1, we have dre.y; z/ 6 t0 � � C 1, and
therefore the induction assumption for (3.5) gives uW .y; �/ > 0. Notice that one of
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the points y in the sum above is x� , for which uW .x� ; �/ > 0. Hence, the whole sum
is positive. This concludes the proof of (3.6) by induction.

Now, we turn to the statement of the lemma, with (3.5) and (3.6) in hand. We see
that uW .z; t/D 0 for all t < t0 by (3.5). At time t0, the Neumann boundary condition
gives

uW .z; t0/ D
X
y�z
y2G

gyzu
W .y; t0/

.X
y�z
y2G

gyz : (3.9)

Let y 2 G be an arbitrary point satisfying y � z. Formula (3.7) gives

uW .y; t0/ D 2u
W .y; t0 � 1/ � u

W .y; t0 � 2/C�Gu
W .y; t0 � 1/

� q.y/uW .y; t0 � 1/:

Since uW .y; t0 � 1/ D uW .y; t0 � 2/ D 0 by (3.5), we have

�Gu
W .y; t0 � 1/ D

1

�y

X
p�y

p2G[@G

gypu
W .p; t0 � 1/:

Note that dre.p; z/ 6 dre.p; y/C dre.y; z/D 1C 1D 2. If dre.p; z/D 0, then p D z
and uW .p; t0 � 1/ D uW .z; t0 � 1/ D 0. If dre.p; z/ D 1, then uW .p; t0 � 1/ D 0

by the first line of (3.5). If dre.p; z/ D 2, then uW .p; t0 � 1/ > 0 by the second
line of (3.5). Hence, from the equations above, we see that �GuW .y; t0 � 1/ > 0

and consequently uW .y; t0/ > 0 for any y 2 G satisfying y � z. Furthermore, there
exists a point Op 2 G with dre. Op; z/ D 2 such that uW . Op; t0 � 1/ > 0 by (3.6). The
condition dre. Op; z/ D 2 indicates that there exists a point Oy 2 G such that Oy � z and
Oy � Op. Hence, from the same equations above, we see that�GuW . Oy; t0 � 1/ > 0 and
consequently uW . Oy; t0/ > 0. Combining these with (3.9) yields that uW .z; t0/ > 0.

The second claim of the lemma with W.x/ D 0 simply follows from the same
proof as above but without the need for (3.6), and by replacing instances of W > 0;

W > 0 with W D 0 and those of uW > 0; uW > 0 with uW D 0.

4. The inverse spectral problem

In this section, we reconstruct the graph structure and the potential from the Neumann
boundary spectral data, and prove Theorem 1 and Theorem 2. Since the structure
of the boundary is a priori given, it suffices to reconstruct the reduced graph Gre

(recall Definition 2.4). The assumption that G is strongly connected is equivalent to
Gre being connected. Due to Lemma 2.5 and the fact that removing edges between
boundary points does not affect the boundary spectral data, without loss of generality,
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we assume G D Gre throughout this section. In other words, we assume that there are
no edges between boundary points in G.

The full reconstruction process is divided into two main parts. The first part proves
that under the two-points condition, the Neumann boundary spectral data determine
the Fourier coefficients of all L2-normalized functions supported at one single inte-
rior point (and all boundary distance functions corresponding to interior points). The
second part proves that this information then determines the graph structure and the
weights.

4.1. Characterization by boundary data

In this subsection, we construct a characterization of the boundary distance functions
by boundary data. We mention that the related constructions on partially ordered lat-
tices that contain boundary distance functions as maximal elements have been used to
study inverse problems on manifolds in [62].

Let sW @G ! ZC. We equip the set of such functions with the following partial
order

s1.z/ 6 s2.z/ H) s1 6 s2 for all z 2 @G: (4.1)

We consider the set of initial values for which the corresponding waves are not ob-
served at the boundary before time s.�/,

W.s/ D ¹W WG [ @G ! R j @�W j@G D 0; u
W .z; t/ D 0 for all z 2 @G; t < s.z/º:

Let N D jGj be the number of interior vertices, and we define the set

U D ¹sW @G ! ZC j 2 6 s.�/ 6 N; dim.W.s// ¤ 0º: (4.2)

We remark that given the Neumann boundary spectral data, the conditions of W.s/

correspond to a system of linear equations on @G for solving the Fourier coefficients
of the initial value, which will be explained in details in the next subsection. As a
consequence, the Neumann boundary spectral data determine the set U.

Due to the linearity of the wave equation (3.1), the set W.s/ is a linear space
over R, so dim.W.s// is simply its dimension as a vector space. The condition
dim.W.s// ¤ 0 simply means that there exists a nonzero initial value such that the
corresponding wave satisfies the conditions of W.s/. Observe that the conditions of
W.s/ indicate that any initial value W 2W.s/ vanishes on the whole boundary since
uW .z; 0/ D W.z/. Then the condition uW .z; t/ D 0 for t D 0 implies the same con-
dition for t D 1 due to the initial conditions of (3.1). Hence, we only need to consider
s > 2 in the definition above.

The set U is a set of functions equipped with the partial order (4.1). We are inter-
ested in its maximal elements with respect to the partial order, denoted by max.U/.
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Lemma 4.1. Let G be a finite connected weighted graph with boundary satisfying
Assumption 1. Then we have

¹rx j x 2 G �N.@G/º � max.U/: (4.3)

Furthermore, for any nonzero initial value W 2 W.rx/ where x 2 G � N.@G/, we
have1 supp.W / D ¹xº.

Proof. For an arbitrary point x 2 G � N.@G/, we first show that for any nonzero
initial value W 2 W.rx/, we have supp.W / D ¹xº and consequently rx 2 U by
Lemma 3.5. Observe that rx.�/ > 2 due to x 2 G � N.@G/, and rx.�/ 6 N since
we assume no edges between boundary points and any shortest path between x and a
boundary point can pass at most N � 1 interior points.

From the condition W 2 W.rx/, we see that the wave uW corresponding to this
initial value satisfies uW .z; t/ D 0 when z 2 @G and t < rx.z/. Let

S D ¹y 2 G j W.y/ ¤ 0º [ ¹xº:

If jS j > 2, the two-points condition in Assumption 1 implies that there exist x0 2
S � ¹xº and z0 2 @G, such that x0 is the unique nearest point in S from z0, which
in particular yields d.x0; z0/ 6 d.x; z0/ � 1 D rx.z0/ � 1. But by the propagation
of the wavefront (Lemma 3.5), we see that uW .z0; t0/ ¤ 0 for t0 D d.x0; z0/. This
is a contradiction because W.rx/ requires uW .z0; t0/ D 0 for t0 < rx.z0/. Therefore,
jS j6 1 and supp.W /\G � ¹xº. Since x …N.@G/, we see by the Neumann boundary
condition that W D 0 on @G. Hence, supp.W / D ¹xº.

We next show that the boundary distance functions are maximal elements in U.
Let x 2 G �N.@G/ and suppose there exists an element s 2 U such that s > rx . By
definition of U, there exists a nonzero initial value W such that

uW .z; t/ D 0; for all z 2 @G; t < s.z/: (4.4)

Since rx 6 s, the same vanishing conditions hold for all t < rx.z/. Then the same
argument above yields supp.W / D ¹xº. If rx.z0/ < s.z0/ for some boundary point
z0 2 @G, then Lemma 3.5 shows that uW .z0; t 0/ ¤ 0 for t 0 D d.x; z0/ D rx.z0/. This
contradicts (4.4). Therefore, if rx 6 s, then rx D s and therefore rx is a maximal
element in U.

1Precisely, rx is the boundary distance function with respect to dre on the reduced graph Gre.
Recall that we assumed G D Gre. This is the case throughout Section 4.
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Next, we recover the boundary distance functions corresponding to points in
G \N.@G/. Let sW @G ! ZC, and we define

Wb.s/ D ¹W WG [ @G ! R j @�W j@G D 0; u
W .z; t/ D 0 when z 2 @G; s.z/ > 2

and t < s.z/º;

and for y 2 G \N.@G/, define the set

Ub.y/ D ¹sW @G ! ZC j dim.Wb.s// ¤ 0; s.�/ 6 N; s.z/ D 1 only if z � yº:

Recall that N D jGj is the number of interior points. Functions s 2 Ub.y/ can have
s.z/ > 1 at z � y. As with the previous case, the set Ub.y/ is also determined by the
Neumann boundary spectral data, which will be explained in the next subsection.

One can show the following lemma by a similar argument to Lemma 4.1.

Lemma 4.2. Let G be a finite connected weighted graph with boundary satisfying
Assumption 1. Then for any y 2 G \N.@G/, we have

ry 2 max.Ub.y//: (4.5)

Furthermore, for any nonzero initial value W 2 Wb.ry/ where y 2 G \ N.@G/, we
have supp.W / \G D ¹yº.

Proof. Following the argument in Lemma 4.1, for any nonzero initial value W 2
Wb.ry/, consider the set S D ¹x 2 G j W.x/ ¤ 0º [ ¹yº. If jS j > 2, we can find an
extreme point y0 2 G � ¹yº of S with respect to some z0 2 @G. The extreme point
condition implies that z0 cannot be connected to y, and henceW.z0/D uW .z0; 0/D 0
by the conditionW 2Wb.ry/. The assumptions of Lemma 3.5 are satisfied forW and
the pair of points y0; z0, so uW .z0; t0/ ¤ 0 for t0 D d.y0; z0/. But by the definition
of the extreme point, we have d.y0; z0/ < d.y; z0/ D ry.z0/. This contradicts the
condition uW .z0; t / D 0 for t < ry.z0/ of W 2 Wb.ry/, considering z0 6� y. Hence,
jS j D 1 and supp.W / \G D ¹yº.

Let y 2G \N.@G/. We first show that ry 2Ub.y/. Clearly, ry 6N and ry.z/D 1
only at boundary points z connected to y. It remains to show that there exists a
nonzero initial value in Wb.ry/. Consider an initial value W satisfying W.x/ D 1 at
x D y and W.x/ D 0 otherwise in G. The values of W on @G are determined by the
Neumann boundary condition (3.2). By the definition of Wb.ry/, it suffices to show
that uW .z; t/ D 0 for all t < ry.z/ when ry.z/ > 2. At such boundary points z satis-
fying ry.z/ > 2 (i.e. z 6� y), the Neumann condition gives W.z/ D 0. Moreover, we
haveW D 0 at all points inN.z;d.y;z//\G except for y at whichW.y/ > 0. Hence,
Lemma 3.5 yields that uW .z; t/ D 0 for all t < d.y; z/ D ry.z/. Thus, ry 2 Ub.y/.



Gelfand’s inverse problem for the graph Laplacian 25

Next, we show that ry is maximal. Let s 2 Ub.y/ with ry 6 s. By the definition
of Ub.y/, we have s.�/ 6 N and s.z/ > 1 if z 6� y. Furthermore, there is a nonzero
initial value W 2 Wb.s/ satisfying

uW .z; t/ D 0; for all z 2 @G; s.z/ > 2; t < s.z/: (4.6)

If s.z/ D 1 occurs, it follows from the definition of Ub.y/ that z � y, i.e. ry.z/ D 1.
Since ry 6 s, the wave uW satisfies the following possibly less strict set of conditions

uW .z; t/ D 0; for all z 2 @G; ry.z/ > 2; t < ry.z/:

This exactly means W 2 Wb.ry/. Then the same argument above yields supp.W / \
GD¹yº. Assume that ry.z0/ < s.z0/ for some z0 2 @G. This indicates that s.z0/> 2 as
ry > 0. Hence (4.6) implies that uW .z0; t /D 0 for t < s.z0/, and in particularW.z0/D
uW .z0; 0/ D 0. Then Lemma 3.5 shows that uW .z0; t 0/ ¤ 0 for t 0 D d.y; z0/ < s.z0/,
which is a contradiction. Hence, ry.z0/ D s.z0/ for all z0 2 @G, and therefore ry is
maximal.

To uniquely determine G \ N.@G/, we need to find all maximal elements of
Ub.y/ for every y 2 G \ N.@G/. Then this set of maximal elements contains the
set of boundary distance functions ¹ryºy2G\N.@G/, which corresponds to the initial
values supported only at one single point of G \ N.@G/ in the interior. However in
general, as with Lemma 4.1, there are more maximal elements than just the boundary
distance functions.

To reconstruct the graph structure, we need to single out the actual boundary dis-
tance functions from the whole set of maximal elements. We will spend the rest of
this subsection to address it.

Definition 4.3. We define the arrival time of a wave with an initial value W at a
boundary point z 2 @G, to be the earliest time t > 1 when uW .z; t/ ¤ 0. Denote the
arrival time at z by tWz .

Definition 4.4. Denote by A the set of all the L2.G/-normalized initial values W
satisfying the following three conditions:

(1) W WG [ @G ! R, @�W j@G D 0, i.e., W is an initial value;

(2) W 2 W.s/ for some s 2 max.U/, or W 2 Wb.s/ for some s 2 max.Ub.y//

and some y 2 G \N.@G/, i.e. W corresponds to a maximal element;

(3) for all z 2 @G, we have uW .z; tWz / > 0, i.e., the first arrival of the wave at any
boundary point is with a positive sign.

For x 2 G, we use Wx to denote a function satisfying @�Wxj@G D 0, supp.Wx/\
G D ¹xº and Wx.x/ > 0. Finally, we define the set A0 as the L2-normalized initial
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values supported at one single point,

A0 D

²
Wx

kWxkL2.G/

ˇ̌̌̌
x 2 G; @�Wxj@G D 0; supp.Wx/ \G D ¹xº; Wx.x/ > 0

³
:

Let us remark here regarding the motivation of Definition 4.4. In the next subsec-
tion, we will show in details that the Neumann boundary spectral data determine the
sets U and Ub.y/. This would imply that the Neumann boundary spectral data then
determine the Fourier coefficients of functions in A. The functions in A can be sup-
ported at multiple interior points, while what we really want are the functions in A0

supported at one single interior point. Therefore, we need to construct an algorithm
(Lemma 4.8) to single out A0 from A.

Lemma 4.5. Let G be a finite connected weighted graph with boundary satisfying
Assumption 1. Then A0 � A.

Proof. Let W 2 A0. Then W is L2.G/-normalized and it satisfies Definition 4.4 (1).
Furthermore, W D Wx for some x 2 G. We claim that tWz D rx.z/ for all z 2 @G.

This claim follows directly from the propagation of the wavefront (Lemma 3.5) if
x 2 G �N.@G/, which yields that uW .z; tWz / > 0 for all z 2 @G. If x 2 G \N.@G/
we see that tWz D rx.z/ when rx.z/ > 2 by Lemma 3.5. If rx.z/ D 1, then z � x
and uW .z; t/ is determined by the Neumann boundary condition (3.2), which gives
uW .z;0/D uW .z;1/ > 0. Hence, tWz D 1 in this case by Definition 4.3. In conclusion,
tWz D rx.z/ and uW .z; tWz / > 0 for all z 2 @G, i.e., Definition 4.4 (3). Moreover,
Lemmas 4.1 and 4.2 imply that tW� is a maximal element, i.e., Definition 4.4 (2) with
s.z/ D tWz .

Observe that A0 is an orthonormal basis of the linear span of A with respect to
the L2.G/-inner product.

Lemma 4.6. Let G be a finite connected weighted graph with boundary satisfying
Assumption 1 (2).

(1) Given any initial value W satisfying @�W j@G D 0 and of Definition 4.4 (3), if
x0 is an extreme point of supp.W / \G, then W.x0/ > 0.

(2) Given any nonzero initial valueW satisfying @�W j@G D 0 andW jG > 0, then
for any z 2 @G, we have

tWz D min
x2supp.W /\G

tWxz :

As a consequence, if W; W0 are two nonnegative initial values satisfying the Neu-
mann boundary condition and supp.W0/\G � supp.W /\G, then tW0z > tWz for any
z 2 @G.
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Proof. For the first claim, let z0 2 @G be a boundary point realizing the extreme point
condition of x0. If d.x0; z0/ > 2, the arrival time tWz0 D d.x0; z0/ due to Lemma 3.5.
If d.x0; z0/D 1, then tWz0 D 1 due to the Neumann boundary condition forW . Hence,
Definition 4.4 (3), Lemma 3.5, and the Neumann boundary condition yieldW.x0/> 0.

Next, consider the second claim. Due to W jG > 0, the initial value W restricted
to G can be written as

W jG D
X

x2supp.W /\G

˛xWxjG

for some positive numbers ˛x , where Wx.x/ D 1 and Wx.y/ D 0 if y 2 G � ¹xº.
Since W and each Wx determine their boundary values uniquely and linearly from
their values on G by (3.2), the form above extends to the whole graph G [ @G. By
linearity and the uniqueness of the solution of (3.1), the wave uW has the following
form at any z 2 @G and t 2 N,

uW .z; t/ D
X

x2supp.W /\G

˛xu
Wx .z; t/:

Since uWx .z; tWxz / > 0 for any z 2 @G by Lemma 3.5 and all ˛x are positive, we
know that the earliest time uW .z; �/ becomes nonzero is the earliest time when any of
uWx .z; �/ becomes nonzero. This shows that for any z 2 @G,

tWz D min
x2supp.W /\G

tWxz :

The last part of the lemma follows from the condition that supp.W0/ \ G �
supp.W / \G, since a minimum over a smaller set can only be larger.

Lemma 4.7. Let G be a finite connected weighted graph with boundary satisfying
Assumption 1. If an initial value W satisfies W jG > 0 and j supp.W / \Gj > 2, then
W … A.

Proof. Denote S D ¹x 2G jW.x/¤ 0º and we have jS j> 2 by assumption. We will
show that the maximality requirement (2) of Definition 4.4 fails if (1) is satisfied.

First, let us bring forth a contradiction from the assumption that W 2 W.s/ for
some s 2 max.U/. By the two-points condition, there exists x1 2 S and z1 2 @G,
such that x1 is the unique nearest point in S from z1. SinceW 2W.s/ and s.z1/> 2 as
s 2 U, we have W.z1/ D uW .z1; 0/ D 0. Then Lemma 3.5 implies that
tWz1 D d.x1; z1/ and 2 6 s.z1/ 6 tWz1 . We consider the following modified function
s0W@G!ZC defined by s0.z1/D s.z1/C 1 and equal to s at all other boundary points.

Now, we prove that s0 2 U and consequently s cannot be maximal in U. On
one hand, we have s0 > s > 2. On the other hand, we have s0 6 N . This is because
if s.z1/ D N then d.x1; z1/ > N , which means that all y 2 S � ¹x1º are at least
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distance N C 1 from z1. But this is impossible since there are only N interior points,
considering that distances (precisely dre on the reduced graph Gre) are realized by
paths passing through interior points by Lemma 3.4. Hence 26 s0 6N and it remains
to show that W.s0/ is nontrivial. Define another initial valueW0 to beW0.x1/D 0 and
equal to W elsewhere on G. By the propagation of the wavefront (Lemma 3.5), we
have uW0.z1; t / D 0 for t 6 d.x1; z1/. Since s.z1/ 6 tWz1 D d.x1; z1/ and s0.z1/ D
s.z1/C 1, we have uW0.z1; t / D 0 for t < s0.z1/. Since W jG > 0, the arrival time of
the wave uW0 at any other boundary point is no earlier than that of uW by Lemma 4.6.
This shows W0 2 W.s0/ and it is a nontrivial element since jS j > 2. Hence, s0 2 U

and s cannot be maximal.
Next we consider W 2 Wb.sb/ for some sb 2 Ub.y/ and show that sb cannot be

maximal. Following the previous argument, we can find x1 2 S and z1 2 @G, such
that x1 is the unique nearest point in S from z1. If sb.z1/ > 2, then the previous
argument applies. Otherwise if sb.z1/D 1, then z1 � y. We define s0

b
W @G! ZC by

s0
b
.z1/D 2 and equal to sb at all other boundary points. As before, we see that s0

b
6N ,

and s0
b
.z/ D 1 implies z � y. It remains to show that there is a nontrivial initial value

W0 2 Wb.s
0
b
/. We choose W0.x1/ D 0 and equal to W elsewhere on G. Since x1

is an extreme point of S with respect to z1 and W0.x1/ D 0, we have W0.z1/ D 0

by the Neumann boundary condition. This implies that uW0.z1; 0/ D uW0.z1; 1/ D

W0.z1/ D 0, and hence uW0.z1; t / D 0 for t < s0
b
.z1/. Then the same argument as

for the earlier case shows that uW0.z; t/ D 0 for t < s0
b
.z/ when s0

b
.z/ > 2. Thus,

we find a nontrivial initial value W0 2 Wb.s
0
b
/. Therefore, sb cannot be maximal in

Ub.y/.

Finally, we use the following criteria to distinguish A0 from A.

Lemma 4.8. Let G be a finite connected weighted graph with boundary satisfying
Assumption 1. Then a subset zA � A satisfies the following two properties:

(1) zA is an orthogonal basis of the linear span of A in L2.G/;

(2) for any W 2 A � zA, there exists �W 2 zA such that hW; �W iL2.G/ < 0,

if and only if zA D A0.

Remark. Elements of A are normalized, so we are actually searching for an orthonor-
mal basis satisfying Lemma 4.8 (2). Lemma 4.8 (1) can also be formulated as follows:
zA has cardinality equal to jGj, and its elements are mutually orthogonal with respect
to the L2.G/-inner product.

Proof. First, we show that A0 satisfies these two properties. The set A0 satisfies
Lemma 4.8 (1) as a direct consequence of Lemma 4.5. Since every function in A�A0

is supported at multiple interior points by the definition of A0, Lemma 4.7 implies
that any function W 2 A�A0 must have a negative value at some interior point, say
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at x 2 G. Then the condition hW; �W iL2.G/ < 0 is satisfied with �W D Wx . Hence,
Property (2) is satisfied for A0.

We prove the “only if” part. We claim that if zA ª A0, then Lemma 4.8 (1)
and Lemma 4.8 (2) cannot be satisfied at the same time. Suppose zA ª A0 and
Lemma 4.8 (1) is true. The set zA consists of two types of initial values:

(a) initial values supported at one single point in the interior (corresponding to
the boundary distance functions), and

(b) initial values supported at multiple points in the interior (where interactions
occur).

Note that zA may not contain the former type of initial values, but it must contain the
latter type of initial values since zA �A0 ¤ ; by assumption. Lemma 4.8 (1) implies
that the support of these two types of initial values does not intersect.

Consider the union of the support (intersected with G) of all the initial values of
type (b) in zA, denoted by

S D
[
W 2 zA

W of type (b)

supp.W / \G:

By the two-points condition, we can find an extreme point Qx 2 G of S . Then we con-
sider theL2.G/-normalized initial valueW Qx 2A supported at Qx 2G withW Qx. Qx/ > 0.
Orthogonality implies that W Qx … zA, or equivalently W Qx 2 A � zA. For any �W 2 zA
with hW Qx; �W iL2.G/ ¤ 0, we know that �W is supported at multiple points containing
Qx. The condition that Qx is an extreme point of S implies that Qx is also an extreme
point of its subset supp.�W / \G. Then �W. Qx/ > 0 by Lemma 4.6 (1). As a result, the
positivity implies

hW Qx; �W iL2.G/ D � QxW Qx. Qx/�W. Qx/ > 0:
Hence, hW Qx; �W iL2.G/ > 0 for all �W 2 zA. This contradicts Lemma 4.8 (2), and there-
fore proves the claim.

The claim shows that zA � A0 for any subset zA � A satisfying both properties.
The set A0 is an orthogonal basis of the linear span of A, and the only subset of A0

also forming a basis is A0 itself. Hence, Lemma 4.8 (1) yields zA D A0.

4.2. Determination from spectral data

In this section, we will tie in the previous subsection’s objects to the spectral and
boundary data of a graph. We will show that if two graphs have the same a priori
data, then the spectral characterization of various objects, such as U, A0 from the
previous subsection, of these two graphs coincide. This leads to the conclusion that
the inverse spectral problem is solvable.

Without loss of generality, we still assume G D Gre throughout this section.
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Lemma 4.9. Let G be a finite connected weighted graph with boundary, and q be a
real-valued potential function on G. Let ¹�j ºNjD1 be the orthonormalized Neumann
eigenfunctions of .G; q/. For any function W W G [ @G ! R, denotebW .j / D hW;�j iL2.G/; bW D .bW .1/; : : : ; bW .N// 2 RN :

If W is an initial value for (3.1), i.e., satisfying @�W j@G D 0, we have

W.x/ D

NX
jD1

bW .j /�j .x/; for all x 2 G [ @G:

Conversely, given any .cj /NjD1 2 RN ,
P
j cj�j gives an initial value for (3.1).

Proof. Since G is connected and there are no edges between boundary points by
assumption, every boundary point is connected to the interior. Then the claims are a
direct consequence of the orthonormality of the eigenfunctions in L2.G/, (3.2) and
@��j j@G D 0.

Notation. Given a complete orthonormal family of Neumann eigenfunctions of
.G; q/ and V � L2.G/, we denote bV D ¹ Of 2 RN j f 2 V º: If G0 is another finite
weighted graph with boundary, then we denote by V 0 a subset of L2.G0/. In this
case, bV 0 is defined the same as above, but the hat-notation itself is defined using the
eigenfunctions �0j of G0 rather than those of G.

The following lemma enables us to calculate a wave at any boundary point and
any time, if we know the Neumann boundary spectral data and the Fourier transform
(or the spectral representation) of the initial value of the wave.

Lemma 4.10. Let G be a finite connected weighted graph with boundary, and q be a
real-valued potential function onG. Let .�j ; �j /NjD1 be the Neumann eigenvalues and
orthonormalized Neumann eigenfunctions of .G; q/. SupposeW is the initial value of
some wave uW satisfying the wave equation (3.1). Then

uW .x; t/ D
X

¹j j�jD0º

bW .j /�j .x/CX
¹j j�jD4º

bW .j /.�2t C 1/.�1/t�j .x/
C

X
¹j j�j…¹0;4ºº

bW .j /ˇtj;1 � ˇtj;2 � .ˇt�1j;1 � ˇ
t�1
j;2 /

ǰ;1 � ǰ;2

�j .x/;

where

ǰ;1 D �
�j

2
C 1 �

r��j
2
� 1

�2
� 1; (4.7a)

ǰ;2 D �
�j

2
C 1C

r��j
2
� 1

�2
� 1: (4.7b)
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Conversely, given any bW 2 RN , then the wave uW defined as above solves (3.1) with
the initial value W D

PN
jD1

bW .j /�j .

Proof. By assumption, every boundary point is connected to the interior. The wave
satisfies @�uW j@G�N D 0, so the orthonormality of ¹�j ºNjD1 inL2.G/ and (3.2) imply
that

u.x; t/ D

NX
jD1

aj .t/�j .x/

on .G [ @G/ �N for some functions aj WN ! R. The wave equation (3.1) and the
eigenvalue problem (1.8) yield that

aj .t C 1/C .�j � 2/aj .t/C aj .t � 1/ D 0 (4.8)

for all t 2 ZC. The solutions to the associated characteristic equation

ˇ2j C .�j � 2/ ǰ C 1 D 0

are shown in the lemma statement. The characteristic equation has two identical solu-
tions if �j D 0 or 4, in which case the solutions are 1 or �1. Hence, aj has the
following form:

aj .t/ D

8̂̂<̂
:̂
bj t C cj ; �j D 0;

.bj t C cj /.�1/
t ; �j D 4;

bjˇ
t
j;1 C cjˇ

t
j;2; �j … ¹0; 4º;

t 2 N: (4.9)

Recall that uW .�; 0/ D uW .�; 1/. Then the formula for aj implies thatX
¹j j�jD0º

cj�j C
X

¹j j�jD4º

cj�j C
X

¹j j�j…¹0;4ºº

.bj C cj /�j

D

X
¹j j�jD0º

.bj C cj /�j �
X

¹j j�jD4º

.bj C cj /�j C
X

¹j j�j…¹0;4ºº

.bj ǰ;1 C cj ǰ;2/�j :

Taking the inner product with any �j , and the orthonormality of �j allows us to solve
bj as a function of cj ; ǰ;1 and ǰ;2 for each j D 1; : : : ; N . This gives

bj D

8̂̂<̂
:̂
0; �j D 0;

�2cj ; �j D 4;

�cj
ǰ;2�1

ǰ;1�1
; �j … ¹0; 4º:
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Note that ǰ;1; ǰ;2 ¤ ˙1 if �j … ¹0; 4º. Hence, we obtain the formula for the wave:

uW .x; t/ D
X

¹j j�jD0º

cj�j .x/C
X

¹j j�jD4º

cj .�2t C 1/.�1/
t�j .x/

C

X
¹j j�j…¹0;4ºº

cj

�
�

ǰ;2 � 1

ǰ;1 � 1
ˇtj;1 C ˇ

t
j;2

�
�j .x/;

for x 2 G [ @G and t 2 N. This satisfies the second initial condition, the Neumann
boundary condition and the wave equation in (3.1). By Lemma 4.9, the first initial
condition uW .x; 0/ D W.x/ gives that

cj D

8̂̂<̂
:̂
bW .j /; �j D 0;bW .j /; �j D 4;bW .j / ǰ;1�1

ǰ;1� ǰ;2
; �j … ¹0; 4º:

The first claim of the lemma follows after plugging these into the formula for the
wave. The converse claim is a straightforward calculation whose details are actually
scattered in the proof of the first claim.

In our setting, we are working with two graphs having the same boundary and
the same Neumann boundary spectral data. For convenience, we make use of the
following pullback notation.

Notation. Given two finite weighted graphs with boundary G;G0 and a boundary-
isomorphism ˆ0 (Definition 1.6), we define the following notation.

• For f 0 W @G0 ! R, we denote ˆ�0f
0 D f 0 ı .ˆ0j@G/.

• If S 0 is a set of functions on @G0, denote ˆ�0S
0 D ¹ˆ�0f

0 j f 0 2 S 0º.

This notation defines ˆ�0f
0 W @G ! R, and ˆ�0S

0 as a set of functions on @G.

We consider initial values not just as functions on the graph, but also as abstract
points in RN using their Fourier series representation in Lemma 4.9. Lemma 4.10
shows that the spectral (Fourier) coefficients of an initial valueW uniquely determine
the boundary values of the corresponding wave uW .

Lemma 4.11. Let G;G0 be two finite connected weighted graphs with boundary,
and q; q0 be real-valued potential functions on G; G0. Suppose .G; q/ is spectrally
isomorphic to .G0; q0/ with a boundary-isomorphism ˆ0, namely

.�j ; �j j@G/
N
jD1 D .�

0
j ; ˆ

�
0.�j j@G0//NjD1:

Let .cj /NjD1 2 RN , W D
PN
jD1 cj�j ; W

0 D
PN
jD1 cj�

0
j ; and uW ; uW

0

be the corre-
sponding solution to the wave equation (3.1) in G;G0. Then uW .z; t/DuW

0

.ˆ0.z/; t/

for all z 2 @G and t 2 N.
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Proof. This is a direct consequence of the representation formula for uW ; uW
0

in
Lemma 4.10, since bW .j / D cj D cW 0.j /, �j D �0j and �j D �0j ıˆ0 on @G.

We remark that a full boundary-isomorphism is not needed for this lemma; a sim-
ple bijection @G! @G0 which makes the boundary spectral data equivalent is enough.

Our next few tasks are to show that various objects from Section 4.1 are equiv-
alent, or that their spectral representations are the same for two spectrally isomor-
phic graphs. Recall the definitions of the various objects W ;Wb;U;Ub which were
defined just before Lemmas 4.1 and 4.2. The following lemma shows that knowing
the Neumann boundary spectral data leads to the knowledge of the sets U;Ub .

Lemma 4.12. Let G;G0 be two finite connected weighted graphs with boundary,
and q; q0 be real-valued potential functions on G; G0. Suppose .G; q/ is spectrally
isomorphic to .G0; q0/ with a boundary-isomorphism ˆ0. Then bW.s/ D cW 0.s0/ andcWb.s/ D cW 0

b
.s0/ for all s W @G ! ZC and s0 D s ı .ˆ0j@G/�1. As a consequence,

U D ˆ�0U0; Ub.y/ D ˆ
�
0.U

0
b.y
0//;

for all y 2 G \N.@G/ and y0 D ˆ0.y/.

Proof. We use the notation s0 D s ı .ˆ0j@G/�1 throughout this proof. By symmetry,
it suffices to prove that bW.s/ � cW 0.s0/. Suppose bW D .cj /NjD1 2 RN for some W 2
W.s/. This gives uW .z; t/ D 0 for all z 2 @G and t < s.z/. Then take the function
W 0 D

PN
jD1 cj�

0
j with the same Fourier coefficients. By Lemma 4.11, we see that

uW
0

.ˆ0.z/; t/ D u
W .z; t/ D 0

for z 2 @G and t < s.z/ D s0.ˆ0.z//. As z runs through @G, the point ˆ0.z/ runs
through the whole @G0. Hence, W 0 2 W 0.s0/ and .cj /NjD1 D

cW 0 2 cW 0.s0/. The same

argument shows that cWb.s/ � cW 0
b
.s0/.

For the claim on U;U0, notice that

dim.W.s// D dim.bW.s// D dim.cW 0.s0// D dim.W 0.s0//:

This is because the map W 7! bW from L2.G/ to RN is an invertible linear map by
Lemma 4.9. Thus, s 2 U if and only if s0 2 U0.

If s 2 Ub.y/ for some y 2 G \ N.@G/, then dim.W 0
b
.s0// D dim.Wb.s// ¤ 0.

By definition, s.z/ D 1 only if z � y. By the definition of ˆ0, ˆ0.z/ �0 ˆ0.y/ holds
if and only if z � y. Hence, s0 satisfies all conditions of U0

b
.y0/.

The set A contains the initial values for which the corresponding wavefront
reaches the boundary with positive values everywhere and as late as possible (Recall
Definition 4.4). The following lemma shows that knowing the boundary spectral data
leads to the knowledge of the spectral data of all such initial values.
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Lemma 4.13. Let G;G0 be two finite connected weighted graphs with boundary,
and q; q0 be real-valued potential functions on G; G0. Suppose .G; q/ is spectrally
isomorphic to .G0; q0/. Then bA DcA0.
Proof. Let ˆ0 be a boundary isomorphism making the graphs spectrally isomorphic.
Let W 2 A, i.e. kW kL2.G/ D 1 and it satisfies the three conditions in Definition 4.4.
Let W 0 D

P
j
bW .j /�0j . Then @�W 0j@G0 D 0 and

kW 0k2
L2.G0/

D

NX
jD1

jbW .j /j2 D kW k2
L2.G/

D 1:

Since uW .z; t/ D uW
0

.ˆ0.z/; t/ for all z 2 @G and t 2 N by Lemma 4.11, we have
uW

0

.z0; tW
0

z / > 0 for all z0 2 @G0. It remains to verify Definition 4.4 (2) for W 0, i.e.,
that W 0 corresponds to a maximal element s0W @G0 ! N.

By Lemma 4.12, we have for any y 2 G \N.@G/,

max.U/ D max.ˆ�0U0/; max.Ub.y// D max.ˆ�0U0b.ˆ0.y///:

If W 2 W.s/ for some s 2 max.U/, thencW 0 D bW 2 bW.s/ D cW 0.s0/
for s0 D s ı .ˆ0j@G/�1 by Lemma 4.12. Hence, W 0 2 W 0.s0/ for the given s which
is a maximal element of U. Next we show that s0 is a maximal element of U0.
Since ˆ�0s

0 D s, s 2 max.U/ and U D ˆ�0U0 by Lemma 4.12, we see that ˆ�0s
0 2

max.ˆ�0U0/. The pullback does not affect the partial order, and hence s0 2 max.U0/.
Similarly, ifW 2Wb.s/ for some s 2 max.Ub.y// and y 2 G \N.@G/, then we

see thatW 0 2W 0
b
.s0/ forˆ�0s

0 D s. Thenˆ�0s
0 2max.ˆ�0U0

b
.ˆ0.y///, which implies

that s0 2 max.U0
b
.ˆ0.y///. Moreover, by the definition of ˆ0 (Definition 1.6), we

have ˆ0.y/ 2 G0 \ N.@G0/. Hence, W 0 2 W 0
b
.s0/ with s0 2 max.U0

b
.y0// for some

y0 2 G0 \N.@G0/, just as required in Condition (2) for A0. Thus,W 2A implies that
W 0 2 A0, where cW 0 D bW . A symmetric proof shows cA0 � bA.

With Lemma 4.13, we can finally apply Lemma 4.8 to deduce the set of Fourier
coefficients corresponding to initial values supported at one single interior point.
These initial values correspond to individual points of the graph.

Proposition 4.14. Let G;G0 be two finite connected weighted graphs with bound-
ary satisfying Assumption 1, and q; q0 be real-valued potential functions on G; G0.
Suppose .G; q/ is spectrally isomorphic to .G0; q0/. Then cA0 D

cA00.
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Proof. We need to define a subset of L2.G0/, such that its Fourier transform is equal
to cA0 and satisfies the conditions in Lemma 4.8. To write relevant notations clearly,
we use F to denote the Fourier transform in this proof. Let

fA0 D ° NX
jD1

cj�
0
j

ˇ̌̌
.cj /

N
jD1 2 FA0

±
:

For f; g 2 L2.G/, we know that hf; giL2.G/ D
P
j Ff .j /Fg.j / D Ff � Fg,

where � is the inner product in RN . Furthermore,

Fspan A D spanFA:

Since A0 is an orthonormal basis of span A, these two observations indicate that FA0

is an orthonormal basis of spanFA. The latter is equal to spanFA0 by Lemma 4.13.
Hence we can deduce that FfA0 D FA0 is an orthonormal basis of spanFA0. Thus fA0
is an orthonormal basis of span A0. Condition ((1)) has been verified.

Next, let us verify Condition ((2)) in Lemma 4.8. Let W 0 2 A0 �fA0 and W DP
j FW

0.j /�j . Since FA D FA0 by Lemma 4.13, we have

FW D FW 0 2 FA0 � FfA0 D FA � FA0;

which shows W 2 A �A0. By Lemma 4.8, there exists eW 2 A0 such that

hW; eW iL2.G/ < 0:
Take fW 0 DPj F

eW .j /�0j . Then fW 0 2fA0 by the latter’s definition. Moreover,

hW 0;fW 0iL2.G/ D FW 0 � FfW 0 D FW � FeW D hW; eW iL2.G/ < 0;
which shows that Condition ((2)) in Lemma 4.8 holds for fA0. Hence, Lemma 4.8
yields fA0 D A00, and the lemma follows.

Recall that A0 is the set of normalized initial values supported at one single inte-
rior point. Since the Fourier transforms of these sets are the same, it makes sense to
identify interior vertices via their Fourier transforms. We will show that this identifi-
cation gives the desired bijection ˆ in Theorem 1.

Lemma 4.15. Let G;G0 be two finite connected weighted graphs with boundary sat-
isfying Assumption 1, and q; q0 be real-valued potential functions on G;G0. Suppose
.G; q/ is spectrally isomorphic to .G0; q0/. We define a relation� on G �G0 by

x � x0 () cWx DbWx0 ; cWx 2 cA0; bWx0 2 cA00 :
Then� is a one-to-one correspondence.

Proof. Let us verify that � satisfies the conditions for a one-to-one correspondence.
We make use of Proposition 4.14 which gives cA0 D

cA00.
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Every x 2 G is paired with exactly one x0 2 G0. Let x 2 G. Then cWx 2 cA0 D
cA00.

The latter set consists of all elements of the form bWx0 for x0 2 G0. Since the Fourier
transform is invertible, there is a unique x0 2 G0 such that bWx0 D cWx .

For any x0 2 G0, there exists a unique x 2 G such that x � x0. The proof is the same
as above.

Definition 4.16. With the assumptions of Lemma 4.15, given a boundary-isomor-
phism ˆ0 which makes .G; q/ and .G0; q0/ spectrally isomorphic, we define a bijec-
tive map ˆWG [ @G ! G0 [ @G0 by

ˆ.x/ D

´
ˆ0.x/; x 2 @G;

x0; x 2 G; x � x0:

With this map ˆ, we have the point-equivalence between these two graphs. Now,
we show that ˆ also preserves the edge structure. From what we have done in this
section, the boundary spectral data provide the knowledge of the Fourier transform of
initial values, boundary values of waves, and the inner product of waves. We use this
information to determine if there is an edge between two points.

Lemma 4.17. Let G be a finite weighted graph with boundary, and x 2 G, z 2 @G.
Then x � z if and only if Wx.z/ ¤ 0.

Proof. This directly follows from @�Wxj@G D 0 and (3.2).

Lemma 4.18. Let G be a finite weighted graph with boundary satisfying Item 2 of
Assumption 1, and x; y 2 G. Then x � y if and only if

min¹t 2 N j huWx .�; t /;WyiL2.G/ ¤ 0º D 2:

Proof. Recall that Wx stands for a function on G [ @G satisfying @�Wxj@G D 0,
supp.Wx/\G D ¹xº andWx.x/ > 0. By Item 2 of Assumption 1 and calculating the
wave uWx from (3.1) up to time t D 2, we see that

G \ supp.uWx .�; t // �

´
¹xº; t 6 1;

G \N.x; 1/; t D 2:

Note that Item 2 of Assumption 1 is essential to the claim of the support at t D 2.
More precisely, in the interior, the wave uWx .�; 2/ can be nonzero only at interior
points adjacent to x, and interior points adjacent to boundary points that are adjacent
to x. Under Item 2 of Assumption 1, the interior points in the latter case are also
adjacent to x.
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Moreover, we have uWx .�; t / > 0 on .G \ N.x; 1// � ¹xº at t D 2. Indeed, for
any p 2 .G \ N.x; 1// � ¹xº, observe that .�GuWx /.p; 1/ > 0. This is because
uWx .p; 1/ D Wx.p/ D 0, and the only nonzero contributions to the Laplacian come
from point x and boundary points adjacent to x. One can see that both types of contri-
butions to the Laplacian are positive due to Wx.x/ > 0 and the boundary value given
by (3.2). Moreover, the positive contribution from point x is always present since
p 2 N.x; 1/ � ¹xº, i.e. p � x. Thus, the Laplacian satisfies .�GuWx /.p; 1/ > 0,
which yields that the wave uWx .p; 2/ > 0 at t D 2.

If x � y, then y 2 .G \ N.x; 1// � ¹xº and hence the minimum in question is
equal to 2. If x 6� y, then either x D y in which case the minimum is 0, or d.x;y/> 2

in which case y …G \ supp.uWx .�; t // for t 6 2, and the minimum is more than 2.

Finally, we are ready to prove the main theorems.

Proof of Theorem 1. The first property of ˆj@G being identical to ˆ0j@G follows by
definition. It remains to verify the second property that the edge relations are pre-
served by ˆ and its inverse. Let p1; p2 2 G [ @G.

If p1; p2 2 G, then by Lemma 4.18,

p1 � p2 () min¹t 2 N j huWp1 .�; t /;Wp2iL2.G/ ¤ 0º D 2:

Let us write the inner product using the Fourier transform of the initial values Wp1 ;
Wp2 . By Lemma 4.10,

uWp1 .�; t / D
X

¹j j�jD0º

bWp1.j /�j C
X

¹j j�jD4º

bWp1.j /.�2t C 1/.�1/t�j

C

X
¹j j�j…¹0;4ºº

bWp1.j /
ˇtj;1 � ˇ

t
j;2 � .ˇ

t�1
j;1 � ˇ

t�1
j;2 /

ǰ;1 � ǰ;2

�j :

Taking the inner product with Wp2 D
P
j
bWp2�j yields

huWp1 .�; t /;Wp2iL2.G/

D

X
¹j j�jD0º

bWp1.j /bWp2.j /C
X

¹j j�jD4º

bWp1.j /bWp2.j /.�2t C 1/.�1/t

C

X
¹j j�j…¹0;4ºº

bWp1.j /bWp2.j /
ˇtj;1 � ˇ

t
j;2 � .ˇ

t�1
j;1 � ˇ

t�1
j;2 /

ǰ;1 � ǰ;2

D huWˆ.p1/.�; t /;Wˆ.p2/iL2.G0/:
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The second equality is because bWp1 D2Wˆ.p1/, bWp2 D2Wˆ.p2/, considering that p1 �
ˆ.p1/, p2 � ˆ.p2/ and the eigenvalues are the same for G;G0. Hence, the minimal
time in question is equal to 2 for p1; p2 in G if and only if it is so for ˆ.p1/; ˆ.p2/
in G0.

Next, consider the edge between an interior point and a boundary point. If p1 2G,
p2 2 @G, then by Lemma 4.17,

p1 � p2 () Wp1.p2/ ¤ 0:

Since p1 � ˆ.p1/, p2 � ˆ.p2/ and �j D �0j ıˆ0 D �
0
j ıˆ on @G, we have

Wp1.p2/ D

NX
jD1

bWp1.j /�j .p2/

D

NX
jD1

2Wˆ.p1/.j /�0j .ˆ.p2//

D Wˆ.p1/.ˆ.p2//:

Hence, p1 � p2 if and only if ˆ.p1/ �0 ˆ.p2/.
Finally, the case of p1; p2 2 @G is trivial, because ˆ.p1/; ˆ.p2/ 2 @G0 and the

edge structure on the boundary is a priori given.

In Theorem 2, we assume that the isomorphic structure is already known and the
vertices of G0 have been identified with vertices of G via the ˆ-correspondence. In
terms of notations, a vertex x of G can also denote a vertex of G0, which exactly
refers to the vertex ˆ.x/ of G0.

Proof of Theorem 2. Recall from Definition 4.4 that Wx 2 A0, W 0x 2 A00 are defined
as the L2-normalized initial values satisfying @�Wxj@G D @�W

0
xj@G0 D 0 with G \

supp.Wx/ D G0 \ supp.W 0x/ D ¹xº. Then the definition of the L2-norm (1.6) yields
Wx.x/ D �

�1=2
x and W 0x.x/ D �

0�1=2
x :

Now, let us prove (1). Assume � D �0. First, we prove g D g0.
For x; y 2 G with x � y, we have

h.��G C q/Wx; WyiL2.G/ D �yWy.y/..��G C q/Wx/.y/

D �yWy.y/.��GWx/.y/

D �Wy.y/
X
p�y

p2G[@G

gyp.Wx.p/ �Wx.y//

D �Wy.y/
X
p�y

p2G[@G

gypWx.p/: (4.10)
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On the other hand, this inner product can be determined from the spectral data.
Namely, by (1.8), we have

h.��G C q/Wx; WyiL2.G/ D
DX
j

cWx.j /�j�j ;X
j

cWy.j /�j E
L2.G/

D

X
j

�jcWx.j /cWy.j /
D

X
j

�0j
cW 0x.j /cW 0y.j /

D h.��G0 C q0/W 0x; W
0
yiL2.G0/: (4.11)

since �j D �0j , cWx D cW 0x and cWy D cW 0y , due to Lemma 4.15 and Definition 4.16.
We consider two cases from here.

(i) If x 2 G � N.@G/ in (4.10), then for all p 2 G [ @G, we have Wx.p/ D 0
unless p D x (since x is not adjacent to the boundary). Then (4.10) and (4.11) yield

�Wy.y/Wx.x/gxy D h.��G C q/Wx; WyiL2.G/

D h.��G0 C q0/W 0x; W
0
yiL2.G0/

D �W 0y.y/W
0
x.x/g

0
xy :

This implies that gxy D g0xy , sinceWy.y/D �
�1=2
y D �0

�1=2
y DW 0y.y/ and similarly

Wx.x/ D W
0
x.x/.

(ii) It remains to consider the case where x; y 2 G \ N.@G/. In this case, (4.10)
and (4.11) reduce to

Wy.y/Wx.x/gxy CWy.y/
X

z�y;z�x
z2@G

gyzWx.z/

D W 0y.y/W
0
x.x/g

0
xy CW

0
y.y/

X
z�y;z�x
z2@G

g0yzW
0
x.z/: (4.12)

Since @�Wx.z/ D @�W 0x.z/ D 0, by (3.2) we see that

Wx.z/ D
gxzWx.x/P
p�z;p2G gpz

D
g0xzW

0
x.x/P

p�z;p2G g
0
pz

D W 0x.z/;

where we have used that Wx.x/ D W 0x.x/ and g D g0 on edges from the boundary.
By (4.12), we see that gxy D g0xy . This concludes the unique determination of g.
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Next, we prove q D q0, assuming �D �0. Let x 2G. The spectral data determines
the following inner product:

h.��G C q/Wx; WxiL2.G/ D �xWx.x/..��G C q/Wx/.x/

D �Wx.x/
X
p�x

p2G[@G

gxp.Wx.p/ �Wx.x//C q.x/:

Observe that all relevant quantities have already been uniquely determined as above,
during the proof for the unique determination of g. Hence, q D q0.

At last, we prove (2). Assume q D q0 D 0. For the graph Laplacian (with zero
potential), there exists j0 such that �j0 D �

0
j0
D 0 and �j0 D �

0
j0
D c for some constant

c 2 R. Given any x 2 G, we have hWx; �j0iL2.G/ D �xWx.x/c, where Wx.x/ D
�
�1=2
x . Then

�x D
hWx; �j0i

2
L2.G/

c2
D
.cWx.j0//2

c2
D
.cW 0x.j0//2

c2
D

hW 0x; �
0
j0
i2
L2.G0/

c2
D �0x :

Hence, � D �0. Then the assumption of (1) is satisfied and therefore g D g0.
In particular, if � D degG , �0 D degG0 , then � D �0 since ˆ preserves the edge

structure by Theorem 1. Hence, the conclusion follows from (1).
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[35] D. M. Cvetković, M. Doob, I. Gutman, and A. Torgašev, Recent results in the theory of
graph spectra. Ann. Discrete Math. 36, North-Holland, Amsterdam, 1988
Zbl 0634.05054 MR 926481

[36] M. V. de Hoop, P. Kepley, and L. Oksanen, On the construction of virtual interior point
source travel time distances from the hyperbolic Neumann-to-Dirichlet map. SIAM J. Appl.
Math. 76 (2016), no. 2, 805–825 Zbl 1338.35504 MR 3488169

https://doi.org/10.4171/JST/83
https://doi.org/10.4171/JST/83
https://zbmath.org/?q=an:1327.58029
https://mathscinet.ams.org/mathscinet-getitem?mr=3299811
https://doi.org/10.1007/s11856-019-1865-7
https://zbmath.org/?q=an:1425.58018
https://mathscinet.ams.org/mathscinet-getitem?mr=3990939
https://doi.org/10.1007/s00209-022-03016-5
https://doi.org/10.1007/s00209-022-03016-5
https://zbmath.org/?q=an:1491.58007
https://mathscinet.ams.org/mathscinet-getitem?mr=4437353
https://arxiv.org/abs/2012.04435v1
https://doi.org/10.1007/s00205-018-1283-8
https://doi.org/10.1007/s00205-018-1283-8
https://zbmath.org/?q=an:1412.35377
https://mathscinet.ams.org/mathscinet-getitem?mr=3894555
https://doi.org/10.1515/9781400869312-013
https://zbmath.org/?q=an:0212.44903
https://mathscinet.ams.org/mathscinet-getitem?mr=0402831
https://doi.org/10.1007/s00026-005-0237-z
https://zbmath.org/?q=an:1059.05070
https://mathscinet.ams.org/mathscinet-getitem?mr=2135772
https://zbmath.org/?q=an:0867.05046
https://mathscinet.ams.org/mathscinet-getitem?mr=1421568
https://doi.org/10.1137/S0895480191217776
https://doi.org/10.1137/S0895480191217776
https://zbmath.org/?q=an:0808.05072
https://mathscinet.ams.org/mathscinet-getitem?mr=1285582
https://doi.org/10.1006/aima.1996.0006
https://doi.org/10.1006/aima.1996.0006
https://zbmath.org/?q=an:0844.53029
https://mathscinet.ams.org/mathscinet-getitem?mr=1371647
https://doi.org/10.4310/CAG.1994.v2.n4.a6
https://doi.org/10.4310/CAG.1994.v2.n4.a6
https://zbmath.org/?q=an:0834.05038
https://mathscinet.ams.org/mathscinet-getitem?mr=1336898
https://doi.org/10.1007/bf02564493
https://zbmath.org/?q=an:0816.05052
https://mathscinet.ams.org/mathscinet-getitem?mr=1289333
https://doi.org/10.1007/BF02566413
https://zbmath.org/?q=an:0853.05074
https://mathscinet.ams.org/mathscinet-getitem?mr=1371682
https://doi.org/10.1016/S0024-3795(98)10087-3
https://zbmath.org/?q=an:0931.05051
https://mathscinet.ams.org/mathscinet-getitem?mr=1657214
https://doi.org/10.1142/4306
https://zbmath.org/?q=an:1056.94022
https://zbmath.org/?q=an:0634.05054
https://mathscinet.ams.org/mathscinet-getitem?mr=926481
https://doi.org/10.1137/15M1033010
https://doi.org/10.1137/15M1033010
https://zbmath.org/?q=an:1338.35504
https://mathscinet.ams.org/mathscinet-getitem?mr=3488169


Gelfand’s inverse problem for the graph Laplacian 43

[37] M. V. de Hoop, P. Kepley, and L. Oksanen, Recovery of a smooth metric via wave field
and coordinate transformation reconstruction. SIAM J. Appl. Math. 78 (2018), no. 4,
1931–1953 Zbl 1395.35224 MR 3825620

[38] M. V. de Hoop and T. Saksala, Inverse problem of travel time difference functions
on a compact Riemannian manifold with boundary. J. Geom. Anal. 29 (2019), no. 4,
3308–3327 Zbl 1428.53047 MR 4015439

[39] C. Fefferman, S. Ivanov, Y. Kurylev, M. Lassas, and H. Narayanan, Reconstruction and
interpolation of manifolds. I: The geometric Whitney problem. Found. Comput. Math. 20
(2020), no. 5, 1035–1133 Zbl 1470.53045 MR 4156994

[40] H. Fujii and A. Katsuda, Isospectral graphs and isoperimetric constants. Discrete Math.
207 (1999), no. 1-3, 33–52 Zbl 1131.05309 MR 1710481

[41] K. Fujiwara, The Laplacian on rapidly branching trees. Duke Math. J. 83 (1996), no. 1,
191–202 Zbl 0856.58044 MR 1388848

[42] I. Gelfand, Some aspects of functional analysis and algebra. In Proceedings of the Inter-
national Congress of Mathematicians (Amsterdam, 1954), Vol. 1, pp. 253–276. Erven
P. Noordhoff N. V., Groningen; North-Holland Publishing Co., Amsterdam, 1957
Zbl 0079.32602 MR 0095423

[43] A. Hakanen and T. Laihonen, On ¹`º-metric dimensions in graphs. Fund. Inform. 162
(2018), no. 2-3, 143–160 Zbl 1400.05072 MR 3859126

[44] F. Harary and R. A. Melter, On the metric dimension of a graph. Ars Combin. 2 (1976),
191–195 Zbl 0349.05118 MR 457289

[45] T. Helin, M. Lassas, L. Oksanen, and T. Saksala, Correlation based passive imaging with
a white noise source. J. Math. Pures Appl. (9) 116 (2018), 132–160 Zbl 1401.35343
MR 3826551

[46] H. Isozaki and E. Korotyaev, Inverse problems, trace formulae for discrete Schrödinger
operators. Ann. Henri Poincaré 13 (2012), no. 4, 751–788 Zbl 1250.81124

[47] S. Ivanov, Distance difference representations of Riemannian manifolds. Geom. Dedicata
207 (2020), 167–192 Zbl 1478.53068 MR 4117565

[48] A. Katchalov, Y. Kurylev, and M. Lassas, Inverse boundary spectral problems. Chapman
Hall/CRC Monogr. Surv. Pure Appl. Math. 123, Chapman & Hall/CRC, Boca Raton, FL,
2001 Zbl 1037.35098 MR 1889089

[49] A. Katchalov, Y. Kurylev, M. Lassas, and N. Mandache, Equivalence of time-domain
inverse problems and boundary spectral problems. Inverse Problems 20 (2004), no. 2,
419–436 Zbl 1073.35209 MR 2065431

[50] E. Korotyaev and N. Saburova, Invariants for Laplacians on periodic graphs. Math. Ann.
377 (2020), no. 1-2, 723–758 Zbl 1454.47038 MR 4099624

[51] K. Krupchyk, Y. Kurylev, and M. Lassas, Inverse spectral problems on a closed manifold.
J. Math. Pures Appl. (9) 90 (2008), no. 1, 42–59 Zbl 1146.58020 MR 2435213

[52] P. Kurasov, Graph Laplacians and topology. Ark. Mat. 46 (2008), no. 1, 95–111
Zbl 1205.47044 MR 2379686

[53] Y. Kurylev and M. Lassas, Hyperbolic inverse boundary-value problem and time-continu-
ation of the non-stationary Dirichlet-to-Neumann map. Proc. Roy. Soc. Edinburgh Sect. A
132 (2002), no. 4, 931–949 Zbl 1034.35152 MR 1926923

https://doi.org/10.1137/17M1151481
https://doi.org/10.1137/17M1151481
https://zbmath.org/?q=an:1395.35224
https://mathscinet.ams.org/mathscinet-getitem?mr=3825620
https://doi.org/10.1007/s12220-018-00111-0
https://doi.org/10.1007/s12220-018-00111-0
https://zbmath.org/?q=an:1428.53047
https://mathscinet.ams.org/mathscinet-getitem?mr=4015439
https://doi.org/10.1007/s10208-019-09439-7
https://doi.org/10.1007/s10208-019-09439-7
https://zbmath.org/?q=an:1470.53045
https://mathscinet.ams.org/mathscinet-getitem?mr=4156994
https://doi.org/10.1016/S0012-365X(99)00133-8
https://zbmath.org/?q=an:1131.05309
https://mathscinet.ams.org/mathscinet-getitem?mr=1710481
https://doi.org/10.1215/S0012-7094-96-08308-8
https://zbmath.org/?q=an:0856.58044
https://mathscinet.ams.org/mathscinet-getitem?mr=1388848
https://zbmath.org/?q=an:0079.32602
https://mathscinet.ams.org/mathscinet-getitem?mr=0095423
https://doi.org/10.3233/fi-2018-1718
https://zbmath.org/?q=an:1400.05072
https://mathscinet.ams.org/mathscinet-getitem?mr=3859126
https://zbmath.org/?q=an:0349.05118
https://mathscinet.ams.org/mathscinet-getitem?mr=457289
https://doi.org/10.1016/j.matpur.2018.05.001
https://doi.org/10.1016/j.matpur.2018.05.001
https://zbmath.org/?q=an:1401.35343
https://mathscinet.ams.org/mathscinet-getitem?mr=3826551
https://doi.org/10.1007/s00023-011-0141-0
https://doi.org/10.1007/s00023-011-0141-0
https://zbmath.org/?q=an:1250.81124
https://doi.org/10.1007/s10711-019-00491-9
https://zbmath.org/?q=an:1478.53068
https://mathscinet.ams.org/mathscinet-getitem?mr=4117565
https://doi.org/10.1201/9781420036220
https://zbmath.org/?q=an:1037.35098
https://mathscinet.ams.org/mathscinet-getitem?mr=1889089
https://doi.org/10.1088/0266-5611/20/2/007
https://doi.org/10.1088/0266-5611/20/2/007
https://zbmath.org/?q=an:1073.35209
https://mathscinet.ams.org/mathscinet-getitem?mr=2065431
https://doi.org/10.1007/s00208-019-01842-3
https://zbmath.org/?q=an:1454.47038
https://mathscinet.ams.org/mathscinet-getitem?mr=4099624
https://doi.org/10.1016/j.matpur.2008.02.009
https://zbmath.org/?q=an:1146.58020
https://mathscinet.ams.org/mathscinet-getitem?mr=2435213
https://doi.org/10.1007/s11512-007-0059-4
https://zbmath.org/?q=an:1205.47044
https://mathscinet.ams.org/mathscinet-getitem?mr=2379686
https://doi.org/10.1017/S0308210500001943
https://doi.org/10.1017/S0308210500001943
https://zbmath.org/?q=an:1034.35152
https://mathscinet.ams.org/mathscinet-getitem?mr=1926923


E. Blåsten, H. Isozaki, M. Lassas, and J. Lu 44

[54] Y. Kurylev, L. Oksanen, and G. P. Paternain, Inverse problems for the connection Lapla-
cian. J. Differential Geom. 110 (2018), no. 3, 457–494 Zbl 1415.53024 MR 3880231

[55] M. Lassas, Inverse problems for linear and non-linear hyperbolic equations. In Proceed-
ings of the International Congress of Mathematicians—Rio de Janeiro 2018, Vol. IV.
Invited lectures, pp. 3751–3771, World Sci. Publ., Hackensack, NJ, 2018
Zbl 1447.35006 MR 3966550

[56] M. Lassas and L. Oksanen, Inverse problem for the Riemannian wave equation with
Dirichlet data and Neumann data on disjoint sets. Duke Math. J. 163 (2014), no. 6,
1071–1103 Zbl 1375.35634 MR 3192525

[57] M. Lassas and T. Saksala, Determination of a Riemannian manifold from the distance
difference functions. Asian J. Math. 23 (2019), no. 2, 173–200 Zbl 1419.53038
MR 3978249

[58] M. Lassas, M. Salo, and L. Tzou, Inverse problems and invisibility cloaking for FEM
models and resistor networks. Math. Models Methods Appl. Sci. 25 (2015), no. 2,
309–342 Zbl 1334.35430 MR 3280961

[59] J. Lu, Graph approximations to the Laplacian spectra. J. Topol. Anal. 14 (2022), no. 1,
111–145 Zbl 1494.58013 MR 4411102

[60] A. Nachman, J. Sylvester, and G. Uhlmann, An n-dimensional Borg–Levinson theorem.
Comm. Math. Phys. 115 (1988), no. 4, 595–605 Zbl 0644.35095 MR 933457

[61] R. G. Novikov, Multidimensional inverse spectral problem for the equation �� C
.v.x/ � Eu.x// D 0. Funktsional. Anal. i Prilozhen. 22 (1988), no. 4, 11–22, 96;
English transl., Funct. Anal. Appl. 22 (1988), no. 4, 263–272 Zbl 0689.35098
MR 976992

[62] L. Oksanen, Solving an inverse problem for the wave equation by using a minimiza-
tion algorithm and time-reversed measurements. Inverse Probl. Imaging 5 (2011), no. 3,
731–744 Zbl 1230.35145 MR 2825736

[63] E. Pavlechko and T. Saksala, Uniqueness of the partial travel time representation of a
compact Riemannian manifold with strictly convex boundary. Inverse Probl. Imaging 16
(2022), no. 5, 1325–1357 Zbl 1503.53080 MR 4475854

[64] P. J. Slater, Leaves of trees. In Proceedings of the Sixth Southeastern Conference on
Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla.,
1975), pp. 549–559, Congressus Numerantium, No. XIV, Utilitas Math., Winnipeg, Man.,
1975 Zbl 0316.05102 MR 0422062

[65] P. Stefanov and G. Uhlmann, Stable determination of generic simple metrics from the
hyperbolic Dirichlet-to-Neumann map. Int. Math. Res. Not. (2005), no. 17, 1047–1061
Zbl 1088.53027 MR 2145709

[66] T. Sunada, Discrete geometric analysis. In Analysis on graphs and its applications,
pp. 51–83, Proc. Sympos. Pure Math. 77, Amer. Math. Soc., Providence, RI, 2008
Zbl 1226.05001 MR 2459864

[67] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value
problem. Ann. of Math. (2) 125 (1987), no. 1, 153–169 Zbl 0625.35078 MR 873380

[68] J. Tan, On isospectral graphs. Interdiscip. Inform. Sci. 4 (1998), no. 2, 117–124
Zbl 0926.05027 MR 1664212

https://doi.org/10.4310/jdg/1542423627
https://doi.org/10.4310/jdg/1542423627
https://zbmath.org/?q=an:1415.53024
https://mathscinet.ams.org/mathscinet-getitem?mr=3880231
https://doi.org/10.1142/9789813272880_0199
https://zbmath.org/?q=an:1447.35006
https://mathscinet.ams.org/mathscinet-getitem?mr=3966550
https://doi.org/10.1215/00127094-2649534
https://doi.org/10.1215/00127094-2649534
https://zbmath.org/?q=an:1375.35634
https://mathscinet.ams.org/mathscinet-getitem?mr=3192525
https://doi.org/10.4310/AJM.2019.v23.n2.a1
https://doi.org/10.4310/AJM.2019.v23.n2.a1
https://zbmath.org/?q=an:1419.53038
https://mathscinet.ams.org/mathscinet-getitem?mr=3978249
https://doi.org/10.1142/S0218202515500116
https://doi.org/10.1142/S0218202515500116
https://zbmath.org/?q=an:1334.35430
https://mathscinet.ams.org/mathscinet-getitem?mr=3280961
https://doi.org/10.1142/S1793525320500442
https://zbmath.org/?q=an:1494.58013
https://mathscinet.ams.org/mathscinet-getitem?mr=4411102
https://doi.org/10.1007/bf01224129
https://zbmath.org/?q=an:0644.35095
https://mathscinet.ams.org/mathscinet-getitem?mr=933457
https://doi.org/10.1007/BF01077418
https://doi.org/10.1007/BF01077418
https://zbmath.org/?q=an:0689.35098
https://mathscinet.ams.org/mathscinet-getitem?mr=976992
https://doi.org/10.3934/ipi.2011.5.731
https://doi.org/10.3934/ipi.2011.5.731
https://zbmath.org/?q=an:1230.35145
https://mathscinet.ams.org/mathscinet-getitem?mr=2825736
https://doi.org/10.3934/ipi.2022028
https://doi.org/10.3934/ipi.2022028
https://zbmath.org/?q=an:1503.53080
https://mathscinet.ams.org/mathscinet-getitem?mr=4475854
https://zbmath.org/?q=an:0316.05102
https://mathscinet.ams.org/mathscinet-getitem?mr=0422062
https://doi.org/10.1155/IMRN.2005.1047
https://doi.org/10.1155/IMRN.2005.1047
https://zbmath.org/?q=an:1088.53027
https://mathscinet.ams.org/mathscinet-getitem?mr=2145709
https://doi.org/10.1090/pspum/077/2459864
https://zbmath.org/?q=an:1226.05001
https://mathscinet.ams.org/mathscinet-getitem?mr=2459864
https://doi.org/10.2307/1971291
https://doi.org/10.2307/1971291
https://zbmath.org/?q=an:0625.35078
https://mathscinet.ams.org/mathscinet-getitem?mr=873380
https://doi.org/10.4036/iis.1998.117
https://zbmath.org/?q=an:0926.05027
https://mathscinet.ams.org/mathscinet-getitem?mr=1664212


Gelfand’s inverse problem for the graph Laplacian 45

[69] D. Tataru, Unique continuation for solutions to PDE’s; between Hörmander’s theorem and
Holmgren’s theorem. Comm. Partial Differential Equations 20 (1995), no. 5-6, 855–884
Zbl 0846.35021 MR 1326909

[70] G. Uhlmann, Inverse boundary value problems for partial differential equations. In
Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998),
pp. 77–86, 1998 Zbl 0906.35111 MR 1648142

[71] V. Yurko, Inverse spectral problems for Sturm-Liouville operators on graphs. Inverse Prob-
lems 21 (2005), no. 3, 1075–1086 Zbl 1089.34009 MR 2146822

[72] V. Yurko, Inverse problems for Sturm-Liouville operators on bush-type graphs. Inverse
Problems 25 (2009), no. 10, article no. 105008 Zbl 1235.34045 MR 2545977

[73] V. A. Yurko, Inverse spectral problems for differential operators on arbitrary compact
graphs. J. Inverse Ill-Posed Probl. 18 (2010), no. 3, 245–261 Zbl 1279.34029
MR 2661454

Received 9 February 2021; revised 14 February 2023.

Emilia Blåsten
Computational Engineering, School of Engineering Science, LUT University, Lahti campus,
15210 Lahti, Finland; emilia.blasten@iki.fi

Hiroshi Isozaki
Institute of Mathematics, Graduate School of Pure and Applied Sciences,
University of Tsukuba, Tsukuba 305-8571, Japan; isozakih@math.tsukuba.ac.jp

Matti Lassas
Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland;
matti.lassas@helsinki.fi

Jinpeng Lu
Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland;
jinpeng.lu@helsinki.fi

https://doi.org/10.1080/03605309508821117
https://doi.org/10.1080/03605309508821117
https://zbmath.org/?q=an:0846.35021
https://mathscinet.ams.org/mathscinet-getitem?mr=1326909
https://doi.org/10.4171/dms/1-3/8
https://zbmath.org/?q=an:0906.35111
https://mathscinet.ams.org/mathscinet-getitem?mr=1648142
https://doi.org/10.1088/0266-5611/21/3/017
https://zbmath.org/?q=an:1089.34009
https://mathscinet.ams.org/mathscinet-getitem?mr=2146822
https://doi.org/10.1088/0266-5611/25/10/105008
https://zbmath.org/?q=an:1235.34045
https://mathscinet.ams.org/mathscinet-getitem?mr=2545977
https://doi.org/10.1515/JIIP.2010.009
https://doi.org/10.1515/JIIP.2010.009
https://zbmath.org/?q=an:1279.34029
https://mathscinet.ams.org/mathscinet-getitem?mr=2661454
mailto:emilia.blasten@iki.fi
mailto:isozakih@math.tsukuba.ac.jp
mailto:matti.lassas@helsinki.fi
mailto:jinpeng.lu@helsinki.fi

	1. Introduction
	1.1. Finite graphs
	1.2. Earlier results and related inverse problems
	1.3. Examples

	2. Preliminaries
	3. Wave equation
	4. The inverse spectral problem
	4.1. Characterization by boundary data
	4.2. Determination from spectral data

	References

