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Spectral characteristics of Schrödinger operators

generated by product systems

David Damanik, Jake Fillman, and Philipp Gohlke

Abstract. Motivated by the question of what spectral properties of dynamically defined Schrö-

dinger operators may be preserved under periodic perturbations, we study ergodic Schrödinger

operators defined over product dynamical systems in which one factor is periodic and the other

factor is either a subshift over a finite alphabet or an irrational rotation of the circle. The scenario

given by a periodic background potential corresponds to a separable structure in which the

sampling function is the sum of two pieces, each of which depends only on a single factor of

the product system. However, in each case that we study, our methods apply more generally to

sampling functions that allow non-trivial dependencies between the product factors.

In the case in which one factor is a Boshernitzan subshift, we prove that either the resulting

operators are periodic or the resulting spectra must be Cantor sets. The main ingredient is a

suitable stability result for the Boshernitzan condition under taking products. We also discuss

the stability of purely singular continuous spectrum, which, given the zero-measure spectrum

result, amounts to stability results for eigenvalue exclusion. In particular, we examine situations

in which the existing criteria for the exclusion of eigenvalues are stable under periodic pertur-

bations. As a highlight of this, we show that any simple Toeplitz subshift over a binary alphabet

exhibits uniform absence of eigenvalues on the hull for any periodic perturbation whose period

is commensurate with the coding sequence. This is new, even in the case in which the periodic

background vanishes entirely. In the case of a full shift, we give an effective criterion to com-

pute exactly the spectrum of a random Anderson model perturbed by a potential of period two,

and we further show that the naive generalization of this criterion does not hold for period three.

Next, we consider quasi-periodic potentials with potentials generated by trigonometric polyno-

mials with periodic background. We show that the quasiperiodic cocycle induced by passing

to blocks of period length is subcritical when the coupling constant is small and supercritical

when the coupling constant is large. Thus, the spectral type is absolutely continuous for small

coupling and pure point (for a.e. frequency and phase) when the coupling is large.
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1. Introduction

1.1. Setting and motivation

We study Schrödinger operators in `2.Z/, that is, operators of the form

HV D �C V; (1.1.1)

where the potential V W Z ! R is bounded. There has been extensive work done for

such operators; the reader may use [18, 21–23, 50, 63, 72] and references therein as

guides to the literature. In this paper we are interested in questions that lead one to the

consideration of products of dynamical systems.

Let us explain how these product systems arise naturally. In many applications of

interest, the potential V is given by the sum of two terms,

H D �C V D �C V1 C V2: (1.1.2)

For instance, one may consider the situation in which V1 is random and V2 is periodic,

which supplies a model of a crystal with random impurities; compare [1,17,44,56–59,

70, 75] for a partial list of papers studying this model. Another class of examples in

the closely related continuum setting is given by sums of two periodic potentials with

incommensurate frequencies, which provide the simplest examples of quasi-periodic

potentials; compare [39, 42, 71] for an incomplete list. This is but a partial list of

potential settings; other recent papers consider more general additive perturbations of

random [15, 25] and quasiperiodic [77] potentials.

In both examples mentioned in the previous paragraph, the two summands have

additional structure – they are dynamically defined, in the sense that they are obtained

by sampling along the orbit of a dynamical system (discrete-time in the first example

and continuous-time in the second example).

Thus, we will be interested in the case where V1; V2 take the following form,

Vj .n/ D Vj;x.j /.n/ D fj .S
n
j x

.j //; j D 1; 2; n 2 Z; (1.1.3)
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where x.j / 2 Xj , a compact metric space, Sj W Xj ! Xj is a homeomorphism, and

fj W Xj ! R is continuous. Indeed, in the random case (j D 1), one may take X1

to be a suitable sequence space, S1 the left shift thereupon, and f1 evaluation at the

origin, and in the periodic case (j D 2), we may take X2 D Zp where p is the period

of V2, S2x
.2/ D x.2/ C 1mod p, and f2.x

.2// D V2. Qx.2//, where Qx.2/ denotes any

representative of the residue class x.2/.

Clearly, then, V D V1 C V2 admits a description in terms of the product system

� D X1 � X2, T D S1 � S2. In particular,

V.n/ D V!.n/ D f .T n!/; (1.1.4)

where ! D .x.1/; x.2// and

f .x.1/; x.2// D f1.x
.1//C f2.x

.2//: (1.1.5)

On one hand, the choice of sampling function as in (1.1.5) is completely natural

given the motivating scenario (a potential given by a sum of a dynamically defined

potential and periodic background potential). On the other hand, as soon as one con-

textualizes the problem with product systems, it becomes natural to consider more

general functions f 2 C.�/ that allow for more significant interactions between the

factors. For instance, one may also consider sampling functions of the form

f .x.1/; x.2// D f1.x
.1// � f2.x

.2//; (1.1.6)

which corresponds to a periodic multiplicative modulation of a given potential. In

general, it is more difficult to study periodic multiplicative perturbations than peri-

odic additive perturbations. However, this is a natural outcome of our framework. One

instance of such periodic multiplicative modifications comes from the trimmed Ander-
son model, which corresponds to choosing f as in (1.1.6) with f2.k/D ık mod p;0; see

[37, 38, 55, 68] and references therein.

To keep the length and complexity of the introduction in check, we formulate

results in the two specific settings mentioned above, but emphasize that each of these

results will be deduced as a consequence of a more general statement that allows

one to consider quite general functions on the product space(s) that do not need any

separable structure.

1.2. Main results

We begin the general study of product systems by looking in detail at three particular

instances of the general problem. In each instance, one of the factors will be chosen

to be a finite shift on a cyclic space. We then consider results when the other fac-

tor is a minimal aperiodic subshift satisfying the Boshernitzan criterion, a Bernoulli
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shift, or an irrational rotation of the circle. Let us mention that the three settings we

consider allow us to study periodic decorations of the Fibonacci Hamiltonian, the

Bernoulli Anderson model, and the almost-Mathieu operator, which are the three of

the most heavily-studied families of ergodic one-dimensional Schrödinger operators.

As a byproduct of this approach, we will obtain information about potentials gener-

ated by adding a periodic background to a model that is understood. As noted above,

this scenario corresponds to sampling functions that are separable as in (1.1.5); how-

ever, in each of the three instances, we are able to prove results that cover a larger

class of continuous functions on the product space.

Although we investigate product systems in which one factor is a shift on a cyclic

group, we emphasize that there are other natural choices for factors generating product

systems of interest in mathematical physics that we hope will be addressed in future

work.

In the first case, we consider subshifts satisfying the Boshernitzan condition and

full shifts over finite alphabets. A subshift over a finite alphabet A is a compact,

shift-invariant subset X � A
Z. Here, A is given the discrete topology, and the shift

S W X ! X is given by ŒSx�n D xnC1. If X is minimal, it is said to satisfy the Bosher-
nitzan condition if there exists an S -invariant probability measure � on X with the

property that

lim sup
n!1

n � min¹�¹x 2 XW x0 : : : xn�1 D uºW u 2 Ln.X/º > 0; (1.2.1)

where Ln.X/ denotes the set of all words of length n that occur in sequences in X.

Motivated by our discussion above, we prove that zero-measure Cantor spectrum

is stable under periodic perturbations for potentials of Boshernitzan type. Given a

subshift .X; S/ and a function f1W X ! R, the potential Vx is given by

Vx.n/ D f1.S
nx/; (1.2.2)

and the associated Schrödinger operator is denoted by Hx . We say that f1 is locally
constant if

f1.x/ D g.xnxnC1 : : : xnCk�1/ (1.2.3)

for some n 2 Z, k 2 N, and gW Ak ! R.

Theorem 1.2.1. Suppose .X; S/ is a minimal subshift satisfying the Boshernitzan
condition, f1W X ! R is locally constant, and Vper is periodic. One has the following
dichotomy: either Vx defined in (1.2.2) is periodic for all x 2 X or, for every x 2 X,
�.Hx C Vper/ is a Cantor set of zero Lebesgue measure.

As discussed before, we will see later on that one can deduce Cantor spectrum in

a more general setting than the one proposed in Theorem 1.2.1. We refer the reader to

Section 3 for details, but let us highlight one other outcome of the approach.
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Theorem 1.2.2. Suppose .X; S/ is a minimal subshift satisfying the Boshernitzan
condition, f1W X ! R is locally constant, and �perW Z ! R is periodic. One has the
following dichotomy: for each x 2 X, either �perVx with Vx defined in (1.2.2) is peri-
odic or �.�C �perVx/ is a Cantor set of zero Lebesgue measure.

Notice that there is a slight difference between Theorems 1.2.1 and 1.2.2 with

regard to their dependence on x 2 X. Namely, in Theorem 1.2.1, the dichotomy is cho-

sen globally, while the dichotomy in Theorem 1.2.2 holds for each individual x 2 X.

Moreover, one cannot avoid this distinction; there exist aperiodic subshifts X and

periodic sequences �per such that �perVx is periodic for some but not all x 2 X (see

Remark 3.1.13).

As soon as the spectrum is a Cantor set of zero Lebesgue measure, the spectral

type of H! is necessarily purely singular. Based on known results, it is then natural

to ask whether it is purely singular continuous, that is, whether the spectral mea-

sures lack point masses. In order to show that the spectral type is purely continuous,

one must exclude eigenvalues for the operators H! , which is in general a delicate

endeavor. We discuss results related to the absence of point spectrum in Section 3.2.

Let us highlight one of the results from that section. In the setting of ergodic

operators, one often looks for results excluding point spectrum for a.e. realization with

respect to an ergodic measure. However, one is sometimes able to exclude eigenvalues

uniformly (that is, for every ! 2 �, not just a.e. !). In general, it is somewhat rare

to have a model in which one can prove uniform absence of eigenvalues. We expand

the list of known examples in Section 3.2 to include periodic perturbations of simple

Toeplitz subshifts for which the period is commensurate with the coding sequence

and the sampling function only depends on a single entry of x 2 X (see Section 3.2

for definitions of Toeplitz subshifts and coding sequences). To formulate the next

result, we use the following definition: given a locally constant function f1W X ! R

as in (1.2.3), we call g the window function and k 2 N the window size.

Theorem 1.2.3. Let .X; S/ � ¹a; bºZ be a simple Toeplitz subshift over a binary
alphabet, let f1W X ! R be locally constant with window size 1, and suppose Vper is
periodic with period p. If .Zp;C1/ is a factor of .X; S/, then, for every x 2 X, the
operatorHx C Vper has no eigenvalues.

We emphasize that, in the generality formulated here, Theorem 1.2.3 is new even

in the case p D 1. Since every simple Toeplitz subshift over a binary alphabet satis-

fies the Boshernitzan condition, the spectrum of Hx C Vper is in fact a Cantor set of

Lebesgue measure zero in the situation of Theorem 1.2.3, provided that the window

function g is non-constant, and thus the spectral type is purely singular continuous in

that scenario.
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Next, we consider periodic modifications of the random case. To model the ran-

dom part, we choose X D AZ the full shift on the alphabet A D ¹1; 2; : : : ; mº with

m 2 N and � D �Z
0 , where �0 is a probability measure on A. Without loss of gener-

ality, we assume �0.¹aº/ > 0 for all a 2 A.

We further restrict to the case in which the periodic modification has period two.

For each choice of a; b 2 A, there is a natural period-two element of X which we

denote by xab D .ab/Z, and which is given by x2n D a, x2nC1 D b.

Theorem 1.2.4. Suppose .X;S/ is a full shift on an alphabet withm symbols, Vper has
period two, and f1W X ! R is locally constant of window size 1. For �-almost every
x 2 X, the spectrum of the corresponding Schrödinger operator is given by

�.Hx C Vper/ D
[

a;b2A

�.Hxab
C Vper/: (1.2.4)

As in the case of Theorems 1.2.1 and 1.2.2, our framework can incorporate other

periodic decorations. The statement of Theorem 1.2.4 remains true if Hx C Vper is

replaced by�C �perVx with �per of period two (and a similar replacement forHxab
).

While we were completing this manuscript, we learned that William Wood had inde-

pendently proved Theorem 1.2.4 (and the more general statement from which it is

derived) in the case m D 2 in addition to obtaining finer results such as an explicit

calculation of spectral gaps [78].

There is a natural naïve generalization of the statement in Theorem 1.2.4 when

Vper has period larger than two. We give an example in Section 3.3 to show that this

generalization already fails for potentials of period three.

Theorem 1.2.4 is related to an interesting open question: does the almost-sure

spectrum of Hx C Vper always have finitely many connected components whenever

Vper is periodic? This is well known when Vper has period one (i.e., is constant) and

Theorem 1.2.4 gives an affirmative answer to the question when the period is two.

Finally, we consider periodic perturbations of quasi-periodic potentials. Let T D

R=Z denote the circle, and suppose ˛ 2 T is irrational. Here, one sometimes wants to

observe phenomena that depend on variations of the frequency or sampling function.

So, for f1 2 C.T ;R/ and x 2 T , the potential Vf1;˛;x is given by

Vf1;˛;x.n/ D f1.n˛ C x/: (1.2.5)

The corresponding Schrödinger operator is denoted Hf1;˛;x . It is well known (and

not hard to show with minimality and strong operator convergence) that there is a

compact set † D †f1;˛ with† D �.Hf1;˛;x/ for all x 2 T . Quasi-periodic operators

have been heavily studied over the years; we direct the reader to the survey [63] for a

guide on the literature.
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In this setting, one has the following result. See Section 4 for definitions of the

p-step cocycle and sub/super-criticality of a cocycle.

Theorem 1.2.5. Let ˛ 2 T be irrational. If f1W T ! R is a non-constant real-valued
trigonometric polynomial and Vper is periodic, then there exist 0 < �1 < �2 <1 such
that the p-step transfer matrix cocycle associated with H�f1;˛;x C Vper is subcritical
for every energy in†�f1;˛ when j�j � �1 and supercritical on†�f1;˛ when j�j � �2.

The analysis of cocycle dynamics pays dividends for the spectral analysis. Indeed,

Avila’s almost-reducibility theorem [2,4] implies that the spectral type is purely abso-

lutely continuous in the subcritical region. On the other hand, there is a well-estab-

lished road map to proving localization in the regime of positive Lyapunov exponents.

Relatively straightforward modifications of Bourgain–Goldstein’s argument [12]

allow one to prove Anderson localization (i.e., pure point spectrum with exponentially

decaying eigenfunctions) for large j�j and a.e. frequency and phase.

The idea of reorganizing a periodic decoration of a quasi-periodic potential by

passing to blocks of period length has been applied fruitfully in other recent works,

such as [77], which proved specific results for the quasiperiodic mosaic model, which

corresponds to a specific choice of trigonometric polynomial on the product system.

The almost-Mathieu operator is given by choosing the sampling function f1.x/D

2� cos.2�x/, that is,

V AMO
�;˛;x.n/ D 2� cos.2�.n˛C x//: (1.2.6)

We write HAMO
�;˛;x

for the corresponding operator. This operator family has been the

subject of numerous investigations in recent decades; we point the reader to [63] for

a thorough account of the history.

Theorem 1.2.6. Suppose VperW Z ! R is periodic and ˛ is irrational. The p-step
cocycle associated with HAMO

�;˛;x
C Vper is subcritical on the spectrum when j�j is suf-

ficiently small and supercritical on the spectrum when j�j is sufficiently large.

Remark 1.2.7. In fact, by following the proof of Theorem 1.2.5 closely, one sees that

the p-step cocycle associated with the periodic perturbation of the AMO is supercrit-

ical on the spectrum whenever j�j > 1.

The structure of the paper follows. We recall some general facts about product

systems and the transfer matrix cocycle in Section 2. We discuss the case of product

systems in which one factor is a subshift in Section 3 in particular giving the proofs of

Theorems 1.2.1, 1.2.2, 1.2.3, and 1.2.4. We discuss the quasiperiodic case in Section 4,

proving Theorems 1.2.5 and 1.2.6.
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2. Preliminaries

2.1. Minimal systems

We start from a topological dynamical system .X; S/ with X a compact metric space

and S a homeomorphism X ! X.

Definition 2.1.1. Given a dynamical system .X;S/ as above, we say thatK � X is an

S -minimal component of X if it is closed, non-empty, S -invariant, and minimal with

respect to those properties (i.e., no proper closed subset of K satisfies those proper-

ties). We say that .X; S/ is minimal if X is an S -minimal component. Equivalently,

.X; S/ is minimal if and only if the only S -invariant and closed subsets of X are X

and ;.

One can check that two minimal components of .X; S/ must either be identical or

disjoint and hence one can speak of the number of minimal components.

Definition 2.1.2. For m 2 N, we denote by s.m;X; S/ the number of minimal com-

ponents of .X; Sm/. Whenever X and S are clear from context, we suppress the

dependence and simply write s.m/.

For a given minimal system .X; S/, we will consider the properties of the func-

tion s.m/ defined in Definition 2.1.2. The following result goes back to [47, Theo-

rom 2.24]; compare also [79, Theorem 3.1].

Fact 2.1.3. For eachm 2 N, denoting q D s.m/, one has qjm and a disjoint decom-
position X D X1 [ � � � [ Xq such that each Xj is Sm-minimal and

S.Xj / D Xj C1 mod q for all � j � q: (2.1.1)

Some properties of this function are listed below, compare [79, Remark 3.6 and

Theorem 3.8].

Fact 2.1.4. The function s satisfies the following properties. If m1 and m2 are rel-
atively prime, then s.m1m2/ D s.m1/ s.m2/. Furthermore, for each prime p, there
exists a number p̀ 2 N0 [ ¹1º such that s.p`/ D min¹p`; p`p º for all ` 2 N0.

Note that fixing the assignment p ! p̀ for every prime number p determines the

function s uniquely. Alternatively, the function s is completely characterized by the

subgroup of topological eigenvalues of the Koopman operator. Let us briefly recall:

Definition 2.1.5. Given a topological dynamical system .X; S/, we say that z 2 C

is a topological eigenvalue of .X; S/ if it is an eigenvalue of the induced operator

C.X/!C.X/ given by f 7! f ı T . A function 0 6� f 2C.X/ for which f ı T � zf

is then called a continuous eigenfunction of .X; S/.
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It is well known and not hard to show that every topological eigenvalue of .X; S/

is unimodular and the set of all eigenvalues of .X; S/ comprises a countable subgroup

of the circle @D; see, e.g., [76, Chapter 5].

We will see shortly that the function s may be characterized by the subgroup of

topological eigenvalues that are also roots of unity (compare Proposition 2.1.7).

Lemma 2.1.6. Let .X; S/ be minimal. For every m 2 N, e2�i=m is a topological
eigenvalue of .X; S/ if and only if s.m/ D m.

Proof. Suppose s.m/ D m, that is, X decomposes into m disjoint Sm-minimal com-

ponents X1; : : : ;Xm satisfying (2.1.1). Then

fm.x/ D

m
X

j D1

e2�ij=m�
Xj
.x/

is a continuous eigenfunction of .X; S/ with eigenvalue e2�i=m.

On the other hand, suppose that e2�i=m is a topological eigenvalue with continu-

ous eigenfunction fm. Let x 2 X be given. By the choice of fm, we have fm.S
jx/ D

e2�ij=mfm.x/ DW kj for all 1 � j � m. Since fm is continuous and fm ı Sm D fm,

the spaces Xj WD f �1
m .¹kj º/ are disjoint, closed and Sm-invariant.1 This implies

s.m/ � m, which implies s.m/ D m, since s.m/ dividesm.

Proposition 2.1.7. For every m 2 N, s.m/ is the largest divisor q of m such that
e2�i=q is a topological eigenvalue.

Proof. Let s.m/ D q. By general properties of the function s, it follows that q divides

m and that s.q/ D q. The latter implies that e2�i=q is an eigenvalue because of

Lemma 2.1.6. Suppose there exists a larger divisor ` > q of m such that e2�i=` is

an eigenvalue. Then, s.m/ � s.`/ D ` > q D s.m/, a contradiction.

By definition, the system .X; Sm/ is minimal precisely if s.m/ D 1. With the help

of the preceding result, we immediately obtain the following characterization.

Corollary 2.1.8. The system .X; Sm/ is minimal for all m 2 N if and only if there
are no topological eigenvalues e2�i˛ of .X; S/ with ˛ 2 Q n Z.

A system .X; S/ for which .X; Sm/ is minimal for every m 2 N is said to be

totally minimal.

1Note that disjointness follows from fm.x/ ¤ 0, which in turn is a consequence of mini-

mality of .X; S/ and non-triviality of fm.
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2.2. Uniquely ergodic systems

We now turn to the case in which .X; S/ is uniquely ergodic. The discussion of

Sm-ergodic probability measures is very similar to the discussion of Sm-minimal

components for minimal systems .X; S/.

Definition 2.2.1. Given a topological dynamical system .X;S/ andm2 N, we denote

by s0.m;X; S/ the number of Sm-ergodic Borel probability measures on X; as before,

we write s0.m/ whenever .X; S/ is clear from context. Given an S -invariant measure

�, we say that z 2 C is an eigenvalue of .X;S;�/ if it is an eigenvalue of the Koopman

operator onL2.X;�/, which is given by f 7! f ı T for f 2L2.X;�/. A measurable

function 0 6� f 2 L2.X; �/ for which f ı T D zf (in L2.X; �/) is then called an

eigenfunction of .X; S; �/.

The properties of this function are precisely the same as for s.m/; see Aappendix A

for details. We quote here only the result that is most important for the following dis-

cussion, compare Lemma A.2 for the proof.

Proposition 2.2.2. Let .X; S;�/ be uniquely ergodic. For everym 2 N, e2�i=m is an
eigenvalue of .X; S; �/ if and only if s0.m/ D m.

Proposition 2.2.2 is likely well known, but we could not find an exact reference.

2.3. Cocycles and hyperbolicity

Given a topological dynamical system .�; T /, a sampling function f 2 C.�;R/, a

T -ergodic measure �, and Schrödinger operators as in (1.1.4), it is natural to study

the spectral properties of H! via the eigenvalue equation H! D z with z 2 C.

One can readily see thatH! D z for some  2 CZ if and only if

�

 nC1

 n

�

D

�

z � f .T n!/ �1

1 0

��

 n

 n�1

�

for all n 2 Z: (2.3.1)

Defining

Az.!/ D

�

z � f .T!/ �1

1 0

�

; (2.3.2)

the associated cocycle .T; Az/W� � C2 ! � � C2 is given by .T; Az/.!; v/ D

.T!; Az.!/v/. The iterates .T; Az/
n D .T n; An

z/ of this map can then be computed

for n 2 Z:

An
z.!/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

Az.T
n�1!/ : : :Az.!/; n � 1;

I; n D 0;

ŒA�n
z .T n!/��1; n � �1:

(2.3.3)
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Naturally, one has H! D z if and only if

�

 nC1

 n

�

D An
z.!/

�

 1

 0

�

for all n 2 Z: (2.3.4)

The associated Lyapunov exponent is given by

L.z/ D lim
n!1

1

n

Z

�

log kAn
z.!/k d�.!/: (2.3.5)

We say that .T; Az/ is uniformly hyperbolic if for constants c; � > 0 one has

kAn
z.!/k � ce�jnj for all n 2 Z: (2.3.6)

If L.z/ > 0 but .T; Az/ is not uniformly hyperbolic, it is said to be non-uniformly
hyperbolic. In the event that .�; T / is a minimal dynamical system (and f is con-

tinuous), there is a fixed set † � R for which † D �.H!/ for all ! 2 �. This set is

characterized dynamically by Johnson’s theorem [52], which says that † D R n U ,

where U denotes the set of E 2 R for which .T; AE / is uniformly hyperbolic.

3. Periodic and subshift

The first class of product systems that we will consider will be products of subshifts

and cyclic groups, which is motivated by the question of stability of results for oper-

ators defined by subshifts under periodic perturbations. On one hand, for subshifts

satisfying the Boshernitzan condition, one often observes zero-measure Cantor spec-

trum and purely singular continuous spectral type for such operators. On the other

hand, the spectra of random operators can be written as the union of the spectra of

periodic realizations. Thus, the section splits into three main subsections: in the first

subsection, we explore the stability of zero-measure spectrum under periodic per-

turbations; in the second subsection, we discuss the stability of purely continuous

spectrum; and in the third section, we discuss the spectra associated with products in

which the subshift factor is a full shift.

3.1. Zero-measure Cantor spectrum

It is well known that if .X; S/ is a subshift satisfying the Boshernitzan condition

and f1W X ! R is locally constant, then the Schrödinger operators Hx D � C Vx

with potential Vx.n/ D f1.S
nx/ exhibit a dichotomy. Either Vx is periodic for all

x 2 X or �.Hx/ is a Cantor set of zero Lebesgue measure for every x 2 X [28]. One

may naturally ask whether this holds under the addition of a periodic background,
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that is, given a periodic potential Vper, is it true that Hx C Vper either is periodic

or has zero-measure Cantor spectrum? Naturally, this leads to an investigation of

� D X � Zp where p denotes the period of Vper. As such, one is then interested

in whether the Boshernitzan condition is stable under such products. Of course, some

care is needed, since it is clear that minimality and unique ergodicity need not be

invariant under taking products. In that vein, our first result is a stability result for the

Boshernitzan condition under products with finite (hence periodic) subshifts.

3.1.1. Stability of the Boshernitzan condition. Let us begin with a few definitions

and set up notation.

Definition 3.1.1. Let A be a finite alphabet and AC D
S

`>0 A`. We denote the

left shift on A
Z by S . We endow A with the discrete topology and A

Z with the

corresponding product topology. This turns A
Z into a compact metrizable space.

A possible choice for a metric is d.x; y/ D 2�k , where k D inf¹jnjW xn ¤ ynº. Given

a finite word w 2 A` � AC, we write jwj D ` for the length of w, and we fix the

notation wZ for the sequence

: : : www:www : : : ; (3.1.1)

where the single dot separates the �1-th and the 0-th position. For u2 A
C and x 2 A

C

or x 2 AZ, we write u G x if u is a subword of x. Given j; k 2 Z with j � k, we

define xŒj;k� D xj : : : xk . If X is a closed, S -invariant subset of AZ, we call .X; S/ a

subshift. We denote by L.X/ the set of legal words in X, that is

L.X/ D ¹u 2 A
CW u G x for some x 2 Xº:

The set of legal words of length n is given by Ln.X/ D L.X/ \ A
n. For u 2 L.X/,

we define the corresponding cylinder set as

Œu� D ¹x 2 XW xŒ0;juj�1� D uº: (3.1.2)

In the following, let .X; S/ and .X0; S 0/ denote subshifts over alphabets A and A
0,

respectively. The diagonal shift T D S � S 0 on the direct product X � X0 is defined

via T .x; x0/ D .Sx; S 0x0/. The system .X � X0; T / is a shift on ordered pairs of

sequences and could just as readily be viewed as a shift on sequences of ordered

pairs. More precisely, .X � X0; T / is topologically conjugate to a subshift .Y ; T 0/

over the alphabet B D A � A
0 in a canonical fashion.

Let us explain this in more detail. Let �1W B ! A and �2W B ! A0 denote

the canonical projections, extended to BZ as morphisms. Define Y D ��1
1 .X/ \

��1
2 .X0/ � B

Z and let T 0 be the left shift restricted to Y . The map 'W Y ! X � X0,

given by '.y/ D .�1.y/; �2.y// is a topological conjugation. We will move freely

between these two representations. Abusing notation slightly, we identify T with T 0.
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Given ! 2 X � X0, our main object of interest is the Schrödinger operator

H! W `2.Z/ ! `2.Z/;

given by

.H! /n D  nC1 C  n�1 C f .T n!/ n; (3.1.3)

where f W X � X0 ! R is a continuous function.

Definition 3.1.2. Suppose .X; S/ is a minimal subshift and .X0; S 0/ is a periodic

subshift, by which we mean a subshift that consists of all translates of a single periodic

sequence. We say that f is locally constant on X � X0 if, up to a finite shift, f is of

the form

f .x; x0/ D g.x0 : : : xk�1; x
0/ (3.1.4)

for some k 2 N and a suitable function gW A
k � X0 ! R.

Remark 3.1.3. Let us point out that our definition of periodic subshift is not standard

in the sense that we insist that periodic subshifts are minimal. The extension of our

results to non-minimal periodic subshifts is trivial and left to the reader.

Changing from X to a k-block partition, we can assume that g depends only on a

single entry. Let us make this precise in the following paragraph.

For x 2 AZ, let xŒk� 2 .Ak/Z denote the k-block partition, given by x
Œk�
m D

xŒm;mCk�1� for all m 2 Z. We emphasize that A
Œk� D Lk.x/ plays the role of the

letters for this sequence. Analogously, we set XŒk� D ¹xŒk�W x 2 Xº. The map

'k W x 7! xŒk� (3.1.5)

is a topological conjugation from .X;S/ to .XŒk�;S/, where, abusing notation slightly,

we use S for both shifts. We also define by 'k the corresponding sliding block code on

finite words v with jvj � k, that is, Œ'k.v/�m D vŒm;mCk�1�, for 1 � m � jvj � k C 1.

In this notation,

f .x; x0/ D g.x
Œk�
0 ; x0/ DW f �.xŒk�; x0/;

for a suitable function f � on XŒk� � X0.

Definition 3.1.4. For a shift-invariant measure � on a subshift .X; S/, we set

N
�.n/ D min¹�Œu�W u 2 Ln.X/º: (3.1.6)

for all n 2 N. The system .X; S/ is said to satisfy .�/ if there exists a shift-invariant

measure � such that

lim sup
n!1

n �
N
�.n/ > 0: (3.1.7)
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If in addition .X; S/ is minimal, we say that it fulfills the Boshernitzan condition, and

we also refer to .X; S/ as a Boshernitzan subshift. The reference to S may be dropped

if it is clear from the context.

By a classical result [10], every Boshernitzan subshift is uniquely (and hence

strictly) ergodic.

It is helpful to note that for a given Boshernitzan subshift and a given relatively

dense sequence .nk/k2N of positive integers, one can choose a subsequence of

.nk/k2N that validates (3.1.7).

Lemma 3.1.5. Suppose .X; S/ is a Boshernitzan subshift and .nk/k2N is an increas-
ing sequence of positive integers that is relatively dense in N. Then,

lim sup
k!1

nk �
N
�.nk/ > 0: (3.1.8)

Proof. Let � be the unique invariant measure on .X; S/. Clearly,
N
�.n/ is decreasing.

Let j̀ ! 1 be chosen so that

lim
j !1

j̀ �
N
�. j̀ / D c > 0: (3.1.9)

Since nk is relatively dense, we may choose a C > 0 such that for every j � 1, there

exists kj � 1 for which j̀ � C � nkj
� j̀ . One then has

nkj
�

N
�.nkj

/ � . j̀ � C/ �
N
�. j̀ / D

�

1 �
C

j̀

�

j̀ �
N
�. j̀ /

so the result follows immediately from (3.1.9).

We will show next that, for many purposes, we can assume without loss of gener-

ality that the window function g from (3.1.4) depends only on the first coordinate of

x 2 X.

Lemma 3.1.6. If .X; S/ satisfies the Boshernitzan condition, then so does .XŒk�; S/

for every k 2 N. Moreover, one has

s.n;X; S/ D s.n;XŒk�; S/ (3.1.10)

for all n; k 2 N (cf. Definition 2.1.2).

Proof. Let � denote the unique ergodic measure on .X; S/. Since 'k is a topolog-

ical conjugation, the minimality of .XŒk�; S/ is immediate. By the same argument,

for every m 2 N, the number of Sm-minimal components is the same for both sub-

shifts. Further, the measure �� D � ı '�1
k

is shift-invariant on .XŒk�; S/. Since 'k is
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a bijection from LnCk�1.X/ to Ln.X
Œk�/ for all n 2 N, we have

��.n/ D min¹��Œv�W v 2 Ln.X
Œk�/º D min¹�Œu�W u 2 LnCk�1.X/º

D
N
�.nC k � 1/;

which implies that .XŒk�; S/ satisfies .�/.

Let .X; S/ be an aperiodic Boshernitzan subshift over the alphabet A and .X0; S 0/

a periodic subshift over the finite alphabet A0. Let � be the unique invariant measure

on .X; S/ and let �0 be the unique invariant measure on the periodic subshift .X0; S 0/.

Then, � D � � �0 is a T -invariant measure on X � X0.

The main result of this section reads as follows.

Theorem 3.1.7. Let .X; S/ be a Boshernitzan subshift, let .X0; S 0/ be a p-periodic
subshift, and define .�; T / D .X � X0; S � S 0/.

a. The number of T -minimal components of � is precisely s.p/ D s.p;X; S/,
the number of Sp-minimal components of X (cf. Def. 2.1.2). We denote the
T -minimal components of � by �1; : : : ; �s.p/.

b. Let f be locally constant on X � X0, and consider the associated family of
Schrödinger operatorsH! D�C V! with V! as in (1.1.4). For each 1� j �

s.p/, there exists a compact set†j such that �.H!/D†j for every! 2�j . In
particular, there are no more than s.p/ distinct sets that may arise as spectra
corresponding to operatorsH! with2 ! 2 �.

c. For every 1� j � s.p/, one has the following dichotomy. Either V! is periodic
for all ! 2 �j or †j is a Cantor set of zero Lebesgue measure.

Remark 3.1.8. One can have examples in which V! is periodic for ! in one minimal

component but not every minimal component. Consequently, this provides examples

for which†j is a Cantor set and†k is a finite-gap set for some j and for some k ¤ j ;

see Remark 3.2.6.

As a consequence of our work in the present section, we deduce the following

characterization, which may be of independent interest:

Theorem 3.1.9. Let .X; S/ be a Boshernitzan subshift, let .X0; S 0/ be a p-periodic
subshift, and let s.p/ D s.p;X; S/ be the number of Sp-minimal components of X

(cf. Def. 2.1.2). The following are equivalent:

a. the system .X � X0; T / is (topologically conjugate to) a Boshernitzan subshift

b. .X � X0; T / is minimal;

2Later on, we will abbreviate this observation by writing #¹�.H!/W! 2 �º � s.p/.
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c. s.p/ D 1;

d. .X; S/ has no eigenvalues of the form e2�ik=p aside from the trivial eigen-
value 1.

In the following, let p denote the period of points in X0. Then, .X � X0; T / is

topologically conjugate to a discrete suspension of .X; Sp/ with constant height p,

which explains why we focus on properties of .X; Sn/ for n 2 N. Let us expand a bit

on this connection.

Lemma 3.1.10. Let .X;S/ be a Boshernitzan subshift and X0 be a periodic subshift of
period p. The action of T on X � X0 decomposes into minimal components. The num-
ber of T -minimal components in X � X0 coincides with the number of Sp-minimal
components in X.

Proof. LetmD s.p;X;S/ be the number of Sp-minimal components in X. We define

an equivalence relation on X by x � y if and only if x and y are in the same Sp-min-

imal component. Equivalently, x � y whenever y is in the Sp-orbit closure of x. For

.x; x0/; .y; y 0/ 2 X � X0, let us denote .x; x0/ Ý .y; y 0/ if .y; y 0/ is in the T -orbit

closure of .x; x0/. Fixing x� 2 X0, every point in X � X0 is of the form T j .x; x�/ for

some 0 � j � p � 1 and x 2 X. We obtain

T j .x; x�/Ý T k.y; x�/ () .x; x�/Ý .y; x�/

() x � y

() T k.y; x�/Ý T j .x; x�/;

showing that Ý is an equivalence relation on X � X0. Further, the calculation above

reveals that the equivalence classes satisfy ŒT j .x; x�/� D Œ.x; x�/� for all 0 � j �

p � 1 and that they are in one-to-one correspondence to the equivalence classes in X.

By definition of Ý, the equivalence classes Œ.x; x�/� are T -minimal components.

Our next goal is to show that .X; Sm/ satisfies the Boshernitzan condition on

each minimal component. To this end, we interpret .X; Sm/ as a subshift over the

alphabet zA D Lm.X/. The legal words of length k in this alphabet are given by
zLk D zAk \ L.X/D Lmk.X/. That is, there is a topological conjugacy from .X; Sm/

to a subshift .zX; S/ over the alphabet zA defined by

X 3 x 7! Q'.x/ 2 zAZ;

where . Q'.x//k D xŒkm;.kC1/m�1�.

Lemma 3.1.11. Let .X; S/ be a Boshernitzan subshift and letm 2 N. Each Sm-min-
imal component of X satisfies the Boshernitzan condition.
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Proof. Let q D s.m;X; S/ and write X D X1 [ � � � [ Xq as a disjoint decomposition

of X into Sm-minimal components, as provided by Fact 2.1.3. For 1 � j � q, the

rescaled restriction �j D q�jXj
is an Sm-invariant probability measure on Xj . Since

the minimal components are clopen sets, there is a minimal distance separating them.

Hence, there exists a k0 2 N such that for all k � k0, the set zLk splits into the disjoint

union zLk D zLk.X1/ [ � � � [ zLk.Xq/. That is, for u 2 zLk , the set Œu� is completely

contained in one of the Sm-minimal components. For such k, we find

�j .k/ D min¹�j Œu�W u 2 zLk.Xj /º

D qmin¹�Œu�W u 2 zLk.Xj /º

� qmin¹�Œu�W u 2 Lmk.X/º

D q
N
�.mk/: (3.1.11)

Since .X; S/ is assumed to be a Boshernitzan subshift, Lemma 3.1.5 gives

lim sup
k!1

k �
N
�.mk/ > 0;

Combining this with (3.1.11) gives us

lim sup
k!1

k � �j .k/ � lim sup
k!1

qk �
N
�.mk/ > 0;

which concludes the argument.

Interpreting .Y ; T / as a (discrete) suspension of .X; Sm/, we find that an analo-

gous statement holds for this system. An alternative proof is given below.

Corollary 3.1.12. Each T -minimal component in .Y ; T / satisfies the Boshernitzan
condition.

Proof. Let u 2 L.Y / be a legal word of length k 2 N and denote by u1 D �1.u/ and

u2 D �2.u/ the projections to L.X/ and L.X0/ respectively. Hence, Œu�D '�1.Œu1��

Œu2�/ and therefore, since �D���0, .� ı '/Œu�D�Œu1��
0Œu2�D�Œu1�=p for k large

enough that Œu2� is a singleton in X0. Again, for large enough k, the cylinder set Œu� is

contained in precisely one T -minimal component and property .�/ is inherited from

.X; S; �/.

We are now in a position to prove some of our main results.

Proof of Theorem 3.1.7. By Lemma 3.1.10, X � X0 has s.p/ distinct T -minimal com-

ponents, which proves (a). By minimality and continuity of f , �.H!/ is constant on

each minimal component of T , and thus there are at most s.p/ sets that can arise as

�.H!/ for ! 2 X � X0, proving (b).
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By Corollary 3.1.12, each minimal component of .X � X0; T / is topologically

conjugate to a Boshernitzan subshift. By our assumptions on f , the restriction of f

to each minimal component is locally constant. In view of these observations, the

conclusion of part (c) follows from [28, Theorem 2].

Proof of Theorem 1.2.1. With notation as in the statement of the theorem, let X0

denote the set of translates of Vper, which is clearly a p-periodic subshift. The result

follows from Theorem 3.1.7 by choosing the sampling function f .x; x0/ D f1.x/C

x0.0/. If Vx C Vper is periodic, so is Vx and hence every translate of Vx is also peri-

odic. Thus, the dichotomy for the minimal components in Theorem 3.1.7 yields the

claimed dichotomy for x 2 X.

Proof of Theorem 1.2.2. Similar to Theorem 1.2.1, this follows from Theorem 3.1.7

by letting X0 denote the set of translates of �per and choosing sampling functions of

the form f .x; x0/ D x0.0/ � f1.x/.

Remark 3.1.13. Unlike in Theorem 1.2.1, the (a)periodicity of �perVx may depend

on x. This is most easily seen for the case in which X is the period-doubling subshift,

which is generated by the substitution #W a 7! ab; b 7! aa over a binary alphabet

A D ¹a; bº � R. Define f1 to be evaluation at the origin and

�per.n/ D

´

1 if n is even,

0 if n is odd.

The reader can check that the pointwise product �perVx is periodic for some, but not

all x 2 X.

Let us recall that the subshift X# associated to a substitution #W A ! A
C may be

defined as

X# D ¹x 2 A
ZW for all n 2 Z; k 2 N; xŒn;nCk�1� G #m.a/ for some m 2 N; a 2 Aº;

that is, X# is precisely the set of sequences whose finite subwords may be found in

words of the form #m.a/ with a 2 A.

Proof of Theorem 3.1.9. (a) H) (b) is trivial, and (b) H) (a) is a consequence

of Corollary 3.1.12. One has (b) () (c) by Lemma 3.1.10.

Since topological eigenvalues comprise a subgroup of the unit circle, one can

check that e2�ik=p is an eigenvalue if and only if e2�i=p is an eigenvalue whenever

gcd.k; p/ D 1. Thus, (c) () (d) follows from Proposition 2.1.7.

The number of distinct spectra that can arise in the present setting is bounded

above by the number of minimal components of .Y ; T 0/, which can be related to
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topological eigenvalues of .X; S/ via Lemma 3.1.10 and Proposition 2.1.7. We con-

clude the present subsection by showing that the requirement for the eigenvalues to

be topological is automatic for Boshernitzan subshifts.

Proposition 3.1.14. Let .X;S/ be a Boshernitzan subshift with unique invariant mea-
sure �. Given m 2 N, let X1; : : : ;Xq denote the Sm-minimal components of X. The
Sm-ergodic measures on X are given by the set

¹q �jXj
W 1 � j � qº: (3.1.12)

In particular, s.m/D s0.m/ and .X;Sm/ is minimal if and only if it is uniquely ergodic.

Proof. By S -invariance of �, we have �.Xj / D 1=q for all 1 � j � q. Further,

Sm.Xj / D Xj for all 1 � j � q because q dividesm. Hence, each of the measures

�j D q �jXj

is an Sm-invariant probability measure on X. Since Xj and Xk are disjoint for j ¤ k,

one has �j ? �k for j ¤ k. Let % be an arbitrary, Sm-invariant measure on X. By

Lemma 3.1.11, the system .Xj ; S
mjXj

; �j / fulfills the Boshernitzan condition and is

therefore uniquely ergodic for all 1 � j � q. Hence, the restriction of % to Xj is a

multiple of �j for all 1 � j � q. This implies that the set ¹�j W 1 � j � qº coincides

with the set of extremal points in the space of Sm-invariant probability measures on

X and hence with the set of Sm-ergodic measures thereupon.

The following consequence of Proposition 3.1.14 is of interest in its own right.

Corollary 3.1.15. Let .X; S/ be a Boshernitzan subshift with unique invariant mea-
sure �. Every eigenvalue e2�i˛ of .X; S;�/ with ˛ 2 Q is a topological eigenvalue of
.X; S/.

Proof. Without loss of generality, we assume ˛ > 0 and write ˛ D m=n with m; n 2

N and m; n relatively prime. Then, e2�i˛ is a (topological) eigenvalue precisely if

e2�i=n is a (topological) eigenvalue. Hence, we may assume ˛ D 1=n. If e2�i=n is

an eigenvalue, then s0.n/ D n due to Lemma A.2. Since the number of Sn-minimal

components and Sn-ergodic measures on X is the same by Proposition 3.1.14, we

find s.n/ D s0.n/ D n. With Lemma 2.1.6 we conclude that e2�i=n is a topological

eigenvalue.

Let us emphasize that this result does not extend to irrational eigenvalues. In [13,

Section 6] the authors construct an explicit example of a linearly recurrent subshift

that has non-topological (irrational) eigenvalues.
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3.1.2. Reflection symmetries. In general, points in different minimal components

.X � X0; T / can give rise to the same spectrum. We illustrate this in the case that

X and Y have some reflection symmetries. We define the reflection operator Rk at

position k 2 1
2
Z via

Rk.x/j D x2k�j for all j 2 Z; (3.1.13)

with a similar definition for Rk on � D X � X0. By a short calculation we obtain

S` ı Rk D Rk�`=2 D Rk ıS�` for all ` 2 Z, k 2 1
2
Z. Let us say that f W� ! R is

reflective if it is locally constant and the window function g can be chosen to satisfy

g.wR/ D g.w/ where .w1 : : : w`/
R D w`w`�1 : : : w1 denotes the reflection of the

word w.

Lemma 3.1.16. For every ! 2 X � X0 and k 2 1
2
Z, we have �.HRk.!// D �.H!/

for any reflective sampling function. Indeed,H! andHRk.!/ are unitarily equivalent.

Proof. Suppose f is reflective, and write

f .!/ D g.!m : : : !mC`�1/

for a window function gWA` ! R satisfying g.wR/� g.w/. Define k0 D k � c where

c D mC `�1
2

2 1
2
Z denotes the center of the window. The reader can check that the

operatorUk0 W`2.Z/! `2.Z/ given by ŒUk0 �.n/D .2k0 � n/ is a unitary involution

satisfying Uk0H!Uk0 D HRk.!/. Indeed, one has Uk0�Uk0 D � and Uk0V!Uk0 D

Rk0 V! . The assumption on f and the choice of k0 yields VRk.!/ D Rk0 V! . Indeed,

by our choice of k0 and our assumption on g, we have

ŒRk0 V! �.n/ D f .T 2k0�n!/ D g.!jŒ2k0�nCm;2k0�nCmC`�1�/

D g.!jŒ2k�n�m�`C1;2k�n�m�/

D g.!jRŒ2k�n�m�`C1;2k�n�m�/

D f .T n Rk !/

D VRk.!/.n/

which concludes the proof.

Example 3.1.17. Assume that X is the Thue–Morse subshift arising from the primi-

tive substitution #Wa 7! ab;b 7! ba and that X0 is 2-periodic. Since s.2/D 2 (compare

Example 3.1.22), the system .X � X0; T / has two minimal components. For an arbi-

trary x0 2 X0, we have R0.x
0/ D x0. Consider

x� D lim
n!1

: : : #2n.a/#2n.a/:#2n.a/#2n.a/ : : : (3.1.14)

D : : : abbabaabbaababba:abbabaabbaababba: : : ; (3.1.15)
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which is a fixed point under #2. Since both #2.a/ and #2.b/ are reflection symmetric,

the same holds for #2n.a/ for all n 2 N. Hence, R�1=2.x
�/ D x� (recall that the dot

in (3.1.14) separates positions �1 and 0) and therefore R0.x
�/ D S�1x�. Because

.x�; x0/ and R0..x
�; x0// D .S�1x�; x0/ belong to different T -minimal components,

Lemma 3.1.16 implies that �.H!/ is independent of ! for any choice of reflective

sampling function.

In the following, we investigate this phenomenon in a more systematic fashion.

Definition 3.1.18. For a minimal subshift .X; S/, the following are equivalent

(1) There are k 2 1
2
Z, x 2 X such that Rk.x/ 2 X.

(2) Rk.X/ D X for all k 2 1
2
Z.

When these statements hold, we say that X is reflection symmetric.

Suppose now that both X and X0 are reflection symmetric. Because X0 consists of

a single finite orbit, this implies that Rk.x
0/ coincides with a shift of x0 for every k 2

1
2
Z. Consequently, there exists a point x0 2 X0 and k 2 ¹0;1=2º such that Rk.x

0/D x0.

Let p be the period of X0.

Lemma 3.1.19. Suppose .X; S/ is a minimal subshift, p 2 N, m D s.p/, and let
X1; : : : ;Xm denote the Sp-minimal components as in Fact 2.1.3. The reflection oper-
ator Rk acts as a reflection on the tuple .X1; : : : ;Xm/ in the sense that there exists
` 2 1

2
Z \ Œ1; mC1

2
� such that

Rk.Xj / D X2`�j mod m for all 1 � j � m: (3.1.16)

Proof. For notational convenience let us define Xi WD Xi mod m for all i 2 Z. Let x 2

X1 and let r 2 ¹1; : : : ; mº be such that Rk.x/ 2 Xr . Define ` D .1C r/=2. For 1 �

j � m and y 2 Xj , there exists a sequence .ni/i2N such that Sni mCj �1x ! y as

i ! 1 (because Sj �1x 2 Xj and Xj is Sm-minimal). Applying Rk , we obtain

S�ni m�j C1 Rk.x/ ! Rk.y/;

as i ! 1. This implies that Rk.y/ is in the same Sm-minimal component as

S�j C1 Rk.x/ 2 S�j C1.Xr/ D Xr�j C1. Since r D 2`� 1, we have Rk.y/ 2 X2`�j .

Hence, Rk.Xj / � X2`�j . By the same argument Rk.X2`�j / � Xj and the claim fol-

lows.

This symmetry relation between the minimal components reduces the upper bound

for the number of different spectra roughly by a factor 1=2. A careful case distinction

on the parity of m and on whether ` 2 Z or ` 2 Z C 1=2 yields the following as a

corollary of Lemma 3.1.16 and Lemma 3.1.19.
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Proposition 3.1.20. In the setting of Theorem 3.1.7 assume that both X and X0 are
reflection symmetric. Let k 2 ¹0; 1=2º be such that Rk.x

0/ D x0 for some x0 2 X0.
Then,

#¹�.H!/W! 2 X � X0º �

´

.s.p/C 1/=2 if s.p/ 2 2N � 1;

s.p/=2C ı.k; p/ if s.p/ 2 2N;

where ı.k;p/ D 1 if there exists an x 2 X such that Rk.x/ is in the same Sp-minimal
component as x and ı.k; p/ D 0 otherwise.

Proof. The spectrum is constant on every T -minimal component of X � X0. These

are of the form Xj � ¹x0º, with 1 6 j 6 m and m D s.p/. Since we have assumed

Rk.x
0/ D x0, it follows by Lemma 3.1.19 that there is ` 2 1

2
Z \ Œ1; mC1

2
� with

Rk.Xj � ¹x0º/ D X2`�j mod m � ¹x0º;

for all 1 6 j 6 m. By Lemma 3.1.16, the spectrum is the same on Xj � ¹x0º and

X2`�j mod m � ¹x0º. Hence, the number of different spectra is bounded from above by

the number of orbits of the map

r`W j 7! 2` � j modm;

on the cyclic group with m elements. Each of these orbits has either one or two ele-

ments. The number j is a fixed point of r` precisely if

j D ` modm or j D `C
m

2
modm;

If m is odd, this condition has precisely one solution, that is, there is precisely one

fixed point of r` and hence the number of r`-orbits is given by .mC 1/=2. If m is

even, there are either two fixed points or no fixed point, depending on whether ` is an

integer or not. The former is the case if and only if there is x 2 X such that Rk.x/

and x belong to the same Sp-minimal component. In this case, the number of distinct

r`-orbits is given by .mC 2/=2. Otherwise, every orbit of r` has precisely 2 elements,

such that the number of orbits is given by m=2.

3.1.3. Examples and applications. We consider the function s.p/ for several promi-

nent classes of Boshernitzan subshifts .X; S/.

Example 3.1.21. Assume that .X;S/ is totally ergodic. Then, s.p/D 1 for all p 2 N,

so .X � X0; T / is a Boshernitzan subshift for all periods p. One prominent example

of a totally ergodic system is the Fibonacci subshift. This can be seen from the fact

that it can be coded by an irrational rotation on the circle. More generally, every

Sturmian subshift is totally ergodic by the same argument [60]. Sturmian subshifts
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will be discussed in more detail in Section 3.2.3. Finally, one also has s.p/ D 1 for

all p 2 N if .X; S; �/ is weak mixing.

Example 3.1.22. Assume that .X; S/ is the subshift associated to a primitive sub-

stitution # of constant length ` � 2 on the alphabet A. That is, j#.a/j D ` for all

a 2 A. Let `1; : : : ; `r be the prime factors of `. Recall that we assume .X; S/ to be

aperiodic. The discrete dynamical spectrum of .X; S/ was completely characterized

in [32]. There is a number 1� h � #A, coprime to `, with the following property. For

every p 2 N, we have

s.p/ D `
j1

1 : : : `jr
r h

min¹1;kº;

where j1; : : : ; jr 2 N0 and k 2 N0 are maximal with the property that `
j1

1 : : : `
jr
r h

k jp.

An algorithm to determine h was given in [32, Remark 9]. If A is a binary alphabet,

we have h D 1. In this case, .X � X0; T / is a Boshernitzan subshift precisely if `

and p are coprime. In particular, this applies to the Thue–Morse substitution and the

period-doubling substitution whenever p is odd.

For general primitive substitution subshifts, characterizing the group of eigenval-

ues is more subtle. Following the seminal paper by Host [49], several characterizations

of eigenvalues and criteria for special cases have been proposed. We present a small

selection. A general algebraic characterization of rational eigenvalues was given in

[40, Proposition 2].

Before we continue, let us introduce some notation.

Definition 3.1.23. Given a substitution # , let M denote the corresponding substitu-

tion matrix, that is, Mab D j#.b/ja for all a; b 2 A, where jwja denotes the number

of occurrences of a in the word w.

Given a primitive substitution, let �1 denote the Perron-Frobenius eigenvalue of

M (i.e., �1 > 1 is real and strictly the largest eigenvalue in absolute value) and �2

the second largest eigenvalue in absolute value. The following was shown in [53,

Theorem 1.2].

Proposition 3.1.24. Suppose that j�2j > 1. Then, .X; S/ is topologically mixing if
and only if gcd.¹j#n.a/jW a 2 Aº/ D 1 for all n 2 N.

Since topological mixing implies weak mixing, we find that in this case .X�X0;

T / is a Boshernitzan subshift, irrespective of p. For a recent result, characterizing

the rational eigenvalues in the case of proper primitive substitutions, compare also

[36, Lemma 10].

Example 3.1.25. An interval exchange transformation (IET) on X D Œ0; 1/ is defined

by a choice of a permutation � on ¹1; 2; : : : ; nº and � D .�1; : : : ; �n/ 2 Rn
C such

that �1 C � � � C �n D 1. Given such a � and �, the associated IET, S D S�;�, acts on
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X by partitioning X into n intervals where the j -th interval has length �j and then

rearranging those intervals according to the permutation � . More precisely, defining

ck D

k�1
X

j D1

�j ; 1 � k � nC 1;

Ock D

�.k/�1
X

j D1

���1.j /; 1 � k � n;

(where empty sums vanish by convention), one puts

Sx D x � ck C Ock for ck � x < ckC1; 1 � k � n: (3.1.17)

One says that the permutation � is irreducible if there is no 1 � k < n for which

�.¹1; 2; : : : ; kº/ D ¹1; 2; : : : ; kº. Without loss of generality, one restricts attention to

irreducible � . In this case, Veech showed that S�;� is totally ergodic for (Lebesgue)

a.e. � [74]. In particular, almost every IET satisfies s.n/ D 1 for all n 2 N. Further-

more, almost every IET satisfies the Boshernitzan condition (in the sense that the

subshift associated to the natural coding of .X; S�;�/ satisfies (B)) [9]. In particular,

the results of the present paper apply to Schrödinger operators defined by almost every

IET with periodic background of any period.

An interesting class of subshifts for which the function s.p/ can be made explicit

is the class of Toeplitz subshifts. These are particular symbolic extensions of odome-
ters. We give a brief sketch of this connection and refer to [35] for a comprehensive

review on this topic. An odometer is defined via a scale t D .tn/n2N of natural num-

bers such that tn divides tnC1 for all n 2 N. The corresponding odometer is given by

the inverse limit

Z.t/ D
°

.mn/n2N 2

1
Y

nD1

Ztn Wmn D mnC1 mod tn for all n 2 N
±

: (3.1.18)

Equipped with the normalized Haar measure � on the topological group Z.t/ and the

map � W Z.t/ ! Z.t/,

.�m/n D mn C 1mod tn;

for all n 2 N, the system .Z.t/; �; �/ is strictly ergodic. The multiplicity function of an

odometer Z.t/ assigns to each prime number p a multiplicity �.p/ 2 N [ ¹1º which

is the supremum over all k such that there is n 2 N with pk dividing tn. Two odome-

ters are isomorphic precisely if they have the same multiplicity function. Another

useful characterization of the multiplicity function is that �.p/ is the supremum over

all k 2 N such that e2�i=pk
is an eigenvalue of .Z.t/; �; �/. Note that for odometers,

all eigenvalues are topological eigenvalues; compare the discussion in Remark B.13.
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Hence, due to Proposition 2.1.7 the value of the multiplicity function �.p/ coincides

with the multiplicity p̀, alluded to in Fact 2.1.4. That is,

s.p`/ D min¹p`; p�.p/º; (3.1.19)

for every prime number p. A subshift .X; S/ is called a (topological) extension of the

odometer .Z.t/; �/ if there exists a factor map �W X ! Z.t/, that is, a surjective and

continuous map satisfying � ı S D � ı � on X. Such an extension is called almost
1–1 if there is a dense set of points z 2 Z.t/ such that ��1.z/ is a singleton.

Definition 3.1.26. We call a subshift .X; S/ a Toeplitz subshift if it is minimal and an

almost 1–1 extension of an odometer .Z.t/; �/.

In this case, the odometer .Z.t/;�/ is the maximal equicontinuous factor of .X;S/;

compare [41, Chapter 1] for details on this notion. In particular, both systems share the

same group of topological eigenvalues and hence the same function s.n/. Not every

Toeplitz subshift is a Boshernitzan subshift [62]. In the next section, we therefore

restrict our attention to the more special class of simple Toeplitz subshifts on a binary

alphabet A, as these are known to satisfy the Boshernitzan condition [62, Proposi-

tion 4.1].

3.2. Exclusion of eigenvalues

At present, it is unclear to us whether the addition of a periodic potential can alter

the property of permitting Schrödinger eigenvalues. We therefore check which of the

known criteria for excluding eigenvalues are stable under periodic perturbations.

3.2.1. Uniform absence of eigenvalues: simple Toeplitz subshifts. We borrow

some notation from [62]. Let A � R be a binary alphabet and s D .bk; nk/k2N a

coding sequence, with bk 2 A and nk � 2 for all k 2 N. Recursively, we define

zw1 D b1 and

zwkC1 D zw
nk

k
b�1

k bkC1; (3.2.1)

for all k 2 N. Since zwk is a prefix of zwkC1 for all k 2 N, there is a well-defined limit

x.s/ WD lim
k!1

zwk (3.2.2)

in A
N . The minimal subshift

X.s/ D ¹x 2 A
ZW xŒj;k� G x.s/ for all j � kº (3.2.3)

is called the simple Toeplitz subshift corresponding to s. Every point in X.s/ is called

a simple Toeplitz sequence. We make the non-triviality assumption that .bk/k2N is
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not eventually constant. This ensures that X.s/ is non-periodic. In fact, up to a mod-

ification of the sequence .nk/k2N , there is no loss of generality in assuming that the

sequence .bk/k2N is alternating. That is, we assume bk ¤ bkC1 for all k 2 N.

Remark 3.2.1. The subshift .X.s/; S/ is indeed a Toeplitz subshift as defined in

Definition 3.1.26. In fact, it is an almost 1–1 extension of the odometer .Z.t/; �/,

with scale t D .tk/k2N , given by tk D
Qk

j D1 nj , for all k 2 N. Hence, for every

prime p and ` 2 N0,

s.p`/ D min¹p`; p�.p/º;

where �.p/ is the total number of times (counted with multiplicities) that p appears

as a factor of nk , as we vary k 2 N.

Let us write Qvk for the word that emerges from zwk by exchanging the last letter bk

with the unique letter b0
k

2 A n ¹bkº. By construction, every ! 2 X.s/ can be written

as a concatenation of the words zwk and Qvk , for every level k, where two occurrences

of Qvk are separated by at least nk � 1 occurrences of zwk . In fact, by (3.2.1) and the

assumption that .bk/k2N is alternating, we have

zwkC1 D zw
nk�1

k
Qvk and QvkC1 D zw

nk

k
: (3.2.4)

We combine this structure with a p-periodic background potential, where we

assume that p is in some sense commensurate with the Toeplitz structure.

Definition 3.2.2. We call a number p 2 N commensurate with a coding sequence

s D .ak; nk/k2N if there is a number k0 2 N such that p divides tk0
D
Qk0

kD1
nk .

This is the case precisely if s.p/D p, compare Remark 3.2.1. In the following, let

�.s; p/ D X.s/ � Zp, equipped with the map T W .x; m/ ! .Sx;mC 1/. Naturally,

arithmetic in the second coordinate is performed modulo p. Within this section, we

assume that the sampling function f is locally constant of window size one. Shifting

if necessary, we may assume without loss of generality that f is of the form

f .x;m/ D g.x0; m/ (3.2.5)

for some function gW A � Zp ! R. Thus, for all .x;m/ 2 �.s; p/ and n 2 N,

V.x;m/.n/ D g.xn; mC n/:

In the following, it will be convenient to regard�.s;p/ as a subshift over the alphabet

A
0 D A � Zp , where we define for ! D .x;m/ 2�.s;p/, with some abuse of notation

!n D .xn; mC n/ 2 A
0;

for all n 2 Z. With this convention, V!.n/ D g.!n/.

The following theorem is the main result of this section.
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Theorem 3.2.3. Let X.s/ be a simple Toeplitz subshift over a binary alphabet A,
assume that p 2 N is commensurate with s, and suppose that f is of the form (3.2.5).
Then, for all ! 2 �.s; p/, the Schrödinger operatorH! has no eigenvalues.

To the best of our knowledge, this result is new in the stated generality, even if the

periodic background is dropped. We therefore explicitly spell out the case p D 1 as a

corollary.

Corollary 3.2.4. Let X.s/ be a simple Toeplitz subshift over a binary alphabet A�R.
Then, for all x 2 X.s/, the Schrödinger operator Hx with potential Vx.n/Dxn has
no eigenvalues.

Corollary 3.2.4 was known in the case nk � 2, which corresponds to the period-

doubling subshift [20]. On the other hand, if nk � 4 for all k 2 N, uniform absence of

eigenvalues follows from [62, Theorem 1.3]. Hence, Corollary 3.2.4 builds a bridge

between those cases of simple Toeplitz subshifts on a binary alphabet where uniform

absence of eigenvalues is already known to hold.

Another consequence of Theorem 3.2.3 is that periodic decorations of sequences

in the period-doubling subshift cannot produce Schrödinger eigenvalues if the period

is a power of 2. Again, we assume that f is of the form specified in (3.2.5).

Corollary 3.2.5. Let #W a 7! ab; b 7! aa be the period-doubling substitution and
.X# ; S/ the corresponding subshift. Assume that p D 2n for some n 2 N0 and
�.#; p/ D X# � Zp . Then, for every ! 2 �.#; p/ the Schrödinger operatorH! has
no eigenvalues.

Proof. It is straightforward to verify that �.#; p/ D �.s; p/, with coding sequence

s D .bk; 2/k2N , where b2k�1 D a and b2k D b for all k 2 N. Indeed, an induction

argument shows that the pair zwkC1 D #k.a/ and QvkC1 D #k.b/ satisfies the defining

relation in (3.2.4) for all k 2 N0.

Recall that s.p/ D p whenever p is commensurate with s, and so .�.s; p/; T /

decomposes into precisely p minimal components, each given by the T -orbit closure

�.s; p/m of .x�;m/, for m 2 Zp and some fixed x� 2 X.s/. For the sake of definite-

ness, let us choose x� such that it coincides with x.s/ on N. Without loss of generality,

we restrict our attention to .�.s;p/0; T /. The structure of points in �.s;p/0 is inher-

ited from the original Toeplitz structure. More precisely, the point .x�; m/ starts with

the word wk , given by

.wk/m D .. zwk/m; m/;

for all k 2 N and 1 � m � jwkj. This corresponds to a p-periodic decoration of the

word wk . Since p is assumed to be commensurate with the coding sequence s, there
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exists a number k0 2 N such that p divides jwk j for all k � k0. For such k, the relation

wkC1 D w
nk

k
a�1

k akC1 (3.2.6)

is inherited from (3.2.1), where ak D .bk; p/ for all k � k0. Similarly, we obtain

wkC1 D w
nk�1

k
vk and vkC1 D w

nk

k
; (3.2.7)

for all k � k0 from (3.2.4), where vk emerges from wk by exchanging the last letter

ak D .bk; p/ with a0
k

D .b0
k
; p/.

Remark 3.2.6. Note that V! is periodic for all ! 2 �.s; p/0 precisely if g.bk; p/ D

g.b0
k
; p/, in which case �.H!/ is a union of intervals. More generally, V! is periodic

for ! 2 �.s; p/m precisely if g.bk;m/ D g.b0
k
;m/. Note that it is possible to choose

g such that this property holds for some, but not all m 2 Zp. In this case, �.H!/ is a

Cantor spectrum of Lebesgue measure 0 for some, but not all ! 2 �.s; p/. However,

this effect cannot occur if g is of the form g.b;m/ D g1.b/C g2.m/.

A central tool in the study of spectral properties ofH! is the trace map. ForE 2 R

and a 2 A
0, we define

ME .a/ D

�

E � g.a/ �1

1 0

�

(3.2.8)

and for a word w D a1 : : : an, let

ME .w/ D ME .an/ : : :ME .a1/: (3.2.9)

Let us define

xk D xk.E/ D TrME .wk/; yk D yk.E/ D TrME .vk/: (3.2.10)

This is related to the cocycle notation introduced in Section 2.3 via

ME .wk/ D A
jwk j
E .!/; k 2 N;

where ! D .x�; 0/.

We denote by .Sn/n2N0
the sequence of Chebyshev polynomials, given by

S0.x/ � 0; S1.x/ � 1; SnC1.x/ D xSn.x/ � Sn�1.x/:

Lemma 3.2.7. For every k � k0, we have

xkC1 D Snk
.xk/yk � 2Snk�1.xk/; (3.2.11)

ykC1 D Snk
.xk/xk � 2Snk�1.xk/: (3.2.12)

In particular,
jxkC1 � ykC1j D jSnk

.xk/jjxk � ykj: (3.2.13)
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Proof. For all n 2 N, and A 2 SL.2;R/ we have the relation

An D Sn.TrA/A � Sn�1.TrA/I

by Cayley–Hamilton and induction, where I is the identity matrix. Using (3.2.7), this

yields

ykC1 D TrME .vkC1/ D TrME .w
nk

k
/ D Snk

.xk/xk � 2Snk�1.xk/;

proving (3.2.12).

Recall that wk ends in ak . Let a0
k

be the last letter of vk . Then,

ME .wkC1/ D ME .w
nk�1

k
vk/

D ME .a
0
k/ME .ak/

�1ME .wk/
nk

D Snk
.xk/ME .vk/ � Snk�1.xk/ME .a

0
k/ME .ak/

�1;

By a direct calculation, TrME .a
0
k
/ME .ak/

�1 D 2, and thus (using (3.2.7) again) we

have

xkC1 D TrME .wkC1/ D Snk
.xk/yk � 2Snk�1.xk/;

proving (3.2.11).

Proposition 3.2.8. Assume that xk.E/ D yk.E/ for some k � k0. Then, for every
sequence ! 2 �.s; p/0, the number E is not an eigenvalue of H! .

Proof. Let k � k0 and let a D g.ak/; a
0 D g.a0

k
/, where ak denotes the final letter of

wk . On the level of transfer matrices, the variation in the right-most location between

wk and vk is modeled via

ME .a
0
k/ME .ak/

�1 D

�

1 a � a0

0 1

�

:

Thus, if

ME .wk/ D

�

a1;1 a1;2

a2;1 a2;2

�

;

we obtain

ME .vk/ D

�

1 a � a0

0 1

��

a1;1 a1;2

a2;1 a2;2

�

D

�

a1;1 C .a � a0/a2;1 a1;2 C .a � a0/a2;2

a2;1 a2;2

�

:

The two traces are therefore

xk.E/ D a1;1 C a2;2
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and

yk.E/ D a1;1 C .a � a0/a2;1 C a2;2:

If a D a0, the sequences V! with ! 2 �.s; p/0 are in fact periodic and hence do not

permit Schrödinger eigenvalues. If a 6D a0, xk.E/D yk.E/ requires that a2;1 D 0. In

the case a2;1 D 0, the two matrices take the form

ME .wk/ D

�

a1;1 a1;2

0 a2;2

�

and

ME .vk/ D

�

a1;1 a1;2 C .a � a0/a2;2

0 a2;2

�

;

and hence an arbitrary product of n such matrices will have the form
�

an
1;1 �

0 an
2;2

�

:

It follows also in this case that the energy in question is not an eigenvalue for any

element of the subshift: if ja1;1j D ja2;2j�1 6D 1, then the cocycle .T; AE / (cf. Sec-

tion 2.3) is uniformly hyperbolic and the energy is not in the spectrum by Johnson’s

theorem; and if ja1;1j D ja2;2j�1 D 1, then transfer matrices of this kind obviously do

not admit any decaying solutions, and in particular no square-summable solutions.

The following is a mild adaptation of a corresponding result on simple Toeplitz

sequences in [62].

Proposition 3.2.9. If E 2 �.H!/, it follows that jxk.E/j � 2 for infinitely many
k 2 N.

Sketch of proof. This is essentially [62, Proposition 3.1]. The interested reader can

verify that all the arguments leading to this result rely on the fact that the recursion

relation (3.2.6) remains true for large enough k 2 N.

For most simple Toeplitz subshifts, the conclusion in Theorem 3.2.3 can be derived

from a combination of the 3-block and the 2-block Gordon lemma, similar to the dis-

cussion in [20].

Lemma 3.2.10. Let sD .ak;nk/ be such that nk ¤ 3 for infinitely many k 2 N. Then,
for all ! 2 �.s; p/, the Schrödinger operatorH! has no eigenvalues.

Proof. Without loss of generality, let ! 2 �.s; p/0. For the sake of establishing a

contradiction, assume that E 2 R is an eigenvalue of H! with eigenfunction  2

`2.Z/. Let k1 � k0 be arbitrary. Due to Proposition 3.2.9, there exists a k � k1 such

that jxk.E/j � 2. Consider the decomposition of ! into words of the formwk and vk .

Let us use the symbol O to note the location of the 0-th position. We proceed by cases.
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Case 1. Assume that around the origin, ! is of one of the forms wkwk Ovk , wkwk Owk ,

Owkwkwk , or Owkwkvk . In each of these cases, we can apply the 2-block Gordon crite-

rion to conclude that  n is of order 1 for some n 2 Z with jnj � jwk1
j.

Case 2. If Case 1 does not hold, then ! must have one of the following forms near

the origin: vkwk Ovk , vk Owkvk or vkwk Owkvk (recall that vk’s cannot be adjacent and

indeed must be separated by at least nk � 1 occurrences of wk). In each of these

cases, ! has the form wkC1 OwkC1 near the origin. We can apply the 3-block Gor-

don lemma and reach the same conclusion as in the last case, unless ! has the form

vkC1wkC1 OwkC1vkC1. Note that this requires ! to be of the formwkC2 OwkC2 near the

origin, which we can use to see nkC1 D 3. We can repeat the same reasoning until we

reach a level r > k with nr ¤ 3. For this level, the structure vrwr Owrvr is not possible

and we can apply the 3-block Gordon lemma. In every case, n is of order 1 for some

n 2 Z with jnj � jwk1
j.

Since k1 was arbitrary, we reach a contradiction to the assumption that 2 `2.Z/.

In view of Lemma 3.2.10, what remains is to handle the case in which .nk/k2N

is eventually identically 3. We treat this remaining case by a centered version of the

2-block Gordon lemma. The following lemma does not require the subshift setting.

Thus, we work with an arbitrary sequence ! 2 RZ, and the associated potential is

simply V!.n/ D !n. For this lemma, simply define ME by (3.2.8) and (3.2.9) with

g.a/ D a for a 2 R.

Lemma 3.2.11. Let ! 2 RZ and suppose there exists a strictly increasing sequence
of natural numbers .nm/m2N such that

!Œ�nm;�1� D !Œ0;nm�1�; (3.2.14)

for all m 2 N. For E 2 R, m 2 N, let xm.E/ D TrME .!Œ0;nm�1�/. If
X

m2N

jxm.E/j
2 D 1; (3.2.15)

then E is not an eigenvalue ofH! .

Proof. For the sake of establishing a contradiction, assume that 2 `2.Z/ is an eigen-

function of H! for the eigenvalue E. Let ‰.n/ D . n;  n�1/
> for all n 2 Z, and

Mm D ME .!Œ0;nm�1�/ for all m 2 N. Note that

M
�1
m ‰.nm/ D ‰.0/ D Mm‰.�nm/ for all m 2 N

by (3.2.14). Then, due to the Cayley–Hamilton theorem,

‰.nm/C‰.�nm/ D xm.E/‰.0/:
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Normalizing  according to k‰.0/k2 D 1, and using 2jaj2 C 2jbj2 � ja C bj2, this

yields

j �nm
j2 C j �nmC1j2 C j nm

j2 C j nmC1j2 �
1

2
jxm.E/j

2: (3.2.16)

Without loss of generality, we can restrict .nm/m2N to a subsequence such that

nmC1 > nm C 1 for all m 2 N. We then obtain by (3.2.16),

2k k2 �
X

m2N

jxm.E/j
2 D 1;

in contradiction to  2 `2.Z/.

Lemma 3.2.12. Let s D .ak; nk/ be such that nk D 3 for all k larger than some
k1 � k0. Then, for all ! 2�.s;p/, the Schrödinger operatorH! has no eigenvalues.

Proof. Again, we restrict our attention to the case ! 2 �.s; p/0 without loss of

generality. Assume E 2 �.H!/ is an eigenvalue with corresponding eigenfunction

 2 `2.Z/. If ! is not of the form vkwk Owkvk for all k larger than k1, we can argue

as in the proof of Lemma 3.2.10 and reach a contradiction. Hence, the assumptions

imply that ! is of the form vkwk Owkvk around the origin for all k � k1. This implies

!Œjwk j�1;�1� D !Œ0;jwk j�1�;

and the trace of the corresponding transfer matrix is given by xk.E/. By Proposi-

tion 3.2.8 and the assumption thatE is an eigenvalue, we have xk ¤ yk for all k � k1.

By Lemma 3.2.11, it suffices to show that

X

k2N

jxk.E/j
2 D 1 (3.2.17)

in order to obtain a contradiction. For all k � k1, the assumption nk D 3 implies that

the trace map is of the form

xkC1 D .x2
k � 1/yk � 2xk;

ykC1 D .x2
k � 1/xk � 2xk:

Again, we directly obtain (3.2.17) unless xk ! 0, which we assume in the following.

This yields

lim
k!1

yk D lim
k!1

xkC1 C 2xk

x2
k

� 1
D 0:
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Let k2 � k1 be such that jxkj < 1=2 for all k � k2. For each such k, iterating (3.2.13)

yields

jxkC1 � ykC1j D jxk2
� yk2

j

k
Y

mDk2

jx2
m � 1j:

By xk; yk ! 0 we find that log jxkC1 � ykC1j ! �1 as k ! 1 and, thereby,

lim
k!1

k
X

mDk2

log j1 � x2
mj D �1:

It is straightforward to verify that log j1 � x2
mj > �cx2

m for some c > 0, due to the

requirement jxmj < 1=2. Therefore,

1
X

mDk2

jxmj2 � �
1

c

1
X

mDk2

log j1 � x2
mj D 1

and the contradiction follows.

Proof of Theorem 3.2.3. This follows from Lemma 3.2.10 and Lemma 3.2.12.

Proof of Theorem 1.2.3. This follows from Theorem 3.2.3 by choosing a sampling

function of the form f .x; m/ D g.xn; m/ where gW A � Zp ! R is of the form

g.b;m/ D g1.b/C g2.m/.

3.2.2. Almost-sure exclusion of eigenvalues. In this section, we use Gordon’s crite-

rion in order to exclude Schrödinger eigenvalues almost surely for systems that exhibit

a sufficient degree of local repetitions. As always, we work with locally constant sam-

pling functions f .

Definition 3.2.13. Let .X; S; �/ be an ergodic subshift. For n 2 N, let

X.n/ D ¹x 2 XW xŒ�n�1� D xŒ0;n�1� D xŒn;2n�1�º:

We say that .X; S; �/ satisfies the Gordon condition if lim supn!1 �.X.n// > 0.

By general results, every subshift that satisfies the Gordon condition exhibits

almost sure absence of eigenvalues for the associated Schrödinger operators.

Proposition 3.2.14. If .X; S; �/ satisfies the Gordon condition, then for any locally
constant sampling function f1W X ! R, the operator Hx D �C Vx has purely con-
tinuous spectrum for �-a.e. x 2 X (with Vx defined in (1.2.2)).
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Proof. Given a locally constant function f1, denote by Xc.f1/ the set of x 2 X for

which Hx has purely continuous spectrum, and write

Xg WD lim sup
n!1

X.n/ D
\

n�1

[

k�n

X.k/:

If X satisfies the Gordon condition, one has �.Xg/ > 0. One also has Xg � Xc.f1/.

This is an immediate consequence of the three-block version of the Gordon lemma

when f1 has window size one [19, 46]. When the window size of f is larger than 1,

the potentials Vx may not exactly satisfy the three-block Gordon condition. How-

ever, modifying the potentials in a neighborhood of the boundary of the three-block

structure can repair this at the cost of a fixed multiplicative constant on the size of

the transfer matrices. Since Xc.f / is shift-invariant, it follows that Xc.f1/ has full

�-measure.

Recall that we denote by p the period of the subshift .X0; S 0/. In the following, let

� be a fixed but arbitrary ergodic measure on .X � X0; T /.

Proposition 3.2.15. Suppose .X; S; �/ satisfies lim supn!1 �.X.pn// > 0. Then,
the operatorH! has no eigenvalues for �-almost every ! 2 X � X0.

Proof. Let m D s.p/ and let X1; : : : ;Xm denote the Sp-minimal components as

described in Fact 2.1.3. Fix x0 2 X0 and define � D � � �0. Every ergodic measure �

on .X � X0; T / is of the form � D m�jYj
, where

Yj D

p�1
[

kD0

T k.Xj � ¹x0º/;

for 1 � j � m, is one of the T -minimal components of X � X0. Viewing Yj as a

subshift over the alphabet A � A
0, and using that S.Xs/ D XsC1 (with indices mod-

ulo m), we find

Yj .pn/ D

p�1
[

kD0

Xj Ck.pn/ � ¹.S 0/kx0º

because the pn-periodic block structure of .S 0/kx0 is automatic. Note that X.pn/ D
Sm

kD1 Xk.pn/ as a disjoint union because X can be partitioned into X1; : : : ;Xm.

Hence, �.X.pn// D
Pm

kD1 �.Xk.pn//. Using �0.¹.S 0/kx0º/ D 1=p, we obtain

�.Yj .pn// D m

p�1
X

kD0

1

p
�.Xj Ck.pn// D

m

p

p

m

m
X

kD1

�.Xj Ck.pn// D �.X.pn//;

which yields lim supn!1 �.Yj .pn// D lim supn!1�.X.pn// > 0 and hence for �-

almost every ! 2 X � X0 the associated Schrödinger operatorH! has no eigenvalues

by the Gordon criterion.
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One can show that the Gordon criterion holds for substitution subshifts whenever

words generated by the substitution have suitable repetitions. To make this precise,

we define the index of a word u 2 L.X/ by

ind.u/ D sup
°

r 2
1

juj
ZCW ur 2 L.X/

±

:

Recall that rational powers of a word u are defined as follows. For r D nC `
juj

with

n 2 ZC, 0 � ` < juj, one defines

ur D unu1 : : : u`:

For substitution subshifts we obtain the following criterion, which is an adaptation

of [29, Theorem 3].

Proposition 3.2.16. Let .X; S/ be a substitution subshift generated by a primitive
substitution # . Assume that there exists a word u 2 L.X/ with ind.u/ > 3 and such
that p divides j#n.u/j for infinitely many n. ThenH! has no eigenvalues for �-almost
every ! 2 X � X0.

Proof. Since the claim is obvious if .X; S/ is periodic, we can assume that # is

aperiodic. Let .nk/k2N be an increasing sequence of natural numbers such that p

divides j#nk .u/j for all k 2 N. By Proposition 3.2.15 it suffices to show that

lim supk!1 �.X.j#nk.u/j// > 0. Let u0 be the first letter of u and k 2 N. Since

uuuu0 2 L.X/, the same holds for #nk .u/#nk .u/#nk .u/#nk.u0/. This word con-

tains precisely j#nk .u0/j C 1 blocks of the formwww, where jwj D j#nk .u/j. By the

unique ergodicity of .X; S/, it suffices to bound the frequency of (non-overlapping)

appearances of such a pattern in an arbitrary element x 2 X. A lower bound for this is

given by the frequency of times that .Sjx/j 2Z enters the set #nk .Œuuuu0�/. Denoting

by � > 1 the Perron–Frobenius eigenvalue of the substitution matrix, this is given by

�.#nk .Œuuuu0�// D
1

�nk
�.Œuuuu0�/;

which follows because # is aperiodic and primitive [67, Theorem 5.10 and Corol-

lary 5.11]. Since each j 2 Z such that Sjx 2#nk .Œuuuu0�/ contributes j#nk .u0/j C 1

occurrences of a three block structure with the required length, we get

�.X.j#nk .u/j// � j#nk .u0/j�.#
nk.Œuuuu0�// �

j#nk .u0/j

�nk
�.Œuuuu0�/:

By primitivity, ��nk j#nk .u0/j converges to the corresponding entry Lu0
> 0 of the

left Perron–Frobenius eigenvectorL as nk ! 1 and the assertion follows.
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Example 3.2.17. Assume that # is a substitution of constant length ` and that p is a

divisor of `m for somem 2 N. If the index of the associated subshift .X; S/, given by

ind.X/ D sup¹ind.u/W u 2 L.Xº, is greater than 3, Proposition 3.2.16 yields almost

sure absence of Schrödinger eigenvalues. This applies in particular to the case that #

is given by the period-doubling substitution #Wa 7! ab; b 7! aa and p D 2n for some

n 2 N.

If the substitution matrix M associated to # (cf. Def. 3.1.23) is invertible over the

integers, we get the following consequence of Proposition 3.2.15.

Corollary 3.2.18. Let .X; S/ be a substitution subshift for some primitive substitu-
tion # with a substitution matrix M that is invertible over Z. If there exists a word
u 2 L.X/ such that ind.u/ > 3 and p divides juj then H! has no eigenvalues for
�-almost every ! 2 X � X0.

Proof. Let ˆ.u/ be the abelianization of u, that is ˆ.u/a D juja for all a 2 A. The

length of u is then given by juj D kˆ.u/k1. By construction, ˆ.#n.u// D Mnˆ.u/

and hence j#n.u/j D kMnˆ.u/k1 for all n 2 N. Since M has only integer entries,

Mv coincides with Mv0 modulo p whenever the entries of v and v0 coincide mod-

ulo p. This shows that .Mnv/n2N0
is eventually periodic modulop for every vector v.

Since M�1 also has integer entries by assumption, the sequence .Mnv/n2N is in fact

periodic modulo p. Applying this to v D ˆ.u/ and taking the 1-norm, we find that

.j#n.u/j/n2N0
is periodic modulo p. Since juj � 0 modulo p, the same holds for

j#n.u/j for infinitely many n 2 N, and thus Proposition 3.2.16 yields the desired

result.

Example 3.2.19. Let # be the Fibonacci substitution #W a 7! ab; b 7! a. The substi-

tution matrix has determinant �1 and is hence invertible over Z. The corresponding

subshift .X; S/ is a Sturmian subshift. In the notation of Berstel [7] we have that

#n.a/ D sn, with directive sequence .1; 1; 1; : : : /. By [7, Proposition 4], the index of

#n.a/ is larger than 3 for large enough n. On the other hand, as detailed in the proof

of Corollary 3.2.18, .Mnˆ.a//n2Z is periodic modulo p for all p 2 N. Since

M�2ˆ.a/ D

�

�1

1

�

;

it follows that j#n.a/j D .1; 1/Mnˆ.a/ is divisible by p for a lattice of integers n.

Hence,H! has no eigenvalues for �-almost every ! 2 X � X0.

3.2.3. Sturmian sequences. Let ˛ 2 .0; 1/ be an irrational number with continued

fraction expansion

˛ D Œa1; a2; a3; : : : � WD
1

a1 C 1

a2C 1
a3C:::

:
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For � 2 Œ0; 1/, consider the Sturmian sequences s.˛; �/ and s0.˛; �/, defined by

sn.˛; �/ D �Œ1�˛;1/.n˛ C � mod 1/;

s0
n.˛; �/ D �.1�˛;1�.n˛ C � mod 1/;

for n 2 Z, where �A denotes the characteristic function of the set A. The Sturmian

subshift .X˛; S/ of slope ˛, with

X˛ D ¹s.˛; �/W � 2 Œ0; 1/º [ ¹s0.˛; �/W � 2 Œ0; 1/º

is a strictly ergodic subshift of .¹0;1ºZ;S/, satisfying the Boshernitzan condition [23].

Let � denote the unique ergodic measure.

It is worth mentioning that X˛ n ¹s.˛; �/W � 2 Œ0; 1/º is a countable set and has

therefore�-measure 0. For measure-theoretic purposes we therefore restrict our atten-

tion to the measurable subset X0
˛ D ¹s.˛; �/W � 2 Œ0; 1/º and identify � with the

restriction of� to X0
˛ . The bijective map f W Œ0;1/! X0

˛; � 7! s.˛;�/ gives an explicit

parametrization and � coincides with the pushforward of the Lebesgue measure on

Œ0; 1/ under this map. In particular, every property that holds �-almost surely is ful-

filled for Lebesgue almost every � 2 Œ0; 1/.

The restriction of s.˛; �/ to N coincides with w D limn!1wn; where

w�1 D 1; w0 D 0; w1 D w
a1�1
0 w�1; wn D w

an

n�1wn�2 for n � 2: (3.2.18)

It was shown in [26] that for every n 2 N, every bi-infinite sequence x 2 X˛ has a

unique partition into words of the form wn�1 and wn. More precisely,

x D : : :wn�1w
`�1
n wn�1w

`0
n wn�1w

`1
n wn�1 : : : ; (3.2.19)

where the origin is somewhere in the block wn�1w
`0
n and `i 2 ¹anC1; anC1 C 1º for

all i 2 Z.

Proposition 3.2.20. Assume that X0 has period p, that ˛ D Œa1; a2; a3; : : : � satisfies

lim sup
n!1

an � 4p; (3.2.20)

and that � is a T -ergodic measure on X � X0. Then, H! has no eigenvalues for
�-almost every ! 2 X � X0.

Proof. By Proposition 3.2.15, it suffices to show that

lim sup
n!1

�.X˛.pn// > 0: (3.2.21)

Let .nj /j 2N be an increasing sequence of integers such that nj ! 1 as j ! 1 and

anj C1 � 4p for all j 2 N. The assumption on anj C1 implies that the word w
4p
nj

is
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legal and contains blocks of the form www with jwj D jw
p
nj

j at precisely jw
p
nj

j C 1

positions. Given x 2 X˛, whenever two occurrences of w
4p
nj

are separated by at least

jw
p
nj

j, all of these blocks www indeed appear at different positions within x. Using

the structure in (3.2.19), we can find an increasing sequence of positions .qi /i2Z such

that for all i 2 Z,

1. xŒqi C1;qi Cm� D w
4p
nj

, wherem D jw
4p
nj

j,

2. jw
p
nj

j � qiC1 � qi � 2jw
4p
nj

j.

Hence, the sequence .qi /i2Z is relatively dense in Z with frequency at least

1=.8pjwnj
j/. The separation by jw

p
nj

j ensures that each such occurrence of w
4p
nj

con-

tributes .jw
p
nj

j C 1/ occurrences of 3-blocks www, satisfying jwj D pjwnj
j within

x. This yields

�.X˛.pjwnj
j/ �

1

8pjwnj
j
pjwnj

j D
1

8
:

Taking the lim sup as j ! 1 yields (3.2.21).

Corollary 3.2.21. Assume that X0 has period p and that ˛ D Œa1; a2; a3; : : : � has
unbounded continued fraction expansion, that is,

lim sup
n!1

an D 1: (3.2.22)

Then, H! has no eigenvalues for �-almost every ! 2 X � X0.

Corollary 3.2.22. Let x0 be a periodic sequence and t.˛; �/ D s.˛; �/ � x0. Then,
Ht.˛;�/ has no eigenvalues for Lebesgue almost every ˛ and almost every � .

Proof. Let .X0; S 0/ be the periodic subshift generated by x0. By [54, Theorem 29],

Lebesgue almost every ˛ 2 .0; 1/ has an unbounded continued fraction expansion and

hence Corollary 3.2.21 applies to X˛ � X0 for almost every ˛. Since it holds for every

ergodic measure � and � D ���0 is a finite linear combination of those by Choquet’s

theorem (see, e.g., [65]), it also follows thatH! has no eigenvalues for �-almost every

! 2 X˛ � X0. Hence,

0 D �.¹t.˛; �/ 2 X˛ � X0WHt.˛;�/ has eigenvaluesº/

D
1

p
�.¹s.˛; �/ 2 X˛ WHt.˛;�/ has eigenvaluesº/

D
1

p
Leb.¹� 2 Œ0; 1/WHt.˛;�/ has eigenvaluesº/:

Thus, for almost every ˛ and almost every � it holds that Ht.˛;�/ has no eigenvalues.
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3.2.4. Quasi-Sturmian subshifts. Suppose the subshift .X; S/ is (quasi-)Sturmian,

that is, X is minimal and there existm;n0 2 N such that p.n/D nCm for all n� n0,

where p.n/ D #Ln.X/ denotes the complexity function of X. Every quasi-Sturmian

subshift .X; S/ is a Boshernitzan subshift [30, Corollary 1]. Compare [16] and [27]

for the following result.

Proposition 3.2.23. A subshift .X; S/ is quasi-Sturmian if and only if there exists a
Sturmian subshift .X˛; S/ and an aperiodic substitution � on ¹0; 1º such that every
x 2 X can be written as

x D Sj�.y/;

for some y 2 X˛ and j 2 Z.

In that situation, we call .˛; �/ a production pair of .X; S/. Recall that we denote

by � an ergodic measure on .X � X0; T /.

Proposition 3.2.24. Let .X; S/ be a quasi-Sturmian subshift with production pair
.˛; �/. Assume that .X0; S 0/ has period p and that ˛ D Œa1; a2; a3; : : : � satisfies
lim supn!1 an � 4p. Then, for �-almost every ! 2 X � X0, H! has no eigenval-
ues.

We omit the proof as it is completely analogous to the proof of Proposition 3.2.20.

This is because the structure used in the proof of Proposition 3.2.20 is preserved under

the substitution �.

Remark 3.2.25. Let .˛;�/ be a production pair of the quasi-Sturmian subshift .X;S/

and let p 2 N be the period of .X0; S 0/. In the special case that p divides both j�.0/j

and j�.1/j, the system .X � X0; T / decomposes into p minimal components. This

follows from the fact that every aperiodic substitution acting on a subshift over a

binary alphabet is recognizable [8, Theorem 3.1]. Given x0 2 X0 and u 2 Ln, with

n large enough, each of the sets Œu� � ¹.S 0/jx0º, for 1 � j � p, is contained in pre-

cisely one of the T -minimal components. Hence, each of the T -minimal components

has a complexity function that eventually coincides with the complexity function

of X, and thereby comprises a quasi-Sturmian subshift for which uniform absence

of Schrödinger eigenvalues and fractional Hausdorff continuity of the spectrum is

known [27].

3.3. Periodic and Bernoulli

The discussion presented in this subsection is motivated by the following problem. In

the study of the Anderson model (i.e., the potential is given by i.i.d. random variables),

a fundamental result states that the spectrum of the random operator is almost surely

equal to an explicit set. This set is given by the Minkowski sum of the spectrum of the
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Laplacian and the topological support of the single-site distribution. Thus, we have

the pleasant feature that the almost sure spectrum of the sum of the Laplacian and a

random potential is given by the sum of the spectrum of the Laplacian and the almost

sure spectrum of the random potential. As we are generally interested in this paper in

retaining crucial spectral features after the addition of a periodic background potential,

the specific question we are facing here is whether there is an explicit description3 of

the almost sure spectrum of a Schrödinger operator whose potential is given by a sum

of a periodic term and a term of Anderson type. This question appears to be open

and surprisingly difficult for periods greater than one. What we accomplish in this

section is to provide an answer in the case of period two (and finitely supported single-

site distribution) and to explain why the natural extension of the period-two result

fails in the case of period three. In fact, the relevant question is purely topological in

nature, that is, the almost-sure spectrum only depends on the support of the single-site

measure, not on the particular choice of probabilities.

In the following we consider the product space .X � Zp; T /, where X D AZ is

the full shift on m 2 N symbols and T W .x; j / 7! .Sx; j C 1/, with addition modulo

p in the second coordinate. In this case, .X � Zp; T / is (topologically conjugate to) a

subshift of finite type. We equip the full shift with the Bernoulli measure � D �Z
0 for

a measure �0 on A which can be chosen to satisfy �0.¹aº/ > 0 for all a 2 A without

loss of generality. One can specify a family of random potentials by fixing a locally

constant sampling function f of window size one. Up to shifting, we may assume

that f is of the form

f .x; j / D g.x0; j / (3.3.1)

for some gW A � Zp ! R.

In what follows, we further make the simplifying assumption that p D 2, such that

Zp D Z2 is two-periodic. In this case it turns out that it suffices to consider the m2

two-periodic sequences

!ab D ..ab/Z; 0/

for a; b 2 A. The individual spectra can be determined using the trace of the corre-

sponding monodromy matrix. More precisely, let

ME .a; b/ D ME Œ.b; 1/�ME Œ.a; 0/�

D

�

.E � g.b; 1//.E � g.a; 0//� 1 g.b; 1/�E

E � g.a; 0/ �1

�

;

3By “explicit” we mean effective. For example, for any givenE, can we decide in finite time

whether it belongs to the almost sure spectrum? Also, can we answer questions of the following

type: does the almost sure spectrum have only finitely many gaps?
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the trace of which is given by Pa;b.E/ WD .E � g.b; 1//.E � g.a; 0//� 2. The spec-

trum

�.H!ab
/ D ¹E 2 RWPa;b.E/ 2 Œ�2; 2�º

is given by the union of two intervals that can be calculated explicitly.

Denoting by �0 the normalized counting measure on Z2, it is straightforward to

verify that � D � � �0 is an T -ergodic measure. Indeed, this follows easily from the

fact that � is S2-ergodic.

Theorem 3.3.1. For �-almost every ! 2 X � Z2, the spectrum of the corresponding
Schrödinger operator is given by

�.H!/ D
[

a;b2A

�.H!ab
/: (3.3.2)

Moreover, one has
�.H!/ �

[

a;b2A

�.H!ab
/: (3.3.3)

for all ! 2 X � Z2.

Remark 3.3.2. As one can readily see from the proof below, the full-measure set on

which (3.3.2) holds contains every ! 2 X � Z2 that has a dense T -orbit. In partic-

ular, the almost-sure spectrum of H! depends only on the support of the single-site

distribution �0.

Proof of Theorem 3.3.1. The inclusion �.H!ab
/� �.H!/ for all a;b 2 A and almost

every ! follows from strong approximation and the fact that almost every ! has a

dense orbit. It therefore suffices to prove (3.3.3) for all !. Writing %.H/ for the resol-

vent set of H , we will show that

\

a;b2A

%.H!ab
/ � %.H!/

for all ! 2 X � Z2. To that end, assume that E 2 %.H!ab
/ for all a; b 2 A. Then

ME .a; b/ is hyperbolic for all a; b 2 A. For a moment, let us fix a; b 2 A and set

x D xb D E � g.b; 1/ and y D ya D E � g.a; 0/. The expanding eigendirection

of ME .a; b/ is given by vC D .vC
1 ; 1/

> and the contracting eigendirection by v� D

.v�
1 ; 1/

> where

v˙
1 D v˙

1 .a; b/ D
x

2

 

1˙

s

xy � 4

xy

!

:

The statement E 2 %.H!ab
/ is equivalent to xy 2 R n Œ0; 4�. For a moment, let us

fix y ¤ 0. A direct calculation yields that v�
1 is monotonically decreasing in x and

that limx!˙1 v�
1 D 1=y. From the boundary cases v�

1 D x=2D 2=y for xy D 4 and
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v�
1 D 0 for x D 0, we infer that v�

1 lies strictly between 0 and 2=y for all x with

xy 2 R n Œ0; 4�. Let

yC D inf¹yaW a 2 A; ya > 0º;

y� D sup¹yaW a 2 A; ya < 0º

be the smallest positive and the largest negative value of y, respectively where we

adopt the conventions inf ; D 1 sup ; D �1 to deal with cases in which one of the

sets of y’s is empty. If ya D yC, thenE 2 %.H!ab
/ implies that xb < 0 or xb > 4=yC

for all b 2 A. Similarly, we obtain that xb > 0 or xb < 4=y�. Note that this is still

valid for the degenerate cases yC D 1 and y� D �1. In summary, we have

xb <
4

y�
or xb >

4

yC

for all b 2 A. For a moment, assume that xb; ya > 0. Then,

vC
1 >

xb

2
>

2

yC
and 0 < v�

1 <
2

ya

�
2

yC
:

Exhausting all possible cases in a similar manner, we obtain that

v�
1 .a; b/ 2

� 2

y�
;
2

yC

�

and vC
1 .a; b/ 2 R n

h 2

y�
;
2

yC

i

(3.3.4)

for all a; b 2 A. Identify in the following all vectors with their representatives on the

real projective space P 1. The dichotomy in (3.3.4) amounts to the observation that

there exists an open interval I � P 1 such thatME .a; b/ acts as a contraction on I for

all a; b 2 A. By [5, Theorem 2.2] this implies that every cocycle that is built from the

matrices ¹ME .a; b/º is uniformly hyperbolic. Hence, E 2 %.H!/ for all ! 2 X � X0

by Johnson’s theorem [22, 52, 80].

Proof of Theorem 1.2.4. This follows immediately from Theorem 3.3.1 and a suitable

choice of sampling function.

Remark 3.3.3. At first, we might expect that we could get a similar result for larger

periods as well. However, if Zp D Z3 is 3-periodic, the situation is already different.

For a concrete example, consider X D ¹0; 3ºZ, let

!abc D ..abc/Z; 0/;

for a;b; c 2 ¹0;3º, and let the corresponding sampling function be given by g.a; j /D

g1.a/C g2.j /, with g1.a/ D a for a 2 ¹0; 3º, and

g2W

8

ˆ

ˆ

<

ˆ

ˆ

:

0 7! 0;

1 7! 2;

2 7! 3:
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By explicit calculations, we obtain that the spectrum of H! with the sequence ! D

..000333/Z; 0/ contains the interval Œ1:385; 1:423� which is disjoint from �.H!abc
/,

for all a; b; c 2 ¹0; 3º. Hence,

[

a;b;c2A

�.H!abc
/ ¨ �.H!�/;

where !� is any point with a dense orbit in X � Z3. The natural analogue of Theo-

rem 3.3.1 therefore fails in the 3-periodic case.

Let us return to the case of general periods. We consider again f of the form

(3.3.1), where the periodic factor is given by Zp, with p 2 N. As before, let � D

� � �0, with �0 the normalized counting measure on Zp.

The Lyapunov exponent is given by

L.E/ D L.EI �/ D lim
n!1

1

n

Z

�

log kAn
E .!/k d�.!/:

One is naturally interested in proving positivity of L on a rich set of energies as a

starting point towards a proof of Anderson localization. Indeed, we will show this

happens as soon as the function g assumes different values.

Theorem 3.3.4. If g is non-constant, then L.E/ > 0 for all but finitely many E 2 R.

The following lemma is helpful. This does not need a random or ergodic setting.

For a 2 R andwD a1 : : :an, defineME andME by (3.2.8) and (3.2.9) with g.a/D a.

Lemma 3.3.5. Let u and v denote words. If Mz.u/ D Mz.v/ for all z 2 C, then
u D v. That is juj D jvj DW ` and uj D vj for all 1 � j � `.

Proof. IfMz.u/�Mz.v/, it is clear that juj D jvj by degree considerations. We now

proceed by induction on ` D juj D jvj. The claim is trivial when ` D 1 and follows

from the observation

�

� u2 � z

z � u1 �

�

D Mz.u1u2/ D Mz.v1v2/ D

�

� v2 � z

z � v1 �

�

when `D 2. Now, assume `� 3 andMz.u/�Mz.v/. Write u0 D u1 : : :u`�1. Notice

that for any w, the degree of ŒMz.w/�21 is jwj � 1. Thus, we have the following

(making use of ŒMz.u
0/�11 D ŒMz.u/�21):

ŒMz.u/�11 D .z � u`/ŒMz.u
0/�11 � ŒMz.u

0/�21 D .z � u`/ŒMz.u/�21 CO.z`�2/:

Perform the analogous calculation for ŒMz.v/�11, use ŒMz.v/�21 � ŒMz.u/�21, and

compare the z`�1 terms to see that u` D v`. The result follows by induction.
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Proof of Theorem 3.3.4. Since L is positive away from the almost-sure spectrum, it

suffices to show that L can only vanish on a discrete set. Consider the regrouped

alphabet yA D A
p and O�0 D �

p
0 . For a D .a1; : : : ; ap/ 2 yA and E 2 C, define

yAE .a/DME .ap; p/ : : :ME .a1; 1/

D

�

E � g.ap; p/ �1

1 0

��

E � g.ap�1; p � 1/ �1

1 0

�

: : :

�

E � g.a1; 1/ �1

1 0

�

;

and consider the induced cocycle .T; yAE / on yAZ with ergodic measure O� D O�Z
0 and

its associated Lyapunov exponent

yL.E/ D lim
n!1

1

n

Z

yA Z

log k yA n
E . O!/k d O�. O!/: (3.3.5)

For a; b 2 yA, Lemma 3.3.5 implies that the commutator ŒME .a/;ME .b/� vanishes

identically inE 2 C if and only if .g.a1; 1/; : : : ;g.ap;p//D .g.b1; 1/; : : : ;g.bp;p//.

Thus, by the assumption on g, there exist a; b 2 yA and E 2 C such that ME .a/ and

ME .b/ do not commute, and hence yL is positive away from a discrete set by the

abstract Furstenberg criterion from [14]. The result then follows by using interpolation

to note that yL.E/ D pL.E/.

As one can see from the regrouping construction in the proof, the models dis-

cussed here are special cases of random word models, which are known to exhibit

Anderson localization. Indeed, the result described in Theorem 3.3.4 was already

known. We give the proof here, since it is much simpler than the argument from [31].

However, the spectrum (as a set) is not explicitly identified as in Theorem 3.3.1 in

complete generality.

4. Periodic and one-frequency quasi-periodic

We now turn to the second main family of examples of product systems: products

of circle rotations and translations on finite cyclic groups. To keep the length of the

paper in check, we do not attempt an exhaustive survey of all possible results in this

scenario. Rather, we look at a selection of results that we consider interesting.

The motivating example is that of a quasi-periodic potential with a periodic back-

ground:

V.n/ D Vx.n/C Vper.n/;

where Vper has period p and Vx.n/ D f1.n˛C x/ for some f1 2 C.T ;R/, x 2 T WD

R=Z, and ˛ 2 T irrational. One can clearly encode this via the product system .�;T /
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where

� D T � Zp; T .x; k/ D .x C ˛; k C 1/; x 2 T ; k 2 Zp: (4.0.1)

One generates Vx C Vper as V.x;0/.n/ D f .T n.x; 0// via the sampling function

f .x; k/ D f1.x/ C f2.k/ where f2.k/ D Vper. Qk/ for any representative Qk of the

residue class k 2 Zp. We will be mainly interested in this case, but we can be a

bit more general, considering for example trigonometric polynomials on the space �

(see Definition 4.2.3 below).

4.1. Generalities

Given ˛ 2 T irrational and p 2 Z, we consider the associated product system as in

(4.0.1). As a consequence of the general discussion in Appendix B, let us note the

following basic facts about this particular product system.

Proposition 4.1.1. Given p 2 N and ˛ 2 R n Q, let � D T � Zp and T .x; k/ D

.x C ˛; k C 1/.

a. � is a compact abelian group.

b. .�; T / is minimal.

c. .�;T;�/ is ergodic, where �D �1 ��2, � denotes Lebesgue measure on T ,
and �2 denotes normalized counting measure on Zp .

d. .�; T / is uniquely ergodic with unique invariant measure � as in part (c).

Let f 2 C.�;R/ be given. With the help of Proposition 4.1.1, we make a few

observations. First, by minimality of .�; T / and continuity of f , there is a uniform

set † D †f;˛ with † D �.Hf;˛;!/ for all ! 2 �.

Recall the one-step cocycle map

Az.!/ D

�

z � f .T!/ �1

1 0

�

(4.1.1)

and the associated Lyapunov exponent

L.z/ D L.z; f; ˛/ D lim
n!1

1

n

Z

�

log kAn
z .!/k d�.!/:

One of the main ideas in the analysis of this family of product systems is to pass

from�D T � Zp to T by regrouping. Concretely, defineBz DBz;f;˛WT ! SL.2;C/

by

Bz.x/ D

1
Y

j Dp

�

z � f .T j .x; 0// �1

1 0

�

D Ap
z ..x; 0//; x 2 T : (4.1.2)
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This map has iterates

Bn
z .x/ D Bz.x C .n � 1/p˛/ � � �Bz.x C p˛/Bz.x/ D Anp

z ..x; 0//: (4.1.3)

Denote the corresponding Lyapunov exponent by zL.z/ D zL.z; f; ˛/:

zL.z/ D lim
n!1

1

n

1
Z

0

log kBn
z .x/k dx:

Proposition 4.1.2. zL D pL. In particular, L.z/ > 0 () zL.z/ > 0.

Proof. This follows from (4.1.3).

From Proposition 4.1.2, we define

Z D ¹EWL.E/ D 0º D ¹EW zL.E/ D 0º:

4.2. Proofs of Theorems 1.2.5 and 1.2.6

Let us briefly recall the terminology from Avila’s global theory of one-frequency

analytic cocycles [3]. Let ˛ 2 R n Q be given, and suppose BW T ! SL.2;R/ is

real-analytic with analytic extension to a strip Ts D ¹zW jIm.z/j < sº for some s > 0.

For each " 2 R with j"j < s, one may consider the cocycle B" WD B.� C i"/ and the

associated Lyapunov exponent

L.B"; ˛/ D lim
n!1

1

n

Z

T

log kB".x C .n � 1/˛/ � � �B".x C ˛/B".x/k dx

D lim
n!1

1

n

Z

T

log kBn
" .x/k dx: (4.2.1)

Theorem 4.2.1 (Avila [3]). Given ˛ 2 R n Q and BW T ! SL.2;R/ with analytic
extension to Ts , the functionƒW " 7! L.B"; ˛/ enjoys the following properties.

a. ƒ is continuous, convex, and piecewise affine on .�s; s/.

b. Quantization of acceleration. For all j"j < s, the acceleration

!.B; "/ WD lim
t#0

1

2�t
.ƒ."C t/ �ƒ."//

exists and must lie in Z.

In view of Theorem 4.2.1, one classifies cocycle maps as follows.
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Definition 4.2.2. With B and ˛ as above, we say that the cocycle .B; ˛/ is

• subcritical if for some ı > 0, L.B"; ˛/ D 0 for all j"j < ı;

• critical if L.B; ˛/ D 0, but .B; ˛/ is not subcritical;

• supercritical if L.B/ > 0 but .B; ˛/ is not uniformly hyperbolic; and

• acritical if it is not critical.

As discussed in the introduction, we will consider periodic decorations of quasi-

periodic potentials generated by trigonometric polynomials, and this is most com-

monly accomplished with the addition of a periodic background. The arguments can

handle a more general situation, which we now formulate precisely.

Definition 4.2.3. Recall that a character of a topological group G is a continuous

homomorphismG ! S1 D ¹z 2 CW jzj D 1º and a trigonometric polynomial is a linear

combination of characters. We write TP.G/ for the set of trigonometric polynomials

on G.

The following well known characterization of trigonometric polynomials on

T � Zp will be helpful.

Proposition 4.2.4. One has f 2 TP.T � Zp/ if and only if f .�; k/ 2 TP.T / for each
k 2 Zp.

Proof. This is well known and not hard to show using unitarity of the discrete Fourier

transform. For the reader’s convenience, we give the arguments. The characters of

T � Zp are of the form

�m;`W .x; k/ 7! e2�i.mxCk`=p/; m 2 Z; ` 2 Zp: (4.2.2)

Thus, if f 2 TP.T � Zp/, then

f D
X

m2Z

X

`2Zp

cm;`�m;` (4.2.3)

for suitable coefficients ¹cm;`º, which certainly implies f .�; k/ 2 TP.T / for each k.

Conversely, if f .�; k/ 2 TP.T / for each k, write

f .x; k/ D
X

m2Z

Ocm;ke2�imx

for some coefficients ¹ Ocm;kº. To write f in the form (4.2.3), define

cm;` D
1

p

X

k02Zp

e�2�ik0`=p Ocm;k0
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for each m 2 Z, ` 2 Zp , and note that

X

m2Z

X

`2Zp

cm;`�m;`.x; k/ D
X

m2Z

X

k02Zp

X

`2Zp

1

p
Ocm;k0e2�imxe2�i`.k�k0/=p

D
X

m2Z

Ocm;ke2�imx D f .x; k/;

as desired.

In view of Proposition 4.2.4, we can identify trigonometric polynomials on

T � Zp with p-tuples of trigonometric polynomials on T . For f 2 C.�/, we call

f Œk� D f .�; k/ a component of f .

Theorem 4.2.5. Let ˛ 2 R n Q and p 2 N be given, and suppose f is a real-valued
trigonometric polynomial on � D T � Zp such that no component of f vanishes
identically. If j�j is sufficiently large, then the cocycle BE;�f;˛ defined by (4.1.2) is
supercritical for all E 2 †. Indeed, one has

zL.E; �f; ˛/ �
1

2
p log j�j (4.2.4)

for all E 2 † and all j�j sufficiently large.

Proof. This follows readily from Herman’s subharmonicity argument; compare [11,

48].

Remark 4.2.6. Let us make a few comments about Theorem 4.2.5.

a. The assumption that no component of f vanishes is essential. Indeed, consider

the casepD 2 and f 2 TP.T � Z2/ for which f Œ1� � 0 and f Œ0� is some non-constant

real-valued trigonometric polynomial on T . For energy E D 0, one sees immediately

B0.x/ D

�

0 �1

1 0

��

�f Œ0�.x/ �1

1 0

�

D

�

�1 0

�f Œ0�.x/ �1

�

;

leading to

Bn
0 .x/ D .�1/n

�

1 0
Pn�1

j D0 f
Œ0�.x C 2j˛/ 1

�

: (4.2.5)

This suffices to show that 0 is a generalized eigenvalue ofHf;˛;! for every x 2 T and

that zL.0/D L.0/D 0, so the associated 2-step cocycle is not supercritical, regardless

of the size of f .

b. On the other hand, in the case in which one considers the product system

associated with the sum of a quasi-periodic potential generated by f0 2 TP.T / and a
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periodic background Vper, the associated sampling function is of the form f .x; k/ D

f0.x/C f1.k/. In particular, the obstruction noted in (a) cannot occur in this setting.

c. While this paper was under review, Matthew Powell proved a generalization

of Theorem 4.2.5 for potentials of the form V1 C V2 in which V1 takes finitely many

values and the quasiperiodic potential V2 has analytic sampling function [66].

Remark 4.2.7. One can also prove subcriticality at small coupling under suitable

assumptions on f . More precisely, if ˛ 2 R n Q and p 2 N are given, and f 2

C.T � Zp/ is such that every component of f is analytic, then there is a constant

c D c.f / such that the cocycleBE;�f;˛ defined by (4.1.2) is subcritical for all E 2 †

whenever j�j � c. This follows immediately from Avila’s global theory, namely the

quantization of acceleration as in Theorem 4.2.1 and openness of acriticality (com-

pare the discussion on [3, p. 13]). The constant c.f / can be made explicit for specific

examples, for instance by following the method of [64]. Notice that this remark

applies in the case in which one considers periodic perturbations of a quasi-periodic

operator whose potential is generated by an analytic function on T .

Proof of Theorem 1.2.5. Suppose f0 is a non-constant trigonometric polynomial

on T , and define f1.k/ D Vper. Qk/ for any representative Qk of k 2 Zp . The desired

result then follows by applying Theorem 4.2.5 and Remark 4.2.7 with the sampling

function f .x; k/ D f0.x/C f1.k/.

Proof of Theorem 1.2.6. This follows immediately from Theorem 1.2.5.

A. Ergodic measures on accelerated systems

Given a uniquely ergodic topological dynamical system .X; S/, the setting of the

present paper naturally motivates one to understand the structure of the space of

Sm-invariant (and Sm-ergodic) measures on X. We collect some basic results to that

effect here. The results in this section are measure-theoretic analoges of statements

from Section 2 in the topological setting. Throughout this part of the appendix, assume

that .X; S/ is uniquely ergodic with unique invariant measure �.

Lemma A.1. For every m 2 N, there is a measurable subset A � X and a number
q 2 N dividing m with the following properties. A D Sq.A/, and the set of ergodic
probability measures on .X; Sm/ is given by

¹q �jA ı S�j W 0 � j � q � 1º:

Further, �jA ı S�q D �jA, �.A/D 1=q and the set
Sq�1

j D0 S
j .A/ has full �-measure.
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Proof. Let % be an Sm-ergodic probability measure on X. First note that % ı S�j is

Sm ergodic for all j 2 N. Indeed, if B is Sm-invariant, then so is S�jB and hence

% ı S�j .B/ D %.S�jB/ 2 ¹0; 1º. Hence, either % ı S�j D % or % ı S�j ? %. Let

q 2 N be minimal with the property that % D % ı S�q. Since % is Sm-invariant, q

needs to dividem. The measure

N% D
1

q

q�1
X

j D0

% ı S�j

is an S -invariant probability measure on X by construction. Due to the unique

ergodicity of .X; S; �/ it follows that N% D �. Let A0 be a measurable set such that

%.A0/ D 1 and % ı S�j .A0/ D 0 for all 1 � j � q � 1. The same holds for the set

A D \j 2ZS
jq.A0/, which in addition satisfies Sq.A/ D A. For an arbitrary subset

C � X we obtain

�jA.C / D �.A \ C/ D N%.A \ C/ D
1

q
%.C /;

implying that %D q �jA. In particular, �.A/D �jA.A/D %.A/=q D 1=q. Further, we

find

�
�

q�1
[

j D0

Sj .A/
�

D
1

q

q�1
X

kD0

%
�

S�k
�

q�1
[

j D0

Sj .A/
��

D
1

q

q�1
X

kD0

%.A/ D 1:

Suppose there is another Sm-ergodic probability measure � on X, which is then sin-

gular to each of the % ı S�j . The same holds for each of the measures � ı S�j with

j 2 N. By the same argument as above, there exists q0 2 N such that � D N� WD

1=q0
Pq0�1

j D0 � ı S�j . On the other hand, N� ? N% leading to a contradiction.

Lemma A.2. For every m 2 N, e2�i=m is an eigenvalue of .X; S; �/ if and only if
.X; Sm/ has preciselym ergodic probability measures.

Proof. Suppose e2�i=m is an eigenvalue of .X; S;�/ with (almost-surely) normalized

eigenfunction f . For 0 � j � m � 1, let

Aj D f �1.¹e2�i˛W j=m � ˛ < .j C 1/=mº/:

By construction, all the Aj are disjoint and we have for 0 � j � m� 2 that S.Aj / D

Aj C1 as well as S.Am�1/DA0 and hence�.Aj / does not depend on j . Since jf j D 1

almost surely, the union A0 [ � � � [ Am�1 has full measure, implying that �.Aj / D

1=m for all 0 � j � m� 1. The probability measures �j D m�jAj
are Sm-invariant

and pairwise singular to each other for all 0 � j � m � 1. By Lemma A.1, there are
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at mostm ergodic measures for .X; Sm/, so we obtain that the measures �j are in fact

ergodic and that there are precisely m ergodic probability measures on .X; Sm/.

Conversely, suppose that there are precisely m ergodic probability measures on

.X; Sm/. Let A be as in Lemma A.1. The function

f .x/ D

m�1
X

j D0

e2�ij=m�
Sj .A/

.x/

almost surely satisfies f .Sx/D e2�i=mf .x/ and is hence a measurable eigenfunction

with eigenvalue e2�i=m.

Recall from Definition 2.2.1 that s0.m/ denotes the number of Sm-ergodic Borel

probability measures on X.

Lemma A.3. Let m 2 N and let k be the largest divisor of m such that e2�i=k is an
eigenvalue. Then, s0.m/ D k.

Proof. If m1 divides m2, then s0.m2/ � s0.m1/. This is because an Sm1-invariant

measure is also Sm2-invariant. Hence, there are at least s0.m1/ mutually singular

measures that are Sm2-invariant. Given j; q 2 N, an Sjq-ergodic measure �0 that

is Sq-invariant is also Sq-ergodic. Therefore, if s0.m/ D q, then s0.q/ D q due to

Lemma A.1. By Lemma A.2, e2�i=q is an eigenvalue. It remains to show that q is

maximal with this property. Suppose ` > q is also a divisor of m such that e2�i=` is

an eigenvalue, implying s0.`/D `. Using our first observation in this proof, we obtain

s0.m/ � s0.`/ D ` > q D s0.m/, a contradiction.

Lemma A.4. If m1 and m2 are relatively prime, then s0.m1m2/ D s0.m1/ s0.m2/.
Further, for each prime p there exists a number p̀ 2 N0 [ ¹1º such that s0.p`/ D

min¹p`; p`p º for all ` 2 N0.

Proof. This follows essentially via the characterization in terms of eigenvalues. Let

s0.m1m2/ D k. Since m1; m2 are coprime, k can be written uniquely as k D k1k2

such that k1jm1 and k2jm2. Since e2�i=k is an eigenvalue and the eigenvalues build a

group, also e2�i=k1 and e2�i=k2 are eigenvalues. If there was an ` > k1 with `jm1 and

e2�i=` an eigenvalue, then also e2�i=.`k2/ would be an eigenvalue. This would imply

s0.m1m2/ � `k2 > k, a contradiction. Hence, k1 is maximal with that property and

s0.m1/ D k1. Analogously, we find that s0.m2/ D k2. This shows the first claim.

Given a prime p, let p̀ be the largest power such that e2�i=p`p
is an eigenvalue of

.X;S;�/. If e2�i=p`
is an eigenvalue for all ` 2 N0, set p̀ D 1. Since the eigenvalues

form a group, e2�i=p`
is also an eigenvalue and hence s0.p`/ D p` for all 0 � ` �

p̀. If p̀ ¤ 1 and ` > p̀ , the statement s0.p`/ D p`p follows immediately from

Lemma A.3.
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B. Strict ergodicity of product systems

Here, we pursue the question under which condition the product of two uniquely

ergodic/minimal systems is again uniquely ergodic/minimal. This is closely related to

the joining theory of dynamical systems, pioneered by Furstenberg in [43]. We give

an overview of some elementary results for the reader’s convenience.

Here, a (topological) dynamical system .X;T / consists of a compact metric space

X and a homeomorphism T on X .

Definition B.1. A (topological) joining of two dynamical systems .X1; T1/ and

.X2; T2/ is a non-empty and closed, T1 � T2-invariant subset Z � X1 � X2 such

that �1.Z/ D X1 and �2.Z/ D X2, where �1; �2 denote the projections to the first

and second coordinate, respectively.

We call .X1; T1/ and .X2; T2/ (topologically) disjoint if .X1 � X2; T1 � T2/ is

their only joining. For the following, compare [45].

Fact B.2. Two minimal dynamical systems .X1; T1/ and .X2; T2/ are (topologically)
disjoint if and only if their product system is minimal.

There is a natural analogue of this observation in measure-theoretic terms. If

.X; T / is a topological dynamical system and � a T -invariant Borel probability mea-

sure on X , we call .X; T; �/ a (measure-preserving) dynamical system.

Definition B.3. The joining of two measure-preserving dynamical systems .X1; T1;

�1/ and .X2; T2; �2/ is a T1 � T2-invariant Borel probability measure � on X1 �X2

such that �i D � ı ��1
i for i 2 ¹1; 2º.

The dynamical systems .X1; T1; �1/ and .X2; T2; �2/ are called disjoint if

�1 � �2 is their only joining.

Lemma B.4. Two uniquely ergodic dynamical systems .X1; T1;�1/ and .X2; T2;�2/

are disjoint if and only if their product system is uniquely ergodic.

Proof. First, assume that .X1; T1; �1/ and .X2; T2; �2/ are not disjoint. Then, there

exist at least two different joinings � and � on .X1 � X2; T1 � T2/. By assumption,

� and � are both T1 � T2-invariant and hence, the product system is not uniquely

ergodic.

Conversely, assume that .X1; T1; �1/ and .X2; T2; �2/ are disjoint and let � be

an arbitrary T1 � T2-invariant measure on X1 �X2. Since � ı ��1
i is Ti -invariant for

each i 2 ¹1; 2º, the unique ergodicity of .Xi ; Ti ;�i / implies that � ı ��1
i D �i . That

is, � is a joining and as such unique.
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At this point, we have reformulated the original problem in terms of the question

under which conditions two minimal/uniquely ergodic dynamical systems are disjoint.

There is an abundance of useful characterizations and criteria for disjointness;

compare for example [43, 45, 73]. In order to exclude disjointness, it suffices to find a

non-trivial common factor of both dynamical systems. More precisely, we call .Y; S/

a (topological) factor of .X; T / if there is a continuous surjective map �WX ! Y

such that � ı T D S ı � . The factor is called trivial if it coincides with the identity

map on a singleton. For the following, see [43, Proposition II.2].

Fact B.5. If .X1;T1/ and .X2;T2/ have a non-trivial common topological factor, they
are not disjoint.

There is a natural analogue of this criterion in the measure-theoretic regime. Here,

.Y; S; �/ is called a factor of .X; T; �/ if there is a measurable map �WX ! Y such

that � ı T D S ı � up to null sets, and � D � ı ��1. Such a factor is called trivial it

is isomorphic to the identity map on a singleton. The following analogue of Fact B.5

can be found in [43, Proposition I.2].

Fact B.6. If .X1; T1;�1/ and .X2; T2;�2/ have a non-trivial common factor, they are
not disjoint.

Remark B.7. The converse is not true in general [69]. However, the more general

statement in [45, Theorem 8.4] provides a characterization of disjointness in terms of

factors and a more general concept, termed quasifactors.

There is a sufficient criterion for disjointness that relies on spectral properties of

the dynamical systems [45, Theorem 6.28].

Fact B.8. Two dynamical systems .X1; T1; �1/ and .X2; T2; �2/ are disjoint if their
reduced maximal spectral measures are mutually singular.

Remark B.9. Again, the converse of this result is not true. In fact, there are ergodic

dynamical systems .X; T; �/ that are disjoint from their inverse .X; T �1; �/; see

for example [6, 33]. On the other hand, the reduced maximal spectral measures of

.X; T; �/ and .X; T �1; �/ are always equivalent; compare [61].

We are mostly concerned with ergodic dynamical systems. If we further restrict

to the class of systems with pure point dynamical spectrum, disjointness has a simple

spectral characterization.

Corollary B.10. Two ergodic systems .X1; T1; �1/ and .X2; T2; �2/ with pure point
dynamical spectrum are disjoint if and only if they do not have a common eigenvalue
except 1.
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Proof. First, assume that 1 is the only shared eigenvalue. Because we assumed that

both systems have pure point dynamical spectrum, this implies that the reduced max-

imal spectral measures are mutually singular, implying disjointness by Fact B.8.

Conversely, assume that both systems share an eigenvalue of the form � D e2�i˛,

with ˛ 2 .0; 1/. For a moment, assume that ˛ is irrational. Then, ergodicity implies

that the torus translationR˛W T ! T ; x 7! xC ˛, equipped with the normalized Haar

measure is a factor of both systems by standard arguments; compare for example

[41, Lemna 1.6.2]. If ˛ 2 Q, we may assume that ˛ D 1=r for some r 2 N without

loss of generality. In this case, the cyclic group .Zr ;C1; �/, where � is the normalized

counting measure is a factor of both systems; see [41, Lemma 1.6.4]. In both cases,

the systems cannot by disjoint, due to Fact B.6.

Almost-periodic potentials have attracted particular attention in the spectral study

of Schrödinger operators. Recall that almost-periodic sequences are precisely those

that can be obtained from a continuous sampling function f on some minimal group

rotation .�; R/, where � is a compact metrizable group. In fact, the subshift gener-

ated by an almost-periodic sequence has itself the structure of such a group rotation.

There is a useful characterization of the strict ergodicity of rotations on a compact

metric group [41, Theorem 1.4.10].

Fact B.11. Let RW� ! �;x ! ax be a rotation on a compact metric group�. The
following are equivalent:

1. .�;R/ is minimal;

2. .�;R/ is uniquely ergodic;

3. ¹anW n 2 Nº is dense in �.

In this case, the group� is abelian.

It is further known that the rotation R on a compact abelian group � has pure

point dynamical spectrum [41, Chapter 1].

Corollary B.12. Let .�1; R1/ and .�; R2/ be each a minimal group rotation on a
compact metrizable group. Then, the following are equivalent:

1. .�1; R1/ and .�;R2/ have no non-trivial shared eigenvalues;

2. .�1 ��2; R1 �R2/ is uniquely ergodic;

3. .�1 ��2; R1 �R2/ is minimal.

Proof. The equivalence of (1) and (2) follows by combining Lemma B.4 with Corol-

lary B.10. Since .�1 ��2; R1 � R2/ is again a group rotation on a compact metriz-

able group, the equivalence of (2) and (3) follows from Fact B.11.
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Remark B.13. Let RW� ! �; x 7! ax be a minimal group rotation on a compact

metrizable group�. A character on� is a continuous group homomorphism �W�!

S1 D ¹z 2 CW jzj D 1º. We denote by y� the dual group of all characters on �. In

this setup, the characters form a basis of eigenfunctions in L2.�; �/, where � is the

Haar measure on G, each with eigenvalue �.a/. Hence, the group of (topological)

eigenvalues of .�;R/ is precisely

G D ¹�.a/W� 2 y�º:

The pullback of this group under the projection �W R ! S1; t 7! e2�it is often called

the frequency module of .�; R/, denoted by M. This object is central in the gap

labeling theorem; compare [24, 34, 51]. By construction, the frequency module auto-

matically contains the set Z. We can easily adapt Corollary B.12 to the statement that

the product of .�1; R1/ and .�2; R2/ is strictly ergodic if and only if their frequency

modules have a trivial intersection, given by Z.
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