
J. Spectr. Theory 13 (2023), 153–199
DOI 10.4171/JST/448

© 2023 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Lower bound of Schrödinger operators
on Riemannian manifolds

Mael Lansade

Abstract. We show that a complete weighted manifold which satisfies to a relative Faber–
Krahn inequality admits a trace inequality for the measure with density V , with the constant
depending on a Morrey norm of V . From this, we obtain estimates on the lower bound of
the spectrum of the Schrödinger operators with potential V and positivity conditions for such
operators. It also yields a L2 Hardy inequality.

1. Introduction

In [8, 9], Fefferman and Phong established the inequality, for p > 1,Z
Rn

V.x/ .x/2 d x � Cn;pNp.V /
Z

Rn

jr .x/j2 d x; (1.1)

for any  smooth with compact support, where V is a non negative and locally integ-
rable function, Cn;p is a constant depending only on the dimension and p, and Np is
the Morrey norm

Np.V / D sup
x2Rn
r>0

�
r2p�n

Z
B.x;r/

jV.y/jp dy
�1=p

:

Such an inequality yields a positivity condition for the Schrödinger operatorH D
�� V (with � D �

Pn
iD1 @

2
i ), namely that if Np.V / � 1=Cn;p , then H is a positive

operator. In fact, they also gave the following estimates on the lower bound of the
spectrum of H , �1.H/:

sup
x2Rn
r>0

�
C1r

�n

Z
B.x;r/

V dy � r�2
�
� sup
x2Rn
r>0

�
Cp

�
r�n

Z
B.x;r/

V p dy
�1=p

� r�2
�
: (1.2)
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Conditions for inequalities such as (1.1) (though with a constant that does not
necessarily depends on the Morrey norm) to hold in Rn has been studied extensively,
see for example in [4, 15, 18]. In [19], Maz’ya and Verbitsky establish necessary and
sufficient conditions for an inequality analog to (1.1) to hold with complex valued V .
That being the case, it seems interesting to study to what extent, and under which
geometrical hypotheses, those results extend on other spaces, such as Riemannian
manifolds.

The first aim of this article is to generalise the results of Fefferman and Phong to
a weighted Riemannian manifold M . A natural way to do that would be to use the
Poincaré inequality: for any � > 1, there is a constant C > 0, such that for all x 2M ,
r > 0, and for any f 2 C1.B.x; �r//,Z

B.x;r/

jf � fB.x;r/j d� � Cr
Z

B.x;�r/

jrf j d�;

where fB D 1
�.B/

R
B
f d�. It turns out that the result still holds under some weaker

hypothesis. Our proof will follow the general idea used by Schechter in [26], that (1.1)
follows from the inequality (which holds in Rn following a result of Muckenhoupt and
Wheeden [21]):

kI1f kL2 � CkM1f kL2 ;

with

I1f .x/ D cn

Z
Rn

f .y/

jx � yjn�1
d�.y/; M1f .x/ D sup

r>0

r1�n
Z

B.x;r/

jf .y/j dy;

and that (1.2) is proved using similar estimates, with .�C �2/�1=2 replacing I1.
The proof of the generalisation of (1.2) will naturally yields weak versions of (1.1),

which holds under weaker hypothesis.

1.1. Definitions and notations

A weighted Riemannian manifold .M; g; �/, or simply a weighted manifold, is the
data of a smooth manifold M , g a smooth Riemannian metric on M , and a Borel
measure d� D �2 d vg on M , with � a smooth positive function on M and vg is the
Riemannian volume measure associated with the metric g. We define the (weighted)
Dirichlet Laplace operator as the Friedrichs extension of the operator on C10 .M/

given by
��f D ��

�2 div.�2rf /;

with associated quadratic form Q. / D
R
M
jr j2 d �. We will usually write the

Dirichlet Laplace operator as simply �.
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On a metric space .X; d/, for x 2 X , r > 0, the ball of center x and radius r is
the set B.x; r/ D ¹yW d.x; y/ < rº. If B D B.x; r/ is the ball, � 2 R, then �B refers
to the set B.x; � r/.

For p � 1, we let k � kp be the Lp norm on .M;�/. We define

kf kp D

�Z
M

jf jp d�
�1=p

:

For T a bounded operator on Lp , we use kT kLp!Lp , or kT kp when there is no
confusion, to refer to its operator norm

kT kp D sup
 2Lp

 ¤0

kT kp

k kp
:

For an open setU �M , �1.U / refers to lower bound of the spectrum of�� onU ,

�1.U / D inf
 2C1

0
.U /

 ¤0

kr k22
k k22

:

When H is a symmetric operator defined on smooth functions with compact sup-
port, �1.H/ is similarly defined to be

�1.H/ D inf
 2C1

0
.M/

 ¤0

hH ; i

k k22
:

On a weighted manifold .M; g; �/, we define the Morrey norms Np , p � 0, as
follows:

Np.f / D sup
x2M
r>0

�
r2p

−
B.x;r/

jf jp d�
�1=p

for all f 2 L1loc.M/; (1.3)

where
¬
B
f d�D 1

�.B/

R
B
f d� is the mean of f over B . We also define the Morrey

norm taken on balls of radius less than R > 0,

Np;R.f / D sup
x2M
0<r<R

�
r2p

−
B.x;r/

jf jp d�
�1=p

: (1.4)

For our generalization to hold, it is important that .M;g;�/must admits a relative
Faber–Krahn inequality (property .RFK/�) defined as follows:
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Definition 1.1. A weighted Riemannian manifold .M;g;�/ admits a relative Faber–
Krahn inequality if there exist constants b; � > 0, such that for all x 2M , r > 0, and
for any relatively compact open set U � B.x; r/, the following inequality holds:

�1.U / �
b

r2

��.B.x; r//
�.U /

� 2
�

: (1.5)

We say that M admits a relative Faber–Krahn inequality at scale R ( property
.RFK/�R) if (1.5) holds only for 0 � r � R.

In what follows, we refer to the constants b, � in (1.5) as the Faber–Krahn con-
stants of the manifold.

1.2. Statements of the results

Theorem 1.1. Let .M;g;�/ be a weighted complete Riemannian manifold satisfying
.RFK/� , then for any p > 1, there is a constant Cp depending only on the Faber–
Krahn constants and on p, such that for any V 2 L1loc.M/, V � 0, and any  2
C10 .M/, the following inequality holds:Z

M

V 2 d� � CpNp.V /
Z
M

jr j2 d�: (1.6)

If only .RFK/�R holds, then we can prove the following localised inequality:

Theorem 1.2. Let .M;g;�/ be a complete weighted Riemannian manifold, such that,
for some R > 0, .RFK/�R holds. Then, for any p > 1, there is a constant Cp > 0

depending only on the Faber–Krahn constant and on p, such that for any V 2L1loc.M/;

V � 0, and any  2 C10 .M/, the following inequality holds:Z
M

V 2 d� � CpNp;R.V /
�Z
M

jr j2 d�C
1

R2

Z
M

 2 d�
�
: (1.7)

From this inequality, we can generalise the Fefferman–Phong estimate on the
lower bound of the spectrum of the operator H D � � V . Indeed, if .RFK/� holds,
then for any R > 0, .RFK/�R is satisfied. Thus, (1.7) is true for any R. Then the
following theorem follows easily:

Theorem 1.3. Let .M;g;�/ be a complete weighted Riemannian manifold satisfying
.RFK/� . Then, for any p > 1, there exist constants C1; Cp > 0 depending only on the
Faber–Krahn constants (andCp depending also on p) such that, for any V 2L1loc.M/,
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V � 0, and for the operator H D �� � V the following inequalities hold:

sup
x2M
ı>0

�
C1

−
B.x;ı/

V d� � ı�2
�
� ��1.H/ � sup

x2M
ı>0

�
Cp

� −
B.x;ı/

V p d�
�1=p

� ı2
�
:

In addition, if �1.M/ > 0, then we can strengthen (1.7), and obtain the following
result, giving a condition for � � V to be positive:

Theorem 1.4. Let .M;g;�/ be a complete weighted Riemannian manifold, such that
.RFK/�R holds for R > 0. If, in addition, �1.M/ > 0, then, for any p > 1, there
is a constant Cp > 0 depending only on the Faber–Krahn constants such that, for
V 2 L1loc.M/; V � 0, and any  2 C10 .M/, the following inequality holds:Z
M

V 2 d� � CpNp;R.V /
1C �1.M/R2

�1.M/R2

�Z
M

jr j2 d�C
�1.M/

2

Z
M

 2 d�
�
:

(1.8)

1.3. L2 Hardy inequality

Notice that the inequality (1.6) is, for potentials V with Np.V / < C1, nothing more
than the generalized L2 Hardy inequality:Z

M

 2

�2
d� � C

Z
M

jr j2 d�; for all  2 C10 .M/;

with � D V �1=2. Thus, on manifolds for which Theorem 1.1 holds, the “classical”
Hardy inequality, where � is the distance to a point, is true whenever Np.d.o; �/�2/ is
finite. For this to hold, we must make an additional assumption on the measure �.

Definition 1.2. A metric measure space .X;d;�/ satisfies the reverse doubling prop-
erty of order � ( property .RD/� for short), or � is �-reverse doubling if there is some
constant a > 0 such that, for all x 2M , 0 < r � r 0, the following inequality holds:

a
�r 0
r

��
�
�.B.x; r 0//

�.B.x; r//
:

Theorem 1.5. Let .M; g; �/ be a weighted Riemannian manifold. Assume that M
satisfies .RFK/� , and that� satisfies .RD/� with � > 2. There is some constantC > 0
depending only on the Faber–Krahn and reverse doubling constants, such that, for any
o 2M , then for any  2 C10 .M/ the following inequality holds:Z

M

 .x/2

�.x/2
d�.x/ � C

Z
M

jr j2 d�;

with �.x/ D d.o; x/.
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We can compare this to the results of V. Minerbe [20] or G. Grillo [13], who
proved Lp Hardy inequalities assuming a Poincaré inequalities and a doubling meas-
ure. While we only get a L2 inequality, it holds true under the weaker hypothesis of a
relative Faber–Krahn inequality.

A recent work by Cao, Grigor’yan, and Liu [2] proved Hardy inequalities as a
consequence of volume doubling, reverse doubling, and certain estimates on either
the Green function or the heat kernel. Their results are far more general than what we
prove on Hardy inequality here.

1.4. Examples

We give various cases of manifolds which will satisfy a relative Faber–Krahn inequal-
ity (or a relative Faber–Krahn inequality at scaleR). Then, Theorem 1.1 (respectively,
Theorem 1.2) holds.

1.4.1. Complete manifolds with Ricci curvature bounded from below. From Li
and Yau [17], the heat kernel of a complete manifold .M; g; �/ of dimension n, with
� here being the Riemannian volume measure, with Ricci curvature bounded from
below by �K, for a constant K � 0, admits the following diagonal estimate

pt .x; x/ �
C0

�.B.x;
p
t //
eC1Kt :

Also, as a consequence of the Bishop–Gromov volume comparison theorem, we
get that (see [5, 6, 23] for example), for any 0 < r � r 0,

�.B.x; r 0//

�.B.x; r//
�

�r 0
r

�n
exp.

p
.n � 1/Kr 0/:

Those two conditions implies, (see for example [14,23], or Proposition 3.1 later),
that there is some R > 0 such that M satisfies .RFK/nR. If the Ricci curvature is
non-negative, then we also have .RFK/n.

1.4.2. Manifolds satisfying Faber–Krahn inequalities outside a compact set. We
consider a complete weighted manifold M , and remove from it a compact set with
smooth boundary K. We let E1; : : : ; Ek be the connected components of M n K,
and suppose that each Ei is the exterior of a compact set with smooth boundary in a
complete manifold Mi .

A simple example of such manifold is the connected sum of two (or more) copies
of Rn. It admits .RFK/n, but it is known that such manifold does not satisfy a Poincaré
inequality (see for example [1]).

Using [12], we get that if each Mi satisfies .RFK/� , then there is some R > 0

such that M satisfies .RFK/�R.
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2. Some techniques of harmonic analysis

Remark. The letters c, C will usually be used for generic constants, the values of
which might change from line to line. When the dependence on some parameter is
judged important and non obvious, it will be made clear when it appears, before being
folded into the generic constants on subsequent lines.

2.1. Dydadic cubes

In Rn, the natural decomposition of the space into cubes of length 2k , k 2 Z is a very
powerful tool. It turns out that families of open sets satisfying similar properties to
those of the dyadic cubes in the euclidean space can be constructed in a more general
setting.

We will use the construction of such “dyadic cubes” given by E. Sawyer and
R. L. Wheeden in [24] (though other such constructions, such as the one given in [7],
could also be used without major changes). Though it remains true in a more general
setting, for our purposes it can be stated as:

Theorem 2.1. Let .X; d/ be a separable metric space, then there is a constant � > 1
(� D 8 works), such that for any (large negative) integerm, there are points ¹xk˛º and
a family Dm D ¹E

k
˛ º of Borel sets for k D m; mC 1; : : :, ˛ D 1; 2; : : : ; which satisfy

the following properties:

• B.xk˛ ; �
k/ � Ek˛ � B.x

k
˛ ; �

kC1/;

• for each k D m;mC 1; : : :, the family ¹Ek˛ º˛ is pairwise disjoint in ˛ and X DS
˛ Ek˛ ;

• df m � k < l , then either Ek˛ \ E l
ˇ
D ; or Ek˛ � E l

ˇ
.

Given such a family Dm, the sets Ek˛ will be called dyadic cubes of M , or simply
cubes. The ballB.xk˛ ; �

kC1/ is called the containing ball of the cube Ek˛ . For any cube
Q the containing ball is denoted by B.Q/. � will be called the sidelength constant of
dyadic cubes.

The length of a cube Q is the radius of ��1B.Q/, written `.Q/.

2.2. Properties of doubling measures

We start by recalling the definitions and some standard properties of doubling meas-
ures. Most of the proofs are classical, but are rarely explicitly done for theR doubling
case, and we thus give them for completeness sake, without claiming originality.

Definition 2.1. A metric measure space .X;d;�/ satisfies the doubling property .D/�

of order � if there is some constant A > 0 such that for all x 2 M , 0 < r � r 0,
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the following inequality holds:

�.B.x; r 0//

�.B.x; r//
� A

�r 0
r

��
: (2.1)

We call A the doubling constant, and � the doubling order. We will also say “the
doubling constant” to refer to both A and � at the same time. The property .D/� is
equivalent to the fact that for some constant A > 0, for any ball B �M ,

�.2B/ � A�.B/: (2.2)

The proof of the equivalence is the same as that of theR-doubling case given after
Definition 2.3, (with R D1).

A note on the constants: (2.2) implies (2.1) with � D log2 A (and A the same in
both inequalities), while, conversely, (2.1) implies that the constant in (2.2) be 2�A.
By increasing A and � if necessary, we can always assume that A D 2� .

We repeat, for completeness, the definition of the reverse doubling property:

Definition 2.2. A metric measure space .X;d;�/ satisfies the reverse doubling prop-
erty .RD/� of order � if there is some constant a > 0 such that for all x 2 M ,
0 < r � r 0, the following inequality holds:

a
�r 0
r

��
�
�.B.x; r 0//

�.B.x; r//
: (2.3)

We call a the reverse doubling constant, and � the reverse doubling order. The
property .RD/� is equivalent to the fact that for some constant a 2 .0; 1/, for any ball
B �M ,

�.B/ � a�.2B/: (2.4)

Proof of (2.4) implies (2.3). We can assume that a� 1. Let x 2X , 0< r � r 0. Writing
btc for the integer part of t 2 R, let k D blog2

r 0

r
c. Then

�.B.x; r// � ak�.B.x; 2kr//

� ak�.B.x; r 0//

� a�1Clog2
r0

r �.B.x; r 0// .a � 1/

�
1

a

�r 0
r

���
�.B.x; r 0//;

with � D � log2 a. Thus,

a
�r 0
r

��
�
�.B.x; r 0//

�.B.x; r//
:
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Proposition 2.1. Let .X; d; �/ satisfies .D/� . Then for any x; y 2M , r; r 0 > 0 such
that B.y; r/ � B.x; r 0/, we have

�.B.x; r 0//

�.B.y; r//
� A2

�r 0
r

��
: (2.5)

This is a classical result. The proof is similar to what we will do to prove Propos-
ition 2.2.

Definition 2.3. A metric measure space .X; d; �/ satisfies the R-doubling property
.D/�R if there is some constant A > 0 such that (2.1) holds for all x 2M and 0 < r �
r 0 � 2R. This is equivalent to (2.2) being true for all ball B with radius less than R.

X satisfies the R-reverse doubling property .RD/�R if (2.4) holds for all balls of
radius less than R (this is equivalent to (2.3) being true for all x 2 X and 0 < r �

r 0 � 2R).

We will write AR for the doubling constant when will be important to precise
which R the constant is associated with.

Some care is needed to get precisely those maximal radius. That (2.2) follows
from (2.1) is immediate.

Proof of (2.2) implies (2.1). Suppose that there is some constant A such that for all
ball B of radius less thanR. Then, �.2B/ � A�.B/. Let r � r 0 � 2R, k D blog2

r 0

r
c.

We have
2�k�1r 0 < r � 2�kr 0;

and, using repeatedly the doubling inequality �.B.x; �// � A�.B.x; �=2//, valid for
all � � 2R, we have

�.B.x; r 0// � AkC1�.B.x; 2�k�1r 0//

� AkC1�.B.x; r//

� Ae.logA log r
0

r /= log2�.B.x; r//

� A
�r 0
r

��
�.B.x; r//;

with � D log2A.

Proposition 2.2. Let X satisfies .D/�R, then for all x; y 2 X , r; r 0 > 0 such that
B.y; r/ � B.x; r 0/ and with r 0 < R, then for � D log2A,

�.B.x; r 0//

�.B.y; r//
� A2

�r 0
r

��
:
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If, in addition, X satisfies .RD/�R, then we also have for some constant c > 0, that for
all 0 < r; r 0 < R and B.y; r/ � B.x; r 0/,

c
�r 0
r

��
�
�.B.x; r 0//

�.B.y; r//
:

Proof. For the first part, we simply use B.x; r/ � B.y; 2r/ then applies (2.1).
For the second part, since B.x; r 0/ � B.y; 2r 0/, we can use (2.5) and we get

�.B.x; r 0//

�.B.y; r//
D
�.B.y; r 0//

�.B.y; r//

�.B.x; r 0//

�.B.y; r 0//

� a
�r 0
r

�� �.B.x; r 0//
�.B.y; 2r 0//

� aA�22��
�r 0
r

��
:

We now suppose that .X; d/ is a path metric space, i.e. that the distance d.x; y/
is realised as the infimum of the length of continuous path with end points x and y.
We will keep making this assumption in everything that follows. (Most results are still
true in a more general setting, but this simplify some proofs and is sufficient for our
purposes.)

Proposition 2.3. Let X be a metric space satisfying .D/�R. Assume that the annuli
B.x; r 0/ n B.x; r/, for any r; r 0 with 0 � r < r 0 � R, are all non empty. Then, there
is some � > 0 such that X satisfies .RD/�

R=2
.

Proof. Let x 2 X , r < R=2. Take y 2 B.x; 7r=4/ n B.x; 5r=4/ (which is non empty
as 7r=4 � R). Then,

B.y; r=4/ � B.x; 2r/ n B.x; r/:

Therefore,

�.B.x; 2r// � A28��.B.y; r=4//;

�.B.y; r=4// � �.B.x; 2r// � �.B.x; r//:

So, with C D A28� ,

.1C C�1/�.B.x; r// � �.B.x; 2r//:

Thus, the measure satisfies the R-reverse doubling property.

The R-doubling also implies some upper bound on the volume of balls of large
radius. The two following propositions, and their proof, are taken from [14].
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Proposition 2.4. If .X; d; �/ is a path metric space satisfying .D/�R, then there is
some C > 0 that depends only on the doubling constant and order, such that we have,
for any r > 0, R0 � R,

�.B.x; r CR0=4// � C�.B.x; r//:

Proof. The case r � R is obvious by the doubling property. For r > R, then let ¹xiºi
be a maximal family inB.x;r �R=4/ such that for any i ¤ j , d.xi ;xj / >R0=2. Then
the balls B.xi ; R0=4/ � B.x; r/ are disjoints, and the balls B.xi ; R0/ cover B.x; r C
R0=4/, since a point of B.x; r CR0=4/ is at distance at most R0=2 of B.x; r �R0=4/
(this because .X; d/ is a path-metric space). Thus,

�.B.x; r CR0=4// �
X
i

�.B.xi ; R
0// � A2

X
i

�.B.xi ; R
0=4//

� A2�.B.x; r//:

Proposition 2.5. If .X; d;�/ satisfies .D/�R, then there is aD > 0, that depends only
on the doubling constants, such that, for any r > 0,

�.B.x; r// � eD
r
R�.B.x;R//: (2.6)

Proof. Let r > R, k D b4 r�R
R
c. We have

�.B.x; r// � �.B.x;RC .k C 1/R=4//:

Thus, by Proposition 2.4, �.B.x; r// � C kC1�.B.x; R//. Moreover, k C 1 �

4 r
R
� 3 � 4 r

R
, and so

�.B.x; r// � exp
�
4 ln.C /

r

R

�
�.B.x;R//:

Therefore, we get (2.6) with D D 4 ln.C /.
If r � R, then

�.B.x; r// � �.B.x;R// � eD
r
R�.B.x;R//;

and thus (2.6) still holds.

Similarly to how we always use A for the doubling constant, D will always be
used for this constant D D 8 logA.

Proposition 2.6. Let X satisfies .D/�R and let r � R. There exists a constant C > 0,
that depends only on the doubling constant and order, such that, for any x; y 2 X ,
�.B.x; r// � CeD

d.x;y/
r �.B.y; r//.
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Proof. We have the inclusion B.x; r/ � B.y; r C d.x; y// � B.y; R C d.x; y//.
Then, by Proposition 2.4,

�.B.x; r// � A8�.B.y; d.x; y///;

and so, using Proposition 2.5,

�.B.x; r// � CeD
d.x;y/
R �.B.y; r// � CeD

d.x;y/
r �.B.y; r//:

Proposition 2.7. If .X;d;�/ satisfies .D/�R, then it also satisfies .D/�R0 for anyR0>0,

with a doubling constant AR0 D AR if R0 � R, and AR0 D e2D
R0

R if R0 > R.

Proof. The case R0 � R is obvious. Thus, assume R > R0. Let r � R0. If r � R, then
the result is trivial since AR � AR0 . If r > R, then, by Proposition 2.5,

�.B.x; 2r// � e2D
r
R�.B.x; r//

Since e2D
r
R � e2D

R0

R , we conclude that � is R’-doubling, with a doubling con-
stant AR0 D e2D

R0

R .

With this, we can generalise Proposition 2.6 for any r > 0: if r > R, we can
use the r-doubling and apply Proposition 2.6 for it. The constants are Ar D e2D

r
R ,

Dr D 4 log.A2r / D 16D
r
R

, A8r D e
16D r

R . Then we have, for any x; y 2 X , r > 0,

�.B.x; r// � e16D
rCd.x;y/

R �.B.y; r//:

Proposition 2.8. Let .X; d; �/ be a metric measure space that satisfies .D/�R. If it
also satisfies .RD/�R, then for any � > 1, it satisfies .RD/��R with a different reverse
doubling constant, that depends only on the doubling and reverse doubling constants,
and on �.

The notable part of this proposition is that the reverse doubling order is the same.

Proof. By Proposition 2.7, � is �R-doubling for all �, with some doubling order
� D �.�/. We take a point x 2M , and r; r 0 with 0 < r � r 0 � �R. We want to prove
that there is some constant a� such that, for any such x; r; r 0,

�.B.x; r 0//

�.B.x; r//
� a�

�r 0
r

��
:

If 0 < r � r 0 � R, then there is nothing to do but apply .RD/�R. If 0 < r � R <
r 0 � �R, then

�.B.x; r 0//

�.B.x; r//
�
�.B.x;R//

�.B.x; r//
� a

�R
r

��
� a���

�r 0
r

��
:
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Finally, when R < r � r 0 < �R, then

�.B.x; r 0//

�.B.x; r//
�

�.B.x; r
0

�
//

A���.B.x; r
�
//
�

a

A��

�r 0
r

��
Thus, (2.2) holds for a� D min.a; a��� ; aA�1���/ D aA�1��� .

Proposition 2.9. Let .X;d;�/ satisfies .D/�R. Take x 2X , r > 0, and letB DB.x;r/.
Let ı be such that 0 < ı � min.r; R/, and ¹xiºi � B be a family of points such that
the balls Bi D B.xi ; ı/ form a covering of B and that for any i ¤ j , 1

2
Bi \

1
2
Bj D ;.

Then, there are constants C;c, depending only on the doubling constant, such that

card.I / � Cec
r
ı :

Proof. For any i , Bi � B.x; r C ı/, and since ı � R, then we can use Proposition 2.4
to get

�.B.x; r C ı// � C�.B.x; r//:

Now, if r > R, then by Proposition 2.5, since ı � R then � is ı doubling with the
same doubling constant as that of the R-doubling, and

�.B.x; r// � eD
r
ı�.B.x; ı//

Moreover, by Proposition 2.6,

�.B.x; ı// � CeD
d.x;xi /

ı �.B.xi ; ı// � Ce
D r
ı�.Bi /;

using that, since xi 2B , then d.x;xi /� r . Thus, we have�.B.x;r//�Ce2D
r
ı�.Bi /,

and the constant C depends only on the doubling constants. We then have

.card I /�.B.x; r C ı// � Ce2D
r
ı

X
i2I

�.Bi /

� ACe2D
r
ı

X
i

�
�1
2
Bi

�
� Ce2D

r
ı�.B.x; r C ı//:

Thus, card.I / � Ce2D
r
ı and the constant C depends only on the doubling constants.

Remark. For any ballB , such a covering always exists: take for ¹xiºi �B a maximal
family with d.xi ; xj / � ı for any i ¤ j .
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Proposition 2.10. Let MR be the centered maximal function defined by

MRf .x/ D sup
r<R

−
B.x;r/

jf j d� for all f 2 L1loc.M/:

If � satisfies .D/�R, then MR=2 is bounded on Lp for all p 2 .1;C1�, and the
operator norm is bounded by a constant that only depends on the doubling constant
A and on p.

We will use the following classical results:

Lemma 2.1 (Vitali’s covering lemma). Let .X; d/ be a separable metric space, and
¹Bj ºj2J a collection of balls, such that supj r.Bj / <1. For any c > 3, there exists
a subcollection ¹Bjnºn2N � ¹Bj ºj2J such that the Bjn are pairwise disjoint andS
j2J Bj �

S
n2N cBjn .

Theorem 2.2 (Marcinkiewicz interpolation theorem). Let .X;�/ be a measure space,
and let T be a sublinear operator acting on functions, i.e., there is a � > 0 such that
for any f; g measurable. Then, Tf and Tg are measurable and T .f C g/.x/ �
�.Tf .x/C Tg.x// for almost every x 2 X .

Let 1 � p < r � 1. If r <1, assume that

�¹x 2 X WTf .x/ > �º �
A

�p
kf kpp for all f 2 LpI

�¹x 2 X WTf .x/ > �º �
B

�r
kf krr for all f 2 Lr :

If r D1, then assume instead that

�¹x 2 X WTf .x/ > �º �
A

�p
kf kpp for all f 2 LpI

jTf .x/j � Bjf .x/j; a:e: x 2 X for all f 2 L1:

Then, for every s 2 .p; r/, for all f 2 Ls , Tf 2 Ls and

kTf ks � C.A;B; p; r; s; �/kf ks:

Proof of the Proposition 2.10. We have, for any f 2 L1.M/, kMRf k1 � kf k1.
If f 2 L1.M/, then, for any � > 0, define

E� D ¹x 2M WMR=2f .x/ > �º:

If x 2 E�, then there is some rx > 0 such that � <
¬
B.x;rx/

jf j d�, and 2rx � R.
Therefore,

�.B.x; rx// � �
�1

Z
B.x;r/

jf j d�:
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We haveE� �
S
xB.x;rx/, thus, by Vitali’s covering lemma, there is a subcollec-

tion ¹xnº such that the B.xn; rn/ are pairwise disjoint andE� �
S
nB.xn; 4rn/. Also,

since rn < R=2, and � is R-doubling, we have �.B.xn; 4rn// � A2�.B.xn; rn//.
Then,

�.E�/ �
X
n

�.B.xn; 4rn// � A
2
X
n

�.B.xn; rn//

� A2��1
X
n

Z
B.xn;rn/

jf j d� � A2
kf k1

�
:

So, by the Marcinkiewicz interpolation theorem, for any p 2 .1;C1/, MR=2 is
bounded on Lp with an operator norm kMR=2kp!p � Cp , with Cp depending only
on A and p.

Remark. Of course, .D/�R implies .D/�R0 for all R0 > R. Then, MR itself is also
bounded, but with the constantCp depending on the constant for .D/�2R. And so are all
theMR0 withR0 >R, with the constant Cp depending on p, theR-doubling constant,
and the ratio R0=R.

Proposition 2.11. Let zMR the uncentered maximal function defined by

zMRf .x/ D sup
x2B;
r.B/�R

−
B

jf j d� for all f 2 L1loc.M/;

with this supremum to be interpreted as being over all balls B satisfying the given
condition, and r.B/ being the radius of B .

Then, if � is R-doubling, there exist some constant C > 0 such thatMR � zMR �

CM2R.

Proof. Since a ball centered at x is a ball containing x,MR � zMR is obvious. Now, for
some balls B D B.y; r/ containing x, with radius less than R, we have B � B.x; 2r/
and −

B

jf j d� �
�.B.x; 2r//

�.B/

−
B.x;2r/

jf j d� � CM2Rf .x/:

Proposition 2.12. Let .X; d; �/ be a separable metric measure space, and Dm be
a chosen construction of dyadic cubes on X . Define the associated dyadic maximal
function Md;m by

Md;mf .x/ D sup
Q2Dm
x2Q

−
Q

jf j d�:

Then, there is a constant Cp such that for any p > 1, for any f 2 Lp , kMd;mf kp �

Cpkf kp .
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As a consequence, Md;m;l , the maximal function defined the same way, but with
the cubes in the supremum being only those of length less than l , is also bounded on
Lp for all p > 1.

Proof. Let f 2 L1.X/, � > 0. We define

E� D ¹x 2 X WMd;mf .x/ > �º:

If x 2E�, then there is a cubeQ 2Dm such that
¬
Q
jf j d� > �, and soQ �E�.

Then there are two possibilities.

• If there is a maximal dyadic cube P containing x such that
¬
P
jf j d� > �. then

this cube satisfies P � E�.

• If there is no such cube (in which case, x is in a region of space with infinite
diameter but finite measure), then define � D

S
Q2Dm; x2Q

Q. We can always
find an arbitrarily large cube containing x which is a subset ofE�, and so��E�,
and �.�/ � ��1

R
�
jf j d� <1.

Le ¹Qiºi be the family of all the maximal dyadic cubes such that
¬
Qi
jf j d�>�

and ¹�j ºj be the family of all the regions �j D
S
k Q

j

k
, where ¹Qj

k
º is an infinite

increasing sequence of cubes with
¬
Qk
j
jf j d� > �. The Qi ; �j are pairwise dis-

joints. First it is clear by maximality that the Qi are, Then, if, for a cube Q, we have
Q \�j ¤ ;, then there is a cube P � �j such that P \Q ¤ ;, thus we have either
P � Q or Q � P . In both case, Q � �j since �j is the union of all cubes con-
taining P . This mean both that Qi \�j D ; for all i; j , and that �j \�l D ; for
j ¤ l .

Thus, we have the disjoint union

E� D
[
i

Qi [
[
j

�j ;

Then �.Qi / < ��1
R
Qi
jf j d�, and �.�j /� ��1

R
�j
jf j d�. Summing on all cubes

and all regions, �.E�/ � ��1
R
E�
jf j d� � ��1kf k1. Thus,

�.¹x 2 X WMd;mf .x/ > �º/ �
kf k1

�
:

Moreover, for f 2 L1.X/, we clearly have Md;mf .x/ � kf k1. Then, by Mar-
cinkiewicz interpolation theorem, for any p > 1 there is a constant Cp > 1 such that
kMd;mf kp � Cpkf kp .
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2.3. Estimates of operator norms by that of a maximal function

We refers to the works of C. Pérez and R. L. Wheeden [22] for a more general
approach. We will first describe one of their result in the more specific context that is
of interest to us; then, will give a generalization of this result that holds on a R-doub-
ling space.

In what follows, we let .X; d/ be a separable R-doubling metric space. We take
T an operator given by a kernel KWX �X n Diag! R, i.e.,

Tf .x/ D

Z
X

f .y/K.x; y/ d�.y/: (2.7)

We say that the operator T , or its kernel K, satisfies the condition .K/ if K is non
negative and if there are constants C1; C2 > 1 such that

d.x0; y/ � C2d.x; y/ H) K.x; y/ � C1K.x
0; y/;

d.x; y0/ � C2d.x; y/ H) K.x; y/ � C1K.x; y
0/:

(2.8)

We take � > 1 such as, by Theorem 2.1, for any integerm 2 Z, we have a decom-
position of X in dyadic cubes Dm of lengths �`, ` � m. We define ' as the following
functional on balls:

'.B/ D sup
x;y2B

d.x;y/� 1
2� r.B/

K.x; y/I

and M' to be the following maximal functions:

M'f .x/ D sup
x2B

'.B/

Z
B

jf j d�:

We want to establish an inequality of the type kTf kp � CpkM'f kp , as the later can
be more convenient to estimate.

For T satisfying .K/, it is shown in [25, (4.3)] that ' is decreasing in the following
sense:

Proposition 2.13. There is a constant ˛, depending only on C1, C2, � such that for
any balls B � B 0, '.B 0/ � ˛'.B/

Proof. First, we want to prove that if (2.8) holds, then, for any C2 > 1, there exist a
corresponding C1 such that (2.8) holds with those new constants. We can of course
replace C2 by a smaller constant. To replace it with a smaller, we show that, for any
integer k � 1,

d.x0; y/ � C k2 d.x; y/ H) K.x; y/ � C k1 K.x
0; y/;

and that the same holds with .x; y0/ replacing .x0; y/.
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We proceed by induction. The case k D 1 is simply (2.8).
Let k > 2. Take x; x0; y 2 X such that d.x0; y/ � C k2 d.x; y/, and suppose that

d.x0; y/ � C k�12 d.x; y/ H) K.x; y/ � C k�11 K.x0y/:

If d.x0; y/ � C k�12 d.x; y/, then the result holds and there is nothing to prove. If
d.x0; y/ > C k�12 d.x; y/, then X is a path metric space, so there is a path from y to
x0 of length d.x0; y/, and on this path is a point z such that d.y; z/ D C k�12 d.x; y/.
But then

d.x0; y/ � C k2 d.x; y/ D C2d.z; y/I

thus K.z; y/ � C1K.x0; y/.
By induction, we proved thatK.x;y/�C k1 K.x

0;y/ for all x;x0;y with d.x0;y/�
C k2 d.x; y/. It follows that, if (2.8) holds, then for any C2 > 1 there exist a C1 > 1

such that (2.8) holds.
Now, we can prove the proposition proper. Take x0; y0 2 B 0, x; y 2 B such that

d.x0; y0/ � cr.B 0/; d.x; y/ � cr.B/;

with c D 1
2�

. By exchanging x0 and y0 if necessary, we can suppose that d.x; y0/ �
d.x; x0/. Then

cr.B 0/ � d.x0; y0/ � d.x0; x/C d.x; y0/ � 2d.x; y0/:

Moreover, since B � B 0, we have d.x; y0/ � 2r.B 0/, and thus

d.x; y0/ �
2

c
d.x0; y0/;

So, by (2.8), there is a constant c1 > 1 such that K.x0; y0/ � c1K.x; y0/.
Moreover,

d.x; y/ � d.x; y0/C d.y0; y/ � d.x; y0/C 2r.B 0/ � .1C 4=c/d.x; y0/:

Therefore, by (2.8), there is a constant c2 > 1 such that K.x; y0/ � c2K.x; y/. Thus,

K.x0; y0/ � c1c2K.x; y/;

and we have '.B 0/ � c1c2'.B/.

We further assume that ' satisfies the following condition: there is some " > 0

and some constant L > 0 such that, for any balls B1; B2, with B1 � B2, we have

'.B1/�.B1/ � L
�r.B1/
r.B2/

�"
'.B2/�.B2/: (2.9)
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Theorem 2.3 (C. Pérez and R. L. Wheeden [22]). Let .X; d; �/ be a metric space
with a doubling measure �. Let T be an operator defined by (2.7) and satisfying .K/,
with ' satisfying (2.9). Then there is a constant C , depending only on the doubling
constant and p, such that, for any measurable f WX ! R,

kTf kp � CkM'f kp:

In addition, for the operator Tf .x/ D
R
M

d.x;y/s

�.B.x;d.x;y///
f .y/ d �.y/, we can

replaceM' by the maximal function defined byMsf .x/D supr>0 r
s
¬
B.x;r/

jf j d�.
See Corollary 2.1 for the justification.

This theorem is useful, but cannot be applied to spaces that are only R-doubling.
We will now prove a version that we can use in R-doubling spaces.

We consider the operator Tı , ı < R, with kernel Kı.x; y/ D K.x; y/�¹d.x;y/<ıº,
and we want to compare its Lp norm to that of the maximal functionM';ı defined by

M';ıf .x/ D sup
x2B
r.B/<ı

'.B/

Z
B

jf j d�:

The idea of the proof of this comparison will be essentially the same as that of
Theorem 2.3 given in [22], but some care must be taken to account for the different
hypotheses properly, and thus we will give the details in what follows.

The hypothesis to prove kTf kp � CkM';ıf kp can be weakened compared to
those of Theorem 2.3. A key point is that Proposition 2.13 has to hold at least for
balls of radius at most 2ı. Looking at the proof of the proposition, this is true as long
as (2.8) holds for C2 � .1C 8�/ and d.x; y/ � 4ı.

Then we take .X; d; �/ a R-doubling space. T an operator defined by a kernel
K. We say that T , or K, verifies the condition .K/ı , if there exist constants C1 > 1,
C2 � 1C 8�, such that for any x; y such that d.x; y/ � 4ı, we have

d.x0; y/� C2d.x; y/; K.x; y/� C1K.x
0; y/ for all x0 2 X I

d.x; y0/� C2d.x; y/; K.x; y/� C1K.x; y
0/ for all x0 2 X:

Property .K/ı ensure that 2.13 holds for balls of radius less than 2ı.
Since we will end up considering balls of a radius slightly larger than ı, the fol-

lowing proposition will be useful.

Proposition 2.14. Let .X; d; �/ satisfies .D/�
2.2�C1/ı

for ı > 0, � > 1, T an oper-
ator satisfying .K/4.2�C1/ı , and such that the associated functional ' satisfies (2.9)
when r.B1/; r.B2/ � 2.2� C 1/ı. Then, for any p 2 .1;1�, there is some constant C
depending only on p, �, the doubling constants, and the constants ˛, L, ", in Proposi-
tion 2.13 and in (2.9), such that for any non negative f , kM';�ıf kp � CkM';ıf kp .
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Proof. We have

M';�ıf .x/ DM';ıf .x/C sup
x2B;

ı<r.B/��ı

'.B/

Z
B

jf j d�

�M';ıf .x/C C sup
x2B;

r.B/D�ı

'.B/

Z
B.x;2�ı/

jf j d�:

Using that for x 2 B , B � B.x; 2r.B// � B.x; 2�ı/ and that for any ball B with
radius greater than ı, by (2.9) (on balls with radius at most �ı), we have

'.B/ � AL��'
� �ı

r.B/
B
�
:

Now, for any ball B containing x with radius equal to �ı, let Bx D B.x; ı/. For
y 2 2�Bx , consider the ball Q.y/ D B.y; ı/. We have Q.y/ � .2� C 1/Bx; thus,
using .D/�

.2�C1/ı
, we have that

�.2�Bx/ � A
2.2� C 1/��.Q.y//:

For y 2 .2� C 1/Bx , we also have that B � B.z; 2.2� C 1/ı/; thus, using (2.9)
(for balls with radius at most 2.2� C 1/ı, .D/�

2.2�C1/
, and .K/4.2�C1/ı ), we get that

'.B/ � A2
�2.2� C 1/

2�

��
˛'.Q.y//:

Putting all this together, we get

'.B/

Z
B.x;2�ı/

jf j d� D '.B/
−

2�Bx

�.2�Bx/jf j d�

� C'.B/

−
2�Bx

�.Q.y//jf .y/j d�.y/

� C

−
2�Bx

'.B/

Z
Q.y/

d�.z/jf .y/j d�.y/

� C
1

�.B.x; 2�ı//

Z
.2�C1/Bx

'.B/

Z
2�Bx\B.z;ı/

jf .y/j d�.y/ d�.z/

� CA
�2� C 1

2�

�� −
.2�C1/Bx

'.B.z; ı//

Z
B.z;ı/

jf .y/j d�.y/ d�.z/

� C

−
.2�C1/Bx

M';ıf d�;
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and the constant C depends only on the doubling constants, L, ˛ and �. So,

M';�ıf .x/ �M';ıf .x/C CM.2�C1/ı.M';ıf /.x/:

The theorem follows then from the boundedness of the classical maximal function
M.2�C1/ı on any Lp , p > 1, under .D/�

2.2�C1/ı
.

Theorem 2.4. Let ı > 0. Let � > 0 be the sidelength constant of dyadic cubes. Sup-
pose that .X; d; �/ satisfies .D/�

2.6�C1/ı
. Assume that K satisfies .K/4.6�C1/ı , and

that ' satisfies (2.9) for balls with radius at most 2.6�C 1/ı. Let p � 1. Then, there
is a constant C > 0, depending only on the doubling constants, �, p and of the con-
stants in (2.9) and (2.8), such thatZ

X

jTıf j
p d� � C

Z
X

.M';ıf /
p d�: (2.11)

Proof. We will show that there exist some constant C > 0 such that for any non
negative function f , we have

R
X
jTıf j

p d� � C
R
X
.M';3�ıf /

p d�. The theorem
will follows by Proposition 2.14.

To prove this, we define, for any m 2 Z, the operator Tm by

Tmf .x/ D

Z
d.x;y/>�m

Kı.x; y/f .y/ d�.y/:

If, for any m 2 Z, and for any non negative measurable functions f; g,Z
X

Tmfg d� D
Z

d.x;y/>�m

Kı.x; y/f .y/g.x/ d�.x; y/ � CkM';3ıf kpkgkp0 ;

then, by the monotone convergence theorem, taking m! �1, the same inequality
holds but with Tm replaced by T , and by duality, (2.11) is true.

Takem 2 Z. Let f; g be non negative measurable functions. Let Dm D ¹E
k
˛ º
k�m
˛2N�

be a decomposition of X in dyadic cubes given by Theorem 2.1 with sidelengths �k .
If .x; y/ 2 X are such that d.x; y/ > �m, we take the integer l � m such that

�l < d.x; y/ � �lC1:

LetQ be the cube of length �l containing x, B.Q/D B.cQ; �lC1/ the containing
ball. We recall that ��1B.Q/ � Q � B.Q/. We have

d.cQ; y/ � d.cQ; x/C d.x; y/ � 2�
lC1;

thus y 2 2B.Q/. Since d.x; y/ > �l D 1
2�
r.2B.Q//, by definition of ' and by Pro-

position 2.13,
K.x; y/ � '.2B.Q// � ˛'.B.Q//:
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To apply Proposition 2.13, we need .K/4�ı . If we suppose that ı � �l D `.Q/,
then d.x; y/ � ı and Kı.x; y/ D 0. We have proved that if Q is the cube of length
comparable with d.x; y/, containing x, we have y 2 2B.Q/ and

Kı.x; y/ � C'.B.Q//�¹R2Dm; `.R/<ıº.Q/�Q.x/�2B.Q/.y/:

If r is the largest integer such that �r < ı, define Dr
m D ¹E

k
˛ Wm � k � rº. For any

x;y 2 X with d.x;y/ > �m, there is at least one cubeQ 2Dm such that the previous
inequality holds, and since both sides of it are zero if `.Q/ � ı, we have, for any
x; y 2 X ,

Kı.x; y/ �
X
Q2Dr

m

C'.B.Q//�Q.x/�2B.Q/.y/;

and so, for any f; g � 0,Z
X

Tmfg d� � C
X
Q2Dr

m

'.B.Q//

Z
2B.Q/

f d�
Z
Q

g d�:

But, for any fixed integer k � m, the cubes of length of length �k , ¹Ek˛ º are pairwise
disjoints, and X D

S
˛ Ek˛ . Then, using this decomposition for k D r ,Z

X

Tmfg d� � C
X
˛�1

X
Q2Dr

m

Q�Er˛

'.B.Q//

Z
2B.Q/

f d�
Z
Q

g d�:

Then, for a constant  � 1 to be determined, for any ˛ � 1, and n 2 Z, define

Cn˛ D

²
Q 2 Dr

m;Q � Er˛W 
n <

1

�.B.Q//

Z
Q

g d� � nC1
³
:

We let n˛ be the unique integer such that Er˛ 2 Cn˛˛ . Notice that ¹Cn˛ ºn2Z is a
partition of ¹Q 2 Dr

mWQ � Er˛º. We haveZ
X

Tmfg d� � C
X
˛�1

X
n2Z

nC1
X
Q2Cn˛

'.B.Q//�.B.Q//

Z
2B.Q/

f d�:

For any ˛ � 1, we let ¹Qn
j;˛ºj2Jn , for some index set Jn, be the collection of the

maximal dyadic cubes subset of Er˛ such that

n <
1

�.B.Qn
j;˛//

Z
Qn
j;˛

g d�:
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If n � n˛ , then there is exactly one such maximal cube: Er˛ . Also, the function
.n;Q/ 7! Q is an injection from the set of the couples .n;Q/ with n � n˛ , Q 2 Cn˛
to ¹Q 2 Dr

mWQ � Er˛º; thus,X
n�n˛

X
Q2Cn˛

nC1'.B.Q//�.B.Q//

Z
2B.Q/

f d�

� n˛C1
X
Q2Dr

m

Q�Er˛

'.B.Q//�.B.Q//

Z
2B.Q/

f d�:

If n > n˛ , then any Qn
j;˛ is a strict subset of Er˛ . For such a maximal cube F , we

let P be his dyadic parent i.e., the only cube of length �`.F / containing P . We have
P � Er˛ , and, by using the maximality of F , and that B.F / � 2B.P /, and, using the
�ı-doubling (B.P / has radius less than �ı),

n <
1

�.B.F //

Z
F

g d� �
�.B.P //

�.B.F //

1

�.B.P //

Z
P

g d� � C��n D �n; (2.12)

with the constant � depending only on � and on the doubling constant. Choosing
 > �, we have

1

�.B.F //

Z
F

g d� � nC1;

thus F 2 Cn˛ . Therefore, for a fixed n > n˛ , every cube in Cn˛ is in a (unique) Qn
j;˛ ,

which are disjoint in j by maximality. So, writing Qn˛
j;˛ for Er˛ ,Z

X

.Tmf /g d� � C
X
˛�1

X
n�n˛

nC1
X
j2Jn

X
Q2Dm

˛

Q�Qn
j;˛

'.B.Q//�.B.Q//

Z
2B.Q/

f d�:

Now, we use the following lemma (see [22, Lemma 6.1]):

Lemma 2.2. Let .X; d; �/ satisfies .D/�
ı
. Let ' be a functional on balls that satis-

fies (2.9) for balls of radius at most �ı. Then there is a constant C depending only on
the constant L of (2.9) and on the doubling constant such that, for any f � 0 and
any dyadic cube Q0 2 Dr

m, with �r � ı,X
Q2Dm
Q�Q0

'.B.Q//�.B.Q//

Z
2B.Q/

f d� � C'.B.Q0//�.B.Q0//
Z

3B.Q0/

f d�:
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Proof. By (2.9), we haveX
Q2Dm
Q�Q0

'.B.Q//�.B.Q//

Z
2B.Q/

f d�

� L'.B.Q0//�.B.Q0//
X
Q2Dm
Q�Q0

� `.Q/
`.Q0/

�" Z
2B.Q/

f d�

� L'.B.Q0//�.B.Q0//

C1X
lD0

��"l
X
Q2Dm
Q�Q0

`.Q/D��l`.Q0/

Z
2B.Q/

f d�: (2.13)

For Q 2 Dm; Q � Q0, and `.Q/ � `.Q0/ we have 2B.Q/ � 3B.Q0/. Indeed, if
y 2 2B.Q/, then

d.y; xQ0/ � d.y; xQ/C d.xQ; xQ0/ � 2r.B.Q//C r.B.Q0// � 3r.B.Q0//:

Thus, the left-hand side of (2.13) is less than

L'.B.Q0//�.B.Q0//

Z
3B.Q0/

f .x/

1X
lD0

��"l
X
Q2Dm
Q�Q0

`.Q/D��l`.Q0/

�2B.Q/.x/ d�.x/:

Then, it suffices to show that, for each l , any x of 3B.Q0/ is in at most N of the
2B.Q/, with `.Q/D ��l`.Q0/, withN independent of the choices of x andQ0. For
l D 0, there is only one Q: Q0 itself, and thus it is true.

Now, fix l > 1, let x 2 M , and Q be a cube of sidelength ��l`.Q0/ such that
x 2 2B.Q/. We write ` D `.Q/ � ��1ı. Then, for y 2 Q,

d.x; y/ � d.x; xQ/C d.y; xQ/ � 3�` � 3ı;

and so we have B.xQ; `/ � Q � B.x; 3�`/. By the Proposition 2.9, there can be at
most N disjoint balls of radius ` � ı with center in a ball of radius 3�`, with the
constant N depending only on � and on the ı-doubling constant. Thus,

1X
lD0

��"l
X
Q2Dm
Q�Q0

`.Q/D��l`.Q0/

1 � N
1

1 � ��"
;

and the lemma follows.
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Applying the lemma, we getZ
X

.Tmf /g d� � C
X
˛�1

X
n�n˛

nC1
X
j2Jn

'.B.Qn
j;˛//�.B.Q

n
j;˛//

Z
3B.Qn

j;˛
/

f d�;

and, thus, since Qn
j;˛ 2 Cn˛ , we have n � 1

�.B.Qn
j;˛
//

R
Q˛
j;n
g d�, and soZ

X

.Tmf /g d� � C
X
˛�1

X
n�n˛

X
j2Jn

'.B..Qn
j;˛///

Z
3B.Qn

j;˛
/

f d�
Z

Qn
j;˛

g d�;

and Z
X

.Tmf /g d� � c
X
˛;n;j

'.B.Qn
j;˛//�.Q

n
j;˛/

Z
3B.Qn

j;˛
/

f d�
1

�.Qn
j˛/

Z
Qn
j;˛

g d�:

Using Hölder’s inequality, and that by (2.9) there is some constant c depending only
on ˛;A;L; " such that '.B/ � c'.3B/ (ball of radius 3�ı), we getZ

X

.Tmf /g d� � C
� X
˛;n;j

�.Qn
j;˛/

�
'.B.3Qn

j;˛//

Z
3B.Qn

j;˛
/

f d�
�p� 1

p

�

� X
˛;n;j

�.Qn
j;˛/

�
1

�.Qn
j˛/

Z
Qn
j;˛

g d�
�p0� 1

p0

:

Now, we just need to establish a majoration of �.Qn
j;˛/ by a constant time the

measure of a set Enj;˛ , with the Enj;˛ being pairwise disjoint in j; n; ˛. For this, define
�n˛ by

�n˛ D

²
x 2 Er˛W sup

Q2Dr
m

x2Q

1

�.B.Q//

Z
Q

g d� > n
³
D

[
j2Jn

Qn
j;˛;

and define the setEnj;˛ DQ
n
j;˛ n�

nC1
˛ . We have thatEnj;˛ ��

n
˛ n�

nC1
˛ , and theEnj;˛

are pairwise disjoints in j; n; ˛.
We want to show that for  chosen large enough, �.Qn

j;˛/ � 2�.E
n
j;˛/. First,

Qn
j;˛ \�

nC1
˛ D

[
i

.Qn
j;˛ \Q

nC1
i;˛ /;

but we have
1

�.B.QnC1
i;˛ //

Z
Q
nC1
i;˛

g d� > nC1 > n:
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Thus, by maximality of Qn
j;˛ and by the properties of dyadic cubes, etiher QnC1

i;˛ �

Qn
j;˛ or Qn

j;˛ \Q
nC1
i;˛ D ;. Hence,

�.Qn
j;˛ \�

nC1
˛ / D

X
i WQn

j;˛
\Q

nC1
i;˛
D;

�.Qn
j;˛ \Q

nC1
i;˛ / D

X
i WQ

nC1
i;˛
�Qn

j;˛

�.QnC1
i;˛ /;

but
�.QnC1

i;˛ / � �.B.QnC1
i;˛ // � �n�1

Z
Q
nC1
i;˛

g d�;

and, since the QnC1
i;˛ considered are disjoints and subsets of Qn

j;˛ , we have

�.Qn
j;˛ \�

nC1
˛ / � �n�1

Z
Qn
j;˛

g d� � ��1�.B.Qn
j;˛//;

where � is the constant in (2.12). But

�.Qn
j;˛/ D �.E

n
j;˛/C �.Q

n
j;˛ \�

nC1
˛ /;

and so, choosing  D 2�, it follows that

�.Qn
j;˛/ �



 � �
�.Enj;˛/ D 2�.E

n
j;˛/:

Consequently,Z
X

.Tmf /g d� � 2C
� X
˛;n;j

�.Enj;˛/

�
'.B.3Qn

j;˛//

Z
3B.Qn

j;˛
/

f d�
�p� 1

p

�

� X
˛;n;j

�.Enj;˛/

�
1

�.Qn
j˛/

Z
Qn
j;˛

g d�
�p0� 1

p0

:

Since Enj;˛ � Q
n
j;˛ , it follows that

�.Enj;˛/

�
'.B.3Qn

j;˛//

−
3B.Qn

j;˛
/

f d�
�p
�

Z
En
j;˛

.M';3�rC1f /
p d�;

and a similar inequality for the integral on g. In addition, using that the Enj;˛ are
pairwise disjoint, and that �r < ı, we getZ

X

.Tmf /g d� � 2C
�Z
X

.M';3�ıf /
p d�

� 1
p
�Z
X

.Md;ıg/
p0 d�

� 1
p0

:
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Now, using Proposition 2.12, for all f;g � 0, there is a constant C depending only
on p;A; ˛; " (specifically it depends on the constants for the �ı-doubling) such thatZ

X

.Tmf /g d� � CkM';3�ıf kpkgkp0 :

This holds under .D/�
rı

, .K/2�ı , and the fact that (2.9) holds for balls of radius at
most 3�ı. The stronger hypotheses are what we need to apply Proposition 2.14 which
gives us Z

X

.Tmf /g d� � CkM';ıf kpkgkp0 ;

which proves the theorem.

Finally, we have the theorem applied to the operators which will be of interest to
us:

Corollary 2.1. Let� be a measure satisfying .D/�R and .RD/�R, withR>0, �� � > 0
(� � � is automatic). Let s � �. Let ı � R. If K.x; y/ D d.x;y/s

�.B.x;d.x;y///
, then the

associated operator Tı satisfies the hypotheses of Theorem 2.4. Moreover, the theorem
still holds with M';ıf replaced by the following maximal function:

Ms;ıf .x/ D sup
0<r<ı

rs
−

B.x;r/

jf j d�:

Proof. First, take some b > 1, by Proposition 2.8,� is bR-reverse doubling of order �.
Then, we must verify thatK satisfies the hypotheses of Theorem 2.4. Let d.x;y/�R
and d.x; y0/ � bd.x; y/, then, by doubling and reverse doubling,

1

�.B.x; d.x; y///
�

1

�.B.x; d.x; y0///

�.B.x; bd.x; y///

�.B.x; d.x; y///

�.B.x; d.x; y0///

�.B.x; bd.x; y///

� Cb���
�d.x; y0/
d.x; y/

�� 1

�.B.x; d.x; y0///
:

Thus, provided that s � �,

K.x; y/ � Cb���
�d.x; y0/
d.x; y/

���s
K.x; y0/ � Cb��sK.x; y0/:

Furthermore, if d.x0; y/ � ˛d.x; y/, using the doubling property, there are c; C
such that c�.B.y; d.x0; y/// � �.B.x0; d.x0; y/// � C�.B.y; d.x0; y///, and so
doing the same calculations we have

K.x; y/ � Cb��sK.x0; y/;

and there are C1; C2 > 1 such that (2.8) is satisfied.
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Then, using the definition of ' and doubling,

c
r.B/s

�.B/
� '.B/ � C

r.B/s

�.B/
;

for some constants that depends only on s; � and the doubling constant. Since, for
B1 � B2,

r.B1/
s
� 2sr.B2/

s;

we easily verify that ' satisfies (2.9) with " D s.
Then, it is enough to prove that the centered and uncentered version of the max-

imal function Ms;ı are equivalent in Lp norms. This follow from the same argument
as that of Proposition 2.11.

3. Relative Faber–Krahn inequality and estimates on the heat kernel
and the Riesz and Bessels potentials

3.1. Faber–Krahn and doubling

The results from this subsection are due to A. A. Grigor’yan [10, 11], or are slight
adaptations of his results to the R-doubling case.

Theorem 3.1 ([11]). Let .M; g;�/ be a weighted manifold, and let ¹B.xi ; ri /ºi2I be
a family of relatively compact balls in M , where I is an arbitrary index set. Assume
that, for any i 2 I , U � B.xi ; ri /, there is a constant ai > 0 such that the following
Faber–Krahn inequality holds

�1.U / � ai�.U /
�2=�:

Let � D
S
i2I B.xi ;

ri
2
/. Then, for all x; y 2 � and t � t0 > 0, we have

pt .x; y/ �
C.�/.1C d.x;y/2

t
/�=2 exp.�d.x;y/

2

4t
� �1.M/.t � t0//

.aiaj min.t0; r2i /min.t0; r2j //�=4
;

where i; j are the indices such that x 2 B.xi ;
ri
2
/ and y 2 B.xj ;

rj
2
/.

On a manifold which admits .RFK/�R, applying this theorem with the family of
all balls of radius less than R, ¹B.x; r/ºx2M;0<r�R, with ax;r D b

r2
�.B.x; r//2=� ,

t0 D t , and r D
p
t , when t � R2 we get

pt .x; y/ � C.�/
.1C d.x;y/2

t
/�=2e�

d.x;y/2

4t

.ax;
p
tby;
p
t t
2/�=4

;

�
C.�/

b�=2
e�

d.x;y/2

ct

�.B.x;
p
t //1=2�.B.y;

p
t //1=2

:
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If t > R2, then we do the same thing, but with r DR, and we obtain the following:

Theorem 3.2. Let .M; g; �/ be a weighted Riemannian manifold, suppose that there
isR> 0 such thatM satisfies .RFK/�R. Then� satisfies .D/�R, and for any c > 4 there
is some constant K > 0 such that the heat kernel has the following upper bounds:

pt .x; y/�
K

�.B.x;
p
t //1=2�.B.y;

p
t //1=2

e�
d.x;y/2

ct ; t � R2

pt .x; y/�
K

�.B.x;R//1=2�.B.y;R//1=2
e�

d.x;y/2

ct ; t > R2:

The constant K depends only on b and � in the Faber–Krahn inequality and on
the c > 4 chosen.

The estimate on the heat kernel follows from [10, Theorem 5.2]. The R-doubling
follow from the proof of [10, Proposition 5.2].

Conversely, we have:

Proposition 3.1 ([10]). Let .M;g;�/ be a complete, weighted Riemannian manifold.
If � satisfies .D/�R, if for any x 2M , the annuli B.x; r 0/ nB.x; r/, for 0� r < r 0 �R
are non-empty, and if there is some constant B such the heat kernel satisfies

pt .x; x/ �
B

�.B.x;
p
t //
;

for all x 2M , and for all 0< t �R2, then there is some constant � 2 .0;1/, depending
only on the doubling and reverse doubling constants, such that M admits a relative
Faber–Krahn inequality at scale �R, with � being the doubling order and b depending
only on A;B , and � depends only on the doubling constants and on B .

Proof. This is a modification of the proof in [10], to take into account the R doubling
case.

Fix a ball B.x; r/, with r < R, and let U be an open relatively compact subset of
B.x; r/. Using the doubling volume property, if t � r2, then

e��1.U /t �

Z
U

pt .y; y/ d�.y/ � B
Z
U

d�.y/
�.B.y;

p
t //
� AB

�.U /

�.B.x; r//

� r
p
t

��
I

thus,

�1.U / �
1

t
log
� 1

AB

�.B.x; r//

�.U /

�pt
r

���
:

Choose t such that the logarithm in the above inequality is equal to 1, i.e.,

t D r2
�
eAB

�.U /

�.B.x; r//

�2=�
I
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the condition t � r2 then impose �.U / � 1
eAB

�.B.x; r//. For such U , we have

�1.U / �
.eAB/�2=�

r2

��.B.x; r//
�.U /

�2=�
: (3.1)

Now, since the measure � satisfies .D/�R, and since the annuli of radius less than
R are non empty, it satisfies .RD/�R for some � > 0. There is some constant a 2 .0; 1/
such that for any 0 < r < r 0 � R we have

�.B.x; r// � a
� r
r 0

��
�.B.x; r 0//;

with � D � log2 a.
Then, for � D .aeAB/�1=� , if r � �R, choose r 0 D ��1r . We have, for all U

relatively compact open subset of B.x; r/,

�.U / �
1

eAB
�.B.x; r 0//I

thus, we can apply (3.1). Using by R-reverse doubling

�.B.x; r 0// � a�1����.B.x; r//;

we have that

�1.U / �
b

r2

��.B.x; r//
�.U /

�2=�
;

with b D �2.

3.2. An estimate on the heat kernel

Proposition 3.2. Let .M; g; �/ be a complete weighted manifold satisfying .RFK/�R
for R > 0. For any c > 4, there are constants K1; K2; K3 > 0 and ˛ > 0 such that
the following estimates on the heat kernel hold.

If 0 � t � R2, then

pt .x; y/ �
K1

�.B.x;
p
t //
e�

d.x;y/2

ct :

If t > R2 and d.x; y/ � R, then

pt .x; y/ �
K2

�.B.x;R//
e�

d.x;y/2

ct :

If t > R2 and d.x; y/ > R, then

pt .x; y/ �
K3

�.B.x;R//
e
˛ t

R2 e�
d.x;y/2

ct :



Lower bound of Schrödinger operators on Riemannian manifolds 183

Proof. Using the R-doubling, we have that, for any t > 0,

�.B.x;
p
t // � C�.B.y;

p
t //e

D d.x;y/p
t ;

and so, for t � R2, we get, for any c0 > 4,

pt .x; y/ �
CK

�.B.x;
p
t //
e
D
2
d.x;y/p

t
�
d.x;y/2

c0t I

so, taking c0 < c, there is some constant K1 such that

pt .x; y/ �
K1

�.B.x;
p
t //
e�

d.x;y/2

ct :

When t > R2 and d.x; y/ � R, the R-doubling property for small balls immedi-
ately lead to the desired result. When d.x; y/ > R, by the R-doubling we obtain, for
any c0 > 4,

pt .x; y/ �
CK

�.B.x;R//
e
D
2
d.x;y/
R �

d.x;y/2

c0t :

We have that Dd.x;y/
2R

�
d.x;y/2

c0t
�

c0cD2t
16R2.c�c0/

�
d.x;y/2

ct
, thus there is some con-

stants K3, ˛ which depend on the doubling constant and the choice of c; c0, such
that

pt .x; y/ �
K3

�.B.x;R//
e
˛ t

R2
�
d.x;y/2

ct :

3.3. Estimation of the Riesz potential

Let s > 0, and define the Riesz potential to be the operator Is D ��s=2 on L2.M;�/.
Define is.x; y/ by

is.x; y/ D
1

�. s
2
/

C1Z
0

t s=2�1pt .x; y/dt:

Whenever is is finite for all x; y 2 M , it is the Schwartz kernel of the Riesz
potential: in such case, for any f 2 C10 .M/, f is in the domain of Is and

Isf .x/ D

Z
M

is.x; y/f .y/d�.y/I

we thus call is the Riesz kernel. A sufficient condition for the Riesz kernel to be
defined is given in the following proposition, which also yields an estimate on it:
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Proposition 3.3. Let .M; g; �/ be a manifold satisfying .RFK/� and .RD/� , � > 0.
Then, for any s < �, there is a constant C depending only on the Faber–Krahn and
reverse doubling constants, such that the following inequality holds:

is.x; y/ � C
d.x; y/s

�.B.x; d.x; y///
:

Proof. Using Proposition 3.2 when the manifold satisfies .RFK/� , there is C > 0

such that for all x; y 2M , t > 0,

pt .x; y/ �
K1

�.B.x;
p
t //

exp
�
�
d.x; y/2

5t

�
;

and so

is.x; y/ � Cs

1Z
0

t s=2�1

�.B.x;
p
t //
e�

d.x;y/2

5t dt:

Using the doubling and reverse property, with � the doubling order and � the
reverse doubling order, we obtain, writing d D d.x; y/,8<: 1

�.B.x;
p
t//
� c 1

�.B.x;d//
. dp

t
/�; 0 < t � d2;

1

�.B.x;
p
t//
� c 1

�.B.x;d//
. dp

t
/� ; t > d2;

and so

is.x; y/ � C
1

�.B.x; d//

�
d�

d2Z
0

t
s��
2 �1e�

d2

5t dt C d �
1Z
d2

t
s��
2 �1e�

d2

5t dt

�
:

Then, provided � > s,

1Z
d2

t
s��
2 �1e�

d2

ct dt �

1Z
d2

t
s��
2 �1dt D

2

s � �
d s�� :

For the other integral, we make the change of variable t D d2=u, obtaining

d2Z
0

t
s��
2 �1e�

d2

ct dt D d s��
1Z
1

u
��s
2 �1e�

u
c du:

This integral is convergent and equal to a constant that depends only on s and c. Then
for every x; y 2M ,

is.x; y/ � C
d.x; y/s

�.B.x; d.x; y///
:
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3.4. Estimation of the Bessel potential

Define the Bessel potential for � > 0, s > 0 to be the operator Gs;� D .�C �2/�s=2

on L2.M;�/. It is, by the spectral theorem, a bounded operator, and, similarly to the
case of the Riesz potential, admits for kernel

g�s .x; y/ D
1

�. s
2
/

1Z
0

t s=2�1e��
2tpt .x; y/ d t;

provided that g�s is finite for all x; y 2M .

Proposition 3.4. Let .M; g; �/ be a complete weighted manifold satisfying .RFK/�R
and .RD/�R. If �> 0 is such that �R� 1, then for any s < �, there is a constant C > 0,
depending only on s and on the Faber–Krahn constants, such that for all x; y 2 X
with d.x; y/ � R, we have

g�s .x; y/ � C
d.x; y/s

�.B.x; d.x; y///
:

Proof. We have

g�s .x; y/ D
1

�. s
2
/

1Z
0

t
s
2�1e��

2tpt .x; y/dt;

and we split this integral into three, integrating on .0; d2/, .d2; R2/ and .R2;C1/.
We use Proposition 3.2. The same calculations as in the proof for the Riesz poten-

tial yields the estimate

d2Z
0

t
s
2�1e��

2tpt .x; y/dt � C
d.x; y/s

�.B.x; d.x; y///

When d �
p
t � R, we have by the R-reverse doubling that

�.B.x; d// � a
� d
p
t

��
�.B.x;

p
t //I

thus,

R2Z
d2

t
s
2�1e��

2tpt .x; y/dt � C

R2Z
d2

t
s
2�1e��

2t 1

�.B.x;
p
t //
e�

d2

5t dt

� C
d �

�.B.x; d//

R2Z
d2

t
s��
2 �1e��

2te�
d2

5t dt
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� C
d �

�.B.x; d//

R2Z
d2

t
s��
2 �1e��

2tdt

� C
d �

�.B.x; d//

2

s � �
.Rs�� � d s��/;

and, since s � � < 0,

R2Z
d2

t
s
2�1e��

2tpt .x; y/dt � C
d.x; y/s

�.B.x; d.x; y///
:

Now, for t � R2, we simply have �.B.x;R// � �.B.x;
p
t //. Thus,

1Z
R2

t
s
2�1e��

2tpt .x; y/dt � C
1

�.B.x;R//

1Z
R2

t
s
2�1e��

2te�
d2

5t dt I

then, since d � R, by using the reverse doubling, we obtain

�.B.x; d// �
�d
R

��
�.B.x;R//:

Moreover, we have t
s
2�1e��

2t � cs�
2�se�

�2

2 t ; thus,

1Z
R2

t
s
2�1e��

2tpt .x; y/dt � C
�d
R

�� �2�s

�.B.x; d//

1Z
R2

e�
�2

2 tdt

� C
�d
R

�� ��s

�.B.x; d//
e�

.�R/2

2 I

then, since �R� 1, and f .t/D t�se�
t2

2 is decreasing, we have ��se�
.�R/2

2 �Rse�
1
2 ,

which leads to
1Z

R2

t
s
2�1e��

2tpt .x; y/dt � C
�R
d

�s�� d s

�.B.x; d//
:

Then, s � � < 0 and d < R. Thus,

1Z
R2

t
s
2�1e��

2tpt .x; y/dt � C
d.x; y/s

�.B.x; d.x; y///
:



Lower bound of Schrödinger operators on Riemannian manifolds 187

4. Proof of the main results

Let .M;g;�/ be a weighted Riemannian manifold and V 2 L1loc.M; d�/, V � 0. For
any R > 0 and p � 1, we define Np.V / and Np;R.V / as in (1.3) and (1.4). Notice
that Np.V / DM2p.V

p/1=p .
Though we can deduce Theorem 1.1 as a special case of Theorem 1.2, we start

by giving a separate, simpler proof of it. The general idea behind the proof of both
theorems remains the same, but in the case of Theorem 1.2, much more care will be
required in establishing the bounds on the norm of certain operators.

4.1. Proof the global inequality (Theorem 1.1)

We assume here that � is reverse doubling of order �, with � > 1, and we will show
later on that this implies the general result.

Given ' 2 L2.M/, we first estimate k��1=2.V 1=2'/k2. By Proposition 3.3, for
any non-negative, measurable function f ,

��
1
2f .x/ � C

Z
M

d.x; y/

�.B.x; d.x; y///
f .y/d�.y/:

Let T be the operator defined by the kernel K.x; y/ D d.x;y/
�.B.x;d.x;y///

. Since M is
a doubling space, applying Corollary 2.1, we have that

kTf k2 � CkM1f k2;

and so
k��

1
2f k � kM1f k2:

It follows that
k��1=2.V 1=2'/k2 � CkM1.V

1=2'/k2:

Then, using the Hölder inequality, we have, with q D 2p, 1
q
C

1
q0
D 1,

M1.V
1=2'/ �Mq.V

q=2/
1
qM0.j'j

q0/
1
q0 � Np.V /

1
2M0.j'j

q0/
1
q0 ;

since Np.V / D M2p.V
p/

1
p . By the L2=q

0

-boundedness of the Hardy–Littlewood
maximal function, we obtain that

kM1.V
1=2'/k2 � Np.V /

1
2 kM0.j'j

q0/
1
q0 k2

� Np.V /
1
2 kM0.j'j

q0/k
1
q0

2
q0

� CpNp.V /
1
2 k'k2;
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and so
k��1=2.V 1=2'/k2 � CpNp.V /

1
2 k'k2; (4.1)

and ��1=2.V 1=2�/ is a bounded linear operator on L2. Its adjoint is V 1=2��1=2, and,
for any  2 C10 .M/, if we let ' D �1=2 , ' 2 L2 andZ

M

V 2d� D

Z
M

jV 1=2��1=2'j2d�;

by (4.1), we getZ
M

V 2d� � CpNp.V /
1=2
k'k22 D CpNp.V /kr k

2
2:

4.2. Proof of the local inequality (Theorem 1.2)

We again make a technical hypothesis on the reverse doubling order, proving the
following result:

Theorem 4.1. Let .M;g;�/ be a complete weighted Riemannian manifold satisfying
.RFK/�R for some R > 0, and .RD/�R for some � > 1. Then, for any p > 1, there is
some constant Cp depending only on the Faber–Krahn constants and p, such that for
any non-negative, locally integrable V , and any 2C10 .M/, the following inequality
holds: Z

M

V 2d� � CpNp;R.V /

�Z
M

jr j2d�C
1

R2

Z
M

 2d�

�
:

We will show afterwards how to remove this hypothesis to obtain Theorem 1.2.

4.2.1. Proof of Theorem 4.1. Given � > 0 such that �R � 1, we let g� D g�1 be
the kernel of the Bessel potential G� D .� C �2/�

1
2 . By Proposition 3.4, we have

g�.x; y/ � d.x;y/
�.B.x;d.x;y///

, for �d.x; y/ < 1. We let

T1 .x/ D

Z
d.x;y/�R

g�.x; y/V
1
2 .y/ .y/d�.y/;

T2 .x/ D

Z
d.x;y/>R

g�.x; y/V
1
2 .y/d�.y/:

By Corollary 2.1, we have kT1 kp � CpkM1;RV
1
2 kp , and the rest follows as

in the global case. To estimate kT2k, we can study the operator T2T �2 , with kernel
a.x; z/ defined as

a.x; z/ D

Z
M

g�.x; y/�¹d.x;y/>RºjV.y/j�¹d.y;z/>Rºg
�.y; z/d�.y/;
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where we recall �E to be the characteristic function of the set E. We then apply
the Schur test to T2T �2 : being a symmetric operator, it will be bounded on L2 if the
integral Z

M

ja.x; z/jd�.z/

is uniformly bounded with respect to x. Given that we have

g�.y; z/ D

1Z
0

e��
2t

p
�t
pt .y; z/dt;

as well as Z
M

pt .y; z/d�.z/ � 1;

we calculate Z
M

g�.y; z/d�.z/ �

1Z
0

e��
2t

p
�t
dt D

1

�
I

but thenZ
M

ja.x; z/jd�.z/

�

Z
M

Z
M

g�.x; y/�¹d.x;y/>RºjV.y/j�¹d.y;z/>Rºg
�.y; z/d�.y/d�.z/

�

Z
MnB.x;R/

g�.x; y/

Z
MnB.z;R/

g�.y; z/jV.y/jd�.y/d�.z/;

and so we get Z
M

ja.x; z/jd�.z/ �
1

�

Z
MnB.x;R/

g�.x; y/jV.y/jd�.y/;

or Z
M

ja.x; z/jd�.z/ �
1

�

C1Z
0

e��
2t

p
�t

Z
MnB.x;R/

pt .x; y/jV.y/jd�.y/dt (4.3)

To estimate this integral, we estimate
R
MnB.x;R/

pt .x; y/jV.y/jd�.y/ by distin-
guishing the cases t � R2 and t < R2. For any x 2M , r � R, p � 1,Z

B.x;r/

jV.y/jd�.y/ �
C

R2
�.B.x; r//Np;R.V / (4.4)
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Indeed, we cover B.x; r/ by a family Bi of balls of radius R with center in B.x; r/
such that the balls with half the radius are pairwise disjoints. Then,Z

B.x;r/

jV.y/jd�.y/ �
X
i

Z
Bi

jV.y/jd�.y/

� C
X
i

�
�1
2
Bi

� −
Bi

jV.y/jd�.y/

�
C

R2

X
i

�
�1
2
Bi

��
R2

−
Bi

jV.y/jpd�.y/

� 1
p

�
C

R2
�
�
B
�
x; r C

R

2

��
Np;R.V /

�
C

R2
�.B.x; r//Np;R.V /:

For all t � R2, we use the corresponding estimate of Proposition 3.2, and get a con-
stant ˛ > 0 such thatZ

MnB.x;R/

pt .x; y/jV.y/jd�.y/ �
Ce

˛ t

R2

�.B.x;R//

Z
MnB.x;R/

e�
d.x;y/2

5t jV.y/jd�.y/:

By writing e�
d.x;y/2

5t D
R C1
d.x;y/

2r
5t
e�

r2

5t dr , we have

Z
MnB.x;R/

e�
d.x;y/2

5t jV.y/jd�.y/ D

1Z
R

e�
r2

5t
2r

5t

� Z
B.x;r/nB.x;R/

jV jd�

�
dr:

Using (4.4), we obtainZ
MnB.x;R/

e�
d.x;y/2

5t jV.y/jd�.y/ �
C

R2
Np;R.V /

1Z
R

e�
r2

5t
2r

5t
�.B.x; r//dr:

By theR-doubling, using (2.6), there is a constant ˇ > 0 that depends on the doubling
constant such that �.B.x; r// � �.B.x;R//eˇ

r
R , thusZ

MnB.x;R/

e�
d.x;y/2

5t jV.y/jd�.y/ �
C

R2
Np;R.V /�.B.x;R//

1Z
R

2r

5t
e�

r2

5t Cˇ
r
R dr;
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and we then can find a constant  > 0 such that e�
r2

5t Cˇ
r
R � e

� r
2

10tC
t

R2 . As a result,
we get that

1Z
R

2r

5t
e�

r2

10t dr D 2e�
R2

10t :

To conclude, we obtain that for all t � R2,Z
MnB.x;r/

pt .x; y/jV.y/jd�.y/ � C
Np;R.V /

R2
e
�R

2

10tC2
t

R2 :

For t � R2, we obtain in the same wayZ
MnB.x;R/

pt .x; y/jV.y/jd�.y/

�
c

�.B.x;
p
t //

Np;R.V /

R2

1Z
R

e�
r2

5t
2r

5t
�.B.x; r//dr

�
c

�.B.x;
p
t //
�.B.x;R//

Np;R.V /

R2

1Z
R

e�
r2

5t
2r

5t
eˇ

r
R dr

� c
� R
p
t

��Np;R.V /
R2

e
�R

2

10tC
t

R2 ;

and, finally,Z
MnB.x;R/

pt .x; y/jV.y/jd�.y/ � C
�

max
� R
p
t
; 1
���Np;R.V /

R2
e
�R

2

10tC2
t

R2 :

Thus, we get the majorationZ
M

ja.x; z/jd�.z/ �
C

�

Np;R.V /

R2

1Z
0

�
max

� R
p
t
; 1
���

e
�R

2

10tC2
t

R2 e��
2t dt
p
�t
;

which by a change of variable t D R2u, transform intoZ
M

ja.x; z/jd�.z/ �
C

�

Np;R.V /

R

1Z
0

�
max

� 1
p
u
; 1
���

e�
1
10uC.2��

2R2/u du
p
�u
;

and if �R �
p
3 D � > 1 we obtainZ

M

a.x; z/dz � CNp;R.V /:
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Thus, by the Schur test,

kT2T
�
2 kL2!L2 � CNp;R.V /;

and
kT2kL2!L2 � CNp;R.V /

1
2 :

Then, for all � � �
R

,Z
M

V 2d� � C

�Z
M

jr j2d�C �2
Z
M

 2d�

�
;

and, in particular,Z
M

V 2d� � C�2
�Z
M

jr j2d�C
1

R2

Z
M

 2d�

�
:

4.2.2. Proof of Theorem 1.4. We now suppose that �1.M/ > 0. Then the previous
results can be strenghtened to prove Theorem 1.4.

Proof. We apply Theorem 1.2, and use that �1.M/
R
M
 2 d��

R
M
jr j2 d�. Then,

hV ; i � CpNp;R.V /
�
1C

1

�1.M/R2

� Z
M

jr j2 d�;

which gives

�1.M/R2

CpNp;R.V /.1C �1.M/R2/

Z
M

V 2 d� �
Z
M

jr j2 d�;

and

�1.M/R2

2CpNp;R.V /.1C �1.M/R2/

Z
M

V 2 d�C
�1.M/

2

Z
M

 2 d� �
Z
M

jr j2 d�:

Therefore, for any V ,

hV ; i �
CpNp;R.V /.1C �1.M/R2/

�1.M/R2

�
kr k2 �

�1.M/

2
k k2

�
;

which is (1.8).
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4.3. Proof of Theorem 1.3

Let Cp be the constant of Theorem 1.2. We let

L D sup
x;ı

�
2Cp

� −
B.x;ı/

V p d�
�1=p

� ı�2
�
:

Then, � −
B.x;ı/

V p d�
�1=p

�
LC ı�2

2Cp
; .M2p;ı.V

p/.x//1=p �
ı2LC 1

2Cp
:

Take ı D L�1=2. Then, Np;ı.V / � 1
Cp

. By Theorem 1.2, we have

hV ; i � kr k22 � Lk k
2
I

thus,

��1.� � V / � sup
x;ı

�
2Cp

� −
B.x;ı/

V p d�
�1=p

� ı�2
�
:

Meanwhile, let r < ��1 � R, and define fr W Œ0;1/ ! Œ0;C1/ by f .t/ D r

if t � r , f .t/ D 2r � t if t 2 .r; 2r�, and fr.t/ D 0 if t > 2r . Then for o 2 M ,
 D fr.d.o; x//.  is a Lipschitz function with compact support, and, by .D/�R,

�1.� � V / �
kr k2 �

R
M
V 2 d�

k k2
�
�.B.x; 2r//

r2�.B.x; r//
�

−
B.x;r/

V d�

� Ar�2 �

−
B.x;r/

V d� � .r=
p
A/�2 � A�1��=2

−
B.x;r=

p
A/

V d�;

for all r > 0. Thus,

��1.� � V / � sup
x;ı

�
A�1��=2

−
B.x;ı/

V d� � ı�2
�
:

4.4. Removing the dependancy on reverse doubling

Let M be a manifold satisfying .RFK/� . We consider zM D R �M , . zM; Qg; Q�/ the
product Riemannian manifold: Qg D d x2 C g, d Q� D d x d�. For V 2 L1loc.M/, we
define zV.x; m/ D V.m/. We write z� for the laplacian on . zM; Qg; Q�/, and � for the
laplacian on .M; g; �/. The Morrey norm in zM is written zNp;R.

We have:
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Proposition 4.1. . zM; Qg; Q�/ satisfies the following properties:

(1) if � is R-doubling, then Q� is R-doubling, and R-reverse doubling with order
� > 1;

(2) the heat kernel of zM is Qpt ..x;m/; .y; n// D 1p
4�t
e�
jx�yj2

4t pt .m; n/;

(3) if M satisfies .RFK/�R, then there is some � 2 .0; 1/ such that zM satisfies
.RFK/�

�R
. � depends only on the Faber–Krahn constants;

(4) �1.z� � zV / D �1.� � V /;

(5) if � is R-doubling, then there are two constants c; C , which depends only on
the doubling constant, such that cNp;R.V / � zNp;R. zV / � CNp;R.V /.

Proof. (1) For E � R measurable, we denote jEj the usual Lebesgue measure of E.
We have

j.�r=2; r=2/j�.B.m; r=2// � Q�. zB..x;m/; r// � j.�r; r/j�.B.m; r//: (4.5)

From this, with r � R we immediately get

Q�. zB..x;m/; 2r// � 4A2 Q�. zB..x;m/; r//;

withA theR-doubling constant of�. Moreover, since� isR-doubling, it isR-reverse
doubling, with reverse doubling order � > 0. Then, for r < r 0 < �R,

Q�. zB..x;m/; r 0//

Q�. zB..x;m/; r//
�
r 0

2r

�.B.m; r 0=2//

�.B.m; r//

�
1

2A

r 0

r

�.B.m; r 0//

�.B.m; r//

�
a

2A

�r 0
r

�1C�
Thus, Q� is reverse doubling of order Q� D 1C � > 1.

(2) and (4) We have z� D � d2

dx2
C�. Thus,

Qpt ..x;m/; .y; n// D
1
p
4�t

e�
jx�yj2

4t pt .m; n/;

and the spectrum of z� � zV is

Sp.z� � zV / D ¹�C �0W� 2 Sp.� � V /; �0 � 0º:

Thus, the infimum of the spectrum of z�� zV is the infimum of the spectrum of�� V .

(3) We use Proposition 3.1.
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(5) We use (4.5). Using that
R
zB
zV d Q� � 2r

R
B
V d�, we have

r2p

Q�. zB..x;m/; r//

Z
zB

zV p d Q� �
r2p

.r=2/�.B.m; r=2//
2r

Z
B

V p d�:

Then, by R-doubling, zNp;R. zV / � 4ANp;R.V /. The other inequality is obtained in a
similar same way.

Proof of Theorem 1.2. From (1) and (3) of the above proposition, if .M; g; �/ is a
manifold satisfying .RFK/�R, then there is some � 2 .0; 1/, depending only on the
Faber–Krahn constants, such that . zM; Qg; Q�/ satisfies .RFK/�

�R
and .RD/�R, with � > 1.

So, we can apply Theorem 1.2 to zM : there is a constant zCp such that if zV is satisfies
zCp zNp;R. zV / � 1, then �1.z� � zV / � � 1

�2R2
.

Using (5), then there is a constant Cp > 0 such that CpNp;R.V / � zCp zNp;R. zV /.
Since �1.� � V / D �1.z� � zV /, if CpNp;R.V / � 1, then �1.� � V / � � 1

�2R2
. For

an arbitrary V � 0, locally integrable, with Np;R.V / < C1, we can apply the above
to V=CpNp;R.V /; then, for any  2 C10 .M/,

1

CpNp;R.V /

Z
M

V 2 d� �
1

�2

Z
M

�
jr j2 C

1

R2
 2
�

d�;

which is (1.7).

5. Hardy inequality

For some point o 2M , the L2 Hardy inequalityZ
M

 .x/2

d.o; x/2
d�.x/ � C

Z
M

jr .x/j2 d�.x/; for all  2 C10 .M/;

is equivalent to the positivity of the operator � � V , with V.x/ D 1
C
d.o; x/�2.

Moreover, we have:

Proposition 5.1. Let .M;g;�/ be a weighted Riemannian manifold, R 2 .0;1�. If �
satisfies .D/�R and .RD/�R, with � > 1, then for any p 2 .1; �=2/, there is a constant
Kp <1 such that for all r < R we have

r2
� −
B.x;r/

d.o; y/�2p d�
�1=p

� Kp:
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Proof. We let �.y/ D d.o; y/, B D B.x; r/, for r < R. If r � �.x/=2, then for y 2
B.x; r/, we have �.y/ � �.x/ � r � �.x/=2 � r . Therefore,Z

B

�.y/�2p d� � r�2p�.B/:

If r > �.x/=2, then B.x; r/ � B.o; 3r/, andZ
B

��2p d� �
Z

B.o;3r/

��2p d�

�

1Z
0

.2p � 1/t�2p�1�.B.o;min.t; 3r/// d t

�

3rZ
0

a�1.2p � 1/t��2p�1.3r/���.B.o; 3r// d t C r�2p�.B.o; 3r//

�

� 1

33pa

2p � 1

� � 2p
C 1

�
r�2p�.B.o; 3r// � Cpr

�2p�.B.x; r//;

since � > 2p, with the constant Cp depending uniquely on p and the doubling and
reverse doubling constants.

Applying Theorems 1.2 and 1.1, we immediately obtain:

Corollary 5.1. If .M; g; �/ satisfies .RFK/�R and .RD/�R with � > 2, then there is a
constant C such that for any  2 C10 .M/, o 2M ,Z

M

 .x/2

d.o; x/2
d�.x/ � C

�
kr k22 C

1

R2
k k22

�
:

Corollary 5.2. If .M; g;�/ satisfies .RFK/� , .RD/� with � > 2, then there is a con-
stant C such thatZ

M

 .x/2

d.o; x/2
d�.x/ � C

Z
M

jr j2 d� for all  2 C10 .M/: (5.1)

The second corollary follows from Theorem 1.5.
This time the condition on the reverse doubling order is not merely a technical

hypothesis. It is, in fact, a necessary condition for the Hardy inequality to holds if we
assume the measure � to be doubling:
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Proposition 5.2. Let .M; g; �/ be a weighted Riemannian manifold, with � a doub-
ling measure, assume that there is a constant � > 2 such that for any o 2 M ,  2
C10 .M/, M admits the Hardy inequality,�� � 2

2

�2 Z
M

 .x/2

d.o; x/2
d�.x/ �

Z
M

jr j2 d�I (5.2)

then � satisfies .RD/� .

Note that we can always write a Hardy inequality (5.1) in the form (5.2) simply
by choosing � D 2C 2

p
1=C .

Using a method from [3, 16], we have:

Proof. Take 0 < r < R. Define f .t/ D r�
��2
2 for 0 � t � r , f .t/ D t�

��2
2 for

r � t � R, f .t/ D 2R�
��2
2 � R�

�
2 t for R � t � 2R and f .t/ D 0 for t � 2R.

When r � t � R, we have f 0.t/2 D .��2
2
/2 f .t/

2

t2
. For some point o 2 M choose

'.x/ D f .d.o; x//. The Hardy inequality applied to ' leads to�� � 2
2

�2 Z
B.o;r/

'.x/2

d.o; x/2
d�.x/ �

Z
B.o;2R/nB.o;R/

jr'j2 d�.x/:

So,�� � 2
2

�2
r���.B.o; r// � R���.B.o; 2R/ n B.o;R// � AR���.B.o;R//;

using that � is doubling. Thus, there is some constant a > 0 such that

a
�R
r

��
�
�.B.o;R//

�.B.o; r//
;

and � is reverse doubling of order � > 2.
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