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Limit theorems on the mesoscopic scale for the Anderson model

Yoel Grinshpon

Abstract. In this paper, we study eigenvalue fluctuations of the finite volume Anderson model

in the mesoscopic scale. We carry out this study in a regime of exponential localization and

prove a central limit theorem for the eigenvalue counting function in a shrinking interval.

1. Introduction and preliminaries

The purpose of this paper is to prove a mesoscopic central limit theorem (CLT) for the

eigenvalue counting function of finite truncations of the Anderson model in a regime

of energies where localization holds.

The discrete Anderson model on Z
d is the random operator

H W `2.Zd / ! `2.Zd /; H D � C V;

where � is the discrete Laplacian and V is a multiplication operator, i.e.,

.Hu/n D
X

m�n

um C Vn � un

where Vn .n 2 Z
d / are i.i.d. random variables. We will assume that the distribution

of Vn is absolutely continuous with respect to the Lebesgue measure with density

�.v/ d v satisfying k�k1 < 1.

We will be looking at finite truncations of H ,

HL D �d
LH�d

L

as L ! 1 where �d
L is the indicator function on the cube

ƒL D Œ�L; L�d \ Z
d ;

and we denote by

EL
1 � � � � � EL

jƒLj
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the eigenvalues of HL. The empirical measure of HL is the measure

d�L D 1

jƒLj

jƒLj
X

iD1

ıEL
i

where ıEL
i

is the Dirac measure at EL
i . When the empirical measure has a limit as

L ! 1, this limit � is known as the density of states (DOS) of H . In our case,

this limit indeed exists and is known to be absolutely continuous with respect to the

Lebesgue measure almost everywhere [1, Chapter 4], with a Radon–Nikodym deriva-

tive

d�.E/ D f .E/dE:

Our goal will be to understand the fluctuations of �L on the mesoscopic scale and

establish the convergence of these fluctuations to a Gaussian limit. In other words, we

shall look at intervals of length � 1
jƒLj�

around a certain energy E where 0 < � < 1,

and study the fluctuations of the counting function of the eigenvalues in these intervals

as L tends to 1. We study these fluctuations in a regime of localization, i.e., where

the spectrum of H is pure-point with exponentially decaying eigenfunctions.

We define the Green’s function Gƒ.x; xI z/ on some box ƒ � Zd to be

Gƒ.x; yI z/ D hx; .Hƒ � z/�1yi

(where Hƒ is H restricted to ƒ), and the set L to be the following:

Definition 1.1. We say that E 2 L, if

(1) E 2 �.H/;

(2) E is a Lebesgue point of f and f .E/ is positive;

(3) there exist s 2 .0; 1/, C1 > 0, C2 and r > 0 such that

EŒjGƒ.x; yI z/js� � C1e�C2jx�yj

for any hypercube ƒ � Zd , x 2 ƒ, y 2 @ƒ and z 2 CC such that jz � Ej < r

(we say that y 2 @ƒ if y 2 ƒ and there is a y 0 2 @ƒ such that jy � y 0j).

Limit theorems for the fluctuations of the eigenvalues in the Anderson model have

already been obtained, mostly on the microscopic scale (� D 1) and on the macro-

scopic scale (� D 0). Minami [14] proved that under a certain assumption which

implies localization (E 2 L, an assumption which we shall adopt as well), the eigen-

value point process converges to a Poisson point process on the microscopic scale.

This was after Molchanov [15] did so for the continuous case. This result can be

interpreted as statistical independence of the eigenvalues as L ! 1 in a window of

length � 1
jƒLj

around some energy E 2 �.H/.
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Several macroscopic limit theorems have been proven for the Anderson model

[12, 16, 17] in one-dimension, all showing Gaussian behavior of the trace of f .HL/

for different functions f with a variance that grows proportionally to L. We remind

the reader that in one-dimension, there is always localization for the Anderson model

[6, Chapter 9]. In addition, the author and White proved a macroscopic CLT for poly-

nomials of the multi-dimensional Anderson model [11]. Indeed, for p.HL/, if the

distribution of the elements of the potential V is supported on more than three points,

the variance of Tr.p.HL// is of magnitude Ld . These results (or more specifically, the

growth rate of the variance) on the macroscopic scale resemble the expected behavior

of a sum of i.i.d. random variables, and therefore can be interpreted as some sort of

limit independence of the eigenvalues of HL as L tends to 1. A natural question now

arises - in regions where localization holds, can this limit independence be seen in the

scales between the microscopic and the macroscopic, i.e., in windows of magnitude

� 1
jƒLj�

around some energy E?

Some results have already been achieved for the mesoscopic scale. Germinet and

Klopp [10] established several results regarding the level spacing statistics and the

localization centers of the eigenvalues of many Schrödinger operators (including the

Anderson model) where localization holds, both on the microscopic scale and on

mesoscopic scales. Warzel and Von Soosten [19] proved a law of large numbers for

the eigenvalues encompassing a wide range of Schrödinger operators, which include

the Anderson model in one-dimension on some mesoscopic scales. It is worth point-

ing out that our method of proof utilizes Minami’s result along with general features

of the Anderson model, and does not require additional hard analysis.

Mesoscopic scale fluctuations of eigenvalues are of great interest in the field of

random matrix theory. Such theorems have been proved for the CUE [18] and the

GOE [3]. In recent years there has been a plethora of such results ([4,7,9,13] is a very

partial list of examples for such results).

For a; b 2 R such that a < 0 < b and E 2 �.H/, we shall define

XL D XL.�; E; a; b/

to be the number of eigenvalues of HL in the interval

IL D IL.E; L; �; a; b/ �
�

E C a

jƒLj� ; E C b

jƒLj�
�

:

We will prove the following theorems:

Theorem 1.2. For a; b 2 R such that a < 0 < b, 0 < � < 1, and E 2 L,

XL

jƒLj1��
! f .E/ � .b � a/

in probability.
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Theorem 1.3. For a; b 2 R such that a < 0 < b, 0 < � < 1 and E 2 L,

XL � jƒLj1�� � f .E/ � .b � a/
p

jƒLj1��

d! N.0; �2/

where N.0; �2/ is a Gaussian random variable with mean 0 and variance

�2 D f .E/2 � .b � a/2:

2. Overview and preliminaries

In this paper, we analyze the eigenvalue fluctuations on the mesoscopic scale using

Minami’s result for the microscopic scale. However, we will need a slightly modified

version of Minami’s theorem:

Proposition 2.1. Let H be the Anderson model on Z
d with a potential V with distri-

bution �.v/dv such that k�k1 < 1. For every L, aL 2 R
d and cL � 0, we define the

boxes

ƒL;aL;cL
D .Œ�L C cL; L � cL�d C aL/ \ Z

d

and denote by EL
j the eigenvalues of H restricted to ƒL;aL;cL

(that will be denoted

by HƒL;aL;cL
). Assuming that cL ����!

L!1
0, for every E 2 L, the process

�E
L;aL;cL

D
jƒL;aL;cL

j
X

j D1

ıjƒL;aL;cL
j�.EL

j
�E/

converges to a Poisson point process with intensity

d �

d E
D f .E/

where f is the Radon–Nikodym derivative of the DOS with respect to the Lebesgue

measure.

The next Corollary immediately follows.

Corollary 2.2. Under the assumptions of Theorem 2.1, given a; b 2 R such that a <

0 < b, the number of eigenvalues of ƒL;aL;cL
in the interval

I D
�

E C a

.2L C 1/d
; E C b

.2L C 1/d

�

(denoted by ZI
L D ZI

L.E;a; b;aL; cL/) converges in distribution to a Poisson random

variable with parameter

� D f .E/ � .b � a/:
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The proof of Proposition 2.1 is essentially identical to the proof of Minami’s orig-

inal result [14] so we omit it.

We present here a brief overview of the proof of Theorem 1.3. The general goal

of our proof is to understand the fluctuations of the eigenvalues on the mesoscopic

scale exploiting our knowledge of the fluctuations on the microscopic scale given in

Corollary 2.2. We would like to do this in the following manner. We create a partition

of ƒL to smaller boxes ƒL;j which have side lengths of magnitude L� . Restricting

H to the new boxes ƒL;j (denoting it HL;j accordingly), from Corollary 2.2, the

number of eigenvalues of HL;j in the intervals IL converges to a Poisson random

variable. Since the eigenfunctions are exponentially localized, the transition from HL

to HL;j will not significantly affect most eigenvalues of HL. For relatively large �,

this approximation indeed works (see Proposition 3.3), and one can infer a CLT for the

eigenvalues of HL in IL as a sum of independent random variables which converge

to a Poisson random variable (Proposition 3.6). However, for relatively small �, this

approximation does not work. In this case, we use an inductive approach. This will be

done in the proof of Theorem 1.3.

In our proofs, convergence of the variance of ZI
L (as defined in Corollary 2.2) to

the variance of a Poisson random variable would do us a great service. In general,

convergence in distribution does not imply convergence of the variances, but it is true

in our case.

Lemma 2.3. Under the assumptions of Proposition 2.1, the k-th moment of ZI
L (as

defined in Corollary 2.2) converges to the k-th moment of a Poisson random variable

with parameter

� D f .E/ � .b � a/:

In particular,

EŒZI
L�

d! �

and

Var.ZI
L/ ! �2:

In order to prove Lemma 2.3, we will need Theorems 2.4 and 2.5:

Theorem 2.4 ([2, Corollary from Theorem 25.12]). Let r be a positive integer and

" > 0. If Xn ! X in distribution and

sup
n

EŒjXnjrC"� < 1:

Then EŒjX jr � < 1, and

EŒX r
n � ! EŒX r �:
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Theorem 2.5 ([5, Corollary 2.4]). Let

H D � C V

be the Anderson model on a finite graph G such that for every x 2 G, the distribution

of Vx is a.c. with respect to the Lebesgue measure with a Radon–Nikodym deriva-

tive �, and for any interval I � R, define ZI to be the number of eigenvalues of H in

I . Then for every interval I � R, there exists a constant C > 0 which depends only

on the distribution � such that

P.ZI � n/ � C n � jGjn � jI jn
nŠ

:

Proof of Lemma 2.3. By Theorem 2.4 it is enough to show that

sup
L

EŒjZI
Ljk� < 1:

for every k 2 N. Note that ZI
L is a discrete random variable which takes values in

N [ ¹0º and hence from Theorem 2.5, there exists a constant C > 0 such that for any

L > 0,

EŒjZI
Ljk� D

1
X

nD1

nk � P.ZI
L D n/ �

1
X

nD1

nk � P.ZI
L � n/

�
1

X

nD1

C n

nŠ
� nk � jƒL;aL;cL

j � 1

j2Ljd
< 1:

Remark 2.6. The convergence of Var.ZI
L/ to the variance of a Poisson random vari-

able with parameter � does not depend on aL; cL, in a sense that for a given " > 0,

there exists L0 > 0 that such that if L > L0,

j Var.ZI
L/ � �2j < "

for every aL 2 R
d , cL < 1. Define

D D ¹0; 1ºd

and corresponding random variables

¹W k
L ºk2D

where W k
L is the number of eigenvalues of H restricted to the box

..0; 2L C k1/ � .0; 2L C k2/ � � � � � .0; 2L C kd // \ Z
d



Limit theorems on the mesoscopic scale for the Anderson model 139

in the interval
� a

.2L C 1/d
;

b

.2L C 1/d

�

:

For every L 2 N aL 2 R
d , and 0 � cL < 1, there exists k 2 D such that ZI

L and W k
L

share the same distribution. From Corollary 2.2 and Lemma 2.3, for a fixed k 2 D,

the variance of W k
L converges to �2 as L ! 1. Since ¹W k

L ºk2D is a finite set, so

does Var.ZI
L/.

This type of argument will appear several times throughout this paper.

3. The proofs

Similarly to the proof strategy in [14], for every L and 0 < ˇ < 1 we shall divide

ƒL into separate ML.ˇ/ boxes ƒL;j in the following manner. We start by forming a

partition of each edge of ƒL into d.2L/1�ˇe intervals of length

2L

d.2L/1�ˇe
:

This forms a partition of ƒL into ML.ˇ/ D .d.2L/1�ˇe/d boxes ƒL;j and induces

the corresponding measures

�E
L;j � �E

L;j;�;ˇ D
jƒL;j j
X

iD1

ıjƒL;j j��.EL
i;j

�E/

where EL
i;j is the i -th eigenvalue of HL;j , the operator H restricted to the j -th box.

Our goal will be to approximate �E
L with �E

L;j in the sense that

lim
L!1

E

h 1

jƒLj˛ .�E
L .g/ �

ML.ˇ/
X

j D1

�E
L;j .g//

i

D 0

for a suitable ˛ > 0 and certain functions g 2 L1.R/.

Remark 3.1. As mentioned, for every box ƒL;j , the edges of ƒL;j are of length

2L0 D 2L

d.2L/1�ˇe
and for every " > 0, for L large enough,

.2L/ˇ � " � 2L0 � .2L/ˇ ;

so for some L0 2 R and every L > L0, there exist cL > 0 such that cL ! 0 and

aL 2 R
d such that

ƒL;j D .Œ�Lˇ C cL; Lˇ � cL�d C aL/ \ Z
d
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and therefore Corollary 2.2 is applicable for the boxes ƒL;j in the sense that since

the side lengths of ƒL;j converge to .2L/ˇ , the number of eigenvalues of HL;j in ILˇ

converges to a Poisson random variable.

For the proof of the next proposition, we will need the following lemma.

Lemma 3.2. Let E 2 L. Then there exist s 2 .0; 1
2
/ and B1; B2; r > 0 such that for

any ƒ � ƒ0 � Z
d (where ƒ is finite), x 2 ƒ and z 2 CC such that jz � Ej < r ,

EŒjGƒ.x; xI z/ � Gƒ0.x; xI z/j� � B1

Im z2.1�s/
e�B2 dist.x;@ƒ/:

The proof is very similar to the proof of [1, Lemma 17.9] so we omit it.

Proposition 3.3. Denote by g � �.a;b/ the indicator function of the interval .a; b/

for a < 0 < b. For ˛; ˇ; � > 0 such that ˛ C � > 1 � ˇ and E 2 L,

lim
L!1

1

jƒLj˛ E

hˇ

ˇ

ˇ�E
L .g/ �

ML.ˇ/
X

j D1

�E
L;j .g/

ˇ

ˇ

ˇ

i

D 0:

In order to prove Proposition 3.3, we begin by proving the analogous statement

for a different set of functions. We define for every z 2 CC,

�z.u/ D 1

�
Im

1

u � z
:

We shall prove the following lemma.

Lemma 3.4. For any z 2 CC, ˛; ˇ; � > 0 such that ˛ C � > 1 � ˇ and E 2 L,

lim
L!1

1

jƒLj˛ E

hˇ

ˇ

ˇ�E
L .�z/ �

ML.ˇ/
X

j D1

�E
L;j .�z/

ˇ

ˇ

ˇ

i

D 0:

Moreover, taking z D i
jƒLj2

, the statement still holds as L tends to 1, i.e.,

lim
L!1

1

jƒLj˛ E

hˇ

ˇ

ˇ
�E

L .� i

jƒLj2
/ �

ML.ˇ/
X

j D1

�E
L;j .� i

jƒLj2
/
ˇ

ˇ

ˇ

i

D 0:

Proof of Lemma 3.4. This proof is quite similar to [14, Step 3] and [1, Lemma 17.7].

In order to proceed, we shall choose some c > 0, and break each ƒL;j into separate

components:

ƒi
L;j D ¹x 2 ƒL;j W d.x; @ƒL;j / > Lcº;

ƒb
L;j D ƒL;j � ƒi

L;j :
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In other words, ƒb
L;j is the boundary of ƒL;j and ƒi

L;j is the interior of ƒL;j . Denot-

ing zL D z
jƒLj�

,

1

jƒLj˛ .�E
L .�z/ �

ML.ˇ/
X

j D1

�E
L;j .�z//

D 1

�

1

jƒLj˛
jƒLj
X

iD1

Im
� 1

jƒLj�.EL
i � E/ � z

�

� 1

�jƒLj˛
ML.ˇ/
X

j D1

jƒL;j j
X

iD1

Im
� 1

jƒLj�.EL
i;j � E/ � z

�

D 1

�jƒLj˛C�

�

Tr.Im.HƒL
� zL/�1/ �

ML.ˇ/
X

j D1

Tr.Im.HƒL;j
� zL/�1/

�

D 1

�jƒLj˛C�

ML.ˇ/
X

j D1

�

X

x2ƒL;j

.Im GƒL
.x; xI zL/ � Im GƒL;j

.x; xI zL//
�

D 1

�jƒLj˛C�

ML.ˇ/
X

j D1

�

X

x2ƒb
L;j

.Im GƒL
.x; xI zL/ � Im GƒL;j

.x; xI zL//
�

C 1

�jƒLj˛C�

ML.ˇ/
X

j D1

�

X

x2ƒi
L;j

.Im GƒL
.x; xI zL/ � Im GƒL;j

.x; xI zL//
�

:

(3.1)

Now, we shall look at the expectation of the right-hand side and examine each sum

separately:

1

�jƒLj˛C�
E

h

ML.ˇ/
X

j D1

�

X

x2ƒb
L;j

Im GƒL
.x; xI zL/ � Im GƒL;j

.x; xI zL/
�i

� 1

�jƒLj˛C�

ML.ˇ/
X

j D1

X

x2ƒb
L;j

.EŒIm GƒL
.x; xI zL/� C EŒ.Im GƒL;j

.x; xI zL//�/

� 1

�jƒLj˛C�

ML.ˇ/
X

j D1

X

x2ƒb
L;j

2k�k1

D ML.ˇ/

�jƒLj˛C�
� jƒb

L;j j � 2k�k1;
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where the last inequality is true due to the fact that

jEŒIm.Gƒ.x; xI z//�j � �k�k1

for any ƒ � Z
d , x 2 ƒ, z 2 CC (see [14, (2.19)–(2.22)]). Notice that this bound does

not depend on z, so as long as we take c small enough and under our assumptions on

˛ and ˇ,

1

�jƒLj˛C�
E

h

ML.ˇ/
X

j D1

�

X

x2ƒb
L;j

Im GƒL
.x; xI zL/ � Im GƒL;j

.x; xI zL/
�i

����!
L!1

0:

As for the second sum, since z 2 L and since for any r , jzL � Ej < r for L large

enough, from Lemma 3.2, we obtain

E

h

X

x2ƒi
L;j

Im GƒL
.x; xI zL/ � Im GƒL;j

.x; xI zL/
i

� ML.ˇ/ � jƒL;j j
jƒLj˛C�

B1 � jƒj1�ˇ

Im z2.1�s/
e

�B2 dist.ƒi
L;j

;@ƒL;j / ����!
L!1

0

as long as Im z decays polynomially in L. Hence, we obtain the desired result.

Having established Lemma 3.4, we can now prove Proposition 3.3.

Proof of Proposition 3.3. We shall use the set of functions �z with z D i", " > 0 to

approximate the indicator functions g � �.a;b/. For every " > 0, define

g" D �i" � g

and

�L D 1

jƒLj˛
�

�E
L �

ML
X

j D1

�E
L;j

�

We will show that for " D 1
jƒLj2

,

(1) lim
L!1

EŒj�L.g"/j� ����!
L!1

0,

(2) lim
L!1

EŒj�L.g � g"/j� ����!
L!1

0,

and thus obtain the desired result. For (1),

EŒj�L.g"/j� �
1

Z

�1

jg.y/jEŒ�.�i"Cy/� d y D
b

Z

a

EŒ�.�i"Cy/� i y (3.2)
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For L large enough, j yCi"
jƒLj�

j < r , so according to Lemma 3.4,

EŒ�.�i"Cy/� ����!
L!1

0

uniformly, and by the dominated convergence theorem, the right-hand side of 3.2

converges to 0 as well.

For (2), since 0 � g".x/ � 1 for any x 2 R (denoting by k � k1 the L1 norm on R),

EŒj�L.g � g"/j� � EŒ�E
L .g � g"/� C

ML.ˇ/
X

j D1

EŒ�E
L;j .g � g"/�

� 2jƒLj � kg � g"k1 ����!
L!1

0

if

kg � g"k1 D o.jƒLj�1:5/;

which is the statement of Lemma 3.5.

Lemma 3.5. For " D 1
jƒLj2

,

kg � g"k1 D o.jƒLj�1:5/

Proof. Using direct integration, one can see that

g".x/ D 1

�

�

arctan
�x � a

"

�

� arctan
�x � b

"

��

and therefore, denoting

A".x/ D 1

�

�

.x � a/ arctan
�x � a

"

�

� .x � b/ arctan
�x � b

"

��

B".x/ D 1

2�
� "

�

log.1 C
�x � a

"

�2

/ � log
�

1 C
�x � b

"

�2��

;

we get
Z

g" d x D A".x/ � B".x/:

Using a direct calculation, one can verify that

A".a/ � lim
x!�1

A".x/ D O."/; lim
x!�1

B".x/ � B".a/ D O."˛/

for any ˛ < 1, so
a

Z

�1

g" d x D O."˛/
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for any ˛ < 1. A similar argument shows the same for

1
Z

b

g" d x:

Finally,

.b � a/ � A".b/ C A".a/ D O."/; B".b/ � B".a/ D O."˛/;

so
b

Z

a

.1 � g"/ d x; D O."˛/

for any 0 < ˛ < 1 as well.

From Proposition 3.3, we can easily derive Theorem 1.2:

Proof of Theorem 1.2. Take ˇ D �, and ˛ D 1 � �. Notice that for our choice of ˛

and ˇ, the assumptions of Proposition 3.3 hold for any 0 < � < 1. Hence, taking

XL D �E
L .�.a;b//; XL;j D �E

L;j .�.a;b//

and applying Proposition 3.3,

XL �
PML.ˇ/

j D1 XL;j

jƒLj1��
����!
L!1

0

in probability. From Proposition 2.1, XL;j ����!
L!1

Pois.�/ with

� D f .E/ � .b � a/

(see Corollary 2.2). Together with Lemma 2.3 and Remark 2.6, this implies that

EŒXL;j � ! �; Var.XL;j / ! �2

uniformly in j . This means that the variance of XL;j is uniformly bounded. In addi-

tion, for each L, XL;j are independent, which altogether implies

Var
�

PML.ˇ/
j D1 XL;j

ML.ˇ/

�

D 1

ML.ˇ/2

ML.ˇ/
X

j D1

Var.XL;j / ! 0

E

h

PML.ˇ/
j D1 XL;j

ML.ˇ/

i

D 1

ML.ˇ/

ML.ˇ/
X

j D1

EŒXL;j � ! f .E/ � .b � a/;
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and hence
PML.ˇ/

j D1 XL;j � ML.ˇ/ � f .E/ � .b � a/

ML.ˇ/
����!
L!1

0

in probability. Since
ML.ˇ/

jƒLj1��
! 1;

we obtain the desired result.

After obtaining the law of large numbers, we move on to our CLT. First, we begin

with a relatively simple case where � is large.

Proposition 3.6. For aL 2 Rd and cL � 0, define

ƒL � ƒL;aL;cL
D .Œ�L C cL; L � cL� C aL/ \ Z

d :

For E 2 L, Q� > 1
2

a; b 2 R such that a < 0 < b and cL � 0 such that cL ����!
L!1

0,

XL � jƒLj1� Q� � f .E/ � .b � a/
p

jƒLj1� Q�

d����!
L!1

N.0; �2/

where �2 D f .E/2 � .b � a/2. Moreover,

Var
� XL

p

jƒLj1� Q�

�

! �2

as well.

In order to prove Proposition 3.6 and Theorem 1.3, we will need the Lindeberg–

Feller CLT for arrays.

Theorem 3.7 ([8, Theorem 3.4.5]). For each n 2 N, let Xn;m 1 � m � n be indepen-

dent random variables with EŒXn;m� D 0. Suppose

(1)
Pn

mD1 EŒX2
n;m�

�����!
n!1

2

> 0;

(2) for all " > 0, limn!1 EŒX2
n;m � �jXn;mj>"� D 0:

Then
Xn;1 C � � � C Xn;n

q

Var.
Pn

mD1 Xn;m/

d! N.0; 1/

as n ! 1.

Proof of Proposition 3.6. We start by creating a partition of ƒL (as described in the

beginning of Section 3) with ˇ D Q� into separate boxes ¹ƒL;j ºML.ˇ/
j D1 (see Figure 1)
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ƒL;j

L

Figure 1. The case � > 1
2

.

and for every ƒL;j , we define XL;j to be the number of eigenvalues of HƒL;j
in IL.

From Corollary 2.2, for every fixed 1 � j � ML.ˇ/

XL;j

d! Pois.�/

with � D f .E/ � .b � a/.

Define

YL;j D XL;j � EŒXL;j �:

We shall establish the convergence of the sum (over j ) of YL;j normalized by
p

jƒLj1� Q� to a Normal distribution using Theorem 3.7. Note that YL;j are i.i.d., and

each XL;j converges in distribution to a Poisson random variable with parameter �.

Applying Lemma 2.3, and Remark 2.6, we obtain that

Var.YL;j / ����!
L!1

�2;

and this convergence is uniform in j . Again, from the convergence of XL;j to a Pois-

son random variable and the uniform convergence of the variance to the variance of a

Poisson random variable,

lim
n!1

1
P

j Var.YL;j /

ML
X

j D1

EŒY 2
L;j � �

jYL;j j>"
p

Var.
P

j YL;j /
� D 0
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for every " > 0. Therefore,

PML.ˇ/
j D1 XL;j � EŒXL;j �

p

jƒLj1� Q�

d! N.0; �2/

with �2 D f .E/2 � .b � a/2. Note that just as in the previous proof, in order to deter-

mine the magnitude of the variance, we used the fact that

jƒLj1� Q�

ML.ˇ/
����!
L!1

1:

From Proposition 3.3 (taking ˇ D Q�, ˛ D 1
2

� Q�
2

, and g D �.a;b/),

lim
L!1

1
p

jƒLj1� Q�
E

h

XL �
ML.ˇ/
X

j D1

XL;j

i

D 0; (3.3)

and hence
XL � jƒLj1� Q� � f .E/ � .b � a/

p

jƒLj1� Q�

d! N.0; �2/:

From (3.3), we also infer that

Var
�XL �

PML. Q̌/
j D1 XL;j

p

jƒLj1� Q�

�

����!
L!1

0;

and since

Var
�

PML. Q̌/
j D1 XL;j

p

jƒLj1� Q�

�

����!
L!1

�2;

we get

Var
� XL

p

jƒLj1� Q�

�

D Var
�XL �

PML. Q̌/
j D1 XL;j

p

jƒLj1� Q�

�

C Var
�

PML. Q̌/
j D1 XL;j

p

jƒLj1� Q�

�

C 2 Cov
�XL �

PML. Q̌/
j D1 XL;j

p

jƒLj1� Q�
;

PML. Q̌/
j D1 XL;j

p

jƒLj1� Q�

�

L!1����! �2

as well.

Equipped with the CLT for large �’s, we can prove Theorem 1.3.

Proof of Theorem 1.3. Let � > 0, and denote

�2 D f .E/ � .b � a/2:
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L
1
2 ƒL;k

L
1
4 ƒL;k1;k2

L ƒL;k1;:::;kj

Figure 2. The case � � 1
2

.

If � > 1
2

, the theorem is immediately true using Proposition 3.6. For � � 1
2

, there exists

j 2 N such that 1

2j < � � 1

2j �1 and we begin by dividing ƒL into ML. 1
2
/ boxes

¹ƒL;kºML. 1
2 /

kD1
. Now, for every k, we divide ƒL;k again with ˇ D 1

2
into ML;k. 1

2
/

boxes ¹ƒL;k;k0ºML;j . 1
2

/

k0D1
. We iterate this process j � 1 times and produce

ML

�1

2

�

� ML;k

�1

2

�

� � � � � ML;.k1;:::;kj �1/

�1

2

�

boxes (see Figure 2).

Note that
ML;.k1;:::;km/.

1
2
/

jƒLj
1

2mC1

����!
L!1

1;

so
ML. 1

2
/ � ML;k. 1

2
/ � � � � � ML;.k1;:::;kj �1/.

1
2
/

jƒLj1� 1

2j �1

����!
L!1

1

and for any such box ƒL;.k1;:::;kj �1/, there exist

aL � aL.k1; : : : ; kj �1/ 2 R
d ; cL � cL.k1; : : : ; kj �1/ > 0

and with cL ! 0 such that

ƒL;.k1;:::;kj �1/ D .Œ�L0 C cL; L0 � cL�d C aL/ \ Z
d
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with

L0 D L
1

2j �1 :

Thus, each ƒL;.k1;:::;kj �1/ possesses the requirements of Proposition 3.6 with Q� D
2j �1�. This means that if we define the random variable XL;.k1;:::;kj �1/ to be the

number of eigenvalues of HƒL;.k1;:::;kj �1/
in the interval IL,

YL;.k1;:::;kj �2;kj �1/ �
XL;.k1;:::;kj �1/ � EŒXL;.k1;:::;kj �1/�

q

jƒLj
1

2j �1
��

converges to a normal random variable with variance �2 as L tends to infinity, and

Var.YL;.k1;:::;kj �2;kj �1// ����!
L!1

�2 (3.4)

as well. Moreover, using a similar argument to the one presented in Remark 2.6, the

convergence rate in (3.4) does not depend on k1; : : : ; kj �1.

Fix k1; : : : ; kj �2. As in the proof of Proposition 3.6, we apply Theorem 3.7.

YL;.k1;:::;kj �2;kj �1/ are independent, YL;.k1;:::;kj �2;kj �1/ converges to a normal

random variable and

Var.YL;.k1;:::;kj �2;kj �1// ����!
L!1

�2:

Moreover, using a similar argument as in Remark 2.6, this convergence does not

depend on k1; : : : ; kj �2; kj �1. Therefore, denoting Qkm D .k1; : : : ; kj �2; km/

1

jƒLj
1

2j �1

lim
L!1

M
L; Qkm
X

mD1

EŒY 2

L; Qkm
� �jY

L; Qkm
j>"

p
Var.

P

j Y
L; Qkm

/� D 0:

and thus
ML;.k1;:::;kj �2/. 1

2
/

X

kD1

YL;.k1;:::;kj �2;k/

d����!
L!1

N.0; �2/

From Proposition 3.3,

XL;.k1;:::;kj �2/ � EŒXL;.k1;:::;kj �2/�
q

jƒLj
1

2j �2
��

d! N.0; �2/;

and

Var.
XL;.k1;:::;kj �2/
q

jƒLj
1

2j �2
��

/ ����!
L!1

�2:

Again, the rate of convergence here does not depend on k1; : : : ; kj �2.

Iterating this process j � 2 more times, we end with the desired result.
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