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Scaling inequalities for spherical and hyperbolic eigenvalues

Jeffrey J. Langford and Richard S. Laugesen

Abstract. Neumann and Dirichlet eigenvalues of the Laplacian on spherical and hyperbolic
domains are shown to satisfy scaling inequalities or monotonicities analogous to the .length/�2

scaling relation in Euclidean space.
For a cap of aperture ‚ on the sphere S2, normalizing the k-th eigenvalue by the square

of the Euclidean radius of the boundary circle yields that �k.‚/ sin2 ‚ is strictly decreasing,
while normalizing by the stereographic radius squared gives that �k.‚/4 tan2 ‚=2 is strictly
increasing. For the second Neumann eigenvalue, normalizing instead by the cap area establishes
the stronger result that �2.‚/4 sin2‚=2 is strictly increasing.

Monotonicities of this kind are somewhat surprising, since the Neumann eigenvalues them-
selves can vary non-monotonically.

Cheng and Bandle-type inequalities are deduced by assuming either fixed radius or fixed
area and comparing eigenvalues of disks having different curvatures.

1. Introduction and main results

Frequencies of vibration on a drum of size t scale like t�2. Mathematically, �k.t�/t2

is identically constant when �k is a Neumann or Dirichlet eigenvalue of the Laplacian
and � is a Euclidean domain. This paper establishes analogous scaling results for
domains in the 2-dimensional sphere and hyperbolic space, especially geodesic disks.

Inequalities rather than identities are the goal. Specifically, we aim to prove mono-
tonicity under scaling for quantities of the form

.eigenvalue/ � .geometric factor)2:

Geometric factors include several types of radius, as well as the square root of the
area, as summarized for the spherical case in Table 1.

Theorem 1 normalizes the k-th Neumann eigenvalue of the spherical cap of aper-
ture ‚ by the square of the Euclidean radius of its boundary circle and obtains that

�k.‚/ sin2‚
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scale factor geometric meaning

‚ aperture, or geodesic radius

sin‚ Euclidean radius of boundary circle

tan ‚
2

stereographic radius

4� sin2 ‚
2

area

Table 1. Geometric factors for a spherical cap of aperture ‚.

is strictly decreasing. The same holds for Dirichlet eigenvalues �k.‚/. In the opposite
direction, normalizing by the squared stereographic radius reveals

�k.‚/ tan2
‚

2

to be strictly increasing, while for the second Neumann eigenvalue (k D 2), after
normalizing by the cap area we establish in Theorem 2 the stronger result that

�2.‚/ sin2
‚

2

is strictly increasing. Hyperbolic analogues are provided for these theorems too. The-
orem 3 and Theorem 4 then examine the first two Dirichlet eigenvalues normalized
by the square of the aperture, �1.‚/‚2 and �2.‚/‚2, respectively.

Subsequent corollaries deduce inequalities of Bandle and Cheng type for the
second Neumann and first and second Dirichlet eigenvalues on geodesic disks. In
particular, Corollary 5 says that among disks having area A and constant curvature
�K, the disk with constant curvatureK maximizes the second Neumann eigenvalue.

The intrinsic appeal of the monotonicity properties in this paper is clear. Mono-
tonicity could also serve practical purposes, because although the eigenvalues can be
specified in terms of roots related to Legendre P -functions [3], those root conditions
shed precious little light on the qualitative behavior of the eigenvalues. The monoton-
icity relations in the current paper might provide useful tools for authors who need
robust estimates on eigenvalues for constant curvature disks.

Arbitrary surfaces. One naturally wonders: does extremality of �2 at the greatest
curvature disk continue to hold among the larger class of all simply connected surfaces
having area A and variable curvature � K? Szegő [24] handled simply connected
planar domains (curvature 0). Bandle [4, 5] extended to surfaces with curvature � K
provided K � 2�=A, which means in the positive curvature case that the maximizing
cap has area at most half that of the sphere. Recently, we breached this hemispherical
barrier by handling simply connected surfaces with area up to 94% of the sphere
[21, Theorem 1.1]. Getting to the conjectured 100% remains an open problem.
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Prior results and literature. The monotonicity results in Theorem 1 for the full
Neumann and Dirichlet spectra of spherical caps and hyperbolic disks, specifically for
the cases �k.‚/ sin2‚ and �k.‚/ tan2‚=2, are new to the best of our knowledge
except that we handled �k.‚/ sin2‚ on spherical caps in a recent paper [21].

Monotonicity of �2.‚/ sin2‚=2 in Theorem 2 is due to Bandle [4, 5] when ‚ �
�=2, as explained after Corollary 5. The result is new when �=2 < ‚ < � , that is, for
caps larger than a hemisphere. Our proof is different and more direct.

The monotonicity of �1.‚/‚2 in Theorem 3 is known by work of Ashbaugh and
Benguria [2] in the spherical case and Benguria and Linde [8] in the hyperbolic case,
although it turns out those results for the first Dirichlet eigenvalue follow already from
an older inequality by Cheng [14], as we observe in Corollary 6 and its proof.

For the second Dirichlet eigenvalue, monotonicity of �2.‚/‚2 in Theorem 4 was
proved by Ashbaugh and Benguria [2] in the spherical case. Our proof is different,
and yields also monotonicity in the opposite direction in the hyperbolic case, which
is a new result.

Along somewhat different lines, many authors have proved approximations and
asymptotic formulas for the first Dirichlet eigenvalue of a small spherical cap or
hyperbolic disk, notably Baginski [3], Borisov and Freitas [11], Berge [9], Kristály
[19], and other authors to whom they refer.

2. Results

The eigenvalue problem. On the unit sphere S2 of curvatureC1, let

C.‚/ D spherical cap of aperture ‚ centered at the north pole

when ‚ 2 .0; �/, so that C.�=2/ is the upper hemisphere. Let �k.‚/ be the k-th
Neumann eigenvalue of the spherical Laplacian on the cap C.‚/, that is, the k-th
eigenvalue of the problem ´

��sphu D �u on C.‚/,
@u
@n
D 0 on @C.‚/.

The coordinate expression for the spherical Laplacian is recalled in Section 5.
In the hyperbolic space H2 of curvature �1, when ‚ 2 .�1; 0/ let

C.‚/ D geodesic disk of radius j‚j

and write �k.‚/ for the k-th Neumann eigenvalue of the hyperbolic Laplacian on that
disk. When ‚ < 0, in other words, �k.‚/ is the k-th eigenvalue of´

��hypu D �u on C.‚/,
@u
@n
D 0 on @C.‚/.
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In the plane R2, the Euclidean Laplacian on the unit disk D has k-th Neumann
eigenvalue denoted �k.D/.

Throughout the paper, negative values of ‚ correspond to the hyperbolic case
and positive values to the spherical one, with the Euclidean case appearing at ‚ D 0.
This convention unites the spherical and hyperbolic situations, for example as seen
graphically in Figure 2.

Eigenvalue scaling inequalities on spherical caps and hyperbolic disks. Our first
theorem holds for all eigenvalues except the first Neumann �1, which is identically
zero. For simplicity, the theorem is stated only for spherical caps and geodesic disks,
although the underlying proof in Proposition 9 applies to arbitrary domains under
“stereographic dilation.”

Theorem 1 (Scaling-type relations for all eigenvalues of spherical caps and hyper-
bolic disks). Fix k � 2.

(i) The function

‚ 7!

8̂̂<̂
:̂
�k.‚/ 4 tanh2 ‚

2
; ‚ 2 .�1; 0/;

�k.D/; ‚ D 0;

�k.‚/ 4 tan2 ‚
2
; ‚ 2 .0; �/;

increases strictly and continuously from 0 to1.

(ii) The function

‚ 7!

8̂̂<̂
:̂
�k.‚/ sinh2‚; ‚ 2 .�1; 0/;

�k.D/; ‚ D 0;

�k.‚/ sin2‚; ‚ 2 .0; �/;

decreases strictly and continuously from1 to 0.

(iii) When k � 1, the corresponding statements hold for Dirichlet eigenvalues,
except that in part (i) the functional increases strictly not from 0 to1, but
from 1 to1.

The theorem is proved in Section 6. Part (ii) for �k.‚/ sin2‚ on spherical caps
(0 < ‚ < �) was obtained in our recent paper [21, Proposition 3.1] and we extend
that method here.

Remarks. (1) Part (ii) is particularly appealing when ‚ 2 .0; �/, since sin‚ is the
extrinsic Euclidean radius of the boundary circle for the cap C.‚/ and so the quantity
�k.‚/ sin2.‚/ has the form “eigenvalue times radius squared.” That form mimics the
usual scaling relation for domains in Euclidean space.
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(2) Since sin2‚ is increasing for ‚ 2 .0; �=2�, it follows from the theorem that
the k-th eigenvalue �k.‚/ of the spherical cap is decreasing in that range. Similarly,
in the hyperbolic case, part (i) of the theorem implies �k.‚/ is increasing for ‚ 2
.�1; 0/, since tanh2‚=2 is decreasing. That is, the k-th Neumann eigenvalue of a
hyperbolic geodesic disk is a decreasing function of the radius j‚j.

(3) Theorem 1 implies a two-sided bound on Neumann eigenvalues of geodesic
disks:

1

sinh2‚
<
�k.‚/

�k.D/
<

1

4 tanh2 ‚
2

; ‚ 2 .�1; 0/;

1

4 tan2 ‚
2

<
�k.‚/

�k.D/
<

1

sin2‚
; ‚ 2 .0; �/;

for all k � 2. The estimates are sharp in the sense that both sides behave like ‚�2 as
‚! 0, that is, for small disks or caps.

Corresponding two-sided inequalities hold for Dirichlet eigenvalues when k � 1.
For even sharper two-sided Dirichlet inequalities, see the work of Baginski [3] for all
Dirichlet eigenvalues on the sphere, the results of Borisov and Freitas [11] for the first
eigenvalue in both the sphere and hyperbolic space, and the extension to all Dirichlet
eigenvalues by Berge [9], as well as the references in those papers to earlier work.

For the first Dirichlet eigenvalue, part (iii) of the theorem implies that �1.‚/ >
1=4 tanh2‚=2 when ‚ < 0. This inequality is stronger, in the special case of disks,
than Osserman’s result [23] for simply connected domains in hyperbolic space that
�1 > 1=4 tanh2 p where p is the geodesic inradius.

(4) The quantities in Theorem 1 can be written more concisely as �k.‚/4 ta2‚=2
and �k.‚/4 si2‚, where the normalizing functions ta and si are defined by piecing
together hyperbolic and trigonometric functions as in Figure 1:

si � D

´
sinh �; � � 0;

sin �; � � 0;
ta � D

´
tanh �; � � 0;

tan �; � � 0:

(5) Figure 2 illustrates the above theorem, for the second Neumann and first
Dirichlet eigenvalue. Some appealing bounds can be read off from the graphs, such as
that �1.‚/4 tan2‚=2 � 8 when ‚ 2 Œ�=2; �/, with equality at ‚ D �=2.

The flatness of each graph near ‚ D 0 is best understood as a consequence of
Euclidean scale invariance. When ‚ � 0, the spherical caps and hyperbolic disks are
so small that their eigenvalues are approximately Euclidean and so each expression in
the figure has approximately the form

(Euclidean eigenvalue of a disk of radius ‚) �‚2;

which is constant (giving a flat graph) with respect to ‚.
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2

1
2

si ta

Figure 1. The piecewise trigonometric functions si and ta.

(6) The hemisphere has second Neumann eigenvalue �2.�=2/ D 2, with eigen-
functions the coordinate functions x and y, that is, the first spherical harmonics.
Hence, by part (ii) of the theorem, �2.‚/ > 2 csc2‚ when ‚ 2 .0; �=2/. This lower
bound improves by a factor of 2 on an estimate proved by Ashbaugh and Benguria
[1, Lemma 3.2], although our work is in 2 dimensions whereas theirs holds in all
dimensions.

(7) Monotonicity in Theorem 1 is somewhat surprising, since the Neumann eigen-
values themselves generally fail to vary monotonically. The second Neumann eigen-
value �2.‚/ is graphed for 0 < ‚ < � in Figure 4, where one sees that as the cap
expands to fill the sphere, the eigenvalue first decreases and then increases. This beha-
vior was observed numerically by Dauge and Pogu [16, pp. 239–240] and proved
by Dauge and Helffer [15, Section 6]. Thus, the monotonicity in our Theorem 1
must encode a subtle interplay between the eigenvalue and the normalizing geometric
quantity.

Improved scaling for low Neumann and Dirichlet eigenvalues. Theorem 1 (i) says
for spherical caps that �k.‚/4 sin2.‚=2/= cos2.‚=2/ is increasing. For the second
eigenvalue (k D 2) we are able to strengthen that assertion by removing the cosine
factor, and similarly in the hyperbolic case, as the next theorem shows.

Theorem 2 (Second Neumann eigenvalue – improved scaling). The function

‚ 7!

8̂̂<̂
:̂
�2.‚/ 4 sinh2 ‚

2
; ‚ 2 .�1; 0/;

�2.D/; ‚ D 0;

�2.‚/ 4 sin2 ‚
2
; ‚ 2 .0; �/;

increases strictly from 2 to 8.

The theorem is proved in Section 7 and illustrated on the left side of Figure 3. The
geometric interpretation is that �2A is an increasing function of the cap aperture ‚,
where A D 4� sin2‚=2 is the area. Numerically, �2.D/ D .j 01;1/

2 � .1:84/2.
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Figure 2. Monotonicity properties of the second Neumann eigenvalue (left) and first Dirichlet
eigenvalue (right), for geodesic disks in hyperbolic space (‚ < 0) and the sphere (0 < ‚ < �).
TOP. tan/tanh from Theorem 1 (i). BOTTOM. sin/sinh from Theorem 1 (ii).
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Figure 3. LEFT. Solid curve shows monotonicity of the second Neumann eigenvalue normal-
ized by 4 si2 ‚=2, from Theorem 2, which improves on the dotted curve from Figure 2 top
left where the normalization is 4 ta2 ‚=2. RIGHT. Solid curve shows monotonicity of the first
Dirichlet eigenvalue normalized by ‚2, from Theorem 3, which improves on the dotted curve
from Figure 2 bottom right where the normalization is si2‚.
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2

2 2

2

Figure 4. Second Neumann eigenvalue �2.‚/ for a spherical cap, plotted against the aperture
angle‚. The eigenvalue decreases as the aperture increases, through the hemisphere (‚D �=2)
and somewhat beyond, but then changes direction and starts increasing from‚2 ' 0:7� , as the
cap expands to fill the whole sphere (‚ D �). The hemisphere and full sphere have eigenvalue
2 with spherical harmonic eigenfunctions u D x D sin � cos� and u D y D sin � sin�.

The theorem combines with Theorem 1 to imply improved bounds for k D 2:

1

sinh2‚
<
�2.‚/

�2.D/
<

1

4 sinh2 ‚
2

; ‚ 2 .�1; 0/;

1

4 sin2 ‚
2

<
�2.‚/

�2.D/
<

1

sin2‚
; ‚ 2 .0; �/:

These inequalities are sharp to leading order as ‚! 0, although not as precise as the
two-term asymptotic by Fall and Weth [17, Section 3] for the Neumann eigenvalue of
a shrinking geodesic ball in a manifold with variable curvature.

The first Dirichlet eigenvalue (k D 1) satisfies a better scaling result than provided
by Theorem 1 (ii)–(iii), because the next theorem improves the scaling factor si2 ‚
to‚2. By convention, �1.‚/‚2 is defined at‚D 0 to equal its limiting value �1.D/.

Theorem 3 (First Dirichlet eigenvalue – improved scaling). The function �1.‚/‚2

decreases strictly from1 to 0, for ‚ 2 .�1; �/.

Remarks. (1) The right side of Figure 3 illustrates the theorem. Section 8 has the
proof. Geometrically, the aperture ‚ equals the geodesic radius of the cap or disk.

(2) Combining Theorem 3 and Theorem 1, we obtain improved two-sided bounds:

1

‚2
<
�1.‚/

�1.D/
<

1

4 tanh2 ‚
2

; ‚ 2 .�1; 0/;

1

4 tan2 ‚
2

<
�1.‚/

�1.D/
<

1

‚2
; ‚ 2 .0; �/:



Scaling inequalities for spherical and hyperbolic eigenvalues 271

Numerically, �1.D/ D .j0;1/2 � .2:40/2 D 5:76.

(3) Theorem 3 holds in all dimensions n � 2, and will be proved in that setting. In
the special case of 3 dimensions, the Dirichlet ground state of a geodesic ball of radius
‚ is given explicitly in terms of the geodesic distance � 2 .0;‚/ from the center by

u1.�/ D

´
sin.� �

‚
/= sinh �; ‚ 2 .�1; 0/;

sin.� �
‚
/= sin �; ‚ 2 .0; �/;

with eigenvalue �1.‚/D .�=‚/2 � sign‚ (see [10, Remark 3.1]). Thus, �1.‚/‚2D
�2 � ‚2 sign‚, which is obviously decreasing. In all dimensions, the ground state
can be written in terms of Legendre P or Q-functions, but there appears to be no
explicit formula for the eigenvalue except in dimension 3.

(4) Cheng’s theorem contains Theorem 3 and its proof as a special case, as we
explain below in the proof of Corollary 6 (i). Different approaches were provided
in the positive curvature case by Ashbaugh and Benguria [2, Theorem 1.2], based
on differentiating �1.‚/ with respect to the aperture ‚ 2 .0; �/, and in the negat-
ive curvature case by Benguria and Linde [8, Lemma 4.2], who transformed to a
Schrödinger equation and obtained Corollary 6 (i). Those authors did not connect their
work to Cheng’s theorem.

(5) The monotonicity of �1.‚/‚2 in dimension 2 follows also from a much later
result by Borisov and Freitas [11, Lemma 3.1], since their function “H” is negative.
Their formula could perhaps be used to prove monotonicity in dimensions n � 4, but
in those dimensions the H function changes sign and so one would need to show a
certain integral involving the eigenfunction is nonpositive, which seems challenging.

(6) A two-sided inequality for �1.‚/ by Borisov and Freitas [11, Theorem 3.3]
is tighter than the one deduced above, although their bounding expressions are more
complicated. Their Theorem 4.1 yields also a rather precise asymptotic expansion of
the eigenvalue as ‚! 0.

The next theorem shows that the second Dirichlet eigenvalue (k D 2) satisfies a
stronger inequality than Theorem 1 (i) for ‚ 2 .0; �/: the factor 4 tan2 ‚=2 can be
improved to ‚2. Similarly, Theorem 1 (ii) for ‚ 2 .�1; 0/ can be strengthened by
improving the factor sinh2‚ to ‚2.

Theorem 4 (Second Dirichlet eigenvalue – improved scaling). For‚ 2 .�1; 0/, the
function �2.‚/‚2 decreases strictly from1 to �2.D/, and for‚ 2 .0;�/ it increases
strictly from �2.D/ to 2�2.

Remarks. (1) The theorem is proved in Section 9. The hyperbolic part, for ‚ < 0,
will be proved in all dimensions n� 2. The spherical part, for 0<‚<� , holds only in
2 dimensions. See Figure 5 for a plot of the 2-dimensional case. In dimensions n � 3,
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Figure 5. The solid curve shows the minimum at ‚ D 0 of the second Dirichlet eigenvalue
normalized by ‚2, as proved in Theorem 4. For 0 < ‚ < � , this curve improves on the mono-
tonicity of the dotted curve with normalization 4 tan2‚=2, from Theorem 1 (i). For ‚ < 0, the
solid curve improves on the dotted curve with normalization sinh2‚, from Theorem 1 (ii).

it appears based on numerical investigations that �2.‚/‚2 is strictly decreasing on
.�1;‚�.n/� and strictly increasing on Œ‚�.n/; �/, for some positive number‚�.n/,
and that ‚�.n/ increases with the dimension n. In 2 dimensions, Theorem 4 shows
that the minimum point occurs at ‚�.2/ D 0.

(2) In conjunction with Theorem 1, the last theorem implies improved two-sided
bounds on the second Dirichlet eigenvalue:

1

‚2
<
�2.‚/

�2.D/
<

1

4 tanh2 ‚
2

; ‚ 2 .�1; 0/;

1

‚2
<
�2.‚/

�2.D/
<

1

sin2‚
; ‚ 2 .0; �/:

(3) Ashbaugh and Benguria [2, Remark on p. 1071] proved Theorem 4 in the
spherical case 0 < ‚ < � . Our proof in Section 9 is more direct than their perturba-
tional approach, in that our proof uses only the Rayleigh principle and integration by
parts. In the hyperbolic case ‚ 2 .�1; 0/, the theorem is new as far as we know.

(4) The eigenvalue ratio �2.‚/=�1.‚/ is strictly increasing for ‚ 2 .0; �/, by
Theorem 3 and Theorem 4. This property was observed already by Ashbaugh and
Benguria [2, Remark on p. 1071]. In all dimensions, they proved that the ratio is
increasing up to the hemisphere [2, Theorem 1.3], that is, for ‚ 2 .0; �=2/, with
the 2- and 3-dimensional cases holding on the larger range ‚ 2 .0; �/. Benguria and
Linde [8, Theorem 1.2] extended that ratio result to the hyperbolic case ‚ < 0 in all
dimensions (notice their � is our �‚, which reverses the monotonicity statement),
but did not investigate monotonicity of �2.‚/‚2 as in Theorem 4 above. They also
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proved monotonicity of the eigenvalue ratio for Schrödinger operators, under a con-
vexity assumption on the radial derivative of the potential [7, Theorem 2.2].

Bandle-type bounds on Neumann caps with varying curvature. Until now we
have considered caps and geodesic disks with varying radii in spheres and hyperbolic
spaces of constant curvature ˙1. Changing viewpoint, we next examine caps with
varying curvature, while fixing either the area or the geodesic radius. In particular, a
corollary of Theorem 2 that we next develop strengthens an inequality of Bandle for
the second Neumann eigenvalue.

FixA>0 and write�2.KIA/ for the second Neumann eigenvalue of the Laplace–
Beltrami operator on a geodesic disk of curvature K and area A. The disk sits in a
hyperbolic plane if K is negative, in the Euclidean plane if K is 0, and in a sphere
of radius 1=

p
K if 0 < K < 4�=A. That last restriction on the curvature ensures

A < 4�=K, so that the sphere indeed contains a cap with area A.
When � > 0 is fixed, we denote by �2.KI �/ the second Neumann eigenvalue

of the Laplace–Beltrami operator on a disk of geodesic radius � and curvature K <

.�=�/2. The last restriction says when K is positive that � < �=
p
K, which means

the sphere of radius 1=
p
K does contain a cap of aperture �.

Corollary 5 (Bandle-type inequality on second Neumann eigenvalue). (i) Fix A > 0.
The second Neumann eigenvalue �2.KI A/ of the Laplace–Beltrami operator on
a geodesic disk of area A is a strictly increasing function of the curvature K 2
.�1; 4�=A/.

(ii) Fix � > 0. The second Neumann eigenvalue �2.KI �/ on a geodesic disk of
radius � is a strictly increasing function of the curvature K 2 .�1; .�=�/2/.

The “fixed area” result in part (i) of the corollary is stronger than the “fixed radius”
result in part (ii), as the proof will make clear. Part (ii) was obtained previously in
greater generality by Li, Wang, and Wu [22, Theorem 1.1] in 2 and 3 dimensions
under an upper bound on the sectional curvature. That is, they allow one of the disks
to have non-constant curvature and estimate its eigenvalue with that of a constant
curvature disk. Their paper also provides results and references to similar inequalities
for the first and second Robin eigenvalues.

For K � 2�=A, part (i) of the corollary is due to Bandle [4], [5, Corollary 3.9].
The extension to K < 4�=A in Corollary 5 is new and allows us to handle spherical
caps larger than a hemisphere. The proof in Section 10 is new too: Bandle derived her
result from a comparison theorem for arbitrary domains whereas the approach in this
paper is more direct and relies only on the caps and disks from Theorem 2.

Cheng-type bounds on Dirichlet caps with varying curvature. Theorem 3 implies
a special case of Cheng’s inequalities for the first Dirichlet eigenvalue.
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Corollary 6 (Cheng-type inequality on first Dirichlet eigenvalue). (i) Fix � > 0. The
first Dirichlet eigenvalue �1.KI �/ of the Laplace–Beltrami operator on a geodesic
disk of radius � is a strictly decreasing function of the curvature K 2 .�1; .�=�/2/.

(ii) Fix A > 0. The first Dirichlet eigenvalue �1.KIA/ on a geodesic disk of area
A is a strictly decreasing function of the curvature K 2 .�1; 4�=A/.

Section 10 has the proof, which holds in all dimensions although we state it only
for the 2-dimensional case. The Cheng-type “fixed radius” result in part (i) of the
corollary is stronger than the “fixed area” result in part (ii).

Cheng [13,14] handled a much more general situation than the corollary, on mani-
folds with variable curvature bounded either above or below. A good exposition can be
found in Chavel’s book [12, Chapter III]. The negative curvature case of the corollary
was proved by Benguria and Linde [8, Lemma 4.2], without them perhaps realizing it
is a special case of Cheng’s theorem.

For the second Dirichlet eigenvalue, we obtain in Section 10 a comparison for
disks that is new as far as we know.

Corollary 7 (Cheng-type inequality on second Dirichlet eigenvalue). (i) Fix � > 0.
The second Dirichlet eigenvalue �2.KI �/ of the Laplace–Beltrami operator on a
geodesic disk of radius � is a strictly decreasing function of negative curvature K 2
.�1; 0/ and a strictly increasing function of positive curvature K 2 .0; .�=�/2/.

(ii) Fix A > 0. The second Dirichlet eigenvalue �2.KIA/ on a geodesic disk of
area A is a strictly decreasing function of negative curvature K 2 .�1; 0/.

Open problems. The following conjectures are based on numerical investigations.

(a) Second Dirichlet eigenvalue. Is �2.‚/4 sin2‚=2 decreasing when 0<‚<�?
If so, then the Dirichlet version of Theorem 1 (ii) would be strengthened when
‚ 2 .0; �/ and hence Corollary 7 (ii) would extend to positive curvatures
K 2 .�1; 4�=A/.

This conjecture is interesting only for positive ‚ values. The analogous quantity
�2.‚/4 sinh2‚=2 is already known to be decreasing when ‚ < 0 because �2.‚/‚2

is decreasing in that range by Theorem 4.

(b) Spectral gap. Is .�2.‚/ � �1.‚//‚2 increasing for ‚ 2 .�1; �/? If so,
then .�2.‚/ � �1.‚//4 ta2 ‚=2 is increasing too. These claims are known
when ‚ 2 .0; �/ by Ashbaugh and Benguria [2, p. 1071], i.e., by combining
Theorem 3 and Theorem 4.

Is .�2.‚/ � �1.‚// si2‚ decreasing for ‚ 2 .�1; �/? When ‚ < 0, a stronger
result seems to hold, namely that .�2.‚/ � �1.‚//4 sinh2‚=2 is decreasing.
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(c) Higher dimensions. One would like analogues of Theorem 1 and Theorem 2
in higher dimensions. New ideas will be needed, because the methods in this
paper are decidedly 2-dimensional: by Section 5.1, the hyperbolic and spher-
ical eigenvalue problems transform to equations of the form ��v D �wv,
but in higher dimensions the transformed equation is more complicated – its
left side becomes a divergence-form operator, which means that both sides of
the equation involve a weight.

3. Eigenvalues tend to infinity as the weight tends pointwise to zero

This section may safely be skipped at a first reading, since it examines limiting values
and not the monotonicity results that are the main focus of the paper.

Certain limits in Section 4 involve a weighted Laplacian whose weight tends
to zero pointwise but not uniformly. The next lemma shows that, despite the non-
uniformity of the convergence, all eigenvalues must tend to infinity.

Lemma 8. Let � be a bounded domain in Rn; n � 1. For each R > 0, suppose
wR W�! .0; 1� is measurable with essinfwR > 0. Write �k.wR/ and �k.wR/ for the
Dirichlet and Neumann eigenvalues of �w�1R �, respectively, where in the Neumann
case we further assume � has Lipschitz boundary.

If limR!1wR D 0 a.e. then

lim
R!1

�k.wR/ D1 for each k � 1

and

lim
R!1

�k.wR/ D1 for each k � 2.

The first Neumann eigenvalue �1.wR/ is omitted from the theorem, as it equals 0.

Proof. Note that w�1R � has discrete spectrum since the weight wR is bounded above
and bounded below away from 0. Fix 0 < ı < 1 and define a weight

mR.x/ D max.ı; wR.x//; x 2 �;

so thatmR is bounded away from zero. The k-th Neumann eigenvalue associated with
�m�1R � has variational characterization

�k.mR/ D min
L

max
f 2Ln¹0º

R
�
jrf j2 dxR

�
f 2mR dx

whereL�W 1;2.�/ is an arbitrary k-dimensional subspace. SincewR �mR by con-
struction, we see by comparing with the corresponding characterization for �k.wR/
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that
�k.wR/ � �k.mR/;

for each k and R.
The weight satisfies ı � mR � 1 by definition, so that

ı�1�k.1/ � �k.mR/ � �k.1/ (1)

by the variational characterization, where �k.1/ is the k-th Neumann eigenvalue of
the unweighted Laplacian. We will show for k � 2 that

lim inf
R!1

�k.mR/ � ı
�1�2.1/: (2)

Since ı can be taken arbitrarily small and the second Neumann eigenvalue �2.1/ is
positive, we deduce that �k.wR/ must tend to infinity as R!1.

For each R, take a k-th Neumann eigenfunction fR.x/ for �m�1R �, satisfying

��fR D �k.mR/mRfR (3)

weakly, meaning Z
�

r' � rfR dx D �k.mR/

Z
�

'fRmR dx

for all ' 2 W 1;2.�/. We choose to normalize the eigenfunction in the unweighted
space L2.�/, so that

R
�
fR.x/

2 dx D 1. Consider a sequence of R-values tending
to1. The weak form of the eigenfunction equation (3) yields a bound on theL2-norm
of the gradient:Z
�

jrfRj
2 dx D �k.mR/

Z
�

f 2RmR dx � ı
�1�k.1/

Z
�

f 2R dx D ı
�1�k.1/ <1

where the inequality uses that mR � 1 and the final equality relies on the L2-nor-
malization of the eigenfunction. After passing to a subsequence of R-values, the
Rellich–Kondrachov theorem yields a function f 2 W 1;2.�/ such that fR * f

weakly in W 1;2.�/ and fR ! f in L2.�/. After passing to a further subsequence
we may suppose the numbers �k.mR/ converge to a limit as R!1. Hence,Z

�

f 2 dx D 1

and f satisfies the weak eigenfunction equation

��f D
�
ı lim
R!1

�k.mR/
�
f; (4)
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as we now show. For each test function ' 2 W 1;2.�/,Z
�

rf � r' dx

D lim
R!1

Z
�

rfR � r' dx (by weak convergence)

D lim
R!1

�k.mR/

Z
�

fR'mR dx (by the weak eigenfunction equation (3))

D lim
R!1

�k.mR/

Z
�

f 'mR dx (since fR ! f in L2.�/ and mR � 1)

D lim
R!1

�k.mR/

Z
�

f 'ı dx

by dominated convergence, since wR ! 0 a.e. by hypothesis and hence mR ! ı a.e.
The eigenfunction equation (4) says that f is an eigenfunction of the unweighted

Neumann Laplacian on �. Its eigenvalue ı limR!1 �k.mR/ is positive by (1), since
k � 2, and so must be greater than or equal to the second eigenvalue �2.1/. The ori-
ginal sequence ofR-values was arbitrary and so we conclude ı lim infR!1�k.mR/�
�2.1/, which proves (2) and hence finishes the Neumann case of the proof.

For the Dirichlet eigenvalues, the only difference is that for k � 1 one finds the
positive number ı lim infR!1 �k.mR/ is greater than or equal to the first eigenvalue
of the unweighted Dirichlet Laplacian. This Dirichlet eigenvalue is positive, unlike
the first Neumann eigenvalue, and so again taking ı arbitrarily small completes the
proof.

4. Monotonicity for arbitrary domains

The eigenvalue problem on spherical caps and hyperbolic disks will be recast into
a problem for a weighted Laplacian on Euclidean disks. We begin by studying such
weighted operators. Consider a bounded Lipschitz domain� in the plane R2. Denote
by �k.�Iw˙/ the k-th Neumann eigenvalue (k � 1) of the weighted Laplacian´

��v D �w˙v on �,
@v
@n
D 0 on @�,

where the radial weight function is

w˙.r/ D
4

.1˙ r2/2
:
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In the w� case, the domain � is assumed to be a proper subdomain of the unit disk,
so that r < 1.

The weight corresponds to a metric of curvature ˙1, since �.� logw˙/=2w˙ D
˙1. (For background on curvature of surfaces, see Bandle [5, §I.3].) Note that the first
eigenvalue is zero, �1 D 0, with constant eigenfunction.

Let �k.�/ be the k-th Neumann eigenvalue of the unweighted Euclidean Lapla-
cian.

Proposition 9 (Scaling monotonicity for weighted Laplacian eigenvalues). Assume
� is a bounded, planar Lipschitz domain and write M D maxz2x� jzj, so that �=M
is contained in the unit disk. Let k � 2.

(i) The functional

R 7!

8̂̂<̂
:̂
�k.R�Iw�/ 4R

2; R 2 .�1=M; 0/;

�k.�/; R D 0;

�k.R�IwC/ 4R
2; R 2 .0;1/;

increases strictly and continuously. Its limit as R!�1 equals 4�k.�Iw�/
if � is a proper subdomain of the unit disk and equals 0 if � D D. Its limit
as R!1 is1.

(ii) Suppose � is contained in the unit disk. The functional

R 7!

8̂̂<̂
:̂
�k.R�Iw�/ 4R

2=.1 �R2/2; R 2 .�1; 0/;

�k.�/; R D 0;

�k.R�IwC/ 4R
2=.1CR2/2; R 2 .0;1/;

decreases strictly and continuously. Its limit as R ! �1 is1. Its limit as
R!1 equals ´

0 if the closure x� contains the origin,

�k.�I jzj
�4/ otherwise.

(iii) The corresponding statements hold also for Dirichlet eigenvalues when
k � 1 except that in part (i), if � D D then as R ! �1, the limit of
�k.R�Iw�/ 4R

2 equals 1 rather than 0.

When R < 0, the domain R� is obtained by rescaling � and reflecting through
the origin. The reflection is harmless: it does not change the eigenvalue because the
weight w˙ is radial. Thus, the eigenvalue in the proposition could be written as
�k.jRj�Iw˙/, but for notational simplicity we omit the absolute value signs.
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Proof. The proposition is proved in several steps, as follows.

Rescaling the Rayleigh quotient. The Rayleigh quotient for the weighted Neumann
eigenvalue �k.R/ D �k.R�Iw˙/ is

QRŒv� D

R
R�
jrvj2 dAR

R�
v2w˙ dA

where dA is Euclidean area measure (2-dimensional Lebesgue measure), v belongs
to the Sobolev spaceW 1;2.R�/, and the Rayleigh quotient uses wC when R > 0 and
w� when R < 0. The minimax characterization of the k-th eigenvalue says

�k.R/ D min
L

max
v2Ln¹0º

QRŒv� (5)

where L ranges over all k-dimensional subspaces of W 1;2.R�/.
The idea is to rescale the Rayleigh quotient from R� to � by letting f .z/ D

v.Rz/, so that f 2 W 1;2.�/ and

QRŒv�4R
2
D

R
�
jrf .z/j2 dAR

�
f .z/2w˙.Rz/=4 dA

:

Dividing by .1˙R2/2 shows

QRŒv�
4R2

.1˙R2/2
D

R
�
jrf .z/j2 dAR

�
f .z/2w˙.R; z/ dA

where the new weight is

w˙.R; z/ D
� 1˙R2

1˙R2jzj2

�2
: (6)

Hence, the minimax characterization (5) implies

�k.R/4R
2
D min

L
max

f 2Ln¹0º

R
�
jrf .z/j2 dAR

�
1
4
f .z/2w˙.Rz/ dA

(7)

and

�k.R/
4R2

.1˙R2/2
D min

L
max

f 2Ln¹0º

R
�
jrf .z/j2 dAR

�
f .z/2w˙.R; z/ dA

(8)

where L ranges over all k-dimensional subspaces of W 1;2.�/. When R D 0, these
characterizations yield the unweighted eigenvalue �k.�/ on the right side, since
w˙.0/=4 D 1 and w˙.0; z/ D 1.

Proof of Proposition 9 (i). The weight w˙.Rz/=4 D 1=.1˙R2jzj2/2 in formula (7)
is strictly decreasing with respect to R 2 .�1=M;1/, remembering that w� is used
when R < 0 and wC when R > 0. Hence, it follows from (7) that R 7! �k.R/4R

2 is
strictly increasing. Continuity with respect to R follows easily too.
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As R ! 1, we find that �k.R/4R2 ! 1 by applying Lemma 8 to wR.z/ D
wC.Rz/=4.

If � is a proper subdomain of the unit disk then M < 1, and at R D �1 the
quantity �k.R/4R2 equals 4�k.�Iw�/.

It remains to show that if � is the unit disk D then �k.R/4R2 ! 0 as R! �1,
which we do by applying the variational characterization to a suitably chosen sub-
space of trial functions, as follows. Choose h 2 C 1Œ0; 1� such that h is increasing,
h D 0 on Œ0; 1=4� and h D 1 on Œ3=4; 1�, and let L be the k-dimensional subspace
of W 1;2.D/ spanned by h.r/ cos j� for j D 1; : : : ; k, where r and � are the polar
coordinates. Each of these functions is L2-orthogonal to the constant and to each
other, with respect to the radial weight w�.Rz/=4. Considering the arbitrary linear
combination f D

Pk
jD1 cjh.r/ cos j�, we see from the variational characteriza-

tion (7) that

�k.R/4R
2
� max
jcjD1

Pk
jD1 c

2
j

R
D
jr.h.r/ cos j�/j2r dr d�Pk

jD1 c
2
j

R
D
jh.r/ cos j�j2.1

4
w�.Rr//r dr d�

where c D .c1; : : : ; ck/ is the coefficient vector. The numerator is independent of R,
while each integral in the denominator tends to1 asR!�1 because h.r/D 1 for all
r near 1 and w�.�r/=4 D .1 � r2/�2 is not integrable near r D 1. (In other words,
the hyperbolic disk has infinite area.) It follows that the right side of the inequality
tends to 0 as R! �1, so that �k.R/4R2 ! 0 as claimed.

Alternatively, one could call on a result of Korevaar [18, Theorem 1.3] that estim-
ates the Neumann eigenvalues in a general setting, under a lower curvature bound.

Proof of Proposition 9 (ii). Assume � � D, so that jzj < 1 in what follows. The
weight w˙.R; z/ in formula (6) is strictly increasing as a function of R 2 .�1;1/,
because

w˙.R; z/
�1=2
D
1˙R2jzj2

1˙R2
D
1 � jzj2

1˙R2
C jzj2

and this expression is strictly decreasing with respect to R, remembering that the
minus sign is used when R < 0 and the plus sign when R > 0.

SinceR 7!w˙.R;z/ is strictly increasing, formula (8) ensures that the normalized
eigenvalue R 7! �k.R/4R

2=.1˙R2/2 is strictly decreasing.
If� is a proper subdomain of the unit disk then �k.�1/ > 0 while as R!�1 the

factor 4R2=.1�R2/2 tends to1, and hence �k.R/4R2=.1�R2/2!1. The same
conclusion holds when � is any subdomain of the unit disk D, proper or not, as we
conclude by applying Lemma 8 to the weight

w�.R; z/ D
� 1 �R2

1 �R2jzj2

�2
� 1;
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noting this weight tends to 0 as R ! �1, for each z 2 D. (Although Lemma 8 is
stated for the range 0 < R <1 with R!1, the same result holds for �1 < R < 0
with R! �1, simply by relabeling.)

For the limiting value asR!1, suppose first the origin does not lie in the closure
of�, so that jzj�4 is continuous and is bounded above and bounded below away from
zero for z 2 �. Clearly, wC.R; z/=jzj�4 ! 1 as R!1, uniformly with respect to
z 2 �. Letting R !1 in the variational characterization (8) therefore implies that
�k.R/4R

2=.1CR2/2 ! �k.�I jzj
�4/, as needed.

Suppose next that the origin does lie in the closure of �. Since @� is Lipschitz
by hypothesis, � must contain some sector C with vertex at the origin and radius
less than 1. Notice C � RC � R� for each R � 1. Consider a fixed k-dimensional
subspace L of C10 .C/. Since L � W 1;2

0 .R�/, the characterization (5) implies

�k.R/ � max
v2Ln¹0º

R
C
jrvj2 dAR

C
v2wC dA

:

The right side is finite and independent of R, and so after multiplying by the normal-
izing factor 4R2=.1 C R2/2 D O.R�2/ we see the product tends to 0 as R ! 1,
which completes the proof of Proposition 9 for Neumann eigenvalues.

Proof of Proposition 9 (iii) – Dirichlet eigenvalues. To prove analogous statements
for the Dirichlet eigenvalues with k � 1, simply change the trial space from W 1;2

to W 1;2
0 .

For the special case � D D, in the Dirichlet analogue of part (i) we want the lim-
iting value �k.RDIw�/4R2! 1 as R!�1, which means we want �k.RDIw�/ to
converges to 1=4. This eigenvalue equals the k-th Dirichlet eigenvalue of the hyper-
bolic Laplacian on a geodesic disk of hyperbolic radius j‚j, by the changes of variable
in Section 5.3 below, where tanh‚=2D R. That is, using the notation employed else-
where in the paper, we want �k.‚/! 1=4 as ‚! �1.

The first (k D 1) Dirichlet eigenvalue of the geodesic disk always exceeds 1=4,
meaning �1.‚/ > 1=4, by a brief argument with Cauchy–Schwarz [12, p. 47]. It is
further known that �1.‚/ ! 1=4 as the radius j‚j tends to 1, because one has
lim sup‚!�1 �1.‚/ � 1=4 by a result of McKean [12, Theorem 5 on p. 46].
(A recent asymptotic formula by Kristály [19] provides a precise rate of convergence,
if desired.) To handle higher eigenvalues, one may call on a result of Berge [9, Corol-
lary 3.4], or else show as follows that lim sup‚!�1 �k.‚/ � 1=4 for each fixed
k � 2.

The geodesic disk of radius j‚j contains k disjoint geodesic disks of radius j‚j=k.
Domain monotonicity for the Dirichlet spectrum ensures that the k-th eigenvalue of
the disk of radius j‚j is less than or equal to the k-th eigenvalue of the disjoint union of
the smaller disks, which equals the first eigenvalue of one of the disks of radius j‚j=k.
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As mentioned above, that first eigenvalue converges to 1=4 as j‚j ! 1, completing
the proof.

Remark. McKean’s observation that lim sup‚!�1 �1.‚/ � 1=4 can be justified
quickly and explicitly in polar coordinates by substituting the trial function f .r/ D
.1 � r2/q 2 W

1;2
0 .D/ into the Dirichlet version of the Rayleigh principle (7), with

� D D and q > 1=2, yielding that

�1.RDIw�/4R
2

�

R 1
0
f 0.r/2r drR 1

0
f .r/2.1

4
w�.Rr//r dr

!

R 1
0
f 0.r/2r drR 1

0
f .r/2.1 � r2/�2r dr

as R! �1

D 2q ! 1 as q ! 1=2.

5. Coordinate systems for the sphere and hyperbolic disk

This section summarizes coordinate expressions for the Laplace–Beltrami operators
on the sphere and hyperbolic disk, and stereographically transforms those operators
into Euclidean polar coordinates .r; �/.

5.1. Euclidean plane

The Laplacian in polar coordinates is

�u D
1

r

@

@r

�
r
@u

@r

�
C
1

r2
@2u

@�2
:

5.2. Sphere

Take � 2 .0;�/ to be the polar angle on the 2-sphere measured from the z-axis and � 2
Œ0;2�/ to be the azimuthal (or longitudinal) angle. By stereographic projection (taking
the north pole to the origin), the coordinates .�; �/ transform to polar coordinates
.r; �/ in the plane, with

sin � D
2r

1C r2
; cos � D

1 � r2

1C r2
; tan

�

2
D r;

d�

sin �
D
dr

r
; .sin �/

d

d�
D r

d

dr
:

The Laplace–Beltrami operator on the sphere is

�sphu D
1

sin �
@

@�

�
.sin �/

@u

@�

�
C

1

sin2 �
@2u

@�2
:
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The eigenfunction equation ��sphu D �u transforms to ��v D �wCv, where we
have written u.�; �/ D v.r; �/ and � D � and the weight is

wC.r/ D
4

.1C r2/2
:

5.3. Hyperbolic space

The polar coordinates .p; �/ on the 2-dimensional hyperbolic disk transform to polar
coordinates .r; �/ on the unit disk ¹0 � r < 1º according to:

sinhp D
2r

1 � r2
; coshp D

1C r2

1 � r2
; tanh

p

2
D r;

dp

sinhp
D
dr

r
; .sinhp/

d

dp
D r

d

dr
:

The Laplace–Beltrami operator in hyperbolic space is

�hypu D
1

sinhp
@

@p

�
.sinhp/

@u

@p

�
C

1

sinh2 p
@2u

@�2
:

The eigenfunction equation ��hypu D �u transforms to ��v D �w�v where we
have written u.p; �/ D v.r; �/ and � D � and the weight is

w�.r/ D
4

.1 � r2/2
:

6. Proof of Theorem 1

The theorem follows from Proposition 9 applied to the unit disk � D D, in view of
the transformations in Section 5 between the spherical or hyperbolic Laplacian and
the Laplacian weighted by wC or w�, respectively. Those transformations preserve
Neumann and Dirichlet conditions on the boundary. The geodesic disk C.‚/ trans-
forms to a disk RD where R D tanh‚=2 if ‚ is negative and R D tan‚=2 if ‚ is
positive. Hence, the normalizing factors transform according to

4R2 D

´
4 tanh2 ‚

2
; ‚ 2 .�1; 0/;

4 tan2 ‚
2
; ‚ 2 .0; �/;

4R2

.1˙R2/2
D

´
sinh2‚; ‚ 2 .�1; 0/;

sin2‚; ‚ 2 .0; �/;

where by convention, the minus sign is used in the formula when R and ‚ are negat-
ive, and the plus sign is used when they are positive.
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7. Proof of Theorem 2

Write �� D �2.‚�/ and � D �2.‚/, whenever ‚�; ‚ < � .

Spherical case. First suppose 0 < ‚� < ‚ < � . The goal is to show

�� sin2‚�=2 < � sin2‚=2: (9)

Since sin2‚=2 is strictly increasing when ‚ 2 .0; �/, we may assume

�� > �:

Hence, ‚� < ‚2, because �2.�/ is strictly increasing on the interval .‚2; �/ by [21,
Proposition 4.2] (see Figure 4), where ‚2 ' 0:7� is the unique aperture determined
by the condition �2.‚/ sin2‚ D 1.

We may further suppose ‚ � ‚2, as follows. For if not, then ‚ 2 .‚2; �/ and
so a number �max < ‚ exists at which �2.�max/ D �2.‚/ D �, by [21, Remark in
Section 5]. Necessarily �max � ‚2, because �2.�/ is strictly increasing on the interval
.‚2; �/. Clearly, it suffices to prove (9) with �max instead of‚ on the right side. Thus,
we may assume from now on that ‚ � ‚2.

Since 0 < ‚� < ‚ � ‚2, by [21, Proposition 4.1] the second eigenfunction for
C.‚/ has the separated form uD g.�/cos� or g.�/ sin�, where g.0/D 0 and g0 > 0
on .0; ‚/, with the Neumann condition g0.‚/ D 0 at the right endpoint. Similarly,
the second eigenfunction for C.‚�/ has the form g�.�/ cos � or g�.�/ sin �, where
g�.0/ D 0 and g0� > 0 on .0;‚�/ with the Neumann condition g0�.‚�/ D 0.

We will transform from the � -variable to the r-variable and then rescale to obtain
functions on the unit interval, after which an ODE comparison can be performed. To
begin, change variable by letting h.r/ D g.�/ and h�.r/ D g�.�/ where r D tan �=2
(as in Section 5.2), define v D h.r/ cos � and v� D h�.r/ cos �, and substitute into
the eigenfunction equations ��v D �wCv and ��v� D ��wCv� (recall the weight
is wC.r/ D 4.1C r2/�2) to find that h and h� satisfy

�
1

r
.rh0/0 C

1

r2
hD �wCh; r 2 .0; R/; (10)

�
1

r
.rh0�/

0
C
1

r2
h� D ��wCh�; r 2 .0; R�/;

where R D tan‚=2 and R� D tan‚�=2. Note R� < R. The properties of g and
g� imply that h; h0; h�; h0� are all positive on their respective intervals, with Neu-
mann conditions h0.R/D h0�.R�/D 0 at the right endpoints. Now, rescale by defining
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i.r/D h.Rr/ and i�.r/D h�.R�r/. One calculates that i and i� satisfy the equations

�
1

r
.ri 0/0 C

1

r2
i D �R2wC.Rr/i;

�
1

r
.ri 0�/

0
C
1

r2
i� D ��R

2
�wC.R�r/i�;

for r 2 .0; 1/, with i; i 0; i�; i 0� all positive and i 0.1/ D i 0�.1/ D 0.
For the comparison step, multiply the first equation by ri� and the second by ri

and subtract and then integrate from 0 to 1:

1Z
0

..ri 0�/
0i � .ri 0/0i�/dr D

1Z
0

.�R2wC.Rr/ � ��R
2
�wC.R�r//ri i� dr:

The left side equals ri 0�i � ri
0i�j

1
0, which evaluates to 0 by the Neumann conditions

at r D 1. Thus, the right side equals 0, which is equivalent to having

� sin2.‚=2/

1Z
0

R2
wC.Rr/

AC.R/
ri i� dr D �� sin2.‚�=2/

1Z
0

R2�
wC.R�r/

AC.R�/
ri i� dr (11)

where AC.R/ D 4� sin2‚=2 and AC.R�/ D 4� sin2‚�=2; here we have defined

AC.r/ D

Z
D.r/

wC dA D
4�r2

1C r2
D 4� sin2 �=2;

which is the weighted area of the disk of radius r D tan �=2 (equivalently, the area of
a spherical cap of aperture � ).

In order to deduce the desired inequality (9) from (11), we want to show

1Z
0

wC.Rr/R
2r

AC.R/
i i� dr <

1Z
0

wC.R�r/R
2
�r

AC.R�/
i i� dr:

Since A0C.r/ D 2�w.r/r , the last inequality can be rewritten as

�

1Z
0

�AC.Rr/
AC.R/

�
AC.R�r/

AC.R�/

�0
i i� dr > 0:

Integrating by parts and using AC.0/ D 0 reduces the task to showing

1Z
0

�AC.Rr/
AC.R/

�
AC.R�r/

AC.R�/

�
.i i�/

0 dr > 0:
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The last inequality holds because .i i�/0 > 0 (remember i and i� and their first deriv-
atives are positive) and R > R� and

AC.Rr/

AC.R/
D 1 �

1 � r2

1C .Rr/2

is a strictly increasing function of R > 0, for each r 2 .0; 1/.
The limiting value �2.‚/4 sin2.‚=2/! �2.D/ as ‚& 0 follows from the ana-

logous limit for �2.‚/4 tan2.‚=2/ in Theorem 1.

Limiting value as ‚ ! �. It remains to show �2.‚/4 sin2 ‚=2! 8 as ‚! � ,
which means we want lim‚!� �2.‚/ D 2. This limiting value is shown graphically
in Figure 4 and has been established rigorously by Bandle, Kabeya, and Ninomiya
[6, Theorem 1.1], who show in all dimensions that as the cap expands to fill the sphere,
the Neumann spectrum of the cap converges to the spectrum of the full sphere.

Hyperbolic case. Suppose �1 < ‚� < ‚ < 0. The aim is to show

�� sinh2
‚�

2
< � sinh2

‚

2
:

Let g and g� be the radial parts of the second eigenfunctions for the geodesic disks
C.‚/ and C.‚�/, respectively. By [21, Proposition 4.4], g.0/ D 0 and g0 > 0 on
.0; j‚j/, and g�.0/ D 0 and g0� > 0 on .0; j‚�j/.

The proof proceeds as for the main part of the spherical case above, and so we
indicate only the necessary modifications. Under the change of variable r D tanhp=2,
as in Section 5.3, the geodesic disks C.‚/ and C.‚�/ transform to disks of radii
R D tanh j‚j=2 and R� D tanh j‚�j=2. Notice

0 < R < R� < 1:

(In the current proof we find it convenient to work with R values between 0 and 1,
whereas previously the hyperbolic case has corresponded to R between 0 and �1.
Whether one works with R or its negative, the disk RD is the same.) The area of a
disk D.r/ with respect to the weight w�.r/ D 4.1 � r2/�2 is

A�.r/ D

Z
D.r/

w� dA D
4�r2

1 � r2
D 4� sinh2

p

2
: (12)

Observe that
A�.Rr/

A�.R/
D 1 �

1 � r2

1 � .Rr/2

is a strictly decreasing function of R < 1, for each r 2 .0; 1/. With these adaptations,
the spherical proof adapts easily to the hyperbolic situation.

The fact that�2.‚/4 sinh2‚=2!�2.D/ as‚% 0 follows from the correspond-
ing limit for �2.‚/4 tanh2‚=2 in Theorem 1.
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Limiting value as‚!�1. We still need to prove �2.‚/4 sinh2‚=2! 2 as‚!
�1, that is, asR! 1. We start by showing a lower bound, that�2.‚/4sinh2‚=2> 2
for all ‚ < 0. That is, we want �A� > 2� when 0 < R < 1.

Multiply the hyperbolic version of ODE (10) (with w� instead of wC) by r and
integrate with respect to r dr to obtain

�

RZ
0

.rh0/0r dr C

RZ
0

h dr D �

RZ
0

w�hr
2 dr

D �

RZ
0

A0�.r/

2�
hr dr:

Integrating by parts twice on the left and using the Neumann condition h0.R/ D 0,
and also integrating by parts once on the right, gives that

Rh.R/ D
�

2�

�
A�.R/h.R/R �

RZ
0

A�.r/.hr/
0 dr

�
:

Since g0 > 0, we know h0 > 0 and hence .hr/0 > 0, so that dropping that term in the
preceding equation implies the desired lower bound 2� < �A�.R/.

To obtain an upper bound of 2 in the limit as ‚! �1, we use a trial function
approach. The variational characterization of the second eigenvalue (based on the
ODE (10) except with w� instead of wC) is

�2.‚/ D min
h

R R
0
.h0.r/2 C r�2h.r/2/ r drR R
0
h.r/2w�.r/ r dr

whereRD tanh j‚j=2 and h 2W 1;2.0;R/ with h.0/D 0. Choosing the trial function
h.r/ D r and substituting the definition of w�.r/ yields the explicit estimate

�2.‚/ �
R2=2

R2

1�R2 C log.1 �R2/
:

Multiplying by 4 sinh2‚=2 D 4R2=.1 �R2/, we find

�2.‚/4 sinh2‚=2 �
2R4

R2 C .1 �R2/ log.1 �R2/
! 2

as R! 1. This limiting upper bound of 2 combines with the previous lower bound to
complete the proof that �2.‚/4 sinh2‚=2! 2 as ‚! �1.
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Remark. The Steklov spectrum underlies the limiting value 2 as ‚!�1, because
when R is near 1, the weight w�.r/ on D.R/ concentrates heavily near the boundary
circle and so the eigenfunction ought to behave like the Steklov eigenfunction of the
disk, which is r cos�. That is, the radial part of the eigenfunction should behave like
h.r/D r , which motivates the choice in the proof above. Concentration results of this
kind have been developed more fully by Lamberti and Provenzano [20].

8. Proof of Theorem 3

Write � D �1.‚/ and �� D �1.‚�/ for the first Dirichlet eigenvalues, whenever
‚;‚� 2 .�1; �/. The following proof holds in all dimensions n � 2.

Spherical case. Suppose 0 < ‚� < ‚ < � . We want to show

��‚
2
� > �‚

2: (13)

Write g and g� for the (radial) first Dirichlet eigenfunctions on the caps C.‚/ and
C.‚�/ of the n-dimensional sphere Sn; n � 2, so that g.‚/ D g�.‚�/ D 0 and

�
1

sinn�1 �

�
.sinn�1 �/g0.�/

�0
D �g.�/; 0 < � < ‚;

�
1

sinn�1 �

�
.sinn�1 �/g0�.�/

�0
D ��g�.�/; 0 < � < ‚�;

with g > 0 and g0 < 0 on .0; ‚/ and g� > 0 and g0� < 0 on .0; ‚�/; see Chavel
[12, p. 43] for these facts, or else Ashbaugh and Benguria [2, Lemma 3.1].

Rescale g and g� to the unit interval by defining i.t/ D g.‚t/ and i�.t/ D
g�.‚�t /. These new functions satisfy

�
1

sinn�1‚t

�
.sinn�1‚t/i 0.t/

�0
D �‚2i.t/; (14)

�
1

sinn�1‚�t

�
.sinn�1‚�t /i 0�.t/

�0
D ��‚

2
�i�.t/;

for t 2 .0; 1/. The equation for i� implies

��‚
2
�i� D �i

00
� � t

�1.n � 1/‚�t .cot‚�t /i 0�
> �i 00� � t

�1.n � 1/‚t.cot‚t/i 0�

since i 0� < 0 and s 7! s cot s is strictly decreasing for s 2 .0; �/, with ‚�t < ‚t .
Hence

�
1

sinn�1‚t

�
.sinn�1‚t/i 0�.t/

�0
< ��‚

2
�i�.t/: (15)
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Multiply inequality (15) by i.t/ sinn�1‚t and equation (14) by i�.t/ sinn�1‚t
and then subtract and integrate from 0 to 1, obtaining that

.��‚
2
� � �‚

2/

1Z
0

i.t/i�.t/ sinn�1‚t dt

>

1Z
0

��
.sinn�1‚t/i 0.t/

�0
i�.t/ �

�
.sinn�1‚t/i 0�.t/

�0
i.t/

�
dt D 0

by parts, using the Dirichlet conditions i.1/ D i�.1/ D 0. Conclusion (13) follows.

Hyperbolic case. Suppose �1 < ‚� < ‚ < 0. Let g and g�, respectively, be the
(radial) first eigenfunctions for the geodesic balls of radii j‚j and j‚�j in the hyper-
bolic space Hn; n � 2; for properties of these eigenfunctions, see Chavel [12, p. 43]
or Benguria and Linde [8, Lemma 3.1]. The goal is again to show

��‚
2
� > �‚

2:

Let i.t/ D g.j‚jt / and i�.t/ D g�.j‚�jt / and argue as above in the spherical case,
except with sin replaced by sinh and using that s 7! s coth s is strictly increasing for
s 2 .0;1/, with j‚�jt > j‚jt .

Limiting values. It is well known that lim‚!�1 �1.‚/ D .n � 1/2=4 and that
lim‚!� �1.‚/ D 0 (which is the first eigenvalue of the full sphere); see Chavel
[12, p. 46, 50]. Hence, �1.‚/‚2 tends to1 as ‚! �1, and tends to 0 as ‚! � .

Remark. The proof given above for Theorem 3 could be rewritten using a trial func-
tion method in which a suitable rescaling of the eigenfunction for the cap of aperture
‚� is used as a trial function for the cap of aperture‚. Specifically, one can use i� as a
trial function in the Rayleigh quotient for estimating �‚2: multiply inequality (15) by
i�.t/ sinn�1‚t , integrate by parts on the left side, and then apply the Rayleigh prin-
ciple for the eigenvalue �‚2. This approach is a special case of the proof of Cheng’s
theorem for geodesic balls satisfying a lower curvature bound [12, pp. 74-76]. Altern-
atively, one could prove Theorem 3 by adapting Cheng’s theorem for geodesic balls
with an upper curvature bound [12, pp. 70-71], that is, using g..‚=‚�/�/ in Barta’s
inequality in order to estimate �1.‚�/ from below.

9. Proof of Theorem 4

Write � D �2.‚/ and �� D �2.‚�/ for the second eigenvalue, when ‚;‚� < � .



J. J. Langford and R. S. Laugesen 290

Spherical case. Suppose 0 < ‚� < ‚ < � . We want to show

��‚
2
� < �‚

2:

Write g and g� for the radial parts of the second Dirichlet eigenfunctions on the caps
C.‚/ and C.‚�/ of the n-dimensional sphere Sn; n � 2. Our proof will succeed only
for nD 2, but by treating all nwe can explicate where the proof breaks down in higher
dimensions.

The radial parts satisfy

�
1

sinn�1 �

�
.sinn�1 �/g0.�/

�0
C
n � 1

sin2 �
g.�/D �g.�/; 0 < � < ‚;

�
1

sinn�1 �

�
.sinn�1 �/g0�.�/

�0
C
n � 1

sin2 �
g�.�/D ��g�.�/; 0 < � < ‚�;

with g > 0 on .0;‚/ and g� > 0 on .0;‚�/, and with the Dirichlet conditions g.0/D
g.‚/ D 0; g�.0/ D g�.‚�/ D 0; see Ashbaugh and Benguria [2, Lemma 3.1] for
these facts.

Let i.t/D g.‚t/ and i�.t/D g�.‚�t /, so that these functions on the unit interval
satisfy i.0/ D i.1/ D 0; i�.0/ D i�.1/ D 0, and

�
1

sinn�1‚t

�
.sinn�1‚t/i 0.t/

�0
C
.n � 1/‚2

sin2‚t
i.t/ D �‚2i.t/;

�
1

sinn�1‚�t

�
.sinn�1‚�t /i 0�.t/

�0
C
.n � 1/‚2�

sin2‚t
i�.t/ D ��‚

2
�i�.t/;

for 0 < t < 1. Multiplying the first equation by i.t/ sinn�1‚t and integrating yields
that

�‚2 D

R 1
0

�
i 0.t/2 sinn�1‚t C .n�1/‚2

sin2‚t
i.t/2 sinn�1‚t

�
dtR 1

0
i.t/2 sinn�1‚t dt

: (16)

The analogous equation holds for ��‚2�, which leads to a variational characterization:

��‚
2
� D min

j

R 1
0

�
j 0.t/2 sinn�1‚�t C

.n�1/‚2
�

sin2‚�t
j.t/2 sinn�1‚�t

�
dtR 1

0
j.t/2 sinn�1‚�t dt

(17)

where j 2 W 1;2.0; 1/ satisfies the Dirichlet boundary conditions j.0/ D j.1/ D 0.
Define a trial function

j.t/ D i.t/
� sin‚t

sin‚�t

�.n�1/=2
;

so that j.t/2 sinn�1‚�t D i.t/2 sinn�1‚t in the denominator of the Rayleigh quo-
tient and in the second term of its numerator. Into the first term of the numerator we
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substitute

j 0.t/2 sinn�1‚�t D
�
i 0.t/C

n � 1

2
i.t/.‚ cot‚t �‚� cot‚�t /

�2
sinn�1‚t

D

�
i 0.t/2 C

n � 1

2
.i.t/2/0.‚ cot‚t �‚� cot‚�t /

C
.n � 1/2

4
i.t/2.‚ cot‚t �‚� cot‚�t /2

�
sinn�1‚t:

After these substitutions, and in view of formulas (16) and (17), in order to prove
��‚

2
� < �‚

2 it is enough to show

1Z
0

�n � 1
2

.i.t/2/0.‚ cot‚t �‚� cot‚�t /

C
.n � 1/2

4
i.t/2.‚ cot‚t �‚� cot‚�t /2 C

.n � 1/‚2�

sin2‚�t
i.t/2

�
sinn�1‚t dt

<

1Z
0

.n � 1/‚2

sin2‚t
i.t/2 sinn�1‚t dt:

After integrating by parts in the first term and then simplifying and using the identity
csc2 D cot2C1, the task reduces to showing

n � 1

4

1Z
0

�
.nC 1/.f .‚�t /

2
� f .‚t/2/

C 2�..‚�t /
2
� .‚t/2/

�
t�2i.t/2 sinn�1‚t dt < 0

where the coefficient is � D 1 in this spherical case, and we have defined f .s/ D
s cot s.

It suffices to show the integrand is negative. After writing ˛ D ‚�t and ˇ D ‚t ,
we want

.nC 1/f .˛/2 C 2˛2 < .nC 1/f .ˇ/2 C 2ˇ2:

Note 0 < ˛ < ˇ < � , due to the assumption that ‚� < ‚. Thus, we wish to show
.nC 1/f .s/2 C 2s2 is strictly increasing for s 2 .0; �/. The product expansion for
sine combined with the geometric series reveals that

.nC 1/f .s/2 C 2s2

D .nC 1/s2 csc2 s � .n � 1/s2

D .nC 1/

1Y
kD1

�
1 �

s2

k2
�2
��2
� .n � 1/s2

D .nC 1/

1Y
kD1

�
1C

s2

k2
�2 C

� s2
k2
�2
�2
C � � �

�2
� .n � 1/s2



J. J. Langford and R. S. Laugesen 292

for s 2 .0;�/. Expanding the product as a series, we see that the terms of order s4 and
higher in the expansion have positive coefficients while the coefficient of s2 is

.nC 1/

1X
kD1

2

k2�2
� .n � 1/ D

nC 1

3
� .n � 1/ D �

2

3
.n � 2/;

which is zero when n D 2 and negative when n � 3. Thus, the expression

.nC 1/f .s/2 C 2s2

is strictly increasing as a function of s when n D 2, which completes the proof in that
case. When n � 3, the expression is instead decreasing for small s, so that the method
fails in higher dimensions.

Hyperbolic case. Suppose �1 < ‚ < ‚� < 0. The goal is to show ��‚
2
� < �‚

2.
This part of the proof holds for all dimensions n � 2.

The argument proceeds as in the spherical case above, except we refer to Ben-
guria and Linde [8, Lemma 3.1] for the equation satisfied by the radial part g of
the second Dirichlet eigenfunction; replace sin with sinh and replace cot with coth;
let i.t/ D g.j‚jt / and i�.t/ D g�.j‚�jt /; use the identity csch2 D coth2 �1; take
f .s/ D s coth s, let � D �1, and write ˛ D j‚�jt and ˇ D j‚jt , so that ˛ < ˇ. Then
the task is to show .nC 1/f .s/2 � 2s2 is strictly increasing for s 2 .0;1/, which is
accomplished as follows. We have

.nC 1/f .s/2 � 2s2 D .nC 1/s2 csch2 s C .n � 1/s2

D .nC 1/t csch2
p
t C .n � 1/t

where t D s2. This last expression is strictly convex as a function of t , because the
product formula for sinh implies that

t csch2
p
t D

1Y
kD1

1

.1C t=k2�2/2

is a product of positive, decreasing, strictly convex factors and hence is strictly convex.
The series expansion

.nC 1/t csch2
p
t C .n � 1/t D .nC 1/C

2

3
.n � 2/t CO.t2/

guarantees that the first derivative at t D 0 is .2=3/.n � 2/ � 0, and so the strictly
convex function .nC 1/t csch2

p
t C .n � 1/t must be strictly increasing for t > 0.

Note. We could have argued like this with the t -variable in the spherical part of the
proof too, but it was quicker there simply to expand the product as a series having
positive coefficients.
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Limiting values. In Theorem 3 we noted �1.‚/‚2 tends to1 as‚!�1. Hence,
�2.‚/‚

2 also tends to1. As ‚! 0, we know �2.‚/‚
2 ! �2.D/ by Theorem 1,

since sinh2 ‚ and sin2 ‚ are asymptotic to ‚. As ‚ ! � , the second Dirichlet
eigenvalue �2.‚/ of the spherical cap tends to the second eigenvalue (first positive
eigenvalue) of the full sphere, which equals n; see the discussion and references in
Chavel [12, p. 53]. Thus, in 2 dimensions, �2.‚/‚2 tends to 2�2 as ‚! � .

10. Proofs of the corollaries

Proof of Corollary 5. (i) First, suppose 0 < K < 4�=A, so that we are considering
caps on the sphere. Multiplying the metric by K produces a new metric on the disk,
with curvature 1, area KA and eigenvalue �2.1IKA/ D �2.KIA/=K. Hence

�2.KIA/A D �2.1IKA/KA D �2.‚/4� sin2
‚

2

where ‚ 2 .0; �/ is the aperture of the spherical cap having curvature 1 and area
KA D 4� sin2‚=2.

Next, suppose K D 0, meaning the disk is Euclidean. Scale invariance ensures
that �2.0IA/A D �2.D/� .

Suppose lastly that K < 0, meaning the geodesic disk lies in a hyperbolic space.
Multiplying the metric by jKj gives a metric having curvature �1, area jKjA, and
eigenvalue �2.�1I jKjA/ D �2.KIA/=jKj. Hence

�2.KIA/A D �2.�1I jKjA/jKjA D �2.‚/4� sinh2
‚

2

where ‚ < 0 is determined by requiring jKjA D 4� sinh2 ‚=2; that is, j‚j is the
geodesic radius of the hyperbolic disk having curvature �1 and area jKjA (recall
formula (12) for the area).

In each case,‚ is an increasing function ofK, and so Corollary 5 (i) follows from
Theorem 2, which says �2.‚/4 si2‚=2 is strictly increasing and tends to �2.D/ at
‚ D 0.

(ii) Suppose 0 < K < .�=�/2. Multiplying the metric by K yields a metric on
the disk with curvature 1, geodesic radius K1=2� and eigenvalue �2.1IK1=2�/ D
�2.KI �/=K. Hence

�2.KI �/�
2
D �2.1IK

1=2�/.K1=2�/2 D �2.‚/‚
2

where we have chosen ‚ D K1=2�.
If K D 0 then �2.0I �/�2 D �2.D/ by Euclidean scale invariance.
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Now, suppose K < 0. After multiplying the metric by jKj one obtains a met-
ric with curvature �1, geodesic radius jKj1=2�, and eigenvalue �2.�1I jKj1=2�/ D
�2.KI �/=jKj. Hence,

�2.KI �/�
2
D �2.�1I jKj

1=2�/.jKj1=2�/2 D �2.‚/‚
2

where ‚ D �jKj1=2�.
Noting ‚ is an increasing function of K in each case, we deduce Corollary 5 (ii)

from Theorem 2 since

�2.‚/‚
2
D

�
�2.‚/4 si2

‚

2

�� ‚=2

si‚=2

�2
is a product of strictly increasing factors when ‚ < � .

Proof of Corollary 6. By rescaling the metric as in part (ii) of the preceding proof,
the task for Corollary 6 (i) reduces to showing �1.‚/‚2 is strictly decreasing for
‚<� , with limiting value �1.D/ at‚D 0. This fact is known already by Theorem 3.
Part (ii) of the corollary follows similarly, since

�1.‚/4 si2‚=2 D �1.‚/‚2
�si‚=2
‚=2

�2
is a product of strictly decreasing factors for ‚ < � .

Proof of Corollary 7. Like in the previous proof, the task reduces to showing that
�2.‚/‚

2 is strictly decreasing for‚< 0 and strictly increasing for 0 <‚<� . Those
monotonicities are provided by Theorem 4. Part (ii) of the corollary is similar, since

�2.‚/4 sinh2‚=2 D �2.‚/‚2
�sinh‚=2

‚=2

�2
is a product of strictly decreasing factors when ‚ < 0.
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