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Fractional Calderon problems and Poincaré inequalities
on unbounded domains

Jesse Railo and Philipp Zimmermann

Abstract. We generalize many recent uniqueness results on the fractional Calderén problem
to cover the cases of all domains with nonempty exterior. The highlight of our work is the
characterization of uniqueness and nonuniqueness of partial data inverse problems for the frac-
tional conductivity equation on domains that are bounded in one direction for conductivities
supported in the whole Euclidean space and decaying to a constant background conductivity
at infinity. We generalize the uniqueness proof for the fractional Calderén problem by Ghosh,
Salo and Uhlmann to a general abstract setting in order to use the full strength of their argu-
ment. This allows us to observe that there are also uniqueness results for many inverse problems
for higher order local perturbations of a lower order fractional Laplacian. We give concrete
example models to illustrate these curious situations and prove Poincaré inequalities for the
fractional Laplacians of any order on domains that are bounded in one direction. We establish
Runge approximation results in these general settings, improve regularity assumptions also in
the cases of bounded sets and prove general exterior determination results. Counterexamples to
uniqueness in the inverse fractional conductivity problem with partial data are constructed in
another companion work.
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1. Introduction

The primary objective of this article is to study the fractional Calderén problem for
perturbations of the fractional Laplacian (—A)Su := £ ~1(|€** #i) where s e Ry \ Z.
This is the nonlocal analog of the classical Calderén problem for the Schrodinger
equation which appears in many imaging applications [83, 84]. The study of this type
of fractional inverse problems was initiated by Ghosh, Salo, and Uhlmann in [39]. In
particular, we consider generalizations of the model problem

{ (=AY +qu=0 inQ, 0

u=f in Q,,

where Q, = R” \ Q is the exterior of an open set Q and is assumed to be nonempty.
The associated Dirichlet to Neumann (DN) map to the exterior value problem (1),
under certain conditions on ¢ and €2, is a bounded linear operator A,: H*(2,) —
(H*(2¢))* which acts under some stronger regularity assumptions than imposed
in this article as A, f = (—A)’ulq, (see [39, Lemma A.1]). We need to impose
some positivity or smallness assumptions on the perturbations ¢ to guarantee that the
exterior DN map is well defined due to the lack of compact Sobolev embeddings on
unbounded domains. The studied fractional Calderén problem can be simply formu-
lated as follows: given f +— A, f, determine q.

We extend the recent uniqueness results in [22, 73] for singular potentials and
for lower order local linear perturbations [15,23] to domains that are bounded in
one direction. In fact, we prove a general result which applies also in the case of
local higher order perturbations (i.e., the order of the perturbation is higher than the
order of the fractional Laplacian) and for all domains with nonempty exterior. We
also consider the setting of the fractional conductivity equation and the related Liou-
ville transformation studied earlier in [19]. The main contributions of our work are
Theorem 2.8, which rather completely characterizes the uniqueness of the fractional
Calderén problem for the conductivity equation in a general setting, and an exten-
sion of the usual methods on bounded domains to the case of nonlocal (or fractional)
inverse problems of any order on unbounded domains (see Theorems 2.2 and 2.6).

The methods needed on unbounded domains allow us to slightly extend the
uniqueness results of the fractional Calder6n problem in the usual setting of bounded
domains to larger classes of singular perturbations than in the scientific literature (see,
e.g., [22,23,73]). We refer to the survey [75] for a more detailed but a bit outdated
treatment of the topic. See also [14, 15, 18,20, 37,38, 53-55, 58-60, 74] and the ref-
erences therein for other recent studies of the fractional Calderén problems. These
include for example perturbations of nonlocal elliptic anisotropic operators, nonlin-
ear perturbations and nonlocal perturbations among many other model problems as
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well as studies of the stability and reconstruction. Most recently, inverse problems
for the fractional spectral Laplacian have been studied also on Riemannian manifolds
[31,32]. We discuss some of these works with more details in the later sections.

The classical Calderén problem and related inverse problems have been studied
on unbounded domains earlier. A historical reference is the work of Langer, which
studies the inverse conductivity problem and geophysical applications for conductivi-
ties in a half-space under the assumption that the conductivity is depending only upon
the depth [56]. The classical Calderén problem is studied in a half-space, e.g., for
convex inclusions in [36] and in two dimensions for anisotropic conductivities in [4].
These inverse problems are also studied in infinite slabs or similar unbounded struc-
tures in [16,45,50,76] when n > 3. Inverse problems for general second order elliptic
equations are studied recently in [6]. The above list is incomplete and more references
can be found from the aforementioned works. In the classical Calder6én problems on
unbounded domains, one often demands some radiation condition for the solutions at
infinity which are not present in the nonlocal formulations studied in this article.

The second goal of this article is to study Poincaré inequalities for the fractional
Laplacian of any positive order s > 0 in the local Bessel potential spaces. In the sim-
plest form, we prove that for any bounded openset 2 C R”,n > 1,1 < p < oo and
s > 0 there exists a constant C(n, p, s, 2) > 0 such that

lullLr@) < CI(=A)2ullLr@n)

for all u € C2°(£2). We obtain generalizations of this inequality to domains that are
bounded in one direction. We do not impose any boundary regularity assumptions
on 2. We refer to the following surveys and expository articles on the fractional
Laplacian, fractional Sobolev spaces and their applications [27, 51, 52, 62, 63]. See
also the books [8, 26,57, 78, 80, 82] covering nearly the whole spectra of classical
methods related to the fractional order Sobolev spaces.

The Poincaré inequalities for the fractional Laplacian are important as they allow
to show existence, uniqueness and boundedness theorems for weak solutions of PDEs
(see, e.g., [23,39,70,71,73]). The standard example is the fractional Laplace equation
(—A)%u = F with the interior data F' in some domain 2 C R” (see, e.g., [69]). The
cases when p # 2 appear naturally in the studies of nonlinear PDEs and the standard
examples are different kind of p-Laplacians (see, e.g., [11,12,24,25,33-35,61,65,66]
and references therein). The Poincaré and other closely related inequalities for the
fractional Laplacians are studied recently, for example, in [2,10,17,25,41,61,65,85].
On recent studies and further references of the higher order fractional Laplacians,
we point to [22, 23, 72]. The higher order fractional Laplacian also appears in the
studies of the Radon transform and imaging methods since the normal operator of the
d-plane Radon transform for an integer 1 < d < n can be identified with (—A)_%
and the inverse operator can be defined using (—A)% (see, e.g., [22,43,46]).
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We state our main results on the fractional Poincaré inequalities in Section 2.1.
We discuss our main results on the fractional Calderén problems in Section 2.2. We
recall preliminaries in Section 3. We prove the results related to the generalized frac-
tional Calder6n problem in Section 4. We prove the results related to the fractional
Poincaré inequalities in Section 5. We define some classes and decompositions of
Sobolev multipliers and PDOs in Section 6, and these are used to obtain uniqueness
results for concrete example models in Section 7. We study the fractional conductivity
equation and the related inverse problem in Section 8. We prove some basic proper-
ties for products of functions in Bessel potential spaces in Appendix A as they are
essential for our main results on the fractional conductivity equation and we could not
locate all of them in the required form in the earlier literature.

2. Main results of the article

2.1. Poincaré inequalities for the fractional Laplacians

Our first main result is the higher order fractional Poincaré inequality for domains that
are bounded in one direction. We begin with the following definition.

Definition 2.1. (i) We say that an open set Q4, C R” of the form Qo = R" % x o,
wheren >k > 0and w C R¥ is a bounded open set, is a cylindrical domain.

(ii) We say that an open set Q2 C R” is bounded in one direction if there exists a
cylindrical domain Q4 C R” and a rigid Euclidean motion A(x) = Lx + xo, where
L is a linear isometry and xo € R”, such that 2 C AQ.

One could equivalently require that there exists a rigid Euclidean motion A and
a cylindrical domain Qs C R” such that AQ C Q4. In Section 5 we prove the
following theorem.

Theorem 2.2 (Poincaré inequality). Let Q C R” be an open set that is bounded in
one direction. Supposethat2 < p <ocoand0 <s <t <oo,orl <p<2,1<t<o0
and 0 < s < t. Then there exists C(n, p,s,t,2) > 0 such that

s r
[(=A)2ullLr®ry < ClI(—=A)2ul|Lr @)
forallu € H?(Q).

We obtain this result and also information on the Poincaré constants using a gener-
alization of the interpolation result of fractional Poincaré constants in [22]. The lower
order cases 0 < ¢ < 1 when p > 2 rely on the Poincaré inequalities for the Gagliardo
seminorms (see, e.g., [65, Theorem 1.2] and references therein). Unfortunately, we do
not have a proof which would also settle the cases 0 <7 < 1 and 1 < p < 2. We have
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stated and proved the fractional Poincaré inequality on bounded sets in Lemma 5.4
without these limitations on the integrability and Sobolev scales. See also the discus-
sion of different methods of proof preceding the statement of Lemma 5.4.

We have the following result on the Poincaré constants. The proof is given in
Section 5.

Theorem 2.3 (Interpolation of Poincaré constants). Let 2 C R” be an open set and
1 < p <oo. Supposethatr > z,andt >s>r >z >0ort >r >s>z>0hold.
If there exists a fractional Poincaré constant C, ; > 0 with

10l 2.0 @y < Crz IVl roo ) )
forall v e H"P(Q), then we have

el g ory < Gz Nl e o oy 3)
forallu € H>?(RQ).

We believe that the constant in Theorem 2.3 remains optimal if C, ; is the opti-
mal Poincaré constant. The resulting constant in (3) has the same scaling properties
as the optimal constants and the constant cannot be improved by making the interpo-
lation argument twice. Moreover, the Poincaré constants for H't2:r(Q) give upper
bounds for lower order Poincaré constants for all (—A)H+ 2:P(Q) C H"P (2), and
if “(—=A)H!+2:2(Q) = H"P(Q)” were true for all ¢ > 0, then the optimality and the
lower order cases when 1 < p < 2 would also follow by a short proof using the inter-
polation result. For these heuristic reasons, we have formulated the optimality of the
constants as Conjecture 5.8. See also Remark 5.7 on a possibility to generalize the

assumptions in Theorem 2.3.

2.2. Generalized fractional Calderén problems

We next describe our results for the generalized fractional Calderén problems. We
first state an abstract formulation of the argument given in [39] which was later mod-
ified for lower order PDO perturbations in [15,23]. A related question is discussed in
[73, Remark, p. 7] by Riiland and Salo but not studied there further. The approach out-
lined in [73] is more related to the work accomplished in [20] by Covi for quasilocal
perturbations of the fractional Laplacian. We then discuss concrete model problems
with our focus in the inverse problem for the fractional conductivity equation studied
first in [19].
We first introduce the related definitions for the abstract formulation.

Definition 2.4 (Properties of bilinear forms). Lets € R and B: H*(R") x H*(R") —
R be a bounded bilinear form.
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(i) We say that B has the left UCP on an open nonempty set W C R” when the
following holds: if u € H*(R"), u|w = 0 and B(u,¢) = O forall ¢ € C2°(W), then
u =0.

(ii) We say that B has the right UCP on an open nonempty set W C R” when the
following holds: if u € H*(R"), u|w = 0 and B(¢,u) = O forall ¢ € C°(W), then
u=0.

(iii) We say that B has the symmetric UCP on an open nonempty set W C R”
when it has the left UCP and the right UCP on W.

(iv) We say that B is local when the following holds: If u, v € H*(R") and
supp(u) N supp(v) = @, then B(u,v) = 0.

(v) We denote by B*(u,v) := B(v, u) the adjoint (or transpose) bilinear form
of B.

Remark 2.5. If B is local, then B* is local. If B has the left UCP, then B* has the
right UCP and vice versa. If B is symmetric, thatis B = B*, then B has the symmetric
UCP if and only if it has the left or the right UCP.

Our axiomatic formulation for the uniqueness of the generalized fractional Calde-
rén problem comes with two important improvements in comparison to the existing
theorems in this area. Firstly, we replace the assumption that €2 is a bounded set by
the assumption that 2 has nonempty exterior. Secondly, we allow general bilinear
forms in the statement. This let us to study problems where the local perturbation g
has higher order than the nonlocal bilinear form L with suitable unique continuation
properties. The third benefit of this general statement is that it explicitly states what
kind of unique continuation properties are really needed for the nonlocal term L.
Especially, we do not have to assume that bilinear forms are symmetric. A closely
related approach was taken earlier in the work [20] in the case of quasilocal pertur-
bations but these and our results are not included into each other. We also prove an
exterior determination result which does not appear in the earlier literature even in the
simplest case of the fractional Schrodinger equation, to the best of our knowledge.
The proofs together with the necessary definitions are given in Section 4.

Theorem 2.6 (Interior determination). Let s € R, and Q@ C R" be open such that
Qe # 0. Let L: HS(R") x H*(R™) — R be a bounded bilinear form with the follow-
ing properties:
(i)  there exists a nonempty open set Wi C Q. such that L has the right UCP
on Wy,
(ii)  there exists a nonempty open set Wy C Q. such that L has the left UCP

on W,

i) Winw, =40.
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Let qi: H*(R") x H*(R") = R, j = 1,2, be local and bounded bilinear forms.
Suppose that B, 4, = L + q; are (strongly) coercive in H3(Q).

If the exterior data A1 4,[f1[g] = AL,4,[f][g]) agree for all f € CX°(W1) and
g € CX(Wy), then g1 = g2 in H¥(Q) x H¥(Q).

We identify functions ¢ € L1 _(R") with the bilinear form ¢ (u, v) = Jrn quvdx

for all u,v € C°(R") and, in particular, one of the assumptions in Corollary 2.7
is that the related bilinear form is bounded in H*(R"). For example, g € L3s (R")
when 0 <5 < 5 (see Lemma A.10),0r g € L%(R") whens = % andany 1 < p <2
(see Proposition A.9, [67, p. 261]), or ¢ € L'(R") when s > 5. The locality of the
bilinear forms of this type follows automatically. The idea behind Corollary 2.7 turns
out to give strong partial data uniqueness results for the inverse fractional conductivity

problem studied in details in Section 8.

Corollary 2.7 (Exterior determination). Suppose that the assumptions of Theorem 2.6
hold. If additionally Ap 4,[f1[8) = AL,g,[f1lg] for all f, g € C°(W) where
W C Q. is open, then g1 = q» in H*(W) x HS(W).

In particular, we have the following full data uniqueness result: If W = Q, and
q1.q2 € C(R™) (or q1,q> € L} .(R™) and Q2 has measure zero), then g1 = ¢» (a.e.)

in R”

Theorem 2.6 can be seen as a general uniqueness lemma for nonlocal exterior
value inverse problems. It might be possible to obtain more abstract versions of The-
orem 2.6 in general Hilbert or Banach spaces (especially on geometric settings on
manifolds) but that is out of our scope here. One can remove the assumption that B
is strongly coercive by assuming that the related interior and exterior value problems
have unique weak solutions for B and its adjoint B* (cf. Lemma 4.1 and Remark 4.2).
See also Theorem 4.3 for a general Runge approximation result which may be of
interest also in other applications. The main point of the article is to explain what
Theorem 2.6 together with the Poincaré inequalities (Theorem 2.2) and some addi-
tional analysis imply for many new model problems to be discussed next. We also
give minor improvements for the regularity assumptions of many existing theorems.

2.2.1. Fractional conductivity equation. We highlight our result for the fractional
conductivity equation which rather completely characterizes the uniqueness and non-
uniqueness of the related partial data inverse problem on domains that are bounded
in one direction. Theorem 2.8 would also generalize to all domains with finite frac-
tional Poincaré constant. This problem was studied earlier in [19] by Covi for bounded
domains under the assumption that conductivities are trivial in the exterior. Here we
relax the assumption that the conductivities take constant values (and are thus equal)
in the exterior by making suitable decay assumptions at infinity. We also define here



J. Railo and P. Zimmermann 70

the Liouville reduction slightly differently than in the article [19] in order to have
access to exterior determination and obtain more general results. As a minor improve-
ment, we remove the superfluous Lipschitz assumption of the domain.

The fractional gradient of order s is the bounded linear operator V°: H*(R") —
L?(R?";R") given by

Cn s -
Viu(ey) = [ |Z(f)y|;i(sy+)1 (x =),

where C,, s > 0 is a constant. This operator appears in the studies of nonlocal diffu-
sion (see, e.g., [29] and references therein) and is naturally associated with the L2
Gagliardo seminorm. We denote the adjoint of V* by divs. Let y € L*(R") be a
positive conductivity. We denote the conductivity matrix by

0, (x,y) := y2(x)y 2 () 1uxn

for x,y € R" and by m, := y1/2 — 1 the background deviation. We use the notation
A, for the exterior DN map associated to the equation

divy(®,V'u) =0 inQ,
u=f inQ,.

See the beginning of Section 8 for further details of the basic definitions.

We note that Lemmas 8.13 and 8.15 state some interesting special cases of Theo-
rem 2.8 (see also Remark 8.14). Our main theorem is the following. The proofis given
in the end of Section 8 and it utilizes nearly all of our other results that are proved in
the earlier sections.

Theorem 2.8. Let Q C R” be an open set which is bounded in one direction and
0 <s <min(l, 2). Assume that yy,y» € L®(R") with background deviations my,m»
satisfy y1(x), y2(x) > yo > 0 and my, m, € H?535(R™). Moreover, assume that
mo :=my —my € HS(R") and Wy, W, C Q. are nonempty open sets with

(supp(my) U supp(mz)) N (W U W) = 0. 4)

Then the following statements hold:
() if Wi N\ W, # @, then Aylf\W2 = Ayzﬂw2 forall f € C(W)) if and
onlyif y1 = y2 in R";
(i) if Wi N\ Ws =0, then Aylf\W2 = Ay2f|W2 for all f € C(Wy) if and
only if my — my is the unique solution of

. (=A)my

1/2
)’1/

(—A)Y’m m=0 inQ,

m=mgy in Q.
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Remark 2.9. There were three points which seem to be overlooked in [19]. How-
ever, all arguments in [19] are easily justified for C>°(£2) perturbations of the uniform
background conductivity. To cover a few missing steps in the low regularity setting,
we establish regularity results related to the fact that the (fractional) Liouville transfor-
mation is bijective (cf. Theorem 8.6). In the proof, we need to approximate equations
with equations having regular coefficients so that the used pointwise computation with
a singular integral definition of the fractional Laplacian can be applied to the coef-
ficients coming from the conductivity equation (this particular approximation uses
results in [77]). The second point is that we show that the Liouville transformation
can be reversed from the solutions of the associated fractional Schrédinger equation
to the solutions of a conductivity equation, so that the first mentioned problem has
unique solutions, by the same property of conductivity equations, and has always
a well-defined exterior DN map (in particular O is never a Dirichlet eigenvalue for
the related exterior value problem). This uses an argument showing sufficient regu-
1/2 (employing [1]). It is rather clear that this property is
desired so that the result applies for all conductivities from the given class without

larity of the division by y

any open questions related to the well-posedness of the reduction to the fractional
Schrodinger equation. Finally, we consider multiplication results for Bessel potential
spaces in Appendix A by adapting the general methods in [13]. This is done as the
reference [13] used in [19] establishes the multiplication results with respect to the
fractional Gagliardo norms but not directly for the Bessel potential norms as actually
desired in [19] and our work. Nevertheless, the main results in [19] are correct when-
everO<s<landn >2,or0<s < % when n = 1, as the aforesaid gaps in the proof
are made rigour in our article, but the cases % <s < 1 whenn =1 are actually still
open in low regularity to the best of our understanding. Otherwise, the strategy of our
interior determination proof follows that of [19] whereas the exterior determination
requires yet another argument, given in Section 8.3.

This result is interesting for several reasons to be discussed next. Since the prob-
lem studied here is considerably more general than the one in [19], nonuniqueness
may occur in some cases when Wy N W, = @. A striking difference to the earlier
results for the fractional Calder6n problems is that when Wi N W, # @, then this
actually helps to solve the inverse problem. In this case, one obtains a global unique-
ness result also in €2, without assuming that conductivities agree there in the first
place. The Liouville reduction is analogous to the one for the classical Calderén prob-
lem [79], but we do not have to use any kind of special solutions in the end. In the
proof of Theorem 2.8, we do not reduce the inverse problem only back to the Calderén
problem for the fractional Schrodinger equation like in [19] but also invoke a new
characterization of equal exterior data and the UCP of fractional Laplacians. This part
resembles the earlier studies which avoid using the Runge approximation and rather
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directly rely on the UCP to show uniqueness in the fractional Calderén problem (see,
e.g., [38] for single measurement results).

The exterior determination result is not possible with only finitely many measure-
ment whereas interior determination is possible with just single measurement when-
ever the conductivity is known in the exterior. Exterior determination can be thought
as an analog of boundary determination in the classical Calderén problem [49], which
is an important step in the proof of uniqueness [79]. However, we do not have a
complete exterior determination result and we still need to rely to the fact that con-
ductivities are assumed to be constant in the sets where we make our exterior measure-
ments (this is the content of the formula (4)). A more complete answer to the exterior
determination problem remains open. We remark that when the exterior conditions
(fractional voltage) are set disjointly with respect to the set where the measurements
(fractional current) are made, we may have the loss of uniqueness (see the article [68]
for constructions of counterexamples). In the classical Calderén problem there are
also uniqueness results for some partial data problems which are analogous with The-
orem 2.8 (i) (see [48, Corollary 1.4]).

Below in Figures 2.1 and 2.2 we graphically illustrate the two possible geometric
settings in Theorem 2.8 corresponding to the cases (i) and (i1), respectively.

2.2.2. Fractional Schrodinger equations. Later in this article we present many
applications of Theorem 2.6 in which we always fix L = (—A)’ (in the weak form)
for some t € Ry \ Z with ¢ < s. One could also take many other bilinear forms in the
place of L, for example:

¢ one can take L to be the bilinear form related to the Bessel potential (D)? when-
evert € R\ Z [47, Theorem 1.6 and Remark 1.7];

 one can take L to be the bilinear form related to the nonlocal operator £ where
t € (0,1) and £ is an elliptic second order operator £ = V - (AVu) [37, Theorem
1.2] and [40, Proposition 3.2];

* see [20, Theorem 1.2] for the fractional Schrodinger operators with rapidly decay-
ing quasilocal perturbations having the UCP;

* see [20, Theorem 4.1] for the fractional Schrodinger operators with perturbations
of finite propagation having the UCP;

* any local perturbation to an operator with the symmetric UCP (this is by now a
well-known fact, see, e.g., the discussion in [22, Section 3.1]).

Remark 2.10. We note that this does not imply that the methods used in this article
would solve the inverse problems studied in [20] since the role of ¢ in our work is
more restricted. This only implies that the inverse problems for local perturbations
of the fractional Schrodinger operators used in [20] could be studied directly with
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supp m

74 //W\\\

Figure 2.1. Graphical illustration of the geometric setting of part (i) of Theorem 2.8. Here the
set 2 C R” is a domain which is bounded in one direction and the measurements are performed
in the nonempty open subsets W7, Wa C €2, that have a nonempty intersection. The support of
m is represented in red. The DN map A, determines m, and hence y, uniquely.

Theorems 2.2 and 2.6. One would have to refine Theorem 2.6 from local perturbations
into the direction of nonlocal perturbations to have access to the fractional Calderén
problem for quasilocal perturbations on unbounded domains. The generalization to
the case of perturbations with finite propagation should be now a rather easy problem
to solve but the case of quasilocal perturbations would require one to be more careful.
We do not pursue this matter here as this would put us too far away from the proof of
Theorem 2.8, and our work and the work [20] were put through independently around
the same time.

We apply Theorems 2.2 and 2.6 to prove uniqueness results for the fractional
Calderén problems on domains that are bounded in one direction. The methods needed
to bypass the lack of compact Sobolev embeddings on unbounded domains turn out
to be useful also in the case of bounded domains and allow us to slightly extend the
recent results in [22,23,73] in the usual setting of bounded domains.

Rather than introducing right now all new concrete model examples where our
methods apply, we only point to the following results that are stated and proved later
in this article:
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W

supp mp

Q supp m

’/W\ \\
N

Figure 2.2. Graphical illustration of the geometric setting of part (ii) of Theorem 2.8. Here the
set 2 C R” is a domain which is bounded in one direction and the measurements are performed
in the disjoint nonempty open subsets W1, W> C .. Moreover, the supports of the background
deviations m1, mo, which are represented in orange and red, respectively, do not necessarily
coincide in the exterior €2, and can even be disjoint as illustrated above. In this case uniqueness
may be lost.

* Remark 4.5 explains how Corollary 2.7 on exterior determination extends to the
case of PDO perturbations with variable coefficients.

* Proposition 4.6 gives example model classes with higher order local perturba-
tions (i.e. the perturbations have higher order than the fractional Laplacian) for
all domains that have nonempty exterior and the fractional Calderén problem is
uniquely solvable. Especially, these domains are not assumed to be bounded in
one direction.

* Theorem 7.8 gives example models with linear local lower order perturbations on
domains that are bounded in one direction.

* Theorem 7.11 gives further example models on domains that are bounded in one
direction in the case where the perturbations are functions rather than operators.

e Theorems 7.10 and 7.13 give slight generalizations of the existing theorems on
bounded domains.

Needless to say, there are many other situations where the combination of exist-
ing results and the ideas presented in this article allow various generalizations for the
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fractional Calderén problems, the Runge approximation results and related problems.
More interesting research questions, mathematically speaking, would be to under-
stand if the single measurement, stability, quantitative Runge approximation, and
nonlinear and nonlocal perturbation results [9, 20, 21, 38, 54, 73] have some exten-
sions to the cases of unbounded domains or higher order perturbations, where higher
order perturbations are understood in the sense that the local part has higher order
than the nonlocal part of an equation.

3. Preliminaries

We introduce in this subsection key definitions and basic notation. More sophisticated
definitions and notation are given in later subsections when needed.

3.1. Spaces of distributions

Throughout the article, we use the convention that n > 1 and 2 C R” is an open
set. We denote by §(R") and 8'(R") Schwartz functions and tempered distributions
respectively. We say that /' € C°°(R") belongs to Ops(R") if for any o € N there
exists an N € Ny such that |3 f(x)| < C(x)", where (x) = /1 + |x|? is the
Japanese bracket.

We let D’ (€2) stand for the space of distributions on € and by &'(2) the space of
compactly supported distributions on 2.

We define the Fourier transform %: S(R") — S(R") by

7 1) = [ F()e T dx,
Rn

which is occasionally also denoted by f . By duality it can be extended to the space
of tempered distributions and will again be denoted by Fu = i, where u € 8'(R"),
and we denote the inverse Fourier transform by % 1.

3.2. Fractional Sobolev spaces, Bessel potential spaces and fractional
Laplacians

We denote by W*?(Q2) the fractional Sobolev spaces, when s € (0, c0) \ N,
1 < p < oo. These spaces are also called Slobodeckij spaces or Gagliardo spaces.
In particular, for 0 <s < 1, 1 < p < oo the space W*P(Q2) consists of functions
u € L?(S2) such that % € L?(Q2 x Q) and it is endowed with the norm

x=y

1
lellws.r@y = (17 p () + 1. (@)
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where

N =

ulwsn) = ( / dedy)
Q Q

x =y

is the so called Gagliardo (semi-) norm. For s > 1 such thats = m + o withm € N,
o € (0,1) we set

WSP(Q) :={u € W™P(Q): 0% € WP (Q) for all |a| = m},

where W™ P (Q) withm € N, 1 < p < oo is the classical Sobolev space, and endow
it with the norm
1

lellws.p@ = (Ilymnigy + D00 (e ) -

la|=m

We mainly use them in Section 5 in which we recall recent results on the Poincaré
inequalities on certain subspaces of W7 (R") and Section 8 dealing with the frac-
tional conductivity equation but for the sake of presentation this part of the proof is
done in Appendix A.

Next we introduce the Bessel potential spaces H*?(R") and various notions of
local Bessel potential spaces which we introduce next. We define the Bessel potential
of order s € R as a Fourier multiplier {(D)*: 8'(R") — 8'(R")

(D)*u = FH({E)* D).
We define the Bessel potential spaces for any 1 < p < oo and s € R by
HSP(R") := {u € (R"): (D)*u € LP(R")}
and it is equipped with the norm |[u[|gs.» ) := [{D)*ul|Lr®n).-

Definition 3.1. Let Q, F C R” be open and closed sets respectively, 1 < p < oo and
s € R. We define the following local Bessel potential spaces:

H>P(Q) := {ulg:u € H>?(R")},

e @) =co)
HYP(Q) =Co @)@,

HZP(R") := {u € H*?(R"): supp(u) C F}.
The space H*'?(S2) is equipped with the quotient norm
[ullgrs.r (@) = inf{|w]|gs.r @ny: w € H*P(R"), w|g = v}.

The spaces HSP (2) and H;’p (R™) are equipped with the H*>? (R") norm. The space
Hy?(S2) is equipped with the HS?(2) norm. As usual we set H* := H*?2,
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We have that /-7 (Q) < HZP(R"), (H*7(Q))* = H™*?(Q) and H*?(Q) =
(H =P (Q))* forevery 1 < p < ooands € R.
Finally, we define the fractional Laplacian of order s € R+ as a Fourier multiplier

(—A)2u = FH(E[ )

for u € 8'(R"™) whenever the formula is well defined. In particular, the fractional
Laplacian is a well-defined bounded mapping (—A)3: H%P(R") — H'~5:?(R") for
everyl < p <oo,s >0andt € R.

4. Generalized fractional Calderén problem

In this section, we formulate and prove a uniqueness result for a generalized fractional
Calder6n problem. The structure of our argument follows similar ideas as introduced
by Ghosh, Salo and Uhlmann [39] and later modified in [15,23] to obtain uniqueness
results for some special cases of nonsymmetric local perturbations of the nonlocal
Schrodinger equation. The axiomatic approach to be taken here has several benefits.
We observe that the argument can be applied on all domains with nonempty exterior,
and in general, the argument works whenever the direct problem is well posed. One
can even consider and prove uniqueness results for some higher order local perturba-
tions of the fractional Laplacian. Either of these two examples, unbounded domains
or higher order perturbations, do not appear in the earlier literature to the best of our
knowledge. These general considerations in part motivate the rest of article. In later
sections of this article, we will study fractional Poincaré inequalities on unbounded
domains and the related decompositions of Sobolev multipliers and PDOs to be able
to provide new nontrivial examples where the theory presented in this section applies.

Lemma 4.1 (Well-posedness). Lets € R, and Q C R”" be open set such that Q. # 0.
Let B: H*(R") x H5(R"™) — R be a bounded bilinear form that is (strongly) coercive
in H*(RQ), that is, there exists some ¢ > 0 such that B(u,u) > c||ul|? SR™) for all
u € H*(Q). Then the following hold.
(i) Forany f € HS(R") and F € (H*(2))* there exists a unique u € H* (R™)
such that u — f € H*(Q2) and B(u, $p) = F(p) for all ¢ € H5(2). When
F = 0, we denote this unique solution by uy.
(i) If fi — f>» € H*(Q) and u; are solutions to the problems u; — f; € H*()
and B(uj,-) = F in H5(Q2) fori = 1,2, then uy = us,.
(iii)) Let X := HS(R")/ H 5(R2) be the abstract trace space. Then the exterior
DN map Ag: X — X* defined by Ap[[f][g] := B(uy,g) for [f].[g]l € X
is a well-defined bounded linear map.
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(iv) The above statements hold true for the adjoint bilinear form B* and the
corresponding unique solutions, when F = 0, are denoted by u}i Moreover,

AB[f1lg]l = Ap=[gl[f1for any [f].[g] € X, that is, A}y = Ap-~.

Remark 4.2. We remark that the assumption on the coercivity of B can be replaced
by the assumption that the exterior and interior value problems have unique solutions
depending continuously on the data. If we similarly assume that this is true for the
adjoint problem, then the presented proofs work without any changes. This applies in
the whole section.

Proof. (i) Let f € HS(R"), F € (HS(SZ))* and set ¥ := u — f. By linearity the
problem is reduced to finding the unique # € H* () such that B(u,¢) = F (¢) for
all $ € H5(Q) where F := F — B(f,+). Observe that the modified functional F
belongs to (ﬁ 5(2))*, since there holds

IF@)] < [F@)+ B < (F sy + CIS s @l lars @

for all ¢ € HS (). The Lax—Milgram theorem implies that there exists a bounded
linear operator G: (H*(2))* — H*(2) associating to each functional in (H*(£2))*
its unique representative in the bilinear form B(:,-) on H* (2). Thus, # := G F solves

B(ii,v) = F(v) forallv e H*(Q)
and it is the required unique solution 7 € H*(£2). Moreover, there holds
||u||H“’(]R”) = C_IHFH(]TIS(Q))* + ||f||HA"(]R") = C(”F”(ﬁS(Q))* + ||f||HA"(]R”))

for some C > 0.

(ii) Since fi — f» € HS(Q) there exists ¢ € H*(Q) such that f, = f; + ¢ and
the function u := uy —u; € H*() solves the homogeneous problem with exterior
value ¢. Since w = 0 is also a solution to this problem we obtain by uniqueness of
solutions that u; = u, in R”.

(iii) By (i) and (ii), we have
B(usig.8 + V) = B(us,g) + B(us.¥) = B(uy.g)

forall f,g € HS(R") and ¢, ¥ € H*(Q). Moreover, if f, g € HS(R") and ¢, ¥ €
H* (), then
(ABLf]. [gD) = |B(us—¢.8 — V)l
< Cllus—gllas®nllg — ¥llgs®n
=Clf = olas@nllg — ¥ llas @n)
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for some C > 0. This implies that for some C > 0 it holds that

[(AB[fl[ghl=C inf | f —¢lmsmn
5(Q) ¥

¢eH"(

= CIIL/x lITeTllx

andhence Ag[f]e X* forall [f]e X.If f1, f» € H*(R"), thenuys 5, =us +uy,
since the solutions are unique and us, + uy, solves the homogeneous equation with
the exterior condition uy, +uy, — (f1 + f2) € H* (). Therefore, we have shown
that Ag: X — X™ is a bounded linear operator.

inf |lg —Vllas®n
5 (Q)

eHS(

(iv) Notice that B* is also a bounded bilinear form with the same coercivity esti-
mate. Therefore, (i), (ii), and (iii) hold when B is replaced by B*. Suppose that s
solves B(uy,-) = 0in H*(Q) withuy — f € H*(Q), and u}; solves B*(u%.-) = 0
in H°(Q) with u} — g € H°(Q). Now

Aplfllgl = Bus,ug) = B*(ug.uy) = Ap=[g][f]. u

Theorem 4.3 (Runge approximation property). Let s € R and 2 C R" be an open
set such that Qe # 0. Let L,q: H*(R") x H*(R") — R be bounded bilinear forms
and assume that q is local and that By 4 := L + q is (strongly) coercive in H*(2).

(1)  If L has the right UCP on a nonempty open set W C Q., then R(W) =
(ur — f:f € CR(W)}y C H(Q) is dense.

(ii) If L has the left UCP on a nonempty open set W C Q,, then R*(W) :=
{ug —g:g € CX(W)} C H*(Q) is dense.

Proof. We only prove here (i), since the proof of (ii) is completely analogous.

Since R(W) C H*(Q) is a subspace it suffice by the Hahn—Banach theorem to
show that if F € (H*(£2))* vanishes on R (W), then F is identically zero. Hence, let
F € (H*(2))* and suppose that F(ug — f)=0forall f € CX(W). By the Lax—
Milgram theorem there exists unique ¢ € HS (2) such that B*(¢,-) = F. Notice first
that B*(¢p,ur) = B(uys,¢) = 0 since uy is a solution. We have also that ¢* (¢, f) =
q(f. $) = 0 since supp(f) N supp(¢) C L. N Q = @ and ¢ is local. We may now
calculate that

0=—F(us— f)==B*(.ur — f)=B"(¢. /) =L"(p. /) +4"(¢. )= L(f.9)

for all f € CX(W). Since ¢|w = 0, we have by the right UCP that ¢ = 0 and
therefore F' = 0. ]

In Figure 4.1, we give a concrete example model where Theorem 4.3 applies and
the domain is not bounded in one direction.
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(=AY +8)u =0 u=f

Figure 4.1. An example illustrating Theorem 4.3. Let us denote B, = B(0; ¢) C R” for any
e>0and n > 1. For any & 8 > 0 and @ := R" \ B., we have that the restriction to
R” \ B, of the unique solutions u s to the equation ((—A)* + §)u = 0in R” \ B, are dense in
H*(R" \ B,) with exterior conditions f € C, 2°(Bg). This means heuristically speaking that all
functions in H* (R") are almost s-harmonic up to an error depending on &, ¢ > 0. This observa-
tion is analogous to the celebrated result on bounded domains [28] where one may take § = 0,
but this possible choice of § is also true on domains that are bounded in one direction. We do
not perform a quantitative analysis of this phenomenon in this article.

Lemma 4.4 (Alessandrini identity). Lets € R, and Q C R" be an open set such that
Qe # 0. Let Bi: H*(R") x H*(R") —> R, i = 1, 2, be bounded bilinear forms that
are (strongly) coercive in H®(2). Then

(A, — AB,)Iflgl = (B — B2)(uy. uy)

forany [f],[g] € X where
(i)  uy solves Bi(uy,) =0in HS(Q) with ur— f € HS(Q);
(i) uy solves B3 (ug,-) = 0in H5 () with Uy — 8 € H3(Q).

Proof. Notice that the solutions uy and u:, exist by Lemma 4.1. We can directly
calculate using Lemma 4.1 (iv) that

(A, — Ay f1lg]l = A, [f][g] — Apzlellf]
= Bi(uys,ug) — By (ug,uy)
= (B] — Bz)(Mf,uZ;). |

We can now prove the uniqueness theorem for the generalized fractional Calderén
problem (Theorem 2.6).

Proof of Theorem 2.6. Using the Alessandrini identity (Lemma 4.4) we have
0= (ALg —ALg)[f1[8] = (BL.gy — BL.go)(uy,ug) = (q1 — q2) (uy, uy)

forall f € CX(W;) and g € CX(W,), where



Fractional Calderén problems on unbounded domains 81

()  uy solves Br 4, (us,-) = 0in H*(Q) withuy — f € HS(Q);
(i) uj solves By . (uj.)) =0in H%(Q) withu} — g € H(Q).

By the Runge approximation property (Lemma 4.3), we have that there exists
sequences uy, — fi — v and uy — gx — v* as k — oo where f; € CX(W1),
gk € C°(W,)and v,v* € H* (). Since g1, ¢» are bounded bilinear forms and local,
we find that

(q1 — q2)(v.v™) = lim (g1 — g2)(up, — fic.ug, — k)
k—o00
- kli>rrolo(6h —q2)(ug,, ”Zk =0,

where the first identity follows from the boundedness of ¢; — ¢», the second identity
follows from the support conditions and the locality of ¢; — g2, and the last identity
follows from the assumption that the exterior DN maps are equal. This implies that
q1 = ¢ in H5(Q) x H5(Q). .

Proof of Corollary 2.7. First of all, we have that ¢; = ¢, in H*(Q) x H*(Q) by
Theorem 2.6. Let us now take f, g € C2°(W). We have by the Alessandrini identity
(Lemma 4.4) and the assumption that Az 4, [ f][g] = AL ¢,[f][g] that

0= (g1 —q2)(us,up).

The rest is a simple calculation and an approximation argument. Let us write that
B := q; — ¢» and calculate

B(ug,ug) = B((uy — f) + fi(ug —8) +2)
= B(uy — fiuz —8) + Bluy — f,8) + B(fiuz —g) + B(f. g)
= B(/.8)

where we used that uy — fuy, — g € HS(Q) so that B(uy — f.ug — g) vanishes
by interior determination, and B(uy — f. g) and B(f,uy — g) vanish by the locality
of B. This shows that g1 (f, g) = q2(f, g) forall f, g € C2°(W). Approximation gives
that ¢, = g in HS(W) x HS(W). This completes the proof of the first part of the
Statement.

We next prove the conclusions about the full data case. We fix now that W = Q,.
Suppose first that g1, g2 € Li . (R"). Now, we have that [p, g1¢pdx = [gn g2¢pdx for
all ¢ € C2°(2 U Q) by interior and exterior determination. This implies that ¢; = g»
a.e.in Q U Q.. If Q2 has measure zero, then ¢; = ¢» a.e. in R”. On the other hand, if
q1,92 € C(R"), then we find first that ¢; = g, in Q U €2, but this must then also hold
in R” = Q U Q, by the continuity without assuming anything about the regularity or
measure of 9<2. ]
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Remark 4.5. Corollary 2.7 also applies in the case of local linear perturbations stud-
ied in Section 7. One could obtain similar exterior and full data results as stated in
the case of zeroth order perturbations in Corollary 2.7. The argument first uses this
general result for bilinear forms, and then similar test functions as used in the proof
of Theorem 7.8 (but now for the exterior conditions). Finally, the full data case can
be concluded either using continuity or basic measure theory. This would not involve
any new ideas beyond these and the details are thus omitted.

We give the following simple examples as corollaries right now. Both results given
in the examples are new but we do not aim to write the most general examples into
this direction here. We also remark that the generalized Runge approximation result
in Lemma 4.3 may find applications in other problems on unbounded domains. We
study more sophisticated examples in Section 7.

Proposition 4.6 (Example models). Let s > 0, and Q2 C R”" be an open set such that
Q. # 0. The generalized fractional Calderdn problem is well defined and has the
uniqueness property (in the weak sense) in the following cases.

(i) Domains without Poincaré inequalities. For (—A)S 4+ q in Q where
s € Ry \ Z and the potential q is uniformly positive and bounded, i.e.,
q € L®(R") is such that ¢ > ¢ > 0 a.e. in Q2 for some c(q) > 0.

(i) Higher order perturbations. For (—A) + (—A)2(y(=A)2) 4+ ¢ in Q
wheret € Ry \Z, s € 2Z and t < s, and y, q are uniformly positive and
bounded in 2.

Remark 4.7. In the domains, with finite fractional Poincaré constants, one could for-
mulate results for more general local higher order perturbations. If additionally the
domain is bounded, then the spectral theory would allow to consider a large class of
local higher order perturbations as long as a weaker coercivity estimate can be estab-
lished. We note that the problem must then be set in the space whose Sobolev scale
depends on the local perturbation rather than the order of the fractional Laplacian. The
key observation is that still the fractional Laplacian permits the uniqueness results for
the related inverse problems whenever the forward problems are well posed.

Proof. (i) The associated bilinear forms are L(u, v) = ((—=A)3u, (—A)2v) and
q(u,v) = (qu, v). It follows that the related bilinear form L + ¢ is equivalent with
H*(R™) norm in H*(Q). It follows from [22, Theorem 1.2] and [39, Theorem 1.2]
that L has the symmetric UCP on any open set, and by the definition g is local. Hence,
Theorem 2.6 applies.

(i1) We have now that L = ((—A)%u, (—A)% v) has again the symmetric UCP on
any open set for the functions in H*(R"). It is also clear that the function
L: HS(R") x H5(R") — R is bounded since 0 < ¢ < s. The bilinear form related
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to (—A)%()/(—A)%) + g is given by
O, v) = (y(=8)2u, (=A)2v) + (qu. v).

It is clear that this bilinear form is also bounded in H*(R") x H*(R"). The coercivity
estimate is also easy to argue since Q is (strongly) coercive in HS (2)and L(v,v) =0
for any v € H*(R"). Since 5 € Z, we have that the bilinear form Q is local, and
L has the symmetric UCP on any open set as earlier. Again, the rest follows from
Theorem 2.6. ]

5. Interpolation of fractional Poincaré constants on unbounded
domains

The purpose of this section is to extend the fractional Poincaré inequality to open sets
which are bounded in one direction as introduced in Definition 2.1. The main result of
this section is the proof of Theorem 2.2. The Poincaré inequalities on these sets allow
us to come up with concrete nontrivial example models that satisfy the assumptions
of Theorem 2.6.

We first recall a recent result on the fractional Poincaré inequalities when 1 <
p <ooand 0 < s < 1in [17,65]. They study the Poincaré constant via the variational
problem
[u]f,p,R”

Pusp(Q):=  inf P
uewy? @0 [ullz»g)

where :

C _ p 1
(2 [ MO )

is the (normalized) Gagliardo seminorm, C(#n, s, p) > 0 is some positive constant and

1
Wg'¥ (R™) is the closure of C2(Q) with respect to the norm (|u ”i"(ﬂ) +[u)? ) ”
(see, e.g., [65] for details). The associated Poincaré constant is then defined as

(Q) = Pusp(Q)77.

nsp

IfCF, () > 0, then it holds that

n,s,p
lullLr@my < Gy, p () [uls, pR7

We remark that [u]sorr = ||(—A)%u||L2(Rn) and W3(R") = H*(Q) in the
notation used in this article. The fractional Poincaré inequalities with respect to the
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Gagliardo seminorms are not equivalent with the Poincaré inequalities for the frac-
tional Laplacian when p # 2. However, there exist the following embeddings when
0 <s <1 (see, e.g., [80, p. 47 Proposition 2 (iii)/(9); pp. 51-52; p. 242, Theorem 2
and Remark 3; and Section 5.2.5] and [8, Theorems 6.2.4, 6.3.2 and 6.4.4] where one
identifies W*?(R") = B; ,(R") as a Besov space and H*P(R") = F; ,(R") as a
Triebel-Lizorkin space):

e forl < p<2,
WSP(R") — H*P(R"), |ullgs.r@ny < Cllullws.»@ny (52)
e for2 < p < o0,
H¥P(R") — WSP(R"),  |ullws.r@ny < Cllullms.r@n, (5b)
e forl<p<2,
WSPR™) < HYP(R™),  [(=A)2ullLr@ny < Clulsprr.  (50)
e for2 < p < oo,
HSP(R") = WSP(R"),  [uls prr < C(=A)2ulr@ny.  (5d)
e forl < p<oo,s>0,
HSP(R") = HP(R"), [(=A)2ulr@ny < Clullgsr@n:  (5e)
e forl<p<oo,0<s<l,
WEP(R™) > WSPR™),  [uls,pre < Cllullws.o@n). (59

with some constants C > 0 independent of the choice of a function from the left-hand
side spaces. The last two embeddings are the same as continuity of the associated frac-
tional Laplacian operators, in H*>?(R") the operator does not depend on a particular
choice of p and always coincides with the Fourier multiplier definition of (—A)%.

Theorem 5.1 ([17, Theorem 1.2] and [65, Theorem 1.2]). Let Q = R * x o C R"
where n > k > 0 and @ C R¥ is a bounded open set. Then for any 1 < p < oo and
0 < s < 1 it holds that

Pn,s,p(Q) = Pk,s,p(a))-

We remark that it is well known that in open bounded sets one has finite Poincaré
constants for the Gagliardo seminorms. See also [2, Theorem 1.1] where the result
of Theorem 5.1 was obtained when p = 2 by considering asymptotics of the frac-
tional Poincaré constants for domains that are bounded in one direction. The fractional
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Hardy inequalities on (possibly unbounded) convex sets [ 10, Theorem 1.2] also imply
that Py, 5, ,(2) > 0 whenever Q2 is bounded in one direction. See also the related work
[85] proving that P, 5 (€2) > 0.

Theorem 2.3 is a generalization of a recent interpolation result for the fractional
Poincaré constants of the fractional Laplacians in [22, Theorem 3.17]. Their result
relates the classical Poincaré constant for the gradient in L2 to the Poincaré constants
for pairs different order fractional Laplacians. In comparison to the result in [22], we
observe here that a similar result holds also on unbounded domains, without reducing
the problem to the classical Poincaré constants, and for any 1 < p < co. The proof of
Theorem 2.3 is given in the end of this section.

We can now prove Theorem 2.2 using Theorems 5.1 and 2.3. The case when s > 1
uses the boundedness of Riesz transformation. We do not know a proof which would
settle the cases | < p <2 and 0 < s < 1. We also give one alternative proof when
p = 2 as its structure may be relevant for the future attempts to prove the missing
special cases.

We first recall a simple lemma due to the absence of a reference.

Lemma 5.2. Let A:R" — R” be a rigid Euclidean motion A(x) = Lx + xo where
L is a linear isometry and xo € R". Ifu € C°(R") and s > 0, then

(—A)2 (uo A)(x) = (—A)2u 0 A)(x) 6)

for all x € R™. In particular, ”(—A)%M”LP(R}'L) = [[(=A)2(u o A)||lLr®ny for any
p € [l,00].

Proof. By a simple change of variables it is easy to see that (6) implies
[(=A)2ullLr@ry = [(=A)2 (o A)||Lr@n)

for any p € [1, o0].
On the other hand, the formula (6) follows by a direct calculation using the sym-
bols and a change of variables. In fact,

F((=D)2 o A)(E) = £ Fuo A)E) = |&]° LT COEF (o L)(§)
and

F(=0)uoa)§) =0 [ (a)buyLads
R~
_ oL (x0)E |LEIS Gi(LE).

Now, we only need to notice that |L§| = |§| and F (u o L)(§) = u(L&) hold. This
completes the proof. ]
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Remark 5.3. Lemma 5.2 implies that 2 and A2 have the same fractional Poincaré
constants. It is clear that if €2 has a finite fractional Poincaré constant then all open
subsets of €2 also have finite fractional Poincaré constants which are at most the frac-
tional Poincaré constant of 2. Therefore, without loss of generality, we will often
work directly with the cylindrical domains in the proofs.

Proof of Theorem 2.2 when p > 2. By Remark 5.3 it suffices to prove the assertion
for cylindrical domains @ = R”% x , where @ C R is an open bounded set and
n >k > 0. Moreover, by Theorem 5.1 and the fact that Py , ,(w) > 0 we know that
the assumptions of Theorem 2.3 hold for the parameters z = 0 and 0 < r < 1. This
follows rather directly from the embeddings (5) between the (in)homogenenous Besov
and Triebel spaces when p > 2.

We are free to choose any ¢t > s > r to find that

s =s L
[(=A)2ullLr@®my < C'C,§ [(=A)2ullLrm@nm)

where C’ > 0 comes from the equivalence || - I 5.0 @my ~ [(—=A)2 - |z @®n) on

H*P(R") and Cro:=CPrrp (w)_% > 0, where C > 0 is the operator norm of the
embedding H"™P(R") < W"P(R"). Since r > 0 can be taken as small as possible,
this proves Theorem 2.2 for any ¢, s > O witht > .

On the other hand, when s = 0, we have that r > s = z and we are free to choose
any ¢ > r in Theorem 2.3. This proves Theorem 2.2 inthe case # > Oands = 0. m

Proof of Theorem 2.2 when 1 < p <2, s > 1. Notice that the boundedness of the
Riesz transform gives || Vu | L»@®n gy ~ [|(—=A)Y2u]|L»®n) forany 1 < p < oo (see
[78, Chapter III, Section 1.2]). By the classical Poincaré inequality, we know that
there exists some C > 0 such that

lullLr@) < CIVUlLr@rry ~ I(=A)?ul|Lr@n).
Now, the proof continues as the earlier proof of Theorem 2.2. ]

Next we recall and prove the fractional Poincaré inequality on bounded sets.
We make a few remarks about it now. One could replace the argument using the
Hardy-Littlewood—Sobolev inequality by the embedding theorem of homogeneous
Triebel-Lizorkin spaces [42, Theorem A]. One could replace the interpolation argu-
ment by an iteration with integer orders and monotonicity arguments, using certain
special inequalities for the critical cases (tp = n) [67, p. 261] and Holder estimates
for homogeneous convolution kernels in the supcritical cases (tp > n) [44, Theo-
rem 4.5.10] (see [22, Theorem 3.14] for this proof in the simpler special case p = 2).
One can also prove the fractional Poincaré inequality on bounded sets using the com-
pact Sobolev embeddings (see, e.g., [3, Lemma 3.3] and the related discussion for
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the outline) but we are not sure if this directly works for all possible parameters
(i.e., in the critical and supcritical cases) without interpolation or iteration. One can
also obtain some stronger statements, at least in many special cases, using the maxi-
mum principle (see [71, Proposition 1.4] and [70, Claim 2.8]).

Lemma 5.4 (Fractional Poincaré inequality on bounded sets). Let Q@ C R” be a
bounded open set, 1 < p <ooand0 <s <t < oo. Then there exists C(n, p,t,s,2) >0
such that

S L
[(=A)2ullr@ry < CII(=A)2ul|Lr@ny
forallu € H"?(Q).

Proof. Let us first assume that 0 < s <n and 1 < p < Z. It follows from the Hardy—
Littlewood—Sobolev inequality and Holder’s inequality that for any u € C2°(2) we
have

lullr @) < C'lullLa) < C'Cl(=2)2ullLr@n

for some C’(p,q,),C(n,s, p) > 0 where ¢ = %. This implies that for any 1 <
p < 00, there exists some & > 0 such that

lullzr@) < CI(—=A)2u|Lr®n)

for all s € (0, ¢). It follows now from the interpolation of fractional Poincaré constants
(Theorem 2.3) that there exists C(n, s, p, ) > 0 such that

lullLr @y = Cl(=2A)2ulLr@m)

holds for any s > O and u € H$?(§). This shows the fractional Poincaré inequality
on bounded sets.

The rest follows from Theorem 2.3, or alternatively from the monotonicity of
Bessel potential spaces and boundedness of the fractional Laplacian. ]

We can now give an alternative proof of Theorem 2.2 when p = 2. We find this
to be a quite natural approach for the problem but there is an issue which we do not
know how to overcome when p # 2.

Alternative proof of Theorem 2.2 when p = 2. Suppose for simplicity that we have
Q = R""! x (a,b) for some a < b and let us denote points x in by x = (x, x,,).
By Fubini’s theorem and the fractional Poincaré inequality for bounded domains we
deduce that there exists C(s, p,a, b) > 0 such that

Il gy = [ I 5 iy’ = € [ U8 S 500y
1 1

R R
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for any s > 0 and u € C2°(2). We have that

1B 6 X Uy = 1= 500y
RrR2—1
We need an estimate
1= 83202 ey < CI=D)3ull? oy
for some C(n, s, p) > 0. This holds with C = 1 when p = 2, since the related mul-

tiplier
_ &l (
a(é)_ |S|S -

2
.

) - )

takes values in [0, 1].

A slight modification of this argument also applies for cylindrical domains Q =
R” x w, which in turn gives the desired result for open sets which are bounded in
one direction. In fact, the above proof establishes an estimate for the optimal Poincaré
constants, which reads C, (s, Q) < Cr (s, w). (We know actually that equality holds
because of Theorem 5.1 but this gives an alternative proof for the upper bound when
p=2) ]

Remark 5.5. The multiplier (7) is also homogeneous of degree zero but fails to be
smooth when restricted to S”~!, which is the main obstruction to generalize this nat-
ural argument to cover also the cases p # 2.

We now move on towards proving Theorem 2.3 but first we recall an interpolation
result for the fractional Laplacians in [8]. The result is stated also when p = 2 in
[5, Proposition 1.32] but we apply the following more general version in the proof of
Theorem 2.3.

Lemma 5.6 ([8, Exercise 6.8.31]). Letn > 1, 1 < pg, p1 < 00, 50,51 € Rand 0 <
0 <1.1Ifsg = (1 —0)so+ 0s1 andﬁ = %-ﬁ-%, then

”u”HSQ Py (R” = ”u”HSO pO(R”) ”u”Hsl Pl (Rn
forallu € H%0-PO(R™) N H51-PL(R").

Sketch of the proof. As this formula is stated without a proof in [8], we give a brief
explanation here. See also [1, Lemma 2.1] for this statement and a brief outline for an
alternative proof.

By the complex interpolation method in homogeneous Triebel-Lizorkin spaces
F$ , we know [H*0:P0(R™), H1:P1(R")]g = H¢-P9 (R") (see [80, Sections 2.4.7,
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5.2.3, and 5.2.5] or [8, Exercise 6.8.29]) and the complex interpolation functor is
exact of exponent 6 € (0, 1) (see [8, Theorem 4.1.2]), since the spaces in question
are Banach spaces [80, Section 5.1.5]. The end point cases of Lemma 5.6 hold triv-
ially. Now, the conclusion follows from the definition of exactness of exponent 6 (see
[8, p. 27, (6)]) by considering the operator T: C — H%0-P0(R") + H*1:P1(R") with
T(A) = Au, where A € C and u € H0-Po(R") N H51-P1(R") is fixed. "

We remark that Lemma 5.6 holds for all u € H%0-P0(R") N H1-P1(R"), since
HSP(R") = LP(R") N HS?(R") forall s > 0,1 < p < oo by [8, Theorem 6.3.2].

Proof of Theorem 2.3. We set p = p; = p, in Lemma 5.6 so that the other condition
is automatically satisfied. We assume in the proof that u € C°(£2). The result follows
from this by approximation.

The first case: t > s > r > z > (0. The case s = ¢ is trivial and so we can assume
r>s.

(i) Ifwedefinesy =1z,51 =t,0 =2=2€(0,1), then

z+

S9:(1—9)So+931:§ t=r.

t—z

By Lemma 5.6 and (2) we obtain

”u”H' P(]Rﬂ < ”u”HA p(Rn)”u”Ht p(Rn)

0
< Cr 0 llull, Jul?

H' p(Rn | Ht p(Rn)'

Hence, we obtain
”u ”Hr,]J(Rn) = Cr,zT ”u ”Ht,p R7)"

(i) Now,letso =r,s7 =t,60 = === € [0, 1) and therefore

~ ~ t—
S§=(1_9)S0+9S1=t r+ t=s.

t—r

As before we get the estimate

P Y [ N 1 /S
Combining these estimates we get

52a-6)

el sy < N2 g 10y < G2l e -

Since .
1-6 ~ —t—s t—s
—(1-6)= 1= = :
0 ( ) —t-r r—z
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we have
||“||Hs,p(Rn) =G ||“||Ht,p(]Rn)
and therefore we have shown (3) for u € C2°(£2). It follows from approximation that

the same estimate holds in H"?(2) by the continuity of the fractional Laplacian.

The second case:t > r > s >z > 0andr > z. Again, without loss of generality we
can assume ¢t > s. We can additionally assume that r > s since when r = s, we would
have that# > r = s > z and this case was already proved in the first part of the proof.
This observation is important for the following proof to be valid.

(i)  We apply the interpolation result to so = 5,51 = 1,6 = 7=F € (0, 1) and

F—S

s +

S9:(1—9)So+9S1:§_ t=r.

r—s
By Lemma 5.6 we obtain
uwmﬂquwm”muw@wmn

(i) This time we take s9 = z,51 =1, 0 = € [0, 1) and therefore

r

- ~ r—s s —z
sg = (1—=0)so + 051 = p— z p— r=s.
Hence, we obtain
”u”HY P (R?) — ”u”HA P(R”)”u“H' P(]R”

Combining these estimates we get

”u”Hs P(Rn < ”u“Hz p(Rn ”u”Hr p(Rn
1-6
=G ullgr . (R")

1 6
< GO ?, g 11

Since, 150 = =5 /7=5 = =5 we have

”u ||1.'1s,p(Rn) = CrszZ ”u ”Ht,])(]Rn)

and we can conclude for u € C2°(2). The general case again follows by approxima-
tion. |

Remark 5.7. Theorem 2.3 and Lemma 5.6 have their natural counterparts for the
Gagliardo seminorms when 0 < s < 1. Notice that [W0-P0(R"), W51:P1(R")]g =
Wse-P6 (R™) (see again [80, Sections 2.4.7 and 5.2.5]). The proof of Theorem 2.3
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works just as well in this case. In particular, this implies that it is enough to establish
the Gagliardo seminorm Poincaré inequality only for all ¢ € (0, £) with some ¢ > 0
as this already implies the Gagliardo seminorm inequalities for the rest of the cases
& <t < 1. The argument works on arbitrary subsets of W*?(R") having some a priori
given inequality with respect to the Gagliardo seminorms as the proof only applies
generic properties of all functions in the homogeneous spaces, the monotonicity of the
inhomogeneous spaces and the boundedness of the seminorms when ¢ > 0. The same
applies for the spaces H"7(R"). Only for the sake of simplicity, we use the spaces
H"P () in the statement of Theorem 2.3. Also the Poincaré-Sobolev-type estimates
in the mixed integrability cases (p;, p») might be of interest in other applications but
not for us. These are quite possible modifications of the argument as the interpolation
result is actually stronger than what we use in the proofs (since we set p = p; = p»).

Theorem 2.3 makes us to suggest the following conjecture on the equivalence of
the fractional Poincaré constants.

Conjecture 5.8 (Equivalence of the optimal fractional Poincaré constants). Let
Q C R” be an open (bounded) domain and 1 < p < oo. If C,; is the optimal frac-

1—s

tional Poincaré constant forr > z > 0, then C; 5 = C/;*
constant fort > s > 0.

is the optimal Poincaré

6. Decompositions of Sobolev multipliers and PDOs

In this section, we define classes of local perturbations to the fractional Schrodinger
equations using the Poincaré inequalities. These classes of perturbations will naturally
satisfy the assumptions of Theorem 2.6 in different settings.

6.1. Basic notation and definitions

We define the spaces of Sobolev multipliers between Bessel potential spaces H* in
this section. For more details, we point to the article [23, Section 2]. For r, t € R, we
define the space of multipliers M(H" — H") between pairs of Bessel potential spaces
according to [64, Ch. 3]. Eventually, we will study a generalization of the problem (1)
where the potential g is replaced by a partial differential operator P(x, D) having its
coefficients in the spaces of Sobolev multipliers.

If /€ D'(R") is a distribution, we say that f € M(H” — H') whenever the
norm

1/ 1re := sup{(f uv)| s, v € CERY), [ullar@ny = lvla— @) = 1}
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is finite and we define Mo(H"™ — H') to be the closure of C°(R") in M(H” — H").
If fe MH" — H'")andu,v € C2(R"), we have the multiplier inequality

[(fruv)| <

By density of C°(R"”) x CX(R") in H"(R") x H~*(R"), there is a unique
continuous extension (u, v) — (f, uv) for (u,v) € H"(R") x H'(R"). More
precisely, each f € M(H" — H') gives rise to a linear multiplication map
myg: H"(R") — H'(R") defined by

|z ®my vl 7~ (R7Y-

(mg(u),v) := lim (f,u;v;) forall (u,v) € H (R") x H*(R"),

where (u;,v;) € CX(R") x C2°(R") is any sequence in H" (R") x H~*(R") con-
verging to (u, v). We can analogously define the unique adjoint multiplication map
m;: H ' (R") — H~"(R") such that

{my(v),u) := lim (fiu;v;) forall (u,v) € H"(R") x H™'(R").

It is easy to verify that the adjoint of m is m]*i We will just write fu for both m s (u)
and m]’i (u).

6.2. Decompositions of Sobolev multipliers
Now, we introduce some subspaces of Sobolev multipliers M(H" — H?") to be used
later in the context of fractional Calderén problems. We define for any open set QC

R” which is bounded in one direction and s > 0 the quantity §(2) := (1 G, Q))2
where C(s, €2) is the optimal Poincaré constant on 2 (see Theorem 2.2). We do not
write the dependence of § on s > 0 explicitly, but it must be noted. We have

S S 1 _t
[(=A)2ul2rny = t[(=D)2ullp2rn) + m”uﬂm(ﬂm

1 s
= m(”(_A)Zuan(Rn) + “u”LZ(]R”))

V() [|ull s mry.

€ (0, 1). This calculation was presented here to motivate

%

if we choose t = m
the definition of suitable classes of perturbations for the fractional Schrédinger equa-
tion such that the fractional Laplacian dominates the perturbations in the estimates,
especially, from below. This allows to show the existence and uniqueness of weak
solutions for the related perturbed fractional Schrodinger equations even when one

lacks of compact Sobolev embeddings.
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Remark 6.1. Let Q C R” be an open set which is bounded in one direction. Then, by
assumption, there exists a rigid Euclidean motion A such that AQ C Qoo =R" ™ x o,
where @ C R¥ is a bounded open set and n > k > 0. Using Remark 5.3 and The-
orem 5.1, we can prove the following estimate (the last inequality is obtained by
optimizing the constant in [22, Theorem 3.7])

Cls. Q) = C(s, 4Q) = (5. Qo) = Cls.00) = (wfzf)? \/g

k
=:c(5,2), §=1+4+—,
2s

where wy, is the volume of the unit ball in R¥. This gives a quantitative lower bound
V8(Q) = 273(1 + ¢(s, Q) > 0. This estimate could be used to define more con-
crete subclasses of Sobolev multipliers and PDOs within the classes which we let to
depend directly on the Poincaré constants.

Definition 6.2 (Classes of Sobolev multipliers). Let C > 0, s > 0 and « > 0. We
define the space of small multipliers as

Mc(H® - H®):={ae M(H® - H™®): ||a|ls—s < C}
and the spaces of nonnegative multipliers as
Mo (HS — H™) = {a € M(H* - H™):a(f?) = k| f |22,
forall f € C°(R")}.
We have, for example, that ¢ € L°°(R") with a > k > 0 a.e. in R” belongs to
Ms(H® — H™%) forany s > 0.

Remark 6.3. One can generalize the example models in Proposition 4.6 to the set-
tings ¢ € M=, (H®* — H™S) ory € M>,(L?> — L?) for any k > 0.

Definition 6.4 (Multipliers close to My). Given a domain 2 C R” with a finite
Poincaré constant of order s and integrability scale p = 2. We define the §-neigh-
borhood of M as follows:

Mo(H® - H®):={a e M(H* - H™®): inf a—alls_s < 8(Q)).
al )= ( ) a’eM()(HS—>H—S)” [ls,—s < 8(S2)}

It follows from the definitions that
My(H®* - H™) C Mg(H® — H™) = My(H®* — H™®) + Mg(g)(HS — H™).
(3)

In particular, if there were a decomposition “M = My + Mo + Ms(q)” for a domain
2, then one would not have any restrictions in the class of multipliers on bounded
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sets in the theorems of Section 7. This is true if one can show that every Sobolev
multiplier in M(H® — H™°) can be approximated by C>°(R") after changing the
multiplier a little bit and possibly removing an arbitrary nonnegative part. See the
following remarks for further discussion.

Remark 6.5. The characterization of Mo(H" — H') is an open problem and the
authors are not even aware if Mo(H" — H') € M(H" — H") holds (see also [73,
Remark 2.5] and the related results in the special cases t = —r.).

Remark 6.6. Lets > 0. The following are equivalent:
i) M(H®— H®)= Mqg(H®* — H™®) forall balls, i.e. 2 = B,(0), r > 0;
(i) M(H® - H™)= My(H® - H™).
This follows since the Poincaré constant on bounded domains grows like d* when
d = 2r — o0, and thus §(B,(0)) — 0 as r — oo.
If for some R > 27 there exists f € M(H® — H~*) such that d(f, Mo(H® —

H™5)) > R, then for all domains  C R it holds that f ¢ Mq(H® — H™"). This
follows as in the best possible case R > §(2) ~ 27* when C(s, 2) =~ 0.

Remark 6.7. In mathematical terms, to have unique weak solutions (modulo the dis-
crete spectrum) for the fractional Schrédinger equation with a potentialg € M(H® —
H %) studied in Lemma 7.9 of Section 7.2, it would be sufficient to show that for any
a € M(H® — H™*) there existsa’ € Mo(H* — H*) suchthat ||[a —a’||5,—s < 8(2),
which is certainly a weaker condition than M(H* — H™*) = My(H®* — H™°).In
the works [22, 73], one restricted to take the potentials from My(H* — H ~*) rather
than from the larger class Mg (H® — H ). The benefit of this is of course that the
class of perturbations in [22,73] do not depend on the domain €2.

6.3. PDOs with Sobolev multiplier coefficients

Let m € Ny. We denote PDOs of order m as

where the coefficients are chosen appropriately. In order to prove existence and
uniqueness of weak solutions on domains that are bounded in one direction, we make
a suitable smallness assumption on P due to the lack of compact Sobolev embeddings
on unbounded domains 2 = R x w.

More precisely, we first calculate that

> aa. (D*v)w)| < ( Dt lsfad,-s ) Il ars ey 10 s .

lot|<m loe|<m
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Using this calculation as our guide, we know how to choose the coefficients aq. This
motivates the next definition, which gives the smallness condition that guarantees the
existence of unique weak solutions on domains that have finite Poincaré constants.

Definition 6.8 (Multiplier norms of PDOs). Let Q2 C R” be open with a finite frac-
tional Poincaré constant of any order s > 0. We define the subspace of small PDOs of
order (m,s) € Ny x R4 as follows:

Pm.s () := {P =" auD% [P ms < 8(R). a € M(H T — H_S)}’

loe|<m

where the norm of PDOs is

”P”m,s = Z ”aa”s—la\,—s = Z ”aa”s,\al—s

la|<m loe|<m
forany P =3, ., @a D®.

Remark 6.9. Note that by Theorem 2.2 the set P, 5(€2) is well defined if s > 0 and
2 is an open set which is bounded in one direction. Moreover, we remark that in the
article [23], where the fractional Calderdén problems were studied, one had to restrict
to coefficients of PDOs or potentials from Mo(H" — H'). In our case of unbounded
domains, the necessary smallness assumption avoids making this additional assump-
tion and sufficiently small Bessel potential H*-*° coefficients in [23, Theorem 1.2]
belong the class we are using here (see the related estimate [23, eq. (22) in the proof
of lemma 4.1]).

7. Fractional Calderon problems on unbounded and bounded domains

In this section, we study fractional Calderén problems on domains that are bounded
in one direction and begin to employ the tools introduced in the earlier sections. We
remark that the arguments in this section follow closely those of [15,22,23,39] and the
emphasis is to explain the points were the differences occur. In Section 7.1, we briefly
recall the basic structure of the argument for the sake of completeness and relate this
to the abstract framework of Section 4. We note that this approach simplifies and
generalizes the original uniqueness proofs in [15,23].

7.1. Small local linear perturbations
Consider the problem
(—A)u+ Y ay(D*u)=F inQ,

la|<m .
u=f inQ,,

(€))
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and the corresponding adjoint problem

(=A)u* + ) (=D D@uu*) = F* inQ,

(10)
fel=m u* = f* in Qe.

Note that if u, u* € HS(R") and aq € M(H*71®l - H=5) = M(H®S — H'¥=%), then
ag(D%u) € H*(R") and D*(aqu*) € H5(R") like (—A)*u, (—A)*u*e H5(R").
The problems (9) and (10) are associated with the bilinear forms

Bp(v,w) 1= ((—=A)3v, (=A)3w) + ) (aa, (D*v)w)

loe|<m

and

Bp (v, w) := ((=A)3v, (=A)3w) + ) (g, v(D"w)),

lot|<m

defined on v, w € CX°(R"). Notice that definition of the bilinear forms do not explic-
itly depend on the particular choice of €2, but their quantitative properties like coerciv-
ity and boundedness will depend on 2. Later the domain €2 only shows up in the class
of test functions H* (R2), the interior data F, F* € (ﬁ *(2))*, and the exterior data
u— fiu* — f* e H5(Q) of the associated exterior value problem. Next we introduce
the used notion of weak solutions of (9) and (10).

Definition 7.1 (Weak solutions). Let f, f* € H*(R") and F, F* € (H*(Q))*. We
say that u € H*(R") is a weak solution to (9) whenu — f € FIS(Q) and Bp(u,v) =
F(v)forallv e HS (2). Similarly, we say that u™ € H*(R") is a weak solution to (10)
when u* — f* € H°(Q) and B} (u*,v) = F*(v) forall v € H%(Q).

We next begin the preparation to show the existence and uniqueness of weak solu-
tions in order to finally define the exterior DN maps.

Lemma 7.2 (Boundedness of the bilinear forms). Lets € R* \ Z and m € N be such
that 2s > m, and let a, € M(Hs_|°“ — H™5). Then Bp and BI*, extend as bounded
bilinear forms to H*(R™) x H*(R").

Proof. We will verify this only for the adjoint bilinear form, since the proof for the
original problem is analogous. Let u, v € C2°(R"). We can estimate

|Bp+ (v, w)] < [{(=2)30. (=8)2w)| + ) |{da. v(D*w))|
lot|<m
< llwllas®mllvlias @

+ ) Naalls,jal—s V] s @) 1 D* W || s—a1 oy

loe|<m
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= (1 X Mallsat—s ) 05 e 0] s .

loe|<m

= 1+ 1P llms)vlas ®mllwlms ®eys

where in the last step we used ||a||,s = ||a||-s,—r. Now, the claim follows from the
density of C°(R") in H*(R"). [

Lemma 7.3 (Well-posedness). Let Q2 C R” be an open set which is bounded in one
direction, assume thats € R \ Z, m € N satisfy 2s > m and let P € Pm,s (). Then
forany f € H*(R") and F € (H*(2))* there exists a unique u € H*(R™) such that
u— f e H Q) and

Bp(u,v) = F(v) forallv e H*(Q).
One has the estimate

lull s ey = CULf las ey + 1F s yy)-
The function u is the unique u € H*(R") satisfying

(=A)u+ Y ayDu=F

loe|<m

in the sense of distributions in Q@ andu — f € H*(Q). Moreover, if f1, f» € H*(R")
satisfy f1 — fo € H*(Q) and uy,u; € H*(R™) are the unique solutions to

(—A)uj + Y ag(D*u;) = F inQ,
| <m uj = f] in Qe,
for j = 1,2, thenu; = uy in R".

Proof. We get from the definition of Bp that

Bp(v,0) = [(=28)20[72@n) — ) [{da, (D*v)V)]
loe|<m
> (=) 2011 2y = 1P Ll 1017 oy
= C”U”%{s(Rn)

where ¢ = 6(2) — || P|lm.s > 0. Therefore, the assumptions of Lemma 4.1 are valid,
and the statements follow. ]

We define the exterior DN maps associated to the problems (9) and (10) next. We
recall that the abstract trace space is X := H*(R")/H®(Q2) and for simplicity we
denote in the rest of the article its elements by f instead of [ f].
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Definition 7.4. Let 2 C R” be an open set which is bounded in one direction, assume
thats € R* \ Z, m € N satisfy 25 > m and let P € Py, ;(2). The exterior DN maps
Ap and A}, are

Ap:X — X* definedby (Apf. g):= Bp(usr.g)
and
Ap:X — X* definedby (A}pf .g):= Bp(uy,g),

where uy, uj*, are the unique solutions to the equations

(=A)u+ Y agDu =0 inQ, u-—feH(Q)
loe|<m
and
(—A)u* + ) (=D D¥au*) =0 inQ. w*— fe H(Q),

lot|<m
with f, g € H*(R").

We state in the next lemma that the exterior DN maps A p and A}, are well defined.
The proof is an elementary consequence of Lemma 7.3, and the proof given in [23,
Lemma 3.6] holds identically in our setting regardless of having the problem defined
in unbounded domains. It also follows from Lemma 4.1.

Lemma 7.5 (Exterior DN maps). The exterior DN maps A p and A, are well defined,
linear and continuous. One has the identity (Ap f.g) = (/. A} g).

We note that Lemma 4.4 implies the following.

Lemma 7.6 (Alessandrini identity). Let Q C R” be an open set which is bounded
in one direction, assume that s € R™ \ Z, m € N satisfy 2s > m and let Py, P, €
Prm,s(R). If we denote by uy,u5 € H*(R") the unique weak solutions of

(=A)ur + Y a14Du1 =0 inQ. u— fi € H(Q)
loe|<m

and
(=AUl + Y (DD aeu3) =0 inQ, ui—f € H(Q),

lee|<m

where f1, fo € H*(R"), then we have the identity

(Ap, = Ap,) fi, o) = ) {10 — G20, (D*u1)u}).

lee|<m

The Runge approximation property follows directly from Theorem 4.3 and the
unique continuation property of the higher order fractional Laplacian (see [22,39]).
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Lemma 7.7 (Runge approximation property). Let Q@ C R"” be an open set which is
bounded in one direction, assume that s € R \ Z, m € N satisfy 2s > m and let
P e Pp (). Let W C R" be a nonempty open set such that WNQ=0. Let

R:={ur— fr feCXW)}, R*:= {u} —fifeCXW)}C H(Q),
where uy, u}i € H*(R") uniquely solve

(=A)'ur + ZaaD“uf =0 inQ,
loe|<m

ur = f inQe,
and
(—A)us + Y (=D D*(aeuf) =0 inQ,
fel=m up=f inQe,
respectively. Then R and R* are dense in H* ().

We are ready to prove our main result on the fractional Calderén problem. One
could follow the proof given in [39] using the Alessandrini identity and the Runge
approximation property stated above. We however directly rely on Theorem 2.6.

Theorem 7.8 (Fractional Calderén problem). Let 2 C R” be an open set which is
bounded in one direction, assume that s € Rt \ Z, m € N satisfy 2s > m and let

P] = Zaj’aDa S e(/jm’s(Q),
lae|<m

for j = 1,2. Let W1, Wa C 2, be open sets. If the exterior DN maps for the equa-
tions (—A)* + Pj)u =0in Q, j = 1,2, satisfy Ap, f|lw, = Ap, flw, forall €
CX (W), then ay o|lq = az.q|q for all a of order |a| < m.

Proof of Theorem 7.8. Using Theorem 2.6, we deduce
Z(al,a —az,q, (D*v1)v2) =0 forall vy, vy € CX°(R2). (1D

lot|<m

For a = 0, it immediately follows that a1 «|@ = @2 «|o. We finish the proof by induc-
tion using the identity (11). Suppose that a, g|o = a, g|q for all 8 such that [B| < N
forsome N <m.Leta € N satisfy |a| = N, v, € C°(2) and choose v; € C°(R2)
such that vy (x) = x* = x{'x52 -+ xp" on supp(v2) € Q. Now, equation (11) gives,

after a short computation, that
0= (a1q0—aza, (D*x*)2) = ala1,q — a2,q4,v2)

which implies a1,«|q = a2,4|q. Hence, by induction a; o|@ = az,«|q for all o of
order || < m. This also implies that P |g = P2]q. [
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7.2. On generalizations of the uniqueness results for the fractional Calderén
problems on bounded and unbounded domains

We consider the problem (9) and the related inverse problem of Theorem 7.8 in the
special case when m = 0, the PDOs P;, P, are replaced by the zeroth order potentials
q1,92 € M(H®* — H™") and consider also the case where 2 C R” is a bounded
domain. It was shown in [22, 73] that the result of Theorem 7.8 holds when m = 0
and q1,q2 € My(H®* — H™5) and s € R4 \ Z on all bounded domains. We extend
this result on bounded sets to potentials in Mo(H*® — H™°) + M>o(H®* — H™)
as this small improvement comes only with a little additional work using the same
methods that are needed for unbounded domains. In the cases of unbounded domains,
we restrict to potentials in Msq)(H* — H ™) + M>o(H* — H™).

The proofs remain almost identical to the proof of Theorem 7.8. It is also possible
to obtain similar generalizations on bounded sets in the case of lower order linear
perturbations studied in Section 7.1. Rather than giving full details of the proofs in
this section, which are very similar to the earlier proofs in [22,23, 73] and the proof
of Theorem 7.8, we only explicitly prove here the related well-posedness results and
conclude the uniqueness results for the fractional Calderén problems. The proof of
Theorem 7.8 with obvious changes can be used as a guide to complete the missing
details.

We assume that the potential ¢ € M (H* — H ~*) is such that 0 is not the Dirichlet
eigenvalue of the operator (—A)® + ¢, namely:

ifu e H*(R") solves ((—A)* + g)u =0in Q andu|g, =0, thenu = 0. (12)
We define the associated bilinear form B,: H*(R") x H*(R") — R as
By(v,w) = {(=A)3v, (=A)2w) + (¢, vw)
forv,w € H*(R").

Lemma 7.9 (Well-posedness). Let Q@ C R” be a bounded open set, s € R™ \ Z and
q € Mqg(H® - H™®) + M>o(H® — H™5). Then the following statements hold.

(1)  There exist a real number p > 0 and a countable set ¥ C (—, 00) of eigen-
values with Ay < Ay < --- — 00 having the following property. If A ¢ %,
thenforany f € HS(R") and F € (H*(2))* there is a unique u € H*(R")
satisfying

By(u,v) — Au,v) = F(v) forve HY(Q), u—fe H Q)

with the norm estimate

lull gy < CUF N gscy- + 1S s ony)-
where C is independent of F and f .
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(ii)  The function u in (i) is the unique u € H®(R") satisfying
A ’u+qu—Au=F

in the sense of distributions on Q@ andu — f € H*(Q).
(iii) One has 0 ¢ X if (12) holds.

Proof. Using Lemma 7.2 we see that it is enough to solve the problem with zero
exterior condition. By the assumption there is a decomposition

q=qs+qo. qs<€ Mq(H* - H™®), qoe Mso(H* — H™).
First, we may calculate
(q’ Uz) = <qS’ Uz) + <CI07 U2> Z <qS7 U2)

for any v € H*(R"). Using (8) we have g5 = ¢s5.1 + ¢s,2, where 5.1 € Mo(H® —
H™) and g5 € Msq)(H® — H™*). The small part has the estimate

[(s.2.9%)] < Ids.2lloms 01305y < SN0 o

for any v € H*(R"). Next suppose that v € HS (). We may now estimate as in the
proof of Lemma 7.3 to get

By(v,0) = [[(=A)2 0|72y + (45,1, 0%) + (52, v)
> [(=A)2 072y + (ds,1,0%) = [{ds,2,07)]
> (8(€2) — lIgs,2lls,—s) ||U||12'-15(Rn) + {¢s,1, v?) (13)

where ¢ 1= §(2) — ||gs,2||5,—s > 0. Choose ¢ € C°(R") such that ||gs,1 — ¢|ls,—s <c¢
and define p := ||¢— || Loorr) > 0, where ¢_ denotes the negative part of ¢. When we
write ¢s,1 = ¢ + (gs,1 — ¢), we have by (13) for any v € H*(£2) that

By, (v,v) := By (v,v) + u (v, v) > c/||v||12115(R,,),

where ¢’ = ¢ — ||¢s,1 — ¢||s,—s > 0 is independent of v. This coercivity estimate and
the boundedness of the bilinear form B, implies that B, ,, defines an equivalent inner
product on HS(Q).

The proof is now completed as in [39, Lemma 2.3]. The Riesz representation the-
orem implies that for every F e (H%(Q))* there is unique ¥ = GMF € H5(Q) such
that By (4, v) + u (u,v) = F(v) forall v € H*(S2). Next note that there is a unique
u € H*(Q) such that B, (1, v) — A{u,v) = F(v) forall v € H*(R) if and only if there
holds u = G, [(n + A)u + F]. The map Gu: (H*(Q))* — H*(Q) induces a com-
pact, self-adjoint, and positive definite operator G u: L*(S2) — L*(S2) by the compact
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Sobolev embedding theorem. The Fredholm alternative together with the spectral the-
orem for the self-adjoint, compact, and positive definite operator G w implies the first
part of the claim in (i). Moreover, the estimate follows from the Riesz representation
theorem and the fact that if A ¢ X, then solutions u € H*(Q) to

B, (u,v) — Au,v) = F(v) forve H*(Q)

satisfy |lu|l;2 < C ”ﬁ”(ﬁs(ﬂ))* (cf. [30, Section 6.2, Theorem 6]). The statement (ii)

holds since C2°(£2) is dense in HS (€2). The assertion in (iii) follows from the Fred-
holm alternative. ]

Lemma 7.9 and the same proof as given for Theorem 7.8 let us conclude the
following theorem. Note that the exterior DN maps are defined according to Defi-
nition 7.4 and the other properties such as the Alessandrini identity and the Runge
approximation property remains valid. See also, e.g., [22, 39, 73] for a simpler proof
for the case of just a potential g rather than an operator P.

Theorem 7.10 (Fractional Calder6n problem with Mg + Mo potentials). Let
Q C R” be a bounded open set, s € Rt \ Z, and q,,q> € Mg(H* — H™*) +
Mso(H® — H™*) satisfy the condition (12). Let Wy, Wo C Q. be open sets. If the
exterior DN maps for the equations (—A)u + qju = 0 in Q, j = 1,2, satisfy
Ngy flws = Ng, [ lw, forall [ € C°(Wh), then q1la = q2]q.

We get similarly the following theorem on unbounded domains. The proof of well-
posedness and uniqueness of solutions is similar to the proof of Lemma 7.3 and only
relies on the Riesz representation theorem without the spectral theorem. Therefore,
we do not have to assume additionally anything about the Dirichlet eigenvalues due
to the smallness and positivity assumptions on the potentials.

Theorem 7.11 (Fractional Calderén problem with M) + Mxo potentials on
unbounded domains). Let Q C R” be an open set which is bounded in one direction,
s€RT\Z, and q1,q2 € Msoy(H* — H™*) + M>o(H* — H ™). Let W, W, C Q.
be open sets. If the exterior DN maps for the equations (—A)*u 4+ gju = 0 in Q,
J = 1.2, satisfy Ag, flw, = ANg, f|lw, forall f € CX(Wy), then g1 = q2|a.

We finally move on to the case of local linear perturbations on bounded domains.
It has a generalization from the usual coefficients in Mo(H”™ — H') to more general
coefficients, analogously to Theorem 7.10. We will state and prove the related well-
posedness result as it is less trivial than in any of our earlier cases. Then the uniqueness
result for the related fractional Calder6én problem can be proved following the proof
of Theorem 7.8 (given originally in [23] in the context of bounded domains but for
slightly less general coefficients).
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In the uniqueness theorem, we assume that 0 is not a Dirichlet eigenvalue of the
operator ((—A)S + P(x, D)), namely:

ifu e H*(R") solves ((—A)® + P(x,D))u=0in Q andu|g, =0, thenu =0. (14)

Lemma 7.12 (Well-posedness). Let Q C R” be a bounded open set, s € R \ Z and
m € N be such that 2s > m. Define

P:=Y (ag+ba)D* ay € My(H* " > H™),

loe|<m

Py =Y byD¥ € P s(Q).

la|<m
Then the following statements hold.

(1)  There exist a real number p > 0 and a countable set ¥ C (—, 00) of eigen-
values with A1 < Ay < --- — 00 having the following property: If A ¢ %,
thenforany f € HS(R") and F € (H*(R2))* there is a unique u € H*(R")
satisfying

Bp(u,v) —Au,v) = F(v) foralve H (Q), u— f e H Q)

with the norm estimate

lllzs@ny = CUL Nas@ny + 1l gs @)
where C is independent of F and f.
(i)  The function u in (i) is also the unique u € H*(R") satisfying
(=AY 4+ Pu=F
in the sense of distributions in Q and u — f € H%(Q).
(iii) Moreover, if (14) holds, then 0 ¢ X.

Proof. The proof is a combination of the ideas presented already in the proof of Lem-
mas 7.3 and 7.9, and the proof given in [23, Lemma 3.4]. We describe here how the
problem is reduced back to the estimates used in [23, Lemma 3.4]. The crucial part is
to establish the coercivity estimate.

Letv € H® (£2). We get from the definition of Bp that

Bp(v,v) = (=220 2y + D (@a (D*0)v) = D |{ba, (D v)v)|

la|l<m la|l<m
£ 2 a 2
= (=) 302 gy + 3 s (D0)V) = [ Pl s 102 o
la|<m

> C”U”sz(Rn) + Z(aa, (D%v)v)

loe|<m
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where ¢ = 6(2) — || P ||m,s > 0. This now leads to the estimate

Bp(v.v) = cl|v]|}s @y — Y [{@a. (D*v)V)| (15)

loe|<m

which is of the form analyzed in [23, Lemma 3.4].

The role of the additional ¢ > 0 is the same as having a larger but still a finite
Poincaré constant when compared to the situation in [23, Lemma 3.4]. It follows
from (15) and the more involved estimates calculated in [23, Lemma 3.4] that there
exists some cg, i > 0 independent of v such that

Bp(v,v) > COHU”%{S(R") - “”v”iZ(R”)'

From here, the proof is completed similarly to the proof of Lemma 7.9 but this
time using the Lax—Milgram theorem and the spectral theorem for the compact, posi-
tive definite operators. ]

Lemma 7.12 allows to set up the fractional Calderén problem and to prove the
following theorem using the exactly same steps as in the proof of Theorem 7.8 (or
[23, Section 3]).

Theorem 7.13. Let Q@ C R”" be a bounded open set, assume thats € Rt \ Z, m € N
satisfy 2s > m and let

Pj = Z(aj,a + bj,a)Da, ajo € Mo(HS_‘al — H™),
la| <m

Pjs:=Y bjouD® € P ().

le|<m

for j = 1,2 be such that (14) holds. Let W1, W, C Q. be open sets. If the exterior
DN maps for the equations ((—A)* + Pj)u =0in Q, j = 1,2, satisfy Ap, f|lw, =
Ap, flws forall f € CE(Wh), then (@14 + bra)le = (a2.a + ba.o)lg foral o] <
m andP1|g = P2|Q

Remark 7.14. We do not have uniqueness for the decomposition P; = (P; — Pjs) +
P; ¢ but only for the coefficients of the resulting operator.

Remark 7.15. Theorem 7.13 is a small step towards the unification of the two dif-
ferent approaches in [23, Theorem 1.1 and Theorem 1.4] since when 2 is a Lips-
chitz domain we can now include H %> (£2)-type coefficients for the small term P; .
The issue is that it seems to be difficult (if even possible) to approximate H*-°°(2)
coefficients with C°(R") in the Sobolev multiplier norms. However, the relevant
bounded Bessel potential coefficients belong to the spaces of all multipliers on Lips-
chitz domains as proved in [23, Lemma 4.1]. See also [23, Propositions 1.2 and 1.3]
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for the inclusion of H**°(2)-type coefficients to the spaces M, when additional
vanishing on the boundary is assumed. One can therefore interpret the assumptions
of Theorem 7.13 as a smallness assumption on the boundary for the bounded Bessel
coefficients in the case of Lipschitz domains.

8. Fractional conductivity equation and the Liouville transformation

In this last section, we will study the fractional conductivity equation and the related
inverse problem, which was introduced in [19], on arbitrary bounded open sets and
domains bounded in one direction. It was shown in [19, Theorem 1.1] that if 2 C
R” is a bounded Lipschitz domain, 0 <s < 1,0 < y9 < y1,¥2 € L*¥R"), m; :=
)/11/2 —1,my:= )/21/2 — 1€ H?35(Q) and the associated DN maps restricted to open
subsets Wy, Wo C 2, agree, then y; = y, in Q. We will not impose any regularity
assumption on the boundary of 2 and weaken the assumption my, m, € H2s:35 ()
besides generalizing the setting to domains only bounded in one direction. Our proofs
are based on certain continuity properties of the multiplication map ( f, g) — fg in
Bessel potential spaces, which will be established in Appendix A, and on our results
on the generalized Calderdn problem from Section 4 as well as Section 7.2. Our main
result in this section is the proof of Theorem 2.8.

8.1. Fractional gradient and divergence

We start by recalling the notion of fractional gradient and divergence as introduced in
[19,29]. Let 0 < s < 1, then the fractional gradient of order s is the bounded linear
operator V¥: HS(R") — L?(R?";R") given by

Cn s -
Viute.y) = |/ 2 |z(f)y|;(sy+)l (x =),

1 —cos(xy) -1
Cn,s = (/ 7|x|n+25 dx) < 00,
Rl’l

and there holds (cf. [27, Propositions 3.4 and 3.6])

where

C s
;’S lws2wny = [(=A)2ullL2®n) < lullgs®ey.  (16)

ViUl 2many =

Here we have used that the Slobodeckij spaces W*2(R") coincide with the Bessel
potential spaces H*(R") for 0 < s < 1, the continuity of the fractional Laplacian
and we will write for simplicity | - || 2 (g2ny instead of || - || 2(g2n.rn). Therefore, we
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can define the fractional divergence of order s as the formal adjoint operator of the
fractional gradient, that is, it is the map divy: L2(R?"; R") — H~5(R") with

(divs(u), v)H—S(Rn)XHS(Rn) = (u, VSU>L2(R2n)
forall u € L2(R?";R"), v € H*(R"). Moreover, an easy computation shows
[ divs ) | g—s ®ny < [l L2®2m)

for all u € L2(R?*;R").
One can show the following relation between these fractional operators and the
fractional Laplacian:

Lemma 8.1 ([19, Lemma 2.1]). Let 0 < s < 1. Then there holds in the weak sense
divg(Viu) = (=A)°u
Sforallu € H*(R"), that is, we have
(Vu, Vog) r2any = ((=8)3u. (=8)30) 12 n)
forall p € HS(R").

Remark 8.2. In [22, Section 6.2] it is shown that this lemma can be generalized
to s € (0,00) \ N but the definition of the higher order fractional gradient is rather
technical as it involves tensor fields. We have not considered the question to what
extent the theory presented in this section extends to the higher order cases.

8.2. Liouville transformation, well-posedness of the fractional conductivity
equation and DN map

First, we introduce bilinear forms associated to the fractional conductivity equation
and fractional Schrodinger equation when the potential ¢ belongs to L 35 (R™).

Lemma 8.3 (Definition of bilinear forms and conductivity matrix). Let 2 C R” be an
open set, 0 < s <min(l,3), g € L35 (R"), y € L®(R") and define the conductivity
matrix associated to y by

Oy R — R, Oy (x,y) i= v 2(x0)y" 2 () Ly
for x,y € R". Then the maps defined by

By: H*(R") x H'(R") = R, B, (u,v) := / ©,Viu - Vivdxdy

R2n
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and
B,  H°(R") x H*(R") - R, By(u,v) —/( A)Zu( A)Zvdx+/quvdx
R”2

are continuous bilinear forms. Moreover, we have q € My(H* — H™%) with

S CU+ gl 2 )

for some C > 0.

Remark 8.4. If no confusion can arise, we will drop the subscript y in the definition
for the conductivity matrix ©,.

Proof. By Holder’s inequality, y € L°°(R") and (16) the map B,, is well defined and
we have

1By (. )| < (¥ lLoo@m IV ull 22 IV 0l L2 R2m)

< Y llzocwmlull zs @y vl s wmy

for all u, v € HS(R"). On the other hand, if g € L%(R”), u € H*(R"), then by
Lemma A.10 we know qu € L% (R™). Since v € H*(R") we have by the Sobolev
embedding v € L5 (R™) and therefore we obtain by Holder’s inequality quv €
L'(R™). Using the continuity of the fractional Laplacian we get the estimate

| By (u,0)| < (=) 2ull 2y | (=A) 30 L2y + llqu IIL__,__(Rn 01, 2255 gy

< l[ullzs @ llvll s @ny + Cllqu]| o]l 2zs )

LS (R
= llullzs @ vllms @y + Cligl & gy lellzs@nllvlas @

=C+llgll, & o) I llas@ey 0] s ®n)
L5 (R7)

for all u,v € H*(R"). The previous estimate directly shows g € M(H® — H %), but
since C2°(R") is dense in L7 (R™) we can conclude that g € Mo(H* — H™5). =

This result now allows us to introduce in both cases a notion of weak solutions.

Definition 8.5 (Weak solutions). Let 2 C R” be an open set, 0 < s < min(1, %), q €
L35 (R") and y € L®(R") with conductivity matrix ©: R2* — R"™*" If f € H*(R")
and F € (FI *(R2))*, then we say that u € H*(R") is a weak solution to the fractional
conductivity equation

divy(®V°u) = F in Q,
u=f inQ,,
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if there holds
By(u,¢) = F(¢) and u—f e H(Q)

for all ¢ € H5(Q). Similarly, we say that v € H*(R") is a weak solution to the
fractional Schrodinger equation

(AY +q)v=F inQ,
v=f inQ,,

if there holds
By(v.¢) = F(¢) and v— f e H(Q)

forall ¢ € H*(RQ).

Now, we proof a similar result as [19, Theorem 3.1] but which also holds on
possibly unbounded domains 2 C R”.

Theorem 8.6 (Liouville transformation). Let Q@ C R” be an open set, 0 < s < min(1,
5), v € L®(R") with conductivity matrix © satisfies y(x) > yo > 0 and define the
background deviation m,: R" — R by m,, := y1/?

H?5:35 (R™), then the following assertions holds.
(i) Letu € HS(R"), g € H5(R")/H*(Q) and set

— 1. Moreover, assume that m,, €

(=A)'my,

1/2 . ,1/2 _ 7 Y
u, fi=y7'g qyi= 172

vi=y

Then v € HS(R"), f € H5(R™)/H*(Q) and u is a weak solution of the
fractional conductivity equation

divg(®Viu) =0 inQ,

17
u=g inS,, (7

if and only if v is a weak solution of the fractional Schridinger equation

(=AY +gy)v=0 inQ
18

v=f inQ, (18)

(i) Letve HS(R"), f € HS(R")/H*(Q) and set u = y_%v, g = y_%f.
Then v is a weak solution of (18) if and only if u is a weak solution of (17).

Remark 8.7. If it is clear to which conductivity y the background deviation m,,

corresponds, we will denote it by m. Moreover, from now on we will always set
—A)S . . . .
qy = ¢ fl)/zm Y and refer to it simply as electric potential. As for the background

deviation we will drop the subscript y if the dependence is clear from the context.
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Proof. Throughout the proof we will write for simplicity m, g instead of m,,, g, .

(i) First, note that by Corollary A.7 we have v, f € H*(R"), since v = /2y =
mu+u e HS(R"), f = y'2g = mg + g € HS(R"). Moreover, if g — h € H5(Q)
then Corollary A.8 shows that f — y'/2h € H*(2) and hence

f=y"%g e H (R")/H Q)

is well defined. Moreover, by the assumptions m € H 25’%(]1%”), y > yo > 0 and
the mapping properties of the fractional Laplacian we have ¢ € L2s (R"). Hence,
Lemma 8.3 shows that the introduced notions of weak solutions to both equations
make sense.

Next, we show that there holds

(OVu, V¥) 2@any = ((=A)2 (' 2u), (=2)2 (y'/%9)) L2 gy
+ (qy'Pu. v ) 2 ) (19)

for all u, ¢ € H*(R"). In the second part of the proof we will demonstrate that if
¢ € HS (€2) then there holds y_%qi e H ¥(L2) and therefore we can replace in (19)
the test function ¢ by y_%¢ which then shows the asserted equivalence in the state-
ment (i). Fix u, ¢ € H*(R"), then by density of C°(R") in H*(R") there exists
Up, Pn € CX(R") such that u, — u, ¢, — ¢ in H*(R"), but then continuity of the
bilinear forms By, B, (cf. Lemma 8.3) and Lemma A.10 combined with the Sobolev
embedding imply that it suffices to show (19) for u, ¢ € C°(R").

Next, let us fix a (radial) standard mollifier p, C C°(R") and introduce the
sequences y./% 1= y1/2 x p, € C°(R™) and mg := m * p; € C°(R™). Note that

mg = ygl 2 _ 1, since fRn pe dx = 1. By standard arguments we deduce

My 2y in LR,

a  0<y,/ 4 < yi/? e L2R"),

)  m, — m in H2535 (R"),

AV)  my € L®(R") with |mg]|zocny < [mllzeo@ny < 1+ 1112 gn-

Let O.(x,y) = ygl/z(x)ye/ (¥)1,,xn, then by using either property (I) or (III) and
standard arguments, we obtain

‘/@udxdy—/@udxdy‘

‘ [ 1200y 2 (yyu(x, y) dody — [ Y200y 2 (ur. ) dx dy
RZn
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< /VE”Z(X)(VJ/Z(y)—V”Z(y))u(x,y)dxdy‘
R2n
T / P2 (x) = 2y 2, ) d dy' =0
]RZn

as e — 0 forall u € L'(R?"). Therefore, we have

(@,;Vsu, VSU)LZ(]RZn) — (@Vsu, VSU)LZ(RZn)
ase — Oforall u,v € H*(R"). Next let us define g, := —(_Al)/szms € C®(R™). Since
Y

the fractional Laplacian is continuous, we deduce from (III), ?IV), and Corollary A.7
that

(=82 u), (D)2 (P 2h)) 2y
= (=) 2 (1 %u), (=2)2 (¥ 29)) Lo @y

as ¢ — 0. Similarly, using the continuity of the fractional Laplacian, the property (III),
Lemma A.10 and the Sobolev embedding we deduce

(@evePu, v 9) 12y
= (1 u, gy P) 12wy
= —(rd?u, (A’ me)$) 2wy

— —(y"u, (=A)Y'm)@)2rn) = <CIV1/2u’V1/2¢)L2(Rn)

as € — 0. Therefore, if we can show that (19) holds forall u,¢ € C°(R"), 0 < yé/z <
yl/2 e C°(R") and m € C'(R") for sufficiently large ¢ > 0 (see Remark 8.9), then
we can conclude the proof of statement (i). By a change of variables, we have

(@Vsu, Vs¢)L2(R2n)
s [ aggyr U0 40

2 ) |x — y[rt2e
) CZ’S? [ g U DB D 00D 4,
Rj_/ yl/z(x)yl/z(x—z)(u(x_Z)_u(azzg(sx_ﬂ_qs(x» s dx)
o
= CZ’S / I(x,z)dz dx.

R2n
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Using the notation
§Y(x,y) ==y (x+y)+v¥(x—y)—2¢(x)
for any function ¢: R” — R and x, y € R”, we can write the integrand as

I(x.2) = y!/2(x) o) (2 12/, _

: BT Y20+ Dulx +2) + ¥ 2 (x = Dulx —2)
—y'2(x + Du(x) — 2 (x — 2u(x))
—u(@) (Y2 (x + 2)p(x +2) + ¥ (x — 2)p(x — 2))
+ (' Pug)(x + 2) + (v Pug) (x — 2)]

1/2
= )|/Z|n—£§s) [_‘15()6)5(7/1/214)()6,2) + ”(x)¢(x)5(yl/2)(x,z)

—u(0)8(y'2¢)(x,2) + 8(r'Pug)(x,2)]

1/2
= TZI”JSS) [—¢(X)5(V1/2u)(x,z) +u(x)p(x)8(m)(x, z)

—u(x)8(y'2¢)(x,2) + 8(yPug)(x.2)].

12))(x) in

the first bracket, 2(y'/2¢)(x) in the second bracket and in the last equality sign we
used §(1) = 0. Next recall that the fractional Laplacian of order s € (0, 1) of a function
u € 8(R™) can be calculated by (cf. [27, Proposition 3.3])

Chs su(x,y)
2 |y|n+2s
R”7

where in the second equality sign we added and subtracted the term 2(y

(=A)Yu(x) = -

dy forall x € R".

Moreover, the same formula holds for m by Remark 8.9. Therefore, we obtain
(@VSM, Vs¢)L2(R2n)

= %/]/1/2()(7)[¢(x)(_A)S(yl/2u)(x) + u(x)(_A)s(V1/2¢)(x)

R — (=AY (" Pud) (x) —u(x)p(x)(=A)’m(x)] dx.

The integral [, (—A)*u(x) dx vanishes for any u € S(R”) and 0 < s < 1, since it is
the Fourier transform at the origin of the fractional Laplacian. Therefore, we obtain

(@Vsu, VS¢>L2(R2n)
= f [ 20 (1) (—A) (210 () + 1 2 (u(x) (=AY () ()
B im0 (=AY (¢ Pug) (x) — 2 (0)u () (x) (—A) m(x) |dx

1
= S[EA G20,y 2g) 2y + (v P, (= 8) (1 29)) 2y
— (m., (=) (" ?ug)) L2y — (b (=AY M)y u) 2@
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1
= SHEA G20,y 28) 2y + ((=8) (1 2), v 2) L2y
(=8 m Y Pud) oy = (A)Ym). y ' Pug) 2@ ]
= (=22 2u). (=83 (PPN Loy + (av " Pu. v 2) o),
where we used
(=)’ u,v) oy = (U (=8 V) 2@y = (=) 3, (=8)2v) L2,
for u,v € C(R") and the same formula holds if one replaces u by m as m €
st’%(Rn).
(i1) Note that we can write

1 _ m

yl/2 m+1

and set [ := min(0, 75> — 1). Let T € CZ(R) satisfy I'(r) = 1L forz > To. By [1,

p. 156] and m € H2535 (R") N L (R"), we deduce I'(m) € H?2535 (R™), but since
m > y(}/z — 1 it follows that .75 € H?25:35 (R") N L®(R"). Therefore, by Corol-

lary A.7 we deduce u = y_%v € H*(R") and by Corollary A.8 that f = y_%g €
HS(R™)/H*(2). The rest of the statement follows from (19) and we can conclude
the proof. ]

Remark 8.8. In fact, we have shown in the proof of Theorem 8.6 that there holds
(OV U, V) 2 gamy = ((—A)2 (" 2u). (=A)2 (' 29)) L2 ey
+ gy Pu. v ) Loy
forall u, ¢ € HS(R").

Remark 8.9. If / € L°°(R"”) and p, € C°(R"), then f, = f * p, satisfies * f, =
J * (0%pg) for any @ € N§ and is bounded and uniformly continuous. If the first and
second order differences are denoted by

A fx) = f(x+h) = f(x), ALf(x) = f(x+2h) =2f(x +h) + f(x),

then
AG(f % pe) = (AL f) * (Agpe).

Therefore, we have

1459 fellzoe < 1CAL ) Lool(A48%pe)llLt < CILSf llzoo@ny IV F osll L1 ey
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for all @ € N with |o| < k. This shows that f, belongs to any Holder space C’(R")
witht € (0,00) \ N (see, e.g., [80, Section 2.5.7], [81, Section 1.2.2]). Moreover, note
that

o0
/ ! d / ! dr <
—_—axX = . —_—)—dar 0
J T e FET

for any s > 0 and therefore f, € L, where L consists of all g € L1 (R") such that

loc
|g(x)|
/ W dx < oo.
R”

Hence, for any f € L°°(R") the functions f, satisfy the assumptions of [77, Propo-
sition 2.1.4] and therefore the proof of [27, Lemma 3.2] shows that there holds

Ca,s / §fe(x.y)

2 |y|n+25
R

(=) fe(x) = —

forall0 <s < 1 and x € R”.

Next we show that the fractional conductivity equation and the fractional Schro-
dinger equation are well posed when the potential comes from a conductivity.

Lemma 8.10 (Well-posedness and DN maps). Let 2 C R” be an open set which is
bounded in one direction and 0 < s < min(1, 5). Assume that y € L*°(R") with con-
ductivity matrix ®, background deviation m and electric potential q satisfies y(x) >
Yo > 0and m € H?535 (R™). Then the following assertions hold:

(i) forall f € X := H*(R")/H*(Q) there are unique weak solutions U, vy €
H?(R") of the fractional conductivity equation

divy(®VSu) =0 inQ,
u=f inQe.,

and the fractional Schrodinger equation

(A +q@v=0 inQ,
v=f inQ,;

(ii)  the exterior DN maps Ay: X — X*, Ay: X — X* given by
(Ayf.g) = Byur,8), (Aqf 8):= Bq(vr. ),

where uy, vy € H*(R") are the unique solutions to the conductivity
equation and Schridinger equation with exterior value f, are well-defined
bounded linear maps.
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Remark 8.11. Note that we are integrating over all of R” in the term involving the
potential ¢ in our definition of the bilinear form for the fractional Schrédinger equa-
tion, whereas in [19] the integral is restricted to 2.

Proof. The bilinear form B, is continuous by Lemma 8.3. Moreover, we have by the
properties of the fractional gradient and the fractional Poincaré inequality on domains
bounded in one direction (cf. Theorem 2.2)

By(u’ u) z VO”VSu”iZ(RZn)
= VO”(_A)ju”iZ(Rn)

= D230l oy + C el 2 e

= L min(1, ©)Juls
for all u € H*(S2) and therefore B, is (strongly) coercive. Now, by Lemma 4.1 the
assertions for the conductivity equation follow.

Next, consider the Schrodinger equation with exterior value f € X. By part (ii)

of Theorem 8.6, we have g := y_% f € X and we already know that there is a
unique weak solution vg € H*(R") to the conductivity equation with exterior value
g. Therefore, part (i) of Theorem 8.6 demonstrates that u s := yY 2vg € H*(R") has
exterior value f and solves the Schrodinger equation as desired. If u;, u, € HS(R")
are weak solutions to the Schrodinger equation with exterior values f € X, then
U=y —uy € H¥(Q) solves again the Schrédinger equation but this time with exte-
rior value zero and hence by Theorem 8.6, part (ii) the function v := y_% ue H5(Q)

is a weak solution to
divg(OVSy) =0 inQ,
v=0 in Q,.

Since solutions to the conductivity equation are unique, we obtain v = 0 which in
turn implies u; = u,. Therefore, solutions to the Schrédinger equation are unique
as well. The statements for the DN map associated to the Schrodinger equation A4
follow from Lemma 8.3 and standard arguments. |

Lemma 8.12. Let Q2 C R” be an open set which is bounded in one direction and
0 <s <min(1,%). Assume that y € L*°(R") with conductivity matrix ©, background
deviation m and electric potential q satisfies y(x) > yo > 0 and m € H*:35 (R™). If
f. g € H5(R") satisfy

(supp(f) U supp(g)) N supp(m) = @,

then there holds (A, f, g) = (Aq 1. 8).
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Proof. If supp(m) = R”, there is nothing to prove and hence we can assume that
supp(m) # R”. By assumption, we have

Yy 2h=(m+Dh=mh+h=h

for h = f, g. By Theorem 8.6, we have y'/2u, = v,1/2 5 = vy, where uyg, vy €
H?(R") are the unique solutions to the homogeneous fractional conductivity equation
and Schrodinger equation with exterior value f € HS(R"), respectively. Hence, by
Remark 8.8 and Lemma 8.10, we obtain

(Ay f.8) = By(uy.g) = By(y"?us,y"?g) = By(vr.g) = (Ag f. 8). n

8.3. Uniqueness results for the inverse problem

Lemma 8.13. Let Q C R" be an open set and 0 < s < min(l, 3). Assume that
Y1, Y2 € L°°(R") with background deviations my, my satisfy y1(x), y2(x) > yo > 0
andmy,my € H?3s (R™). Moreover, suppose that one of the following assumptions
hold:

1) Q CR”isboundedandm .= m; —m, € st’%(Q),

(i) or Q C R" is bounded in one direction and m := my —m, € HS(Q).

If Wi, W, C Q, are nonempty open sets with
(supp(m1) U supp(mz)) N (W1 U Wa) =0
and there holds A, f'|w, = Ay, f|lw, forall f € CX(Wy), then y1 = y» in R™.
Proof. By Lemma 8.12 we have Ay, f|w, = Ag, f|w,. Since
L35 (R") <> Mo(H® — H™®) C Mq(H® — H™)

the assumptions of Theorem 7.10 in case (i), of Theorem 7.11 in case (ii), respectively,
are fulfilled and we deduce in both cases ¢1|g = ¢2|q. If 2 C R” is bounded, then

using the Sobolev embedding we deduce m € H2535 (R") < LP?(R") for all 75 <
p < oo and hence using H 2535 (Q) — Hé&x (R™) we getm € L4(R") forall 1 <
q < oo. Therefore, using (i) of Corollary A.3 with s; = 0,5, = 25,0 = % Po = %s
and p; = ;=5 we infer m € H*(R"). Since all used embeddings are continuous, we
obtain m € H*(£2) and hence in both cases (i) and (ii) we have m € H*(2). Following

[19] we next calculate

0=y"y,"(q2— q1)
_ . 1/2 1/2 (=A)'m; _ (=A)'m,
=" "2 1/2 1/2
)23 Y1




J. Railo and P. Zimmermann 116

= 2D my + 7, (~AYmy

= —(14+m) (=AY’ mz + (1 + ma)(=A)’my

=1+ m)(=AYm—(1+m)(=A)°my + (1 +mz)(=A)"m,
= (1 +m)(=A)Y'm—m(=A)'m,

=12 (=A)'m —m(=A)'my

in © and thus m € H* () solves

—A)S
(—A)m — %m —0 inQ,
" om=0 inQ,.
By Lemma 8.10 we get m = 0 which in turn shows y; = y, in R”. |

Remark 8.14. If one assumes

q)) m:=m; —my € H*(R") and there exist an open set V' C €2, a measurable
subset A C V with positive measure such thatm = 0 on A and (—A)*m; €
L®(V)yand§ <s <1

(Il) orm e H'(R") fort € R and m = 0 on some open nonempty subset of

instead of the condition (i) or (ii) in Lemma 8.13, then it directly follows from the
(measurable) UCP (cf. [38, Theorem 3, Remark 5.6]) and the given proof above that
m = 0 on all of R” and hence y; = y, on R”.

Up to this point, our arguments have been very similar to the ones given in [19].
The main difference related to the solving the inverse problem has been that we do not
restrict the potential ¢ of the Schrodinger equation to €2 as done in [19] but allow it to
take values everywhere and therefore the data A, f'|w, nw, where f € C°(W; N W)
can be used to gain additional information whenever Wi N W, # @. The main ben-
efit of this becomes clear in the next statement. The other obvious differences have
been that we allow €2 to be unbounded and non-Lipschitz (but bounded in one direc-
tion) and the conductivities to be nontrivial in R” \ €. In fact, there is the following
characterization of equal exterior data for the fractional conductivity equation.

Lemma 8.15. Let Q2 C R” be an open set which is bounded in one direction and
0 <s <min(1,%). Assume that yy,y> € L*°(R") with background deviations my,m>
satisfy y1(x), y2(x) > yo > 0 and my, my € H?5:35 (R™). Moreover, assume that
mo :=my —my € HS(R") and Wy, W, C Q. are nonempty open sets with

(supp(m1) U supp(mz)) N (Wy U Wa) = 0.
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Then there holds A, f|W2 = A, f|W2 forall f € C®(Wy) if and only if

(i) my — mpy is the unique solution of

(=A)'my .
(—A)Sm — TWZ =0 in Q, (20)
! m=mqy in Q.

(i) and [o (=A)mofgdx =0forall f € CZ(Wr), g € CP(Wa).

Proof. 1f the DN maps agree, then the proof of Lemma 8.13 shows that m; — m; is
the unique solution of (20) and g; = ¢, in 2. Thus, in both cases m; — m, uniquely
solves (20) and g1 = ¢ in 2 but then (ii) of Lemma 8.10 and Lemma 8.12 shows

(Ay, f18) =Ny, . 8) = (Mg, f.8) = (Mg 1. 8)

for all f € C°(W1), g € CX(W,). By the Alessandrini identity for the fractional
Schrodinger equation (cf. [39, Lemma 2.5], [73, Lemma 2.7] and Lemma 7.6), whose
proof remains the same in our setting, we obtain

(A fig) = (A fog) = [(@ - g ax =0,

where u}l), ugz) € H’(R") are the unique weak solutions of the fractional Schrodinger

equation with potential ¢1, g, respectively, and exterior values f, g. Therefore, we
obtain

0= / (@1 — g u® dx
- f @1 - a0 = NP~ dx+ [ @ - - Ngdx
R” R”?
4 [ (@1 — 42 f @ — g) dx + [ (@1 — ) g dx. @1
R7 R7

Since u(l) -1, u(z) g€ H* (), there exists u,(cl), u,(cz) € C2°(2) such that u(l)

(1) f and u(z) — ug,z) g in H(R"). By Lemma A.10, the Sobolev embedding
and Holder’s 1nequal1ty we have

0= hm /(ql q2 )uk uk)dx+ hm /(ql qz)u gdx

+iin [ =g s v+ [ -a eax @2)
R7 R7
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Now, the first term is zero since g1 = ¢» in €2, the second and third term are zero as
u,(cj ) (j = 1,2) and f, g have disjoint supports. Therefore, since f, g are supported in

Q. we deduce

/(ql g2 fgdx =0
Qe

for all f € C°(W1), g € CX(W>). As the assumption on the supports of my, m»
imply y; = y» = 1 on W; U W, the last identity is equivalent to

/ (—AYmo fgdx =0

Qe

forall f € C°(W1), g € CX(W2). Hence, this implies that if the DN maps coincide,
then the assertions (i), (ii) of Lemma 8.15 hold.

Conversely, if m — m5 solves the equation (20), then the computation in the proof
of Lemma 8.13 shows that ¢; = ¢» in 2. Moreover, by using (ii) we deduce from the
previous computation (cf. (21), (22)) that

[@ - aauPu@ ax = [@ - seax =o.
R~ Qe

where uj(rl), uéz) € H’(R") are the unique weak solutions of the fractional Schrodinger

equation with potential 1, g2, respectively, and exterior values f, g. Now, the Alessan-
drini identity implies that the DN maps for the Schrédinger equation and hence for
the conductivity equation coincide. ]

We can now prove the main theorem of our work using the characterization of
Lemma 8.15 and the UCP.

Proof of Theorem 2.8. Assume W1 N W, # @, then there is an open bounded set U C
R” such that U C W, N Ws. By Lemma 8.15 we know that the DN maps coincide if
and only if

1)) my — m; is the unique solution of

_AS
—%sz in Q.

1 m=mg in .

(=A)’m

(ID  and [o (=A)'mo fgdx = 0forall f € CX(W1), g € C*(W2).

By the property (II) and choosing a cut—off function f € C°(Wy) suchthat |7 =1,
we see that

/(—A)Smog dx =0
U
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for all g € C2°(U). This in turn implies (—A)*mo = 0 in U. On the other hand, we
have by the support assumption on m; and m» that mo = 0 in U and hence the UCP
(cf. [22, Theorem 1.2]) implies mo = 0. Therefore, we have y; = y»,. Finally, observe
that the assertion (ii) is a direct consequence of Lemma 8.15, since the test functions
f € CX(Wy) and g € C2°(W,) have disjoint supports. [

Remark 8.16. The crucial difference between general fractional inverse problems
and the one arising from the conductivity equation is that the potentials associated
with the conductivity equation arise in the form (—A)*m/ y1/2 for some functions
m and y > 0. After interior determination is made with the usual argument one is
left with the additional exterior data which must also vanish. Therefore, this let us to
conclude stronger results than expected using the UCP of fractional Laplacians when
having overlapping exterior DN partial data. This is an interesting feature and it may
indeed generalize to other nonlocal inverse problems having similar special structures
at hand. For instance, whenever potentials ¢ of the equation (—A)® + ¢ are a priori
known to arise from a suitable restriction of the range of some fixed nonlocal operator
having the UCP. For example, in Theorem 2.8 this operator is (—A)® and one may
restrict the domain to be the functions in H*(R") that agree in W1 N W5.

A. Multiplication map in Bessel potential spaces

In this appendix, we adapt the methods in [13] to conclude useful multiplication
results for Bessel potential spaces. See also [73, Lemma 2.2] for related results in
terms of Sobolev multipliers. Before stating the main results of this section we recall
a possible definition of the Triebel-Lizorkin spaces F, , = F, ,(R") following the
exposition in [13] or [80, 81]. In the sequel we will write for brevity B, instead of
B, (0). Fix any ¥ € C>°(R") satisfying

0<vyo=1, Yo§)=1 forl§| =<1
and

Yo(§) =0 for [§] = 2

and let ; € CX°(B,,+1), j > 1, be given by
_ § §
Vi) = W0(§> - WO(F>-
In this section we write uj := u * ¢; = F (y;u) € S(R") for any u € 8'(R"), where

¢ =5F -1 (¥;) (j = 1) and one has the Littlewood—Paley decomposition

u=>y u; in§(R".

Jj=0
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Fors e R,0 < p,q < oo we set ([80, Section 2.3.1])
Fy o o={ue8®R"): ullps, = 11127u;j(x) e llLr@n) < 00}

Remark A.1. (i) For 0 < p < oo, different choices of v yield equivalent quasi-
norms (see [80, Section 2.3.5]), but for p = 0o, 0 < g < oo this is in general wrong
as shown in [81, Section 2.3.2], and for s € R, 0 < p < 00, 0 < g < oo the Triebel-
Lizorkin spaces are quasi-Banach spaces and Banach spaces if p,q > 1 (see [80,
Section 2.3.3]).

(ii) By the embedding £9! < {92, for 0 < g1 < gq» < oo we have F; , C F; .
whens e R,0< p <ocoand0 < gy < ¢gp < o0.

(iii) We have the following identifications with equivalent norms ([13, 80]):
M Fp,=LPR") forl < p < oo,

dDh  F,,=H"P(R")forl < p <oo,s €R,

)  Fy, =W%*P(R")forl < p <o0,s € (0,00) \ N,

(V) L®(R") < F2 ., with

lullgo = sup  |u;(x)| < Cllullpomn).
2% jeNg,xeR”

The following general interpolation result in Triebel-Lizorkin spaces hold:
Theorem A.2 ([13, Lemma 3]). Let —00 < 51 < 52 < 00, 0 < p1, p2,91,92 < 00,
0 <6 < 1and set

0 1-6

1
s=0s1+(1—-0)s; and —=—+ ’
4 P1 P2

then for all 0 < q < oo there holds

ulles < Cllull® ult50
lullFs, = Cl ”F;f},ql | ||F;22sq2,

S1 52
whenu € Fpy 4, N Fp; 4,.

Next, we prove the analogous result of [13, Corollary 2] for Bessel potential
spaces. The first estimate can also be obtained more directly by complex interpolation
(cf. [8, Theorem 6.4.5] or [82]).

Corollary A.3. Let0 < 6 < 1.

(i) If—oo<s) <sy<oo, 1< py,pr<oosatisfy

1
s=0s1+(1—-0)s and —=—+ ’
p pP
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then
el frs.p ey < C”“”HH pl(Rn)”“”HY2 P2 (R™)
forallu € HSVPL(R™) N H52:P2(R").
(i) IfO0<s<oo l<p<oo 0<q <oo, then
”””F?q = C”“”Hs p(Rn)”””LOO(Rn)
forallu € H>P(R™) N L°(R").

(i) If0<s<oo, 1 < p < oo, then

lull jes.s = € a0y oy e | oS ey
forallu € HP(R™) N L®(R™).

Proof. The proof is completely analogous to the one given in [13, Corollary 2], but
for convenience of the reader we reproduce it here.

(i) Using the identification F, , = H*P(R") fors € R, 1 < p < 0o and setting
q = q1 = g2 = 2 in Theorem A.2 already gives the result.

(ii) If we redefine 8 — 1 — 6@, apply Theorem A.2 with s; =0, 52 > 0, p; = ¢q; =
00,1 < py < 00,¢g2 = 2 and use (II), (IV) of Remark A.1, we obtain the result up to
relabelling the indices.

(ii1) This follows from (ii) by choosing g = 2. |

Now, we state the Runst—Sickel lemmas which establish continuity results for the
multiplication map in Triebel-Lizorkin spaces and eventually allow us to show that
the multiplication map between certain (local) Bessel potential spaces are continu-
ous. In the following we denote for any f € L} (R") by M f the Hardy-Littlewood
maximal function, that is,

1
M) = sup s / S )] dy.

By (x)

Proposition A.4 (Runst—Sickel lemmal, [13, Lemma5]). Let0 <s <00, 1 <g < oo,
1 < p1, p2,r1,r2 < 00 satisfy

1 1 1 1 1
0<—t=—4+—=—+—<1,
V4 P1 5] P2 r

then forall f € F; N L (R"), g € F,, , N L"(R") there holds

171 »q
I fgllEs, < CUMS)27 g (O)lleallLrny + 1 Mg()12% £; () llea | Lr @)

and

P

Ifellrs, = CASNEs,  NelLr@ny + 1glFs, N 1z @)
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Proposition A.5 (Runst-Sickel lemma II, [13, Corollary 3]). Let 0 < s < o0,
1 < g < o0. Then the following assertions hold.

(1)

(ii)

(iii)

If 1 < p1, p2, 71,12 < 00 satisfy
1 1 1 1 1
O<—:=—+—=—+_<1’
p P 5] p2 r

then the multiplication map
(Fp, g "L R") X (Fp, o N L™ (R™) > (fLg) > f8 € Fp,

is continuous.

If1 < p < oo and there holds

fo—= finFs . | f¥llLee@n) < C.

gk—>ginFs,. lglLewn <C,

for some C > 0, then f*g* — fgin F$

Let 1 < p1,r, p < oo be such that

11 1
p P1 r
and there holds
f*— finF5 . I /¥l Loo@ny < C.

gk — gin Fy,NL",

for some C > 0, then f*gk — fgin F$

Lemma A.6. Let 0 < 51 <00, 1 < p1, pa,rz < 00,0 < 0 < 1 satisfy

then

1 0 1
- = — + )
P2 P1 2

(HSUP1L(R™) N L®°(R")) x (H9S1,P2(Rn) N L™2(R") > (f.g)
> fg € H%1:P2(R")

is well defined and there holds:

(1)

forall f € HSVPY(R™) N L®(R"), g € H1:P2(R?) N L™2(R") we have

”fg”H@SlJ’Z(Rn) < CUlf lLee@mllgll gos1. P2 (R")
+ gl @l f N 3s11 ey | f I 1Sy
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() if f* — fin HSWPLRM), || f*|| Loowny < C for some C > 0and g*¥ — g
in H91:P2(R") N L"2(R™), then f*gk — fg in H1:P2(R"),

Proof. (i) By the statement (iii) of Corollary A.3, we have

171 < CIA Wporm1 oy 1L 1

931 T (R")

Hence, the Runst—Sickel lemma I (Proposition A.4) with ¢ = 2 and Remark A.1, (IV)
shows

1781zz0s1.p2@ny = CUSN s,

%L(Rn)“g||L’2(R")
+ 1L oo g gross o eny)
< CUL W11 oy I NS ey g N2 oy
+ 1/ lzoo@n) &1l gos1.p2 ()

(i1) First, we show that fe HOs1:F (R”) Since, (f*)ren is bounded in L (R")
by the Banach—Alaoglu theorem there is a subsequence, which we still denote by
(£*), which converges weak-s* to some f € L>(RR") and this will be denoted from
now on as f¥ X f in L°(R"). Using the embedding H*'"P1 (R") — LP1(R"), we
deduce f = f with

£ | Loony < liminf || f¥|| oo @m < C.
k—o00
But now the assertion (iii) of Corollary A.3 implies /¥ — f in H 051,77 (R") By
applying part (iii) of the Runst—Sickel lemma II (Proposition A.5), we obtain f* gk

fg in HY1:P2(R™). Since, we can use this argument for any subsequence of f k we
deduce that the whole sequence f*g* converges to fg in H%51:P2(R"). [

As a special case we obtain the following result

Corollary A.7. Let 0 < s < 7, then the multiplication map
(H?35(R™) N L®(R") x H'(R") 5 (f.g) > fg € H (R")

is well defined and there holds:
(i) forall f € H*35([R") N L®(R"), g € H*(R") we have

1 1
I felis@ny < CULS oo + 1113 g1 g 1112 )8 e e

() if f*— fin H*5SR"), || f*|Loo®n) < C for some C > 0and g* — g
in H*(R"), then f*gk — fgin HS(R™).
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Proof. Use Lemma A.6 with 51 = 25, p; = % P2 =2,rp = ni’és 0 = % and the

standard Sobolev embedding H*(R") — =5 (R™). ]
We also have the following local version of Corollary A.7:

Corollary A.8. Let Q2 C R" be an open set and 0 < s < 3, then the multiplication
map
(H*25(R") N L®(R") x H(Q) > (f.g) — fg € H(Q)

is well defined and there holds:
(i) forall f € H>35(R") N L®(R"), g € H5(Q) we have

1/2 1/2 )
I /&llas @y = CULf lLoo@n) + IIfIIHZA,,%S(Rn)IIfIILoo(Rn))IIgIIHS(Rn)y

(i) if f*¥ — fin H?35(R"), ”fk”Loo(]Rn) < C forsome C >0and gk — g
in H5(Q), then fkgk — fgin HS(R").

Proof. We only need to prove that the multiplication map is well defined. From Corol-
lary A.7, we already know that fg € H*(R"). Denote by (p¢)e>0 C C°(R") the
standard mollifiers and set f¥ := f % Pe; € CP(R") for some g — 0as k — oo.
Using standard results, one deduces that f¥ — f in H25 25 (R") and || /* | oo mry <
| £ || Loo(r"). By assumption, there is a sequence (gF)ren C C2°(£2) such that gF—g
in H5(R") as k — oo. Then fkgk e C2°(R2) and by the statement (ii) of Corol-
lary A.7 we obtain f*gk — fgin H*(R"). Therefore, we can conclude the proof. m

Another important ingredient in the uniqueness proof of the inverse problem asso-
ciated to the fractional conductivity equation will be deduced from the following
continuity result:

Proposition A.9 ([7, Theorem 6.1]). Let 0 < 59 < 51,52 < 00, 1 < pg, p1, p2 < 00
satisfy so € Ng and

1
P2

. 1 S0 1 Si s 1 1 1 .
1 r——=U> - _Lfori=1,2an —Sso=>n(—+-——-—)=>
(i) o Ppo n pi nfo ! ,2and sy + 52 So—n(m + p2 P()) =

then the multiplication map

() L—&>l—srl—“]‘or*l':1,2andsl—|—S2—s0>n(%—|—

1
——=)>0
pPo n — p; 170)—’

WLPLRY) X W2 2(RY) 3 (f.8) = fg € WOTRY)

is a continuous bilinear map and in particular there holds

I fgllwso-ro®ny < CIl f llwsi-r1 @m) g llws2-2 ®n)

forall f € WSUPL(R™), g € WS2:P2(R™).



Fractional Calderdén problems on unbounded domains 125

We have the following special case:

Lemma A.10. Letn € N and 0 < s < 7, then the map
L3 (R") x H'(R") 5 (f.g) — fg € L7 (R")

is a continuous bilinear map with

/8N, 2ss = CUSNL 5 gy I8 s @)

n+2s
forall f € L2s(R"), g € H5(R™).
Proof. Letsg =51 =0,50 =5 >0, pg = %,pl = 5=, p2 = 2. Then

1 S0 n+2s 1 51 2s 1 So n—2s

’ s

po N 2n p1 n n p2 R 2n

and
1 1 1 s
S1+S2—8S=5, —+———=-—.
Pr P2 Po N
Therefore, assumption (ii) of Proposition A.9 is fulfilled and we can conclude the

proof. ]

Corollary A.11. Letn € N and 0 < s < 7, then the multiplication map
L35 (R") x H'(R") 3 (f.) — fg € H™*(R")
is continuous.

Proof. The statement directly follows by combining Lemma A.10 with the Sobolev

embedding and noting that % is the conjugate exponent to 3’;

. ]
n—2s
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