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Asymptotics of Robin eigenvalues on sharp infinite cones

Konstantin Pankrashkin and Marco Vogel

Abstract. Let ! � Rn be a bounded domain with Lipschitz boundary. For " > 0 and n 2 N,
consider the infinite cone

�" WD ¹.x1; x
0/ 2 .0;1/ �RnW x0 2 "x1!º � RnC1

and the operator Q˛" acting as the Laplacian u 7! ��u on �" with the Robin boundary con-
dition @�u D ˛u at @�", where @� is the outward normal derivative and ˛ > 0. We look at the
dependence of the eigenvalues ofQ˛" on the parameter ": this problem was previously addressed
for n D 1 only (in that case, the only admissible ! are finite intervals). In the present work, we
consider arbitrary dimensions n � 2 and arbitrarily shaped “cross-sections” ! and look at the
spectral asymptotics as " becomes small, i.e., as the cone becomes “sharp” and collapses to a
half-line. It turns out that the main term of the asymptotics of individual eigenvalues is determ-
ined by the single geometric quantity

N! WD
Voln�1 @!

Voln !
:

More precisely, for any fixed j 2 N and ˛ > 0, the j -th eigenvalue Ej .Q˛" / of Q˛" exists for
all sufficiently small " > 0 and satisfies

Ej .Q
˛
" / D �

N 2!˛
2

.2j C n � 2/2"2
CO

�1
"

�
as "! 0C.

The paper also covers some aspects of Sobolev spaces on infinite cones, which can be of inde-
pendent interest.

1. Introduction

Let ! � Rn be a bounded domain (connected open set) with Lipschitz boundary. For
" > 0, consider the open set

�" WD ¹.x1; x
0/ 2 .0;1/ �RnW x0 2 "x1!º � RnC1:
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Geometrically, the set �" is an infinite cone in RnC1 such that the intersection of
�" with the hyperplane x1 D a gives the set "a!. We are interested in some spec-
tral properties of a Robin Laplacian on �" as " becomes small, i.e., when the cone
becomes “sharp” and collapses to the half-line .0;1/� ¹0º. Namely, for ˛ > 0 denote
by Q˛

" the self-adjoint operator in L2.�"/ generated by the closed, densely defined,
symmetric bilinear form

q˛" .u; u/ D

Z
�"

jruj2 d x � ˛
Z
@�"

u2 d �; D.q˛" / D H
1.�"/;

where d � stands for the n-dimensional Hausdorff measure. The semiboundedness
and the closedness are not completely obvious as �" is unbounded and may have
a non-Lipschitz singularity at the origin: we discuss these aspects in detail in the
appendices. Informally, the operator Q˛

" can be viewed as the positive Laplacian,
u 7! ��u, with the Robin boundary condition @�u D ˛u, where @� is the outward
normal derivative; we refer to [4, 10, 11] for a discussion of various aspects related to
the precise description of the operator domain. Such operators are often referred to
as Robin Laplacians with negative parameters [7] due to the negative contribution of
the boundary term in the bilinear form. The cone �" is invariant with respect to the
dilations x 7! tx for any t > 0, and standard arguments show the unitary equivalence
Q˛
" ' ˛

2Q1
" . Hence, it will be convenient to consider ˛ D 1 only and to study the

operator and the form
Q" WD Q

1
" ; q" WD q

1
" :

For a review of spectral problems with Robin boundary conditions, we refer to [7].
In particular, the eigenvalues of Robin Laplacians on infinite cones play a central role
in the strong coupling asymptotics of Robin eigenvalues on general domains. Namely,
if � is an open set in some large class and T�;˛ is the Robin Laplacian on � defined
as the operator associated with the symmetric bilinear form

t�;˛.u; u/ D

Z
�

jruj2 d x � ˛
Z
@�

u2 d �; u 2 H 1.�/;

then the lower edge ƒ1.T�;˛/ of the spectrum of T�;˛ satisfies

ƒ1.T
�;˛/ D ˛2 inf

x2@�
ƒ1.T

Ux ;1/C o.˛2/ as ˛ !C1;

where T Ux ;1 is the Robin Laplacian on the infinite tangent cone Ux at x 2 @�. We
refer to [6, 25] for technical details and precise definitions and to [14–17, 20, 31] for
a more precise eigenvalue analysis under more specific regularity assumptions. The
function ˛ 7!ƒ1.T

�;˛/ plays a role in the study of some non-linear equations as dis-
cussed in [24]. Eigenvalues and eigenfunctions of sharp cones can be used to produce
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counterexamples to spectral gap estimates [22]. In addition, such operators attract
some attention as examples of geometric “long-range” configurations producing an
infinite discrete spectrum [5, 9, 30]. Let us summarize the available spectral informa-
tion for Q".

The essential spectrum of Q" depends in a non-trivial way on ! and ". If ! has
smooth boundary, then, in virtue of [30, Theorem 1], the essential spectrum of Q"
is Œ�1;C1/, as �" is smooth outside the origin. For non-smooth !, the essential
spectrum is determined through an iterative procedure and can look differently; see
the detailed discussion in [6].

If ! is the unit ball centered at the origin of Rn, then Q" is a round cone whose
lateral surface forms the constant angle � WD arctan " with the central axis, and the
bottom of the spectrum of Q" is the eigenvalue

E1.Q"/ D �
1

sin2 �
� �

1C "2

"2
(1)

with eigenfunction  .x1; x0/ D exp.�x1= sin �/. In fact, only n D 1 and n D 2 were
considered explicitly, see e.g. [25, Lemma 2.6] and [19, Proposition 4.2], but the con-
structions literally hold for arbitrary dimensions n.

The case n D 1 (�" is an infinite planar sector) was studied in detail in [21]. The
only admissible sets ! are finite intervals, so without loss of generality we can take
! WD .�1; 1/. In [21] it was shown that the discrete spectrum of Q" is always finite,
but the number of eigenvalues grows unboundedly as " becomes small, and for each
fixed j 2 N (we use the convention 0 … N) the j -th eigenvalue Ej .Q"/ behaves as

Ej .Q"/ D �
1

.2j � 1/2"2
CO.1/ as "! 0C. (2)

Some explicit formulas for eigenpairs of Q" in this particular case were obtained
in [26], but it is unclear if the constructed family exhausts the whole discrete spectrum.

If n � 2, the discrete spectrum of Q" may be infinite. For example, if n D 2 and
! is simply connected with smooth boundary, then the infiniteness of the discrete
spectrum follows by [30, Corollary 5.2], since the complement of �" is not a convex
set (similar arguments apply in higher dimensions; we refer to [30] for details). On
the other hand, for polyhedral ! the discrete spectrum can be finite. For example,
if one chooses ! in such a way that �1 is an isometric copy of .0;1/nC1, then
an easy analysis based on the separation of variables method shows that the discrete
spectrum ofQ1 consists of a single eigenvalue�.nC 1/. For nD 2 and smooth !, the
accumulation rate of eigenvalues at the bottom of the essential spectrum was studied
in [5]. Furthermore, in [19] it was shown that round infinite cones maximize the first
eigenvalue among all cones with the same perimeter of the spherical cross-section.
Various two-sided estimates for the bottom of the spectrum were obtained in [25].
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In particular, it was shown that the lowest eigenvalue can be computed explicitly if
the spherical cross-section of �" is a spherical polygon admitting an inscribed circle.

In the present work, we complement the above results by computing the asymp-
totics of individual eigenvalues of Q" for small " in arbitrary dimensions and for
arbitrary cross-sections !. It turns out that the main term in the asymptotics depends
on a single geometric constant N! given in (3) and, hence, it is rather insensitive to
the regularity of !. Our result reads as follows:

Theorem 1.1. Let j 2 N. Then, Q" has at least j discrete eigenvalues below the
bottom of the essential spectrum for all sufficiently small " > 0, and its j -th eigenvalue
Ej .Q"/ satisfies

Ej .Q"/ D �
N 2
!

.2j C n � 2/2"2
CO

�1
"

�
as "! 0C; (3a)

N! WD
Voln�1 @!

Voln !
: (3b)

For n D 1 and ! D .�1; 1/, one has N! D 1, and the result follows directly
from (2), and all other intervals ! are easily included by applying suitable reparamet-
rizations. Hence, for the rest of the text we explicitly assume n � 2. Remark that if !
is a unit ball centered at the origin, then one has N! D n, and the exact formula (1)
has the form (3) with j D 1 and a more accurate remainder estimate. Based on these
observations, one may expect that the remainder estimate in (3) is not optimal. We
further remark that if the volume Voln ! or the surface area Voln�1 @! is fixed, then
the quantity N! is minimized by the ball due to the classical isoperimetric inequality.
Hence, the sharp cones �" whose cross-section ! are balls maximize the main term
in (3) among all sharp cones with cross-sections of the same volume or surface area.

Our proof is variational and based on the min–max principle, and its main ingredi-
ent is a kind of asymptotic separation of the variables x1 and x0, which is quite similar
to [21], but the analysis in the x0-direction is much more involved and uses some
coordinate transforms similar to [23]. Various proof steps are explained in greater
detail in Section 2.4 below. We intentionally opted for the min–max approach as it
allows for an elementary and self-containing proof of the main results concerning
the eigenvalues. It should be noted that other more advanced approaches should be
applied if one needs more information on eigenfunctions, for example, the method of
matched asymptotic expansions [27,28]. Nevertheless, in view of the expected amount
of additional technical work we believe that such an analysis should be the subject of
separate study. We also remark that in the appendix we prove some results on Sobolev
spaces on �" (which is unbounded and may be non-Lipschitz) that are needed for the
spectral analysis: this part of the text may be of its own interest.
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2. Preparations for the proof

2.1. Min–max principle

Let T be a lower semibounded self-adjoint operator in an infinite-dimensional Hilbert
space H . The spectrum and the essential spectrum of T will be denoted by spec T
and specess T , respectively. Furthermore, denote † WD inf specess T for specess T ¤ ;

and † WD C1 otherwise. If T has at least j eigenvalues (counting multiplicities)
in .�1; †/, then we denote by Ej .T / its j -th eigenvalue (when enumerated in the
non-decreasing order and counted according to the multiplicities). All operators we
consider are real (i.e., map real-valued functions to real-valued functions), and we
prefer to work with real Hilbert spaces in order to have shorter expressions.

Let t be the bilinear form for T , with domain D.t/, and let D � D.t/ be any
dense subset (with respect to the scalar product induced by t ). Consider the following
“variational eigenvalues”:

ƒj .T / WD inf
V�D

dimVDj

sup
u2V
u¤0

t .u; u/

hu; uiH
;

which are independent of the choice of D. One easily sees that j 7! ƒj .T / is non-
decreasing, and it is known [33, Section XIII.1] that only two cases are possible.

• For all j 2N there holdsƒj .T /<†. Then the spectrum of T in .�1;†/ consists
of infinitely many discrete eigenvalues Ej .T / � ƒj .T / with j 2 N.

• For some N 2 N [ ¹0º there holds ƒNC1.T / � †, while ƒj .T / < † for all
j � N . Then T has exactly N discrete eigenvalues in .�1; †/ and Ej .T / D
ƒj .T / for j 2 ¹1; : : : ; N º, while ƒj .T / D † for all j � N C 1.

In all cases, there holds limj!1ƒj .T /D†, and if for some j 2N one hasƒj .T / <
†, then Ej .T /Dƒj .T /. In particular, if for some j 2N one has the strict inequality
ƒj .T / < ƒjC1.T /, then Ej .T / D ƒj .T /.

2.2. Robin Laplacian on !

Given r 2 R, denote by Br the self-adjoint operator in L2.!/ generated by the closed
symmetric bilinear form

br.f; f / D

Z
!

jrf .t/j2 d t � r
Z
@!

f .t/2 d �.t/; f 2 H 1.!/I

remark that br is semibounded from below due to Proposition A.1. Informally, the
operator Br is the Laplacian f 7! ��f on ! with the Robin boundary condition
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@�f D rf , with @� being the outward normal derivative. We will summarize some
important spectral properties of Br as follows.

Lemma 2.1. The following assertions hold true.

(a) For any r 2 R the first eigenvalue E1.Br/ is simple, and the corresponding
eigenfunction  r can be chosen strictly positive with k rkL2.!/ D 1.

(b) The mappings R 3 r 7! E1.Br/ 2 R and R 3 r 7!  r 2 L
2.!/ are C1.

(c) There exists ' 2L1.0;1/ such thatE1.Br/D�N!r C r2'.r/ for all r > 0
and N! as defined in (3).

(d) Let EN2 > 0 be the second eigenvalue of the Neumann Laplacian on !. Then
limr!0E2.Br/ D E

N
2 .

(e) For any r0 > 0 there exists K > 0 such thatZ
!

j@r r.y/j
2 dy � K for all r 2 .0; r0/. (4)

Proof. Part (a) is proved for even more general Robin problems in [3, Section 4.2].
Both (b) and (d) follow from the fact that the operators Br form a type (B) analytic
family with respect to r , see [18, Chapter 7, §4], and (e) is a direct consequence of (b).
To prove (c), we remark first that there exists C > 0 such that

�Cr2 � E1.Br/ � 0 as r !C1I (5)

the lower bound is proved, e.g., in [23, Corollary 2.2], and the upper bound follows
from br.1; 1/ < 0 (which holds for all r > 0) by the min–max principle. Furthermore,
by [7, (4.16)] one has

d

dr
E1.Br/

ˇ̌̌
rD0
D �N! ;

and it follows that E1.Br/ D �N!r CO.r2/ as r ! 0C. By combining this asymp-
totics with (5), we arrive at the representation in (c).

2.3. One-dimensional model operators

For a fixed � > 0, consider the symmetric differential operator in L2.0;1/ given by

C1c .0;1/ 3 f 7! �f
00
C

�n2 � 2n
4s2

�
N!

�s

�
f

and denote by A� its Friedrichs extension. Note that n2 � 2n � 0 due to n � 2.
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In [12, Chapter 8.3], the spectrum ofA� was fully determined:1 the essential spec-
trum is Œ0;C1/ and the negative eigenvalues are simple and are explicitly given by

Ej .A�/ D
Ej .A1/

�2
D �

N 2
!

.2j C n � 2/2�2
; j 2 N; � > 0: (6)

In what follows, we will need to work with truncated versions of A�. Namely,
for b > 0 we denote by M�;b and zM�;b the Friedrichs extensions in L2.0; b/ and
L2.b;1/ of the operators C1c .0; b/ 3 f 7! A�f and C1c .b;1/ 3 f 7! A�f

respectively.
Note that, by construction, the form domain of M�;b is contained in H 1

0 .0; b/,
which implies that M�;b has compact resolvent. We need to relate the eigenvalues of
M�;b to those of A�. As the bilinear form of A� extends that ofM�;b , one has, due to
the min–max principle,

Ej .M�;b/ � Ej .A�/ for any b > 0, � > 0, j 2 N. (7)

Let us now obtain an asymptotic upper bound for Ej .M�;b/.

Lemma 2.2. Let b > 0 and j 2 N. Then there exist K > 0 and "0 > 0 such that

Ej .M";b/ � Ej .A"/CK for all " 2 .0; "0/:

Proof. The proof is quite standard and uses a so-called IMS partition of unity [8,
Section 3.1]. Let �1 and �2 be two smooth functions on R with 0 � �1; �2 � 1,
such that �21 C �

2
2 D 1, �1.s/ D 0 for s > 3

4
b, �2.s/ D 0 for s < 1

2
b. We set K WD

k�01k
2
1Ck�

0
2k
2
1. An easy computation shows that for any f 2C1c .0;1/ there holds

1Z
0

jf 0j2 d s D

1Z
0

j.�1f /
0
j
2 d s C

1Z
0

j.�2f /
0
j
2 d s �

1Z
0

.j�01j
2
C j�02j

2/f 2 d s

�

1Z
0

j.�1f /
0
j
2 d s C

1Z
0

j.�2f /
0
j
2 d s �Kkf k2

L2.0;1/
;

which implies

hf;A"f iL2.0;1/ CKkf k
2
L2.0;1/

� h�1f;A".�1f /iL2.0;1/ C h�2f;A".�2f /iL2.0;1/

� h�1f;A".�1f /iL2.0;b/ C h�2f;A".�2f /iL2. b4 ;1/
:

1For n D 2 see [12, p. 312] and for n � 3 see [12, p. 294].
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Using the identity

kf k2
L2.0;1/

D k�1f k
2
L2.0;b/

C k�2f k
2

L2. b4 ;1/

and the obvious inclusions �1f 2 C1c .0; b/, �2f 2 C
1
c .

b
4
;1/, we apply the min–

max principle as follows:

Ej .A"/CK

D inf
S�C1c .0;1/

dimSDj

sup
f 2S
f¤0

hf;A"f i CKkf k
2
L2.0;1/

kf k2
L2.0;1/

� inf
S�C1c .0;1/

dimSDj

sup
f 2S
f¤0

h�1f;A".�1f /iL2.0;b/ C h�2f;A".�2f /iL2. b4 ;1/

kf k2
L2.0;1/

D inf
S�C1c .0;1/

dimSDj

sup
f 2S
f¤0

h�1f;A".�1f /iL2.0;b/ C h�2f;A".�2f /iL2. b4 ;1/

k�1f k
2
L2.0;b/

C k�2f k
2

L2. b4 ;1/

� inf
S�C1c .0;b/˚C1c . b4 ;1/

dimSDj

sup
.f1;f2/2S
.f1;f2/¤0

hf1; A"f1iL2.0;b/ C hf2; A"f2iL2. b4 ;1/

kf1k
2
L2.0;b/

C kf2k
2

L2. b4 ;1/

D ƒj .M";b ˚
zM"; b4

/ � min¹ƒj .M";b/; inf spec zM"; b4
º: (8)

For any j 2 N, we have ƒj .M";b/ D Ej .M";b/. At the same time, for any function
f 2 C1c .

b
4
;1/ one has

hf; zM"; b4
f iL2. b4 ;1/

D

1Z
b
4

h
jf 0j2 C

�n2 � 2n
4s2

�
N!

"s

�
f 2
i

d s

� �
N!

"

1Z
b
4

1

s
f 2 d s � �

4N!

b"
kf k2

L2. b4 ;1/
;

which gives the lower bound inf spec zM"; b4
� �

4N!
b"

. Due to (6), we conclude that if
j 2 N is fixed, then one can find some "0 > 0 such that for all " 2 .0; "0/ there holds
Ej .A"/CK < inf spec zM"; b4

. Then, (8) implies Ej .A"/CK � Ej .M";b/.

2.4. Scheme of the proof

We first remark that �" is unbounded and, in general, not with Lipschitz boundary
near 0, and it does not satisfy the standard assumptions for trace theorems and other
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important assertions discussed in most books. These aspects are discussed in detail in
the appendices, and here we only cite the most important conclusions.

For an open interval I � .0;1/, we denote

C1I .
x�"/ WD ¹u 2 C

1.x�"/W there exists Œb; c� � I
such that u.x/ D 0 for x1 … Œb; c�º; (9)

in Appendix A we show:

Lemma 2.3. The subspace C1
.0;1/

.x�"/ is dense in H 1.�"/.

To continue, we need suitable coordinates on @�". Consider the diffeomorphism

X W .0;1/ �Rn ! .0;1/ �Rn; X.s; t/ D .s; "st/; .s; t/ � .s; t1; t2; : : : ; tn/I

then @�" D X..0;1/ � @!/ [ ¹0º. Remark that ¹0º has zero n-dimensional Haus-
dorff measure and can be neglected in the integration over @�".

By d � and d � , we will denote the integration with respect to the n- and .n � 1/-
dimensional Hausdorff measures, respectively. The following technical estimate will
play an important role (see Appendix B for a detailed proof):

Lemma 2.4. For any " > 0, any measurable vW@�"!R and u WD v ıX , there holds

"n�1
1Z
0

Z
@!

sn�1ju.s; t/j d �.t/ d s

�

Z
@�"

jvj d � �
p
1CR2"2"n�1

1Z
0

Z
@!

sn�1ju.s; t/j d �.t/ d s

with R WD supt2! jt j.

By combining Lemmas 2.3 and 2.4, we show (Proposition B.1) that the trace of
any function u 2 H 1.�"/ on @�" is well-defined and, as a result, that the bilinear
form q" is closed and semibounded from below (Corollary B.2), which shows thatQ"
is really a lower semibounded self-adjoint operator. Its spectral study will be mainly
based on the min–max principle (Section 2.1) in which we take D WD C1

.0;1/
.x�"/.

In Section 3 we study a Robin Laplacian on a finite part of �", and it is the most
voluminous part of the analysis. Pick some a > 0 (this value will remain fixed through
the whole text), and denote

V" WD �" \ ¹x1 < aº � ¹.x1; x
0/ 2 .0; a/ �RnW x0 2 "x1!º � RnC1;

@0V" WD @�" \ ¹x1 < aº � ¹.x1; x
0/ 2 .0; a/ �RnW x0 2 "x1@!º � @V";

yH 1
0 .V"/ WD the closure of C1.0;a/.x�"/ in H 1.V"/:
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Let T" be the self-adjoint operator in L2.V"/ associated with the symmetric bilinear
form

t".u; u/ D

Z
V"

jruj2 d x �
Z
@0V"

u2 d �; D.t"/ D yH
1
0 .V"/I (10)

then T" can be informally interpreted as the Laplacian in V" with the Robin boundary
condition @�u D u on @0V" and the Dirichlet boundary condition on the remaining
boundary @V" n @0V" (which corresponds to x1 D a). In view of Lemma 2.3, the
variational eigenvalues of T" are defined by

ƒj .T"/ D inf
S�D0.t"/
dimSDj

sup
u2S
u¤0

t".u; u/

kuk2
L2.V"/

; D0.t"/ WD C
1
.0;a/.

x�"/; j 2 N: (11)

Using a suitable change of coordinates and the spectral analysis of Br , the study of
eigenvalues of T" with small " is reduced to the truncated one-dimensional operat-
ors M"0;a (with suitable "0 � ") from Section 2.3. The main result of this reduction
is given in Proposition 3.6. The analysis is in the spirit of the Born–Oppenheimer
approximation, see e.g., [32, Part 3], with M"0;a being an “effective operator,” and
it is essentially an adaptation of the constructions of the earlier paper [23] on Robin
eigenvalues in domains with peaks.

The link between the analysis of the truncated operator T" and the initial operator
Q" is justified in Section 4. We show in Proposition 4.4 that the eigenvalues ofQ" are
close to those of T", which finishes the proof of Theorem 1.1.

3. Spectral analysis near the vertex

In this section, we study ƒj .T"/ with small ". The proof will be based on (11) and on
a kind of asymptotic separation of variables.

3.1. Change of variables

One observes that

V" D X.…/; … D .0; a/ � !; X.s; t/ D .s; "st/;

.s; t/ � .s; t1; t2; : : : ; tn/ 2 …:

This induces the unitary transform (change of variables)

UWL2.V"/! L2.…; "nsn d s d t /; Uu WD u ıX:
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Consider the symmetric bilinear form p" in L2.…; "nsn d s d t / given by

p".u; u/ WD t".U
�1u;U�1u/; D.p"/ D UD.t"/:

Due to the unitarity of U and Lemma 2.3, the subspace

D0.p"/ WD UD0.t"/

� ¹u 2 C1. x…/W there exists Œb; c� � .0; a/

such that u.s; t/ D 0 for s … Œb; c�º;

is a core of p", and by (11) one has

ƒj .T"/ D inf
S�D0.p"/

dimSDj

sup
u2S
u¤0

p".u; u/

kuk2
L2.…;"nsn d s d t/

: (12)

Now, we would like to obtain more convenient expressions for p".u; u/.

Lemma 3.1. Denote
R WD sup

t2!
jt j: (13)

For any v 2 D0.t"/ and u WD Uv 2 D0.p"/,

"n
aZ
0

Z
!

h
.1 � nR"/j@suj

2
C
1 � .nR2"2 CR"/

"2s2
jrtuj

2
i
sn d t d s

�

Z
V"

jrvj2 d x

� "n
aZ
0

Z
!

h
.1C nR"/j@suj

2
C
1C .nR2"2 CR"/

"2s2
jrtuj

2
i
sn d t d s:

Proof. A standard computation shows that for any u 2 D0.p"/ there holdsZ
V"

jrvj2 d x D "n
aZ
0

Z
!

hru;GruiRnC1s
n d t d s (14)

where G is the .nC 1/ � .nC 1/ matrix given by

G D .DXTDX/�1 �

�
1C "2jt j2 "2st

"2stT "2s21

��1
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with DX being the Jacobi matrix of X and 1 being the n � n identity matrix. One
checks directly that G is a block matrix:

G D

�
1 �

t
s

�
tT

s
C

�
with Cjk D

8̂̂<̂
:̂

1

"2s2
C
t2j

s2
if j D k;

tj tk

s2
if j ¤ k:

We would like to estimate the term hru; GruiRnC1 from above and from below
using simpler expressions. One obtains

hru;GruiRnC1 D j@suj
2
C

1

"2s2
jrtuj

2

�
2

s

nX
kD1

tk@su@tkuC
1

s2

nX
j;kD1

tj tk@tj u@tku: (15)

Using the standard inequality 2jxyj � x2 C y2 and jtj j � jt j < R, we estimateˇ̌̌2
s

nX
kD1

tk@su@tku
ˇ̌̌
� R"

nX
kD1

ˇ̌̌
2@su �

@tku

"s

ˇ̌̌
� R"

nX
kD1

�
j@suj

2
C
j@tkuj

2

"2s2

�
D nR"j@suj

2
C

R

"s2
jrtuj

2;ˇ̌̌ 1
s2

nX
j;kD1

tj tk@tj u@tku
ˇ̌̌
�
R2

s2

nX
j;kD1

j@tj u@tkuj

�
R2

2s2

nX
j;kD1

.j@tj uj
2
C j@tkuj

2/

D
nR2

s2
jrtuj

2:

The substitution into (15) gives a two-sided estimate for hru; GruiRnC1 , and the
substitution into (14) gives the claim.

By applying Lemmas 3.1 and 2.4 to both summands of t" in (10) and by adjust-
ing various constants, we obtain the following two-sided estimate written in a form
adapted for the subsequent analysis:
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Proposition 3.2. There exist c > 0 and "0 > 0, with c"0 < 1, both independent of the
choice of a, such that for any " 2 .0; "0/ and any u 2 D0.p"/ there holds

p�" .u; u/ � p".u; u/ � p
C
" .u; u/;

p˙" .u; u/ WD .1˙ c"/"
n

aZ
0

Z
!

sn
h
j@suj

2
C

1

"2s2
jrtuj

2
i

d t d s

�
1

1˙ c"
"n�1

aZ
0

Z
@!

sn�1u2 d �.t/ d s:

In particular, by (12) it follows that for each j 2 N and any " 2 .0; "0/ there holds

inf
S�D0.p"/

dimSDj

sup
u2S
u¤0

p�" .u; u/

kuk2
L2.…;"nsn d s d t/

�ƒj .T"/� inf
S�D0.p"/

dimSDj

sup
u2S
u¤0

pC" .u; u/

kuk2
L2.…;"nsn d s d t/

:

3.2. Upper bound for the eigenvalues of T"

We are going to compare the eigenvalues of T" with those of the truncated one-
dimensional operators M"0;a.

Lemma 3.3. There exist c; c0; "0 > 0, with c"0 < 1, such that for any j 2 N and any
" 2 .0; "0/ there holds ƒj .T"/ � .1C c"/Ej .M.1Cc"/2";a/C c

0.

Proof. Take first c and "0 as in Proposition 3.2. Define a unitary transform

V WL2.…/! L2.…; "nsn d s d t /; .Vu/.s; t/ D "�
n
2 s�

n
2 u.s; t/;

and consider the symmetric bilinear form rC" .u; u/ WD p
C
" .Vu;Vu/. One easily sees

that for any u 2 D0.rC" / WD V�1D0.p"/ � D0.p"/ there holds

rC" .u; u/ D .1C c"/

aZ
0

Z
!

��
@su �

nu

2s

�2
C

1

"2s2
jrtuj

2
�

d t d s

�
1

.1C c"/"

aZ
0

1

s

Z
@!

u2 d �.t/ d s:

The substitution u 7! Vu into the upper bound of Proposition 3.2 shows that

ƒj .T"/ � inf
S�D0.r

C
" /

dimSDj

sup
u2S
u¤0

rC" .u; u/

kuk2
L2.…/

:
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Using the density, on the right-hand side one can replace rC" and D0.rC" / by the
closure rC" and any dense subset D � D.rC" /. By Lemma A.3, we can take

D D ¹u 2 H 1.…/W there exists Œb; c� � .0; a/ such that u.x/ D 0 for x1 … Œb; c�º;

and we keep the symbol rC" for rC" on D, as it is given by the same expression.
Therefore,

ƒj .T"/ � inf
S�D

dimSDj

sup
u2S
u¤0

rC" .u; u/

kuk2
L2.…/

; (16)

Then integration by parts shows that for u 2 D one hasZ
!

aZ
0

u@su

s
d s d t D

Z
!

aZ
0

u2

2s2
d s d t; (17)

which implies

rC" .u; u/ D .1C c"/

aZ
0

Z
!

��
j@suj

2
C
n2 � 2n

4s2
u2
�
C

1

"2s2
jrtuj

2
�

d t d s

�
1

.1C c"/"

aZ
0

1

s

Z
@!

u2 d � d s

D .1C c"/

� aZ
0

Z
!

�
j@suj

2
C
n2 � 2n

4s2
u2
�

d t d s

C

aZ
0

1

"2s2

²Z
!

jrtuj
2 d t �

"s

.1C c"/2

Z
@!

u2 d �
³

d s
�
:

(18)

Note that the functional in the curly brackets is the bilinear form b"�.s;"/ as defined
in Section 2.2 with �.s; "/ D s.1C c"/�2. Let  �  "�.s;"/ be the positive normal-
ized eigenfunction of B"�.s;"/ for E1.B"�.s;"//. By Lemma 2.1, for any " > 0 the map
R 3 s 7!  "�.s;"/ 2L

2.!/ is C1. If f 2 C1c .0; a/, then also R 3 s 7! f .s/ "�.s;"/ 2

L2.!/ is C1, and the derivative (which is smooth and with compact support) coin-
cides with the weak derivative in … with respect to s. It follows that the function
.s; t/ 7! f .s/ "�.s;"/.t/ belongs to the above subspaceD. Moreover, if S �C1c .0;a/
is a j -dimensional subspace, then

zS D ¹uW…! RWu.s; t/ D f .s/ "�.s;"/.t/; f 2 Sº
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is a j -dimensional subspace ofD. For any u 2 zS , one has kukL2.…/ D kf kL2.0;a/ by
Fubini’s theorem andZ

!

jrtuj
2 d t �

"s

.1C c"/2

Z
@!

u2 d � D E1.B"�.s;"//f .s/2;

due to the spectral theorem. Furthermore,
aZ
0

Z
!

j@suj
2 d t d s D

aZ
0

Z
!

jf 0.s/ "�.s;"/.t/C f .s/@s "�.s;"/.t/j
2 d t d s

D

aZ
0

Z
!

h
f 0.s/2 "�.s;"/.t/

2
C f .s/2j@s "�.s;"/.t/j

2

C f .s/f 0.s/ � 2 "�.s;"/.t/@s "�.s;"/.t/
i

d t d s;

whileZ
!

2 "�.s;"/.t/@s "�.s;"/.t/d t D
Z
!

@sj "�.s;"/.t/j
2 d t D @sk "�.s;"/k2L2.!/D @s1D 0:

Therefore,
aZ
0

Z
!

�
j@suj

2
C
n2 � 2n

4s2
u2
�

d t d s

D

aZ
0

�
jf 0j2 C

�
n2 � 2n

4s2
C

Z
!

j@s "�.s;"/j
2 d t

�
f 2
�

d s:

The substitution into (18) shows that for any u 2 zS there holds

rC" .u; u/

D .1C c"/

aZ
0

h
jf 0j2 C

�n2 � 2n
4s2

C

Z
!

j@s "�.s;"/j
2 d t C

E1.B"�.s;"//

"2s2

�
f 2
i

d s:

By the estimate (4) in Lemma 2.1, we can control the term with @s . Namely, for
s 2 .0;a/ and " 2 .0; "0/ the values of "�.s; "/ are contained in some bounded interval,
and then one can find some K > 0 such thatZ

!

j@s "�.s;"/.t/j
2 d t D "2

Z
!

�
@� �.t/j�D"�.s;"/

@�.s; "/

@s

�2
d t

D
"2

.1C c"/4

Z
!

.@� �.t/j�D"�.s;"//
2 d t � K"2:
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Hence, for all u 2 zS and " 2 .0; "0/, one has

rC" .u; u/ � .1C c"/

aZ
0

h
jf 0j2 C

�n2 � 2n
4s2

CK"2 C
E1.B"�.s;"//

"2s2

�
f 2
i

d s:

Now, we apply Lemma 2.1(a,c) to the eigenvalue E1.B"�.s;"//: there exists c0 > 0

such that for all s > 0 and " > 0 there holds

E1.B"�.s;"//

"2s2
�
�N!"�.s; "/C c0"

2�2.s; "/

"2s2
D �

N!

"s
�

1

.1C c"/2
C

c0

.1C c"/4
:

Hence, for all u 2 zS and " 2 .0; "0/ we obtain

rC" .u; u/

kuk2
L2.…/

�

.1C c"/

aZ
0

h
jf 0j2 C

�n2 � 2n
4s2

�
N!

"s
�

1

.1C c"/2

�
f 2
i

d s

kf k2
L2.0;a/

C
c0

.1C c"/3
C .1C c"/K"2

D .1C c"/
hf;M.1Cc"/2";af iL2.0;a/

kf k2
L2.0;a/

C
c0

.1C c"/3
C .1C c"/K"2

� .1C c"/
hf;M.1Cc"/2";af iL2.0;a/

kf k2
L2.0;a/

C c0

for
c0 WD c0 C .1C c"0/

2K"20:

The constants c; c0; "0 are independent of j and S . By (16), for any j 2 N and " 2
.0; "0/ there holds

ƒj .T"/ � inf
S�D

dimSDj

sup
u2S
u¤0

rC" .u; u/

kuk2
L2.…/

� inf
S�C1c .0;a/

dimSDj

sup
u2 zS
u¤0

rC" .u; u/

kuk2
L2.…/

� .1C c"/ inf
S�C1c .0;a/

dimSDj

sup
f 2S
f¤0

hf;M.1Cc"/2";af iL2.0;a/

kf k2
L2.0;a/

C c0

D .1C c"/Ej .M.1Cc"/2";a/C c
0:

Corollary 3.4. For any j 2 N there exist k > 0 and "0 > 0 such that

ƒj .T"/ � �
N 2
!

.2j C n � 2/2"2
C
k

"
for all " 2 .0; "0/.
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Proof. By Lemma 2.2 for any fixed c > 0 and j 2 N, we can choose K 0 > 0 such
that

Ej .M.1Cc"/2";a/ � Ej .A.1Cc"/2"/CK
0
� �

N 2
!

.2j C n � 2/2"2
�

� 1

1C c"

�4
CK 0

if " is small enough. The substitution into Lemma 3.3 gives the result.

3.3. Lower bound for the eigenvalues of T"

The lower bound for the eigenvalues of T" is also obtained using a comparison with
the operators M"0;a but requires more work.

Lemma 3.5. Let j 2 N. Then there exist "0 > 0 and k0 > 0 such that

ƒj .T"/ � �
N 2
!

.2j C n � 2/2"2
�
k0

"
for all " 2 .0; "0/.

Proof. Take c and "0 as in Proposition 3.2. For " 2 .0; "0/, consider again the unitary
transform V WL2.…/ ! L2.…; "nsn d s d t /, .Vu/.s; t/ D "�

n
2 s�

n
2 u.s; t/, and the

symmetric bilinear form r�" .u; u/ WD p
�
" .Vu;Vu/. The reparametrization u 7! Vu

in the lower bound of Proposition 3.2 leads to

ƒj .T"/ � inf
S�D0.r

�
" /

dimSDj

sup
u2S
u¤0

r�" .u; u/

kuk2
L2.…/

; D0.r
�
" / WD V�1D0.p"/ � D0.p"/: (19)

The substitution of Vu into p�" and the partial integration (17) show that

r�" .u; u/ D .1 � c"/

aZ
0

Z
!

��
j@suj

2
C
n2 � 2n

4s2
u2
�
C

1

"2s2
jrtuj

2
�

d t d s

�
1

.1 � c"/"

aZ
0

1

s

Z
@!

u2 d � d s

D .1 � c"/

� aZ
0

Z
!

�
j@suj

2
C
n2 � 2n

4s2
u2
�

d t d s

C

aZ
0

1

"2s2

²Z
!

jrtuj
2 d t �

"s

.1 � c"/2

Z
@!

u2 d �
³

d s
�
;

�.s; "/ WD
s

.1 � c"/2
2 .0;m/; m WD

a

.1 � c"0/2
; " 2 .0; "0/:

(20)
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The expression in the curly brackets is the bilinear form b"�.s;"/ for the Robin Lapla-
cian B"�.s;"/ on ! as discussed in Section 2.2. Denote by  "�.s;"/ the positive eigen-
function for E1.B"�.s;"// with k "�.s;"/kL2.!/ D 1, then s 7!  "�.s;"/ is C1 by
Lemma 2.1. We decompose each u 2 D0.r�" / as

u D v C w with v.s; t/ D  "�.s;"/.t/f .s/;

f .s/ WD

Z
!

u.s; t/ "�.s;"/.t/ d t:

By construction, we have f 2 C1c .0; a/ and, furthermore,Z
!

w.s; t/ "�.s;"/.t/ d t D 0 for any s 2 .0; a/, (21)

kf kL2.0;a/ D kvkL2.…/; kf k
2
L2.0;a/

C kwk2
L2.…/

D kuk2
L2.…/

: (22)

The spectral theorem applied to B"�.s;"/ implies that for any u 2 D0.r�" / there holdsZ
!

jrtu.s; t/j
2 d t � "�.s; "/

Z
@!

u.s; t/2 d �.t/

� E1.B"�.s;"//f .s/
2
CE2.B"�.s;"//

Z
!

w.s; t/2 d t : (23)

By Lemma 2.1 (c), one can find a constant c1 > 0 such that

E1.Bx/ D �N!x CO.x
2/ > �

N!x

1 � c1x
for all sufficiently small x > 0.

We have "�.s; "/ 2 Œ0;m"0�. By adjusting the value of "0, we conclude that there exists
c2 > 0 such that for all " 2 .0; "0/ and s 2 .0; a/ one has

E1.B"�.s;"//

"2s2
� �

N!"�.s; "/

"2s2.1 � c1"�.s; "//

D �
N!"s

.1 � c"/2"2s2.1 � c1"s

.1�c"/2
/

D �
N!

"s..1 � c"/2 � c1"s/
� �

N!

"s.1 � c2"/
:

By Lemma 2.1(d) we can find C0 > 0 such thatE2.Bx/DEN2 C o.1/� C0 for small
x > 0. Hence, if "0 is sufficiently small, s 2 .0; a/ and " 2 .0; "0/, then (23) implies

1

"2s2

�Z
!

jrtuj
2 d t � �.s; "/

Z
@!

u2 d �
�
� �

N!

"s.1 � c2"/
f .s/2 C

C0

"2s2

Z
!

w2 d t ;
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which is valid for all u 2 D0.r�" /. The substitution of the last inequality into (20)
shows that for all " 2 .0; "0/ and u 2 D0.r�" / there holds

r�" .u; u/ � .1 � c"/

aZ
0

Z
!

�
j@suj

2
C
n2 � 2n

4s2
u2
�

d t d s

C .1 � c"/C0

aZ
0

Z
!

w2

"2s2
d t d s �N!

1 � c"

1 � c2"

aZ
0

f 2

"s
d s:

To have a simpler expression, choose a suitable k > c and adjust "0 so that for all
" 2 .0; "0/ and u 2 D0.r�" /,

r�" .u; u/ � .1 � k"/

aZ
0

Z
!

�
j@suj

2
C
n2 � 2n

4s2
u2
�

d t d s

C
C0

2

aZ
0

Z
!

w2

"2s2
d t d s �

N!

1 � k"

aZ
0

f 2

"s
d s:

(24)

For the sake of brevity, we will denote

 WD  "�.s;"/;  s WD @s ; vs WD @sv; ws WD @sw:

Let us study the first integral on the right-hand side of (24). Using the orthogonality
relations (21), we obtain

aZ
0

Z
!

�
j@suj

2
C
n2 � 2n

4s2
u2
�

d t d s D

aZ
0

Z
!

�
v2s C

n2 � 2n

4s2
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d t d s
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Z
!

�
w2s C

n2 � 2n

4s2
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�

d t d s

C 2
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0

Z
!

vsws d t d s: (25)

We have
aZ
0

Z
!

v2s d t d s D

aZ
0

Z
!

jf 0 C f  sj
2 d t d s

D

aZ
0

Z
!

.jf 0j2 2 C f 2j sj
2
C 2ff 0 s / d t d s:
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Due to the normalization of  ,Z
!

2  s d t D @s

Z
!

 2 d t D @s1 D 0;

therefore,
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Z
!

v2s d t d s D
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0

.jf 0j2 C k sk
2
L2.!/

jf j2/ d s �
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and, consequently,
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h
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4s2
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i

d s: (26)

In order to estimate the two last terms in (25), we note that

2

aZ
0

Z
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vsws d t d s D 2
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Z
!

f 0 ws d t d s C 2

aZ
0

f

Z
!

 sws d t d s (27)

and that, in view of (21),Z
!

. ws C  sw/ d t D @s

Z
!

 w d t D @s0 D 0;Z
!

 ws d t D �
Z
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 sw d t:

Hence, using j2xyj � x2 C y2,ˇ̌̌̌
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Similarly, ˇ̌̌̌
2
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0

f
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 sws d t d s
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D
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2
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0
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Now, we represent

k sk
2
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D

Z
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j@s "�.s;"/.t/j
2 d t D

"2

.1 � c"/4

Z
!

.@� �.t/j�D"�.s;"//
2 d t:

As "�.s; "/ 2 .0; "0m/ for all s 2 .0; a/ and " 2 .0; "0/, we can use the estimate (4)
of Lemma 2.1: there exists K > 0 such that for all " 2 .0; "0/ and s 2 .0; a/ one
has k sk2L2.!/ � K"

2 � " (assuming that "0 is sufficiently small). We now use the
obtained estimate in (28) and (29), which givesˇ̌̌̌ aZ
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The substitution of these two inequalities into (27) givesˇ̌̌̌ aZ
0

Z
!

vsws d t d s
ˇ̌̌̌
� "

aZ
0

jf 0j2 d s CK"

aZ
0

f 2 d s C kwk2
L2.…/

C "kwsk
2
L2.…/

:

We now use the last obtained inequality and (26) in (25), which gives
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for all " 2 .0; "0/ and u 2 D0.r�" /. Using this lower bound in (24), one arrives at

r�" .u; u/ � .1 � k"/

aZ
0

h
.1 � "/jf 0j2 C

�n2 � 2n
4s2

�K"
�
f 2
i

d s

C .1 � k"/

aZ
0

Z
!

h
.1 � "/w2s C

�n2 � 2n
4s2

� 1
�
w2
i

d t d s

C
C0

2

aZ
0

Z
!

w2

"2s2
d t d s �

N!

1 � k"

aZ
0

f 2

"s
d s

� .1 � k"/

aZ
0

h
.1 � "/jf 0j2 C

�n2 � 2n
4s2

�K"
�
f 2
i

d s

�
N!

1 � k"

aZ
0

f 2

"s
d s � kwk2

L2.…/
:

By taking sufficiently large b > k and c0 > 1 and a smaller value of "0, one deduces
from the last inequality the simpler lower bound

r�" .u; u/ � .1 � b"/

aZ
0

h
jf 0j2 C

�n2 � 2n
4s2

�
N!

.1 � b"/2"s

�
f 2
i

d s

� c0kf k2
L2.0;a/

� c0kwk2
L2.…/

:

Using the norm equality (22), this is equivalent to

r�" .u; u/C c
0
kuk2

L2.…/
� .1 � b"/

aZ
0

h
jf 0j2 C

�n2 � 2n
4s2

�
N!

.1 � b"/2"s

�
f 2
i

d s

� .1 � b"/hf;M.1�b"/2";af iL2.0;a/: (30)

By the norm equality (22), the map u 7! .f;w/ uniquely extends to a unitary map
‰WL2.…/! L2.0; a/˚H , where H is some closed subspace of L2.…/. Let h" be
the symmetric bilinear form in L2.0; a/˚H defined as the closure of the form

C1c .0; a/ �H 3 .f; w/ 7!

aZ
0

h
jf 0j2 C

�n2 � 2n
4s2

�
N!

.1 � b"/2"s

�
f 2
i

d s;

then the corresponding self-adjoint operator in L2.0; a/˚H is

H" DM.1�b"/2";a ˚ 0:
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The inequality (30) reads as r�" .u; u/ C c
0kuk2

L2.…/
� .1 � b"/h".‰u; ‰u/ for all

u 2D0.r
�
" /, and the lower bound (19) forƒj .T"/ implies that for any j 2N and any

" 2 .0; "0/ there holds

ƒj .T"/C c
0
� inf
S�D0.r

�
" /

dimSDj

sup
u2S
u¤0

r�" .u; u/C c
0kuk2

L2.…/

kuk2
L2.…/

� inf
S�D0.r

�
" /

dimSDj

sup
u2S
u¤0

.1 � b"/h".‰u;‰u/

k‰uk2
L2.0;a/˚H

� .1 � b"/ inf
S�D.h"/
dimSDj

sup
v2S
v¤0

h".v; v/

kvk2
L2.0;a/˚H

D .1 � b"/ƒj .H"/: (31)

By Lemma 2.2, for some K0 > 0 and for all sufficiently small " > 0 we have

Ej .M.1�b"/2";a/ � Ej .A.1�b"/2"/CK0 D �
N 2
!

.2j C n � 2/2.1 � b"/4"2
CK0 < 0I

hence, ƒj .H"/ D ƒj .M.1�b"/2";a ˚ 0/ D Ej .M.1�b"/2";a/, and it follows by (31)
that ƒj .T"/ C c0 � .1 � b"/Ej .M.1�b"/2";a/. By (7), we have Ej .M.1�b"/2";a/ �

Ej .A.1�b"/2"/; therefore,

ƒj .T"/ � .1 � b"/Ej .A.1�b"/2"/ � c
0

D �
N 2
!

.2j C n � 2/2.1 � b"/3"2
� c0

� �
N 2
!

.2j C n � 2/2"2
�
k0

"

for a suitably chosen k0 > 0 and all sufficiently small " > 0.

By combining Corollary 3.4 and Lemma 3.5, we obtain the main result of the
section:

Proposition 3.6. For any j 2 N there holds

ƒj .T"/ D �
N 2
!

.2j C n � 2/2"2
CO

�1
"

�
as "! 0C.

4. End of proof of Theorem 1.1

Note that the right-hand side of the asymptotics in Proposition 3.6 corresponds to
the sought asymptotics for Ej .Q"/ in Theorem 1.1. In order to conclude the proof
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of Theorem 1.1, it remains to show that the eigenvalues of Q" and T" with the same
numbers are close to each other. This will be done in several steps.

Lemma 4.1. For any j 2 N and " > 0 the inequality ƒj .Q"/ � ƒj .T"/ holds.

Proof. Let J WL2.V"/! L2.�"/ be the operator of extension by zero; then J is a
linear isometry with JD.t"/�D.q"/ and with q".Ju;Ju/D t".u;u/ for all u2D.t"/,
and the result follows directly by the min–max principle.

Recall that the subspaces C1I .x�"/ were defined in (9). For b > 0, denote

zV";b WD �" \ ¹x1 > bº � ¹.x1; x
0/ 2 .b;1/ �RnW x0 2 "x1!º � RnC1;

@0 zV";b WD @�" \ ¹x1 > bº � ¹.x1; x
0/ 2 .b;1/ �RnW x0 2 "x1@!º � @ zV";b;

yH 1
0 .
zV";b/ WD the closure of C1.b;1/.x�"/ in H 1. zV";b/

and let zT";b be the self-adjoint operator in L2. zV";b/ defined by its symmetric bilinear
form

Qt";b.u; u/ D

Z
zV";b

jruj2 d x �
Z

@0 zV";b

u2 d �; D.Qt";b/ D yH
1
0 .
zV";b/:

Lemma 4.2. For any "0 > 0 and b > 0, there exists c > 0 such that

inf spec zT";b � �
c

"
for all " 2 .0; "0/.

Proof. Let u 2 C1
.b;1/

.x�"/; then, due to Lemma 2.4, one has

Qt";b.u; u/ �

Z
zV";b

j@x1uj
2 d x

C

1Z
b

² Z
"x1!

jrx0u.x1; x
0/j2 d x0

� ."x1/
n�1

p
1CR2"2

Z
@!

u.x1; "x1t /
2 d �.t/

³
d x1: (32)

We have Z
"x1!

jrx0u.x1; x
0/j2 d x0 D ."x1/n

Z
!

j.rx0u/.x1; "x1t /j
2 d t

D ."x1/
n�2

Z
!

jrtu.x1; "x1t /j
2 d t
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and thenZ
"x1!

jrx0u.x1; x
0/j2 d x0 � ."x1/n�1

p
1CR2"2

Z
@!

u.x1; "x1t /
2 d �.t/

D ."x1/
n�2

� Z
!

jrtu.x1; "x1t /j
2 d t � "x1

p
1CR2"2

Z
@!

u.x1; "x1t /
2 d �.t/

�
D ."x1/

n�2b
"x1
p
1CR2"2

.u.x1; "x1�/; u.x1; "x1�//

� ."x1/
n�2E1.B"x1

p
1CR2"2

/

Z
!

u.x1; "x1t /
2 d t

D
1

."x1/2
E1.B"x1

p
1CR2"2

/

Z
"x1!

u.x1; x
0/2 d x0:

The substitution into (32) gives

Qt";b.u; u/ �

1Z
b

E1.B"x1
p
1CR2"2

/

."x1/2

Z
"x1!

u2 d x0 d x1

� inf
x1>b

E1.B"x1
p
1CR2"2

/

."x1/2

1Z
b

Z
"x1!

u2 d x0 d x1

� inf
x1>b

E1.B"x1
p
1CR2"2

/

."x1/2
kuk2

L2. zV";b/
:

(33)

By Lemma 2.1 (c), there exists c0 > 0 such thatE1.Br/��N!r � c0r2 for all r > 0.
Hence, for any x1 > b we have

E1.B"x1
p
1CR2"2

/

."x1/2
�
�N!"x1

p
1CR2"2 � c0"

2x21.1CR
2"2/

."x1/2

� �
N!
p
1CR2"2

"x1
� c0.1CR

2"2/

� �

N!

q
1CR2"20

b"
� c0.1CR

2"20/

� �
c

"

with
c WD

�
N!

q
1CR2"20 C b"0c0.1CR

2"20/
�
=b;

and the substitution into (33) gives the result.
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Lemma 4.3. Let j 2N. Then there existK > 0 and "0 > 0 such that for all " 2 .0; "0/
there holds ƒj .Q"/ � ƒj .T"/ �K.

Proof. The argument uses the same idea as in Lemma 2.2. Let �1; �2 2 C1.0;1/
with 0 � �1; �2 � 1 and �21 C �

2
2 D 1, such that �1.s/D 0 for s � 3a

4
and �2.s/D 0

for s � a
2

. We setK WD k�01k
2
1Ck�

0
2k
2
1 and define functions �j W .x1; x0/ 7! �j .x1/;

then �21 C �
2
2 D 1 and kr�1k21 C kr�2k

2
1 D K. It is convenient to denote b WD a

4
.

For any u 2 C1
.0;1/

.x�"/, one hasZ
�"

jruj2 d x D
Z
�"

jr.�1u/j
2 d x C

Z
�"

jr.�2u/j
2 d x �

Z
�"

u2.jr�1j
2
C jr�2j

2/ d x

�

Z
�"

jr.�1u/j
2 d x C

Z
�"

jr.�2u/j
2 d x �K

Z
�"

u2 d x:

As �1u vanishes for x1 > 3a
4

and �2u vanishes for x1 < a
2

, one can rewrite the last
inequality asZ

�"

jruj2 d x CK
Z
�"

u2 d x �
Z
V"

jr.�1u/j
2 d x C

Z
zV";b

jr.�2u/j
2 d x:

Also, remark that �1u 2 yH 1
0 .V"/ and �2u 2 yH 1

0 .
zV";b/, andZ

@�"

juj2 d � D
Z
@�"

j�1uj
2 d � C

Z
@�"

j�2uj
2 d �

D

Z
@0V"

j�1uj
2 d � C

Z
@0 zV";b

j�2uj
2 d �;

kuk2
L2.�"/

D

Z
�"

j�1uj
2 d x C

Z
�"

j�2uj
2 d x

D

Z
V"

j�1uj
2 d x C

Z
zV";b

j�2uj
2 d x

D k�1uk
2
L2.V"/

C k�2uk
2

L2. zV";b/
:

Substituting these computations into the expression for q".u; u/, we obtain

q".u; u/CKkuk
2
L2.�"/

� t".�1u; �1u/C Qt";b.�2u; �2u/
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for any u 2 C1
.0;1/

.x�"/, and it follows, using the min–max principle, that for any
j 2 N,

ƒj .Q"/CK D inf
S�C1

.0;1/
.x�"/

dimSDj

sup
u2S
u¤0

q".u; u/CKkuk
2
L2.�"/

kuk2
L2.�"/

� inf
S�C1

.0;1/
.x�"/

dimSDj

sup
u2S
u¤0

t".�1u; �1u/C Qt";b.�2u; �2u/

k�1uk
2
L2.V"/

C k�2uk
2

L2. zV";b/

� inf
S�D.t"/˚D.Qt";b/

dimSDj

sup
.u1;u2/2S
.u1;u2/¤0

t".u1; u1/C Qt";b.u2; u2/

ku1k
2
L2.V"/

C ku2k
2

L2. zV";b/

D ƒj .T" ˚ zT";b/: (34)

Now, let j 2N be fixed. As "! 0C, by Proposition 3.6 we haveƒj .T"/��c"�2

with some c > 0, and by Lemma 4.2 we have the bound inf spec zT";b � �Qc"�1 with
some Qc > 0. So, for all sufficiently small " > 0 one hasƒj .T"/ < inf spec zT";b , which
implies ƒj .T" ˚ zT";b/ D ƒj .T"/. The substitution into (34) finishes the proof.

The following assertion together with the asymptotics of ƒj .T"/ from Proposi-
tion 3.6 completes our proof of Theorem 1.1:

Proposition 4.4. Let j 2 N be fixed, then

• one can find some "j > 0 such that Q" has at least j discrete eigenvalues below
inf specessQ" for all " 2 .0; "j /;

• there holds Ej .Q"/ D ƒj .T"/CO.1/ as "! 0C.

Proof. Let us fix j 2 N. By combining the upper bound of Lemma 4.1 and the lower
bound of Lemma 4.3, we obtain ƒj .Q"/ D ƒj .T"/CO.1/. By Proposition 3.6, we
have ƒjC1.T"/ �ƒj .T"/!C1 as "! 0C. It follows that there exists "j > 0 such
thatƒj .Q"/ <ƒjC1.Q"/ for all " 2 .0; "j /, and thenEj .Q"/Dƒj .Q"/ for the same
" due to the min–max principle.

Remark 4.5. By sending j to1 in (34) and using the compactness of the resolvent
of T", one also shows that inf specess Q" � inf specess

zT";b . Then, Lemma 4.2 shows
that for small " > 0 one estimates inf specess Q" � �c"

�1 with a fixed c > 0. For
each j 2 N the difference between inf specess Q" and Ej .Q"/ is of order "�2, so
it is standard to show that the respective eigenfunction uj;" satisfies an Agmon-type
exponential decay at infinity [2]. This explains why the analysis ofQ" on the complete
infinite cone can be reduced to the analysis of an operator on a finite part of the cone.
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A. Proof of Lemma 2.3

Let us first recall some basic definitions from the theory of Sobolev spaces, as they
will be actually used during the proofs. We mostly follow the convention from the
book [13]. For an open set � � Rm and k 2 N, the k-th Sobolev space H k.�/ is
defined as

H k.�/ WD ¹u 2 L2.�/W @˛u 2 L2.�/ for all j˛j � kº

with all derivatives taken in the sense of distributions, and it is a Hilbert space with
respect to the scalar product

hu; viHk.�/ WD
X
j˛j�k

h@˛u; @˛viL2.�/:

By C1.x�/, one denotes the set of functions defined on � which can be extended
to functions in C1c .R

m/. One says that an open set � � Rm has C k (respectively
Lipschitz) boundary if for any p 2 @� there exist Cartesian coordinates .y1; : : : ; ym/
centered at p, a C k (respectively Lipschitz) function h ofm� 1 variables, defined on
an open neighborhood of 0 in Rm�1 and with h.0; : : : ; 0/ D 0, and " > 0 such that

� \ B".p/ D ¹y D .y1; : : : ; ym/ 2 B".0/Wym < h.y1; : : : ; ym�1/º:

Most assertions used in the theory of Sobolev spaces (some density and extension
results, trace theorems) are usually formulated for bounded open sets with Lipschitz
boundaries. On the other hand, the cone �" has in general not even a C 0 boundary:
for example, if n D 2 and ! is an annulus, ! D ¹.x1; x2/ W 1 < x21 C x

2
2 < 4º, then

one easily sees that �" cannot be represented as one of the sides of the graph of a
continuous function near the vertex 0. Moreover, further common assumptions used
in the theory of Sobolev spaces (e.g., the segment condition or the cone condition) fail
as well.

We collect some well-known facts about H k.�/ in the following proposition:

Proposition A.1. Let � � Rm be an open set.

(A) The space

H 1
1.�/ WD ¹u 2 H

1.�/Wu 2 C1.�/ \ L1.�/; suppu is boundedº

is dense inH 1.�/. (Remark that there are no additional assumptions on�.)

(B) If � has C 0 boundary, then C1.x�/ is dense in H k.�/ for any k 2 N.

(C) If � is bounded and has Lipschitz boundary, then

(C.1) for any k 2 N, any function in H k.�/ can be extended to a function
in H k.Rm/;
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(C.2) the linear map C1.x�/ 3 u 7! uj@� 2 L
2.@�/ uniquely extends by

continuity to a bounded linear map 0WH 1.�/! L2.@�/. Moreover,
for any " > 0 there exists C" > 0 such thatZ

@�

.0u/
2d�m�1 � "

Z
�

jruj2 d x C C"

Z
�

u2 d x

for all u 2H 1.�/, where �m�1 is the .m� 1/-dimensional Hausdorff
measure.

We refer to [29, Theorem in Section 1.4.3] for (A), to [29, Theorem 1 in Sec-
tion 1.4.2] for (B), to [1, Theorem 5.2.4] for (C.1) and to [13, Theorem 1.5.1.10]
for (C.2). Note that one usually writes simply u instead of 0u in the integrals over
the boundary.

Now, we pass to the discussion of Sobolev spaces on the infinite cones �". We
start with several preparation steps.

Lemma A.2. Let �1 < a < b <1, then the cylinder� WD .a; b/ � ! � RnC1 has
Lipschitz boundary.

Proof. Let p 2 @�, then the following cases are possible.

Case 1: p D .a0; p0/ with a0 2 .a; b/ and p0 2 @!. Since ! has Lipschitz boundary,
there exists Cartesian coordinates .y1; : : : ; yn/ in Rn centered at p0 and a Lipschitz
function h with h.0/ D 0 such that ! coincides with ¹yW yn < h.y1; : : : ; yn�1/º near
p0. Denote z WD x1 � a

0, then .z; y1; : : : ; yn/ are Cartesian coordinates in RnC1

centered at p, and � near p coincides with ¹.z; y/W yn < H.z; y1; : : : ; yn�1/º for
the function H.z; y1; : : : ; yn�1/ WD h.y1; : : : ; yn�1/, which is obviously Lipschitz.

Case 2a: p D .a; x0/ with x0 2 !. � near p coincides with ¹.z; y/W z < 0º, where
y D .y1; : : : ; yn/ are arbitrary Cartesian coordinates in Rn centered at x0 and z WD
a � x1: remark that .z; y1; : : : ; yn/ are Cartesian coordinates in RnC1 centered at p,
and the zero function is obviously Lipschitz.

Case 2b: p D .b; x0/ with x0 2 !. This case is treated analogously.

Case 3a: p D .a; p0/ with p0 2 @!. This is the most difficult case. Since ! has
Lipschitz boundary, there exist Cartesian coordinates .y1; : : : ; yn/ in Rn centered at
p0 and a Lipschitz function h with h.0/ D 0 such that ! coincides with ¹yW yn <
h.y1; : : : ; yn�1/º near p0. Remark that � near p is then determined by the two
inequalities

x1 > a; yn < h.y1; : : : ; yn�1/: (35)
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In order to bring these conditions into the required form, we pick � 2 .0; �
2
/ and

apply a rotation by the angle � around p in the .x1; yn/-plane. Namely, consider the
Cartesian coordinates .z; y1; : : : ; yn�1; w/ with the previous y1; : : : ; yn�1 and�

x1 � a

yn

�
D z

�
cos �
sin �

�
C w

�
� sin �
cos �

�
:

Clearly, the new coordinates are centered at p, and the above inequalities (35) determ-
ining � near p take the form

w <
cos �
sin �

; w < �
sin �
cos �

z C
1

cos �
h.y1; : : : ; yn�1/;

which can be rewritten as

w < H.z; y1; : : : ; yn�1/ WD min
°cos �

sin �
z;�

sin �
cos �

z C
1

cos �
h.y1; : : : ; yn�1/

±
:

The function H is Lipschitz (since it is the minimum of two Lipschitz functions);
hence, one has a required representation of � near p.

Case 3b: p D .b; p0/ with p0 2 @!. This case is considered analogously.

The next step is somewhat technical; it shows that eachH 1-function on a cylinder
vanishing identically near the bases can be suitably approximated by test functions
vanishing near the bases.

Lemma A.3. Let�1< a < b <1 and� WD .a; b/�! �RnC1. Let Œc; c0�� .a; b/
and u 2 H 1.�/ be such that u.x1; x0/ D 0 for x1 … Œc; c0�. Let 0 < ı < min¹c � a;
b � c0º. Then, for any " > 0, there exists ' 2 C1c .R

nC1/ such that ku� 'kH1.�/ < "
and '.x1; x0/ D 0 for all x1 … Œc � ı; c0 C ı�.

Proof. By Lemma A.2 and Proposition A.1 (C.1), the function u can be extended to a
function v0 2 H 1.RnC1/. Choose � 2 C1c .R/ such that �.s/ D 1 for s 2 Œc; c0� and
supp� � Œc � ı

2
; c0 C ı

2
�, and, in addition, choose �0 2 C1c .R

n/ with �0 D 1 on !.
Then the function vW .x1; x0/ 7! �.x1/�0.x

0/v0.x1; x
0/ belongs to H 1.RnC1/, is an

extension of u, has compact support, and v.x1; x0/ D 0 for all x1 … Œc � ı
2
; c0 C ı

2
�.

Let � 2 C1c .R
nC1/ with

�.y/ D 0 for jyj � 1;
Z

RnC1

�.y/ dy D 1;

and for t > 0 consider the functions �t W x 7! t�.nC1/�.t�1x/. Then vt WD v � �t 2
C1c .R

nC1/, where � denotes the convolution product, and kvt � vkH1.RnC1/ ! 0

for t ! 0C. Hence, there exists some t0 > 0 such that kvt � vkH1.RnC1/ < " for all
t 2 .0; t0/.
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Furthermore, the definition of the convolution product implies the inclusion

supp vt � supp v C xBt .0/:

In particular, if t < ı
2

, then one has vt .x1; x0/ D 0 for all x1 … Œc � ı; c0 C ı�. Now,
pick any 0 < t < min¹t0; ı2º and denote ' WD vt ; then

k' � ukH1.�/ D kvt � vkH1.�/ � kvt � vkH1.RnC1/ < ";

so ' has all the required properties.

Let us finish the proof of Lemma 2.3. First, remark that H 1
1.�"/ is dense in

H 1.�"/ by Proposition A.1(A). So, we need to show that any function in H 1
1.�"/

can be approximated by functions from C1
.0;1/

.x�"/ in the H 1-norm.
Let v 2 H 1

1.�"/. Then, there exists some c 2 .0;1/ such that v.x1; x0/ D 0 for
x1 > c. Let �WR! R be a C1-function with 0 � � � 1, �.s/ D 0 for s < 1

2
, and

�.s/ D 1 for s > 1. For ı > 0, consider the functions

vı W .x1; x
0/ 7! �

�x1
ı

�
v.x1; x

0/:

We have

kvı � vk
2
L2.�"/

D

Z
�"

ˇ̌̌
1 � �

�x1
ı

�ˇ̌̌2
v.x1; x

0/2 d x

�

Z
�"\¹x1<ıº

v.x1; x
0/2 d x

ı!0C

����! 0:

Furthermore,

@1vı.x1; x
0/ D

1

ı
�0
�x1
ı

�
v.x1; x

0/C �
�x1
ı

�
@1v.x1; x

0/;

@j vı.x1; x
0/ D �

�x1
ı

�
@j v.x1; x

0/ for j � 2:

For every j � 2, one obtains

k@j vı � @j vk
2
L2.�"/

D

Z
�

ˇ̌̌
1 � �

�x1
ı

�ˇ̌̌2
j@j v.x1; x

0/j2 d x

�

Z
�"\¹x1<ıº

j@j v.x1; x
0/j2 d x

ı!0C

����! 0:
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In addition, using .x C y/2 � 2.x2 C y2/, we estimate

k@1vı � @1vk
2
L2.�"/

� 2

Z
�"

ˇ̌̌
1 � �

�x1
ı

�ˇ̌̌2
j@1v.x1; x

0/j2 d x

C
2

ı2

Z
�"

�0
�x1
ı

�2
v.x1; x

0/2 d x

�

Z
�"\¹x1<ıº

j@1v.x1; x
0/j2 d x C

2

ı2
k�0k21kvk

2
1

Z
�"\¹x1<ıº

d x: (36)

The first summand on the right-hand converges to 0 as ı ! 0C since @1v 2 L2.�"/.
We further note thatZ

�"\¹x1<ıº

d x D

ıZ
0

Z
"x1!

d x0 d x1 D "n Voln !

ıZ
0

xn1 d x1 D "n Voln !
ınC1

nC 1
;

and the second summand on the right-hand side of (36) is estimated from above by
2
nC1

"nk�0k21kvk
2
1 Voln !ın�1, which converges to 0 as ı ! 0C due to n � 2. We

have proved that vı converges to v inH 1.�"/ as ı! 0C. Remark that vı.x1; x0/D 0
for x1 … Œı=2; c�, therefore, the above constructions show that the subspace

D WD ¹u 2 H 1.�"/ \ C
1.�"/ \ L

1.�"/W there exists Œb; c� � .0;1/

such that u.x1; x0/ D 0 for x1 … Œb; c�º;

is dense in H 1.�"/. Now, it remains to check that each function in D can be approx-
imated by functions from C1

.0;1/
.x�"/ in H 1.�"/.

Let u 2 D and Œb; c� � .0;1/ such that u.x1; x0/ D 0 for x1 … Œb; c�. The map

X W .0;1/ �Rn 3 .s; t/ 7! .s; "st/ 2 .0;1/ �Rn

is a diffeomorphism withX..0;1/�!/D�". Pick an arbitrary ı 2 .0; b
2
/ and denote

�0 WD .b � 2ı; c C 2ı/ � !. Then the function uX WD u ıX belongs to H 1.�0/.
Let � > 0. Then, by Lemma A.3, one can find '�X 2 C

1
c .R

nC1/ with

kuX � '
�
XkH1.�0/ < �; '

�
X .x1; x

0/ D 0 for all x1 … Œb � ı; c C ı�:

Then the functions

'�WRnC1 3 x 7!

´
'
�
X .X

�1.x//; x1 > 0;

0; otherwise

belong toC1c .R
nC1/ and '�.x1;x0/D 0 for all x1 … Œb � ı; cC ı�, i.e., the restriction

of '� to �" belongs to C1
.0;1/

.x�"/.
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The supports of u and '� are contained in Œb � ı; c C ı� �Rn and all derivatives
ofX andX�1 are uniformly bounded on the compact sets�0 and x�" \ ¹x1 2 Œb � 2ı;
c C 2ı�º respectively. Therefore, one can find some C > 0 such that

ku � '�kH1.�"/ � ku � '
�
kH1.�"\¹x12.b�2ı;cC2ı/º/ � CkuX � '

�
XkH1.�0/

for all � > 0. Since � can be taken arbitrarily small, this concludes the proof.

B. Traces and semiboundedness

Firstly, we prove Lemma 2.4 and then move on to show the well-posedness of our
spectral problem, i.e., the lower semiboundedness and closedness of q".

Proof of Lemma 2.4. As usual for the integration over hypersurfaces, it is sufficient
to prove the statement for functions supported in images of local charts; then this
statement is extended to general functions using a partition of unity.

Let U 3 z D .z1; : : : ; zn�1/ 7! '.z/ be a local chart on @!; then

ˆW .0;1/ � U 3 .s; z/ 7! .s; "s'.z// � X.s; '.z// 2 @�"

is a local chart on @�". If vj@�" is supported in the image of ˆ, thenZ
@�"

jvj d � D

1Z
0

Z
U

jv.ˆ.s; z//jgˆ.s; z/ d z d s; gˆ WD
p

det.DˆTDˆ/: (37)

We compute

.DˆTDˆ/.s; z/ D

�
1C "2j'.z/j2 "2sF.z/T

"2sF.z/ "2s2G'.z/

�
; G' WD D'

TD';

F.z/ WD

0B@ h'.z/; @1'.z/iRn:::

h'.z/; @n�1'.z/iRn

1CA � 1

2
rzj'.z/j

2
� j'.z/jrzj'.z/j:

The matrix G' is invertible a.e. (as ' is a local chart); therefore, using well-known
formulas for the determinants of block matrices (see, e.g., [35]), we obtain

gˆ.s; z/
2

� det.DˆTDˆ/

D
�
1C "2j'.z/j2 �

˝
"2sF.z/; ."2s2G'.z//

�1"2sF.z/
˛�

det."2s2G'.z//

D "2.n�1/s2.n�1/
�
1C "2j'.z/j2

�
1 �

˝
rzj'.z/j; G'.z/

�1
rzj'.z/j

˛��
detG'.z/:
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Consider the function r W @! 3 t 7! jt j 2 R. Then,

hrzj'.z/j; G'.z/
�1
rzj'.z/ji D jr

@!r j2.'.z//; j'.z/j2 D r2.'.z//;

with r@!r being the tangential gradient of r along @!. Therefore,

gˆ.s; z/ D "
n�1sn�1

p
1C "2�.'.z//g'.z/; g'.z/ WD

q
detG'.z/;

� WD r2.1 � jr@!r j2/ � r2.jrRnr j2 � jr@!r j2/ � r2j@�r j
2

with @� being the normal derivative. Due to j@�r j � 1, we have 0 � � � R2 with R
from (13). By (37), we obtain

"n�1
1Z
0

Z
U

sn�1jv.ˆ.s; z//jg'.z/ d z d s

�

Z
@�"

jvj d � �
p
1CR2"2"n�1

1Z
0

Z
U

sn�1jv.ˆ.s; z//jg'.z/ d z d s: (38)

Using the definition of ˆ, we obtain v.ˆ.s; z// D u.s; '.z// and

1Z
0

Z
U

sn�1jv.ˆ.s; z//jg'.z/ d z d s D

1Z
0

Z
U

sn�1ju.s; '.z//jg'.z/ d z d s

�

1Z
0

Z
@!

sn�1ju.s; t/j d �.t/ d s;

and the substitution into (38) gives the sought estimate.
The above computations are classical for the case of smooth @!. In our case, @!

is only a Lipschitz manifold, but the formulas are still valid a.e.: we refer to [34] for a
detailed discussion.

Recall that the subsets C1
.0;1/

.x�"/ were defined in (9). The restriction of each
function from C1

.0;1/
.x�"/ to @�" is a continuous function with compact support,

hence it is square integrable.

Proposition B.1. Let " > 0 be fixed. The linear map

0WC
1
.0;1/.

x�"/! L2.@�"/; 0u WD uj@�" ;

extends uniquely to a bounded linear map from H 1.�"/ to L2.@�"/. Moreover, for
any ı > 0, there exists Cı > 0 such that

k0uk
2
L2.@�"/

� ıkruk2
L2.�"/

C Cıkuk
2
L2.�"/

for any u 2 H 1.�"/:
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Proof. It is sufficient to consider " D 1 (as general values of " can be absorbed by
taking "! instead of !). Since C1

.0;1/
.x�1/ is dense in H 1.�1/ by Proposition 2.3,

it is sufficient to show that for any ı > 0 there exists Cı > 0 such that for any u 2
C1
.0;1/

.x�1/ there holdsZ
@�1

u2 d � � ı
Z
�1

jruj2 d x C Cı

Z
�1

u2 d x: (39)

We use the spectral analysis of the operators Br from Section 2.2. By Lemma 2.1,
one can find a constant c > 0 such thatZ
!

jrvj2 d t � r
Z
@!

v2 d � � �.N!r C cr2/
Z
!

v2 d t for all v 2 H 1.!/; r > 0;

and the inequality can be rewritten asZ
@!

v2 d � �
1

r

Z
!

jrvj2 d t C .N! C cr/
Z
!

v2 d t for all v 2 H 1.!/; r > 0: (40)

Recall that by Lemma 2.4 we have, for any u 2 C1
.0;1/

.x�1/,Z
@�1

u2 d � �
p
1CR2

1Z
0

sn�1
Z
@!

u.s; st/2 d �.t/ d s:

We are going to control the integral over @! using (40) with vW t 7! u.s; st/ and
r D r.s/, which givesZ

@�1

u2 d � �
p
1CR2.I1 C I2/; (41a)

I1 WD

1Z
0

sn�1

r.s/

Z
!

jrtu.s; st/j
2 d t d s; (41b)

I2 WD

1Z
0

sn�1.N! C cr.s//

Z
!

u.s; st/2 d t d s: (41c)

Now, we remark that

I1 D

1Z
0

snC1

r.s/

Z
!

j.rx0u/.s; st/j
2 d t d s

D

1Z
0

s

r.s/

Z
s!

j.rx0u/.s; x
0/j2 d x0 d s �

1Z
0

s

r.s/

Z
s!

jru.s; x0/j2 d x0 d s:



K. Pankrashkin and M. Vogel 236

Taking r.s/ WD �s with a constant � > 0 to be chosen later, we obtain

I1 �
1

�

1Z
0

Z
s!

jru.s; x0/j2 d x0 d s D
1

�

Z
�1

jruj2 d x:

For the same choice of r.s/, one has

I2 D

1Z
0

sn�1.N! C c�s/

Z
!

u.s; st/2 d t d s

D N!

1Z
0

sn�1
Z
!

u.s; st/2 d t d s„ ƒ‚ …
DWJ1

Cc�

1Z
0

sn
Z
!

u.s; st/2 d t d s„ ƒ‚ …
DWJ2

:

The second term is easy to evaluate:

J2 D

1Z
0

Z
s!

u.s; x0/2 d x0 d s D
Z
�1

u2 d x:

The term J1 requires a bit more work. We rewrite

J1 D

Z
!

1Z
0

N!

s
ft .s/

2 d s d t with ft W s 7! s
n
2 u.s; st/: (42)

For each fixed t , one has ft 2 C1c .0;1/. Using the spectral analysis of Section 2.3
(consider the first eigenvalue of A1=� with n D 2), we have

1Z
0

h
f 0t .s/

2
�
�N!

s
ft .s/

2
i

d s � �
�2N 2

!

4

1Z
0

ft .s/
2 d s;

which we rewrite as
1Z
0

N!

s
ft .s/

2 d s �
1

�

1Z
0

f 0t .s/
2 d s C

�N 2
!

4

1Z
0

ft .s/
2 d s: (43)

We have

f 0t .s/
2
D

�n
2
s
n
2�1u.s; st/C s

n
2 @su.s; st/

�2
D
n2

4
sn�2u.s; st/2 C nsn�1u.s; st/@su.s; st/C s

n
j@su.s; st/j

2:
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Using

1Z
0

nsn�1u.s; st/@su.s; st/ d s D
n

2

1Z
0

sn�1@s.u.s; st/
2/ d s

D �
n

2
.n � 1/

1Z
0

sn�2u.s; st/2 d s;

we arrive at
1Z
0

f 0t .s/
2 d s D

hn2
4
�
n

2
.n � 1/

i 1Z
0

sn�2u.s; st/2 d s C

1Z
0

snj@su.s; st/j
2 d s:

Using n � 2, one obtains

n2

4
�
n

2
.n � 1/ D

n

4
.n � 2.n � 1// D

n

4
.2 � n/ � 0;

which gives
1Z
0

f 0t .s/
2 d s �

1Z
0

snj@su.s; st/j
2 d s:

We compute (with the same R WD supt2! jt j as above)

j@su.s; st/j
2
D j@x1u.s; st/C t � rx0u.s; st/j

2

� 2j@x1u.s; st/j
2
C 2jt � rx0u.s; st/j

2

� 2j@x1u.s; st/j
2
C 2R2jrx0u.s; st/j

2

� 2.1CR2/j.ru/.s; st/j2;

which results in
1Z
0

f 0t .s/
2 d s � 2.1CR2/

1Z
0

snj.ru/.s; st/j2 d s:

The substitution into (43) gives

1Z
0

N!

s
ft .s/

2 d s �
2.1CR2/

�

1Z
0

snj.ru/.s; st/j2 d s C
�N 2

!

4

1Z
0

snu.s; st/2 d s;
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and, using (42), one obtains

J1 �
2.1CR2/

�

1Z
0

Z
!

snj.ru/.s; st/j2 d s d t C
�N 2

!

4

1Z
0

Z
!

snu.s; st/2 d t d s

D
2.1CR2/

�

1Z
0

Z
s!

jru.s; x0/j2 d x0 d t C
�N 2

!

4

1Z
0

Z
s!

u.s; x0/2 d x0 d s

D
2.1CR2/

�

Z
�1

jruj2 d x C
�N 2

!

4

Z
�1

u2 d x:

Using the above estimates for J1 and J2, one obtains

I2 �
2.1CR2/

�

Z
�1

jruj2 d x C �
�N 2

!

4
C c

� Z
�1

u2 d x;

and the substitution into (41) givesZ
@�1

u2 d � �
p
1CR2

2.1CR2/C 1

�

Z
�1

jruj2 d x

C

p
1CR2�

�N 2
!

4
C c

� Z
�1

u2 d x:

For any ı > 0, one can take � sufficiently large, such that the coefficient in front of the
first integral becomes smaller than ı, and this proves the required inequality (39).

As an easy corollary, we obtain that our spectral problem is well-posed:

Corollary B.2. The bilinear form q" is semibounded from below and closed for any
" > 0.
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