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Improved sharp spectral inequalities

for Schrödinger operators on the semi-axis

Lukas Schimmer

Abstract. We prove a Lieb–Thirring inequality for Schrödinger operators � d2

dx2 C V on the

semi-axis with Robin boundary condition at the origin. The result improves on a bound obtained

by P. Exner, A. Laptev, and M. Usman [Commun. Math. Phys. 362 (2014), 531–541] albeit

under the additional assumption V 2 L1.RC/. The main difference in our proof is that we use

the double commutation method in place of the single commutation method. We also establish

an improved inequality in the case of a Dirichlet boundary condition.

1. Introduction

In their proof of stability of matter, Lieb and Thirring [20, 21] introduced the bound

X

j �1

j�j j � L;d

Z

Rd

V.x/C d
2� dx

for the negative eigenvalues �1 � �2 � � � � � 0 of a Schrödinger operator ��C V on

L2.Rd / with real-valued potential V that decays sufficiently fast. Here and below,

a� D .jaj � a/=2 denotes the negative part of a real variable a 2 R. The bound

was proved for any  > max.0; 1 � d
2
/ and was later extended to the endpoint cases

d D 1;  D 1
2

and d D 3;  D 0 in [27] and [5, 19, 23], respectively. The sharp con-

stants L;d , which importantly do not depend on V , have been subject of intense

investigation over the last 45 years [25].

The case d D 1 and  D 3
2

has proved especially accessible to mathematical

investigations due to its connection to trace formulae. The sharp constant L 3
2

;1 D 3
16

was established even before Lieb and Thirring’s original papers by Gardner, Greene,

Kruskal, and Miura [12]. The authors considered the Buslaev–Faddeev–Zaharov trace
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formula [3, 28]

X

j �1

j�j j 3
2 C 3

�

Z

RC

k2 log ja.k/j dk D 3

16

Z

R

V.x/2 dx

for the negative eigenvalues �j of � d2

dx2 C V on L2.R/ and noted that the scattering

coefficient satisfies ja.k/j � 1. This yields the sharp inequality

X

j �1

j�j j 3
2 � 3

16

Z

R

V.x/2 dx: (1)

An extension of (1) to matrix-valued potentials by Laptev and Weidl [17] was crucial

in establishing the sharp Lieb–Thirring constants L;d for  � 3=2 in all dimensions

d � 1. Note that the trace formula also yields a bound on the integral involving the

scattering coefficient, which has proved very useful in the investigation of the absolute

continuity of the spectrum of the Schrödinger operator [8].

In this short note, we consider the Schrödinger operator

H D � d2

dx2
C V.x/

on L2.RC/ with real-valued potential and Robin boundary condition

'0.0/� �0'.0/ D 0;

where �0 2 R. If the potential V is sufficiently smooth and decays sufficiently fast, the

negative spectrum of H consists of discrete eigenvalues �1 � �2 � � � � � 0 with cor-

responding eigenfunctions 'j . While trace formulae have also been established in this

setting [10], there is no known analogue of ja.k/j � 1. Thus, Lieb–Thirring inequal-

ities have to be proved by different means and could in turn be used to shed more

light on the scattering coefficient. Our main result is the following Lieb–Thirring-type

bound.

Theorem 1.1. Let V 2L1.RC/\L2.RC/. The negative eigenvalues�j of � d2

dx2 CV

with Robin boundary condition '0.0/� �0'.0/ D 0 satisfy

X

j �1

j�j j 3
2 C 1

4

X

j �1

.�3
j � �3

j �1/ � 3

16

1
Z

0

V.x/2 dx C 3

4

X

j �1

j�j j.�j � �j �1/

where

�j D �j �1 C j'j .0/j2
k'j k2

; j D 1; 2; : : :

and 'j denotes the eigenfunction to �j .
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Remark 1.2. From the proof, it is clear that the bound also holds if each of the three

sums only extends to j �N for some cutoffN � 1 (with additional terms replaced by

0 if there are fewer than N negative eigenvalues). All four quantities in the inequality

above are then non-negative and non-decreasing in N . Thus, the two sides of the

inequality are also well defined in the case of infinitely many negative eigenvalues,

though the theorem does not make any assertion about the finiteness of the two series

involving �j . However, the difference of the fourth and second term is always bounded

from above. Some explicit upper bounds that could be useful in applications will be

discussed in Section 4. Note that finiteness of the discrete spectrum holds for example

if
R 1

0 .1C x/jV.x/j dx < 1 and in particular if V 2 C
1
0 .Œ0;1//.

In the special case of a Dirichlet boundary condition, we obtain the following.

Theorem 1.3. Let V 2L1.RC/\L2.RC/. The negative eigenvalues�j of � d2

dx2 CV

with Dirichlet boundary condition '.0/ D 0 satisfy

X

j �1

j�j j 3
2 � 3

16

1
Z

0

V.x/2 dx � 3

4

X

j �1

j'0
j .0/j2

k'j k2
;

where 'j denotes the eigenfunction to �j .

Remark 1.4. From the proof, it is again clear that the bound also holds if each of the

two sums only extends to j � N for some cutoffN � 1. Both sums are non-negative

and non-decreasing in N . Letting N ! 1, we can conclude that under the assump-

tions of the theorem the two series are both finite, even in the case of infinitely many

eigenvalues.

Note that the inequality of Theorem 1.3 without the negative last term can be

obtained from the whole line result (1). The inequality of Theorem 1.1 should be

compared to the following result by Exner, Laptev, and Usman [11] which was estab-

lished in the same setting but without the assumption V 2 L1.RC/.

Theorem 1.5 ([11, Theorem 1.1]). Let V 2L2.RC/;V � 0. The negative eigenvalues

�j of � d2

dx2 C V with Robin boundary condition '0.0/� �0'.0/ D 0 satisfy

1

2
j�1j 3

2 C
X

j �2

j�j j 3
2 � 3

16

1
Z

0

V.x/2 dx � 3

4
j�1j�0 C 1

4
�3

0 :

Theorem 1.5 shows that, compared to the whole line case (1), the boundary con-

dition at zero leads to a change in the term corresponding to �1 in the Lieb–Thirring

bound. Our result in Theorem 1.1 aims to further elaborate on the influence of the

boundary condition. In Section 4 we will show that the additional terms in The-

orem 1.1 strengthen the inequality. In particular, Theorem 1.5 can be obtained from
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our result. While the inequality in Theorem 1.1 may be difficult to use in applications

due to the necessary knowledge of �j (and thus of j'j .0/j=k'j k) for j � 1, we will

show in Section 4 how in some cases the bound can be weakened to a form that does

not require this information. Some of these results cannot be obtained directly from

Theorem 1.5. Before we prove the main result, it is worth pointing out the differences

in our proof method compared to the existing literature.

For d D 1, the so-called commutation method has proved valuable in establish-

ing sharp Lieb–Thirring inequalities. This method goes back to the idea of inserting

eigenvalues into the spectrum of differential operators and was first discussed by

Jacobi [16], Darboux [7], and Crum [4]. A rigorous characterisation can be found

in [9, 13, 14]. For the purpose of proving Lieb–Thirring inequalities, the method is

reversed and eigenvalues are successively removed from the spectrum, starting with

the lowest, �1. To this end, one constructs a first-order differential operator D that

factorises the original Schrödinger operator as � d2

dx2 C V D DD� C �1. Commuting

D and D� leads to a new operator � d2

dx2 C V1 D D�D C �1, which has the same

spectrum as the original operator with the exception of the eigenvalue �1. In order to

obtain a spectral inequality, it is necessary to establish a connection between integ-

rals of powers of the potentials V and V1 (such as
R

V 2 dx), and the eigenvalue �1.

Assuming that there are only finitely many negative eigenvalues�1; : : : ;�N , repetition

of this process removes all of these eigenvalues from the spectrum and one eventually

obtains an identity that links �1; : : : ; �N to integrals of V and some potential VN that

corresponds to a Schrödinger operator without negative eigenvalues. If this last term

has a definite sign, an inequality can be obtained.

In the case of a Schrödinger operator on the real line, the commutation method

was first used by Schmincke [26] to prove the lower bound

X

j �1

j�j j 1
2 � �1

4

Z

R

V.x/ dx: (2)

Subsequently, it has been applied to provide a new, direct proof of (1) in the case

of matrix-valued potentials [1] (as first established by Laptev and Weidl [17]) and

to prove similar inequalities for fourth-order differential operators [15] and Jacobi

operators [24]. In a slight variation, this proof method has also been used to estab-

lish Theorem 1.5. Here, after removing the first eigenvalue, one obtains a Schrödinger

operator with Dirichlet boundary condition at zero. The Lieb–Thirring inequality is

then proved by continuing the problem to the whole line and applying (1). Our The-

orem 1.3 shows that such an approach cannot yield a sharp inequality if the potential

supports more than one eigenvalue (under the additional condition V 2 L1.RC/).
Recently, the same variation of the commutation method has been applied to fourth-

order operators on the semi-axis [6].
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In all of theses results, the applied method is more precisely known as the single

commutation method. In comparison, the so-called double commutation method [13,

14] involves an additional step where after commuting D; D� the resulting oper-

ator is again factorised using a new first-order operator D such that � d2

dx2 C V1 D
D�DC �1 DD�

D C �1. Applying a second commutation, one obtains yet another

Schrödinger operator � d2

dx2 C V;1 D DD
�
 C �1 that has the same spectrum as the

original operator with the exception of the eigenvalue �1. This method has several

advantages compared to the single commutation method. For example, it allows to

remove eigenvalues in arbitrary order, as it does not require the corresponding eigen-

function to have no zeros. In our case, its main advantage is that after the first step, we

do not obtain a Schrödinger operator with Dirichlet boundary condition, but rather

one with a new Robin boundary condition. This leads to the additional terms in

Theorem 1.1 compared to Theorem 1.5. To the best of our knowledge, the double

commutation method has not been used previously in the context of Lieb–Thirring

inequalities. In [2], the closely related Gelfand–Levitan method [18] was applied in

the same setting as in this note to obtain the lower bound

X

j �1

j�j j 1
2 � �1

4

Z

R

V.x/ dx � 1

4
�0 C 1

4

X

j �1

j'j .0/j2
k'j k2

for the operator � d2

dx2 C V on L2.RC/ with Robin boundary condition. This result

shows that the boundary condition at the origin influences Schmincke’s inequality (2)

in a similar way as it influences the Lieb–Thirring inequality (1) in Theorem 1.1.

In Section 2 we will introduce the double commutation method in more detail and

subsequently we will use it in Section 3 to prove Theorem 1.1 and Theorem 1.3.

2. The double commutation method

For brevity, we restrict ourselves to the case at hand, i.e., a Schrödinger operator

H D � d2

dx2 C V on L2.RC/ with Robin boundary condition '0.0/� �'.0/ D 0. For

comparison, we first state the single commutation method, details of which can be

found in [9].

Theorem 2.1. Let ' be an eigenfunction of H D � d2

dx2 C V to the lowest eigen-

value �. Then, the operatorH� D � d2

dx2 C V� with potential

V�.x/ D V.x/� 2
d2

dx2
log'.x/

and with Dirichlet boundary condition

'.0/ D 0

has spectrum �.H�/ D �.H/ n ¹�º.
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Remark 2.2. As discussed in the introduction, the result is the consequence of the

factorisation H D DD� C � and H� D D�D C �, where, more precisely,

D D d

dx
C '0

'
:

The spectral characterisation of the double commutation method was first achieved

in [13] for Schrödinger operators on L2.R/ as well as on L2.RC/ with Dirichlet

boundary condition at the origin. The results were extended to Sturm–Liouville oper-

ators on arbitrary intervals with Robin boundary conditions in [14], from where we

take the following result [14, Theorem 3.2] (see also [14, Remark 3.3 (i)]).

Theorem 2.3. Let ' be an eigenfunction of H D � d2

dx2 C V with eigenvalue � and

let  D �1=k'k2. Then, the operatorH� D � d2

dx2 C V� with potential

V�.x/ D V.x/ � 2 d2

dx2
log

�

1C 

x
Z

0

j'.t/j2 dt

�

and with Robin boundary condition

 0.0/� �� .0/ D 0; �� D � C j'.0/j2
k'k2

has point spectrum �p.H�/ D �p.H/ n ¹�º. Furthermore,  is an eigenfunction of

H with eigenvalue � ¤ � if and only if

 �.x/ D  .x/ �  Q'.x/
x

Z

0

 .t/'.t/ dt

is an eigenfunction of H� with eigenvalue � ¤ � where the function Q' is defined as

Q'.x/ D '.x/

1C 
R x

0 j'.t/j2 dt
:

Remark 2.4. In the notation of [14], the boundary condition of H� is given by

the vanishing Wronskian  .0/'0.0/ �  0.0/'.0/ D 0, which can easily be reduced

to the one given above. As mentioned in the introduction, the double commutation

method relies on a second factorisation D�D C � D D�
D C �, where more pre-

cisely D D d
dx

C Q'0

Q' .

3. The proofs of Theorem 1.1 and Theorem 1.3

In many cases, proofs of Lieb–Thirring inequalities initially restrict to compactly

supported potential V and then use an approximation argument to extend the res-

ult to more general V 2 LCd=2.Rd/. Since the bound in Theorem 1.1 contains
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the terms �j , in our case such an approximation argument would necessarily have

to establish the continuous dependence of the eigenfunctions on the potential in terms

of the norm on L2.RC/. To avoid this argument altogether, our proof will not restrict

to compactly supported potentials. Establishing the required asymptotic behaviour of

eigenfunctions is then more technical and relies on the additional assumption V 2
L1.RC/. This assumption is also necessary in the proof of the corresponding trace

formula [10]. We do not know whether Theorem 1.1 holds true without it.

3.1. The proof of Theorem 1.1

Let '1 now be the eigenfunction for the eigenvalue �1 and let 1 D �1=k'1k2. As a

ground state, '1 does not vanish anywhere (see, e.g., [11] for a proof in this setting).

It can thus be chosen to be strictly positive. Note that the behaviour of '1 at the origin

is characterised by the boundary condition

'0
1.0/� �0'1.0/ D 0: (3)

For large x, the asymptotic behaviour

lim
x!1

'1.x/e
p

j�1jx D C1; lim
x!1

'0
1.x/e

p
j�1jx D �C1

p

j�1j (4)

holds with some C1 > 0. This is a consequence of the additional assumption V 2
L1.RC/ (see, e.g., [2, Lemma 1] which uses [22, Theorem 8, Section 22]).

By Theorem 2.3, the operatorH1 D � d2

dx2 C V1 with potential

V1.x/ D V.x/ � 2 d2

dx2
log

�

1C 1

x
Z

0

j'1.t/j2 dt

�

and Robin boundary condition

'0.0/� �1'.0/ D 0; �1 D �0 C j'1.0/j2
k'1k2

has only the negative eigenvalues �2 � �3 � � � � � 0. The potential can be written as

V1 D V � 2G0 with

G.x/ D 1'1.x/
2

1C 1

R x

0 j'1.t/j2 dt

which can be further decomposed into G D F � zF with

F.x/ D '0
1.x/

'1.x/
; zF.x/ D Q'0

1.x/

Q'1.x/



L. Schimmer 54

and

Q'1.x/ D '1.x/

1C 1

R x

0 j'1.t/j2 dt
:

Lemma 3.1. The functions F and zF solve the first-order differential equations

F 2 C F 0 D V � �1; zF 2 � zF 0 C 2F 0 D V � �1

with boundary conditions

F.0/D �0; zF.0/D �1;

lim
x!1

F.x/D �
p

j�1j; lim
x!1

zF.x/D
p

j�1j:

Proof. The differential equation for F can be found in several applications of the

single commutation method. It is an immediate consequence of the eigenequation

for '1

F.x/2 C F 0.x/ D '0
1.x/

2 C '00
1 .x/� '0

1.x/
2

'1.x/2
D V.x/ � �1:

The boundary conditions follow from (3) and (4). For zF , we compute that

zF.x/2 � zF 0.x/ D F.x/2 � F 0.x/CG0.x/� 2F.x/G.x/CG.x/2

and the differential equation can be proved by verifying that G0.x/ � 2F.x/G.x/C
G.x/2 D 0. The boundary condition at the origin is a consequence of (3) while for

x ! 1 we use (4) and de l’Hôpital’s rule to compute

lim
x!1

zF.x/ D lim
x!1

�'0
1.x/

'1.x/
� 1j'1.x/j2

1C 1

R x

0 j'1.t/j2 dt

�

D �
p

j�1j � lim
x!1

2'1.x/'
0
1.x/

'1.x/2
D

p

j�1j:

We first note that

1
Z

0

V1.x/
2 dx D

1
Z

0

V.x/2 dx C 4

1
Z

0

G0.x/
�

G0.x/� V.x/
�

dx:

The last term on the right-hand side can be computed explicitly by using Lemma 3.1:

1
Z

0

G0.x/
�

G0.x/ � V.x/
�

dx
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D
1

Z

0

F 0.x/
�

F 0.x/� V.x/
�

dx �
1

Z

0

zF 0.x/
�

2F 0.x/ � zF 0.x/� V.x/
�

dx

D �
1

Z

0

F 0.x/
�

�1 C F.x/2
�

dx C
1

Z

0

zF 0.x/
�

�1 C zF.x/2
�

dx

D
h

j�1jF.x/ � 1

3
F.x/3 � j�1j zF.x/C 1

3
zF.x/3

ixD1

xD0

D �4
3

j�1j 3
2 C j�1j.�1 � �0/ � 1

3
.�3

1 � �3
0 /:

Thus, we arrive at

1
Z

0

V1.x/
2 dx D �16

3
j�1j 3

2 C 4j�1j.�1 � �0/ � 4

3
.�3

1 � �3
0 /C

1
Z

0

V.x/2 dx:

We aim to repeat the process and thus check whether V1 satisfies the assumptions

of Theorem 1.1. The identity above shows that V1 2 L2.RC/. In [2, Lemma 2], it

is stated that V1 2 L1.RC/, arguing that jG0j 2 L1.RC/ since G0.x/ � 0 for suffi-

ciently large x. The latter is claimed to be a consequence of the asymptotics of '1.

Unfortunately, we could not fill in all of the details of the argument. In particular,

we could not rule out that G0 oscillates as x ! 1. We instead present an argument

that avoids investigating the integrability of V1 altogether. In the computations above,

the property V 2 L1.RC/ was only used to prove the asymptotic behaviour of the

ground state '1 ofH . More generally, the condition V 2 L1.RC/ guarantees that the

eigenfunctions 'j of H satisfy

lim
x!1

'j .x/e
p

j�j jx D Cj ; lim
x!1

'0
j .x/e

p
j�j jx D �Cj

q

j�j j

with Cj ¤ 0. These results already imply similar asymptotics for the eigenfunctions

 j of H1 without the need to establish V1 2 L1.RC/. To this end, we note that, by

Theorem 2.3,

 j .x/ D 'j C1.x/C 1 Q'1.x/

1
Z

x

'j C1.t/'1.t/ dt: (5)

Using de l’Hôpital’s rule, it is straightforward to compute the three limits

lim
x!1

Q'1.x/e
�

p
j�1jx D � 2

C11

p

j�1j;

lim
x!1

Q'0
1.x/e

�
p

j�1jx D � 2

C11

j�1j;
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lim
x!1

1
Z

x

'j C1.t/'1.t/ dt e
p

j�1jxe
p

j�j C1jx D C1Cj C1
p

j�1j C
p

j�j C1j
:

From (5), we then obtain the desired asymptotics

lim
x!1

 j .x/e
p

j�j jx D Dj ; lim
x!1

 0
j .x/e

p
j�j jx D �Dj

q

j�j j

with Dj D Cj C1.
p

j�j C1j �
p

j�1j/=.
p

j�j C1j C
p

j�1j/ ¤ 0.

We can thus repeat the process forH1 and remove �2 from its spectrum. While the

eigenfunctions of H1 are different to those of H , the relevant quantities in the defin-

ition of �2 importantly do not differ. More precisely, (5) allows us to conclude that

 1.0/ D '2.0/ and furthermore that k 1k2 D k'2k2, as shown in [14, Lemma 2.1].

Thus, �2 can be written as �2 D �1 C j 1.0/j2=k 1k2 D �1 C j'2.0/j2=k'2k2.

We can continue in this manner, noting that in each application of the double

commutation method, the desired eigenfunction asymptotics inductively hold true.

This yields the identity

1
Z

0

VN .x/
2 dx

D �16
3

N
X

j D1

j�j j 3
2 C 4

N
X

j D1

j�j j.�j � �j �1/ � 4

3
.�3

N � �3
0 /C

1
Z

0

V.x/2 dx

after N steps. Since the left-hand side is non-negative, we obtain the inequality

N
X

j D1

j�j j 3
2 C 1

4

N
X

j D1

.�3
j � �3

j �1/ � 3

16

1
Z

0

V.x/2 dx C 3

4

N
X

j D1

j�j j.�j � �j �1/:

If the number of negative eigenvalues is finite, this is already the desired bound. In the

case of infinitely many eigenvalues, we can let N ! 1 as all four terms are positive

and non-decreasing in N .

3.2. The proof of Theorem 1.3

We start with the following observation.

Remark 3.2. We recall that F and zF in Lemma 3.1 were well defined, since under

the assumptions of Theorem 1.1 the ground state '1 does not have any zeros. This

fact was subsequently also used in the proof of the lemma. Note, however, that the

decomposition G D F � zF was only necessary in order to evoke similarities to the
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single commutation method and to simplify the computations. It can also be checked

directly that the identity

G0.x/
�

G0.x/ � V.x/
�

D d

dx

�

j�1jG.x/�
1'

0
1.x/

2ˆ1.x/
2 � 2

1'
0
1.x/'1.x/

3ˆ1.x/C 1
3
3

1'1.x/
6

ˆ1.x/3

�

holds, where ˆ1.x/ D 1 C 1

R x

0
j'1.t/j2 dt . Here, all involved quantities are well

defined even if '1 has zeros. This shows that the double commutation method does

not require us to remove the eigenvalues in increasing order. Furthermore, in a more

general setting, the double commutation method could be used to remove eigenvalues

in gaps of the essential spectrum other than the lowest one.

The above remark shows that we can apply the double commutation method to

the Schrödinger operator � d2

dx2 C V on L2.RC/ with Dirichlet boundary condition at

the origin. After the initial step, the operator H1 D � d2

dx2 C V1 is characterised (see

Remark 2.4) by the vanishing Wronskian .0/'0
1.0/� 0.0/'1.0/D 0which reduces

to  .0/ D 0. Following the procedure above, we obtain the identity

1
Z

0

V1.x/
2 dx D �16

3
j�1j 3

2 � 4
j'0

1.0/j2
k'1k2

C
1

Z

0

V.x/2 dx:

From (5), we see that  0
1.0/ D '0

2.0/. We can then continue removing eigenvalues

from the spectrum. Repeating the process for altogetherN steps and using again that
R 1

0 VN .x/
2 dx � 0 we obtain

N
X

j D1

j�1j 3
2 C 3

4

N
X

j D1

j'0
j .0/j2

k'j k2
� 3

16

1
Z

0

V.x/2 dx:

This finishes the proof if the operator has only finitely many eigenvalues. The general

case follows from takingN ! 1 and noting that all three terms are non-negative and

non-decreasing in N .

4. Comparison and simplifications

4.1. Comparison to Theorem 1.5

Under the assumptions of Theorem 1.1 and if V � 0, the presented inequality is

stronger than the result of Theorem 1.5. To this end, we note that, by definition,



L. Schimmer 58

�j � �j �1 � 0 as well as j�j j � j�1j, and thus, for any N � 1,

3

4

N
X

j D1

j�j j.�j � �j �1/C 1

4
.�3

0 � �3
N / � 3

4
j�1j.�N � �0/C 1

4
.�3

0 � �3
N /: (6)

If �0 � 0, then also �N � 0 and by Young’s inequality

3

4
j�1j�N � 1

2
j�1j 3

2 C 1

4
�3

N : (7)

If �0 < 0, then the inequality still holds true. To this end, we note that by the min–max

principle j�1j � �2
0 since V � 0 and since the operator without potential has a single

negative eigenvalue ��2
0 . Thus, .2j�1j 1

2 C �N / � 0 and from the identity

3

4
j�1j�N D 1

2
j�1j 3

2 C 1

4
�3

N � 1

4
.j�1j 1

2 � �N /
2.2j�1j 1

2 C �N / (8)

we again obtain (7). Inserting (7) into (6) establishes that the inequality in The-

orem 1.1 implies the inequality in Theorem 1.5 if V 2L1.RC/\L2.RC/;V � 0. The

assumptions in the latter can then be relaxed to V 2 L2.RC/; V � 0 by the standard

approximation arguments.

We will provide an explicit example where the former inequality becomes an

equality, while the latter remains a strict inequality. To this end, we apply the double

commutation method to insert a single eigenvalue into the spectrum of the free Schrö-

dinger operator � d2

dx2 with Neumann boundary condition '0.0/D 0. For fixed ! 2 R,

we consider '.x/ D cosh.!x/, which satisfies �'00 D �!2' as well as '0.0/ D 0.

Note that, in contrast to the assumptions in Theorem 2.3, the function ' is not an

element of L2.RC/. Furthermore, we choose  > 0. From [14, Theorem 3.2], we can

conclude that the operator � d2

dx2 C V with potential

V.x/ D �2 d

dx

�  cosh2.!x/

1C 
R x

0 cosh2.!t/ dt

�

and Robin boundary condition '0.0/ C '.0/ D 0 has a single negative eigenvalue

�!2. By construction (or by direct computation), the inequality of Theorem 1.1 is

found to be an equality in this case. In particular,

3

16

1
Z

0

V.x/2 dx D 1

4
3 � 3

4
!2 C !3:

The inequality of Theorem 1.5, on the other hand, reduces to !3

2
� !3, which shows

that for this example, the factor of 1
2

in front of the lowest eigenvalue is not necessary.
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Both inequalities are sharp for the free operator � d2

dx2 with boundary condition

'0.0/� �0'.0/D 0, which for �0 < 0 has a single negative eigenvalue ��2
0 with nor-

malised eigenfunction '1.x/ D
p

�2�0e�0x . Under the assumptions of Theorem 1.1,

the inequality of Theorem 1.5 cannot be an identity for potentials V 2 L1.RC/ \
L2.RC/ with more than one eigenvalue, since the bound was proved by applying (1)

to the Dirichlet problem obtained after the initial step of the single commutation

method. By Theorem 1.3, this yields a strict inequality.

4.2. Some simplifications in special cases

In some cases, the bound in Theorem 1.1 can be simplified such that it does not depend

on the (often unknown) quantities �j for j � 1.

If �0 � 0, then Young’s inequality allows us to conclude that

3

4
j�1j.�N � �0/C 1

4
.�3

0 � �3
N / � 1

2
j�1j 3

2 C 1

4
.�N � �0/

3 C 1

4
.�3

0 � �3
N /

D 1

2
j�1j 3

2 � 3

4
�0�N .�N � �0/ � 1

2
j�1j 3

2 :

From (6), we thus obtain that Theorem 1.1 implies

1

2
j�1j 3

2 C
X

j �2

j�j j 3
2 � 3

16

1
Z

0

V.x/2 dx:

While this result cannot be read off directly from the bound in Theorem 1.5, we note

that it can be alternatively obtained by first applying the min-max principle and sub-

sequently using Theorem 1.5 in the special case of a Neumann boundary condition

�0 D 0.

More can be said if one can establish that �0 � j�1j1=2. In this case,

.j�1j1=2 � �N /
2 � .j�1j1=2 � �0/

2;

and thus (8) shows

3

4
j�1j�N � 1

2
j�1j 3

2 C 1

4
�3

N � 1

4
.j�1j 1

2 � �0/
2.2j�1j 1

2 C �0/

D 3

4
j�1j�0 � 1

4
�3

0 C 1

4
�3

N :

As a consequence,

3

4
j�1j.�N � �0/C 1

4
.�3

0 � �3
N / � 0
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and thus, on account of (6), we obtain

X

j �1

j�j j 3
2 � 3

16

1
Z

0

V.x/2 dx

from Theorem 1.1. We observe that, in this special case, the Lieb–Thirring bound

holds without any additional terms. It is not possible to obtain this result from The-

orem 1.5 as the additional term in the inequality has the opposite sign, i.e.,

1

2
j�1j 3

2 � 3

4
j�1j�0 C 1

4
�3

0 � 0

by Young’s inequality.

Lastly, if �0 � 0 and V � 0 then Young’s inequality implies

�3
4

j�1j 1
2 �0 � 1

2
j�1j 3

2 � 1

4
�3

0

and together with (7) and (6) we conclude that Theorem 1.1 implies

X

j �2

j�j j 3
2 � 3

16

1
Z

0

V.x/2 dx:

This result also follows from Theorem 1.5 by the same argument.
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Izv. Vysš. Učebn. Zaved. Matematika (1976), no. 1(164), 75–86 Zbl 0342.35045

MR 0430557

[24] L. Schimmer, Spectral inequalities for Jacobi operators and related sharp Lieb–Thirring

inequalities on the continuum. Comm. Math. Phys. 334 (2015), no. 1, 473–505

Zbl 1317.35155 MR 3304283

[25] L. Schimmer, The state of the Lieb–Thirring conjecture. In The physics and mathematics

of Elliott Lieb. Vol. II, pp. 253–275, EMS Press, Berlin, 2022 Zbl 1500.81037

MR 4531363

[26] U.-W. Schmincke, On Schrödinger’s factorization method for Sturm–Liouville operators.

Proc. Roy. Soc. Edinburgh Sect. A 80 (1978), no. 1–2, 67–84 Zbl 0395.47022

MR 529570

[27] T. Weidl, On the Lieb-Thirring constants L;1 for  � 1=2. Comm. Math. Phys. 178

(1996), no. 1, 135–146 Zbl 0858.34075 MR 1387945

[28] V. E. Zaharov and L. D. Faddeev, The Korteweg–de Vries equation is a fully integrable

Hamiltonian system. Funkcional. Anal. i Priložen. 5 (1971), no. 4, 18–27; English transl.,

Funct. Anal. Appl. 5 (1972), 280–287 Zbl 0257.35074 MR 0303132

Received 7 October 2020; revised 21 March 2022.

Lukas Schimmer

Department of Mathematical Sciences, Loughborough University, Loughborough,

Leicestershire LE11 3TU, UK; l.schimmer@lboro.ac.uk

https://zbmath.org/?q=an:0342.35044
https://zbmath.org/?q=an:0227.34020
https://mathscinet.ams.org/mathscinet-getitem?mr=0216050
https://zbmath.org/?q=an:0342.35045
https://mathscinet.ams.org/mathscinet-getitem?mr=0430557
https://zbmath.org/?q=an:1317.35155
https://mathscinet.ams.org/mathscinet-getitem?mr=3304283
https://zbmath.org/?q=an:1500.81037
https://mathscinet.ams.org/mathscinet-getitem?mr=4531363
https://zbmath.org/?q=an:0395.47022
https://mathscinet.ams.org/mathscinet-getitem?mr=529570
https://zbmath.org/?q=an:0858.34075
https://mathscinet.ams.org/mathscinet-getitem?mr=1387945
https://zbmath.org/?q=an:0257.35074
https://mathscinet.ams.org/mathscinet-getitem?mr=0303132
mailto:l.schimmer@lboro.ac.uk

	1. Introduction
	2. The double commutation method
	3. The proofs of Theorem 1.1 and Theorem 1.3
	3.1. The proof of Theorem 1.1
	3.2. The proof of Theorem 1.3

	4. Comparison and simplifications
	4.1. Comparison to Theorem 1.5
	4.2. Some simplifications in special cases

	References

