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Spectral estimates for the Dirichlet Laplacian
on spiral-shaped regions

Diana Barseghyan and Pavel Exner

Abstract. We derive spectral estimates of the Lieb–Thirring type for eigenvalues of Dirichlet
Laplacians on strictly shrinking spiral-shaped domains.

1. Introduction

The dynamics of quantum particles confined to unbounded regions of various shapes
is of interest not only from the physical point of view but also as a mathematical
problem revealing interesting connections between spectral properties of the corres-
ponding Hamiltonians and the confinement geometry. Problems of this type were
discussed in numerous papers; for a survey and extensive bibliography we refer to
the monograph [7]. While some types of geometric perturbations such as bends or
twists of straight tubes, both local and periodic, were investigated mathematically
in considerable depth, some other mostly escaped attention. In particular, this is the
case of spiral structures which appear in physics, for instance, as waveguides for cold
atoms [32]. A mathematical analysis of Dirichlet Laplacians in spiral-shaped regions
has been presented recently in [10]; we refer to this paper also for references to other
applications of spiral structures in different areas of physics.1

Spiral regions are of many different type. A decisive factor for the spectral prop-
erties is the behavior of the coil width as we follow the spiral from the center to
infinity; among those for which this quantity is monotonous, we can distinguish spir-
als expanding, asymptotically Archimedean, and shrinking – definitions will be given
below. In the present paper we are concerned with the latter type for which the
Dirichlet Laplacian spectrum is purely discrete accumulating at the infinity. In such a
situation, it is natural to ask about moments of finite families of eigenvalues relative
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1Those include, in particular, electromagnetism and acoustics. Some of such systems are
described by the Neumann Laplacian the spectral properties of which may be very different
from the Dirichlet one as illustrated, e.g., in [26] or [4, 15].
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to a fixed energy value in the spirit of the estimates derived by Lieb and Thirring,
Berezin, Lieb, and Li and Yau, cf. [2, 3, 17–19] and the monograph [12].

The cited results concern situations in which the motion is confined to finite
region, or it is governed by a Schrödinger operator with a finite classically allowed
region. It is known for long, however, that the spectrum of the Dirichlet Laplacian
may be discrete, fully or partly, even if the phase space volume involved is infin-
ite referring to regions of tube- or cusp-type shapes; the corresponding nonclassical
eigenvalue asymptotical behavior was investigated, e.g., in [22–25, 28, 29] with the
focus on the spectral counting function. Other moments of the eigenvalue distribution
have also been considered, for instance, in [1, 5, 6, 9, 13]. The obtained estimates are
typically less elegant than the classical inequalities mentioned above, often having
more than one term to deal with the geometry of the region.

The analysis of spiral-shaped regions we are going to present follows the same
line of thought; it covers situations when the area of the region covered by the spiral,
and thus the standard Weyl term, may be both finite and infinite, depending on the
function d.�/ describing the width of the spiral. Our main result, an estimate of the
eigenvalue moments in terms of the geometric properties of the spiral, is presented
and proved as Theorem 3.1 in Section 3. Before coming to it, we collect in the follow-
ing section the necessary geometrical prerequisites. In particular, we will introduce
locally orthogonal coordinates, sometimes called Fermi or parallel, that will allow us
to rephrase the problem as spectral analysis of Dirichlet Laplacians on geometrically
simpler cusped regions. In Section 4, we finish the paper with concluding remarks on
the sharpness of the obtained bounds and on modifications of the result to the case of
multi-armed spirals.

2. Preliminaries

To begin with, let us describe the geometry of spiral-shaped regions. It is characterized
be a curve � which is the graph of an increasing function r WRC!RC with r.0/D 0,
that is, the family of points .r.�/; �/ in the polar coordinates. We note that spirals
considered here are semi-infinite; a modification of our results to the case of “fully”
infinite spirals, the example of which is the Simon’s jellyroll mentioned above, is
straightforward. The region we are interested in depends on the function r . Its closure
is R2 provided that lim�!1 r.�/ D 1, in the opposite case it is the closed disc of
radius R WD lim�!1 r.�/.

The assumed monotonicity of r means that � does not intersect itself which
means, in particular, that the width function

a.�/ WD
1

2�
.r.�/ � r.� � 2�// (2.1)
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is positive for any � � 2� . A spiral curve � is called simple if the corresponding a.�/
is monotonous, and expanding or shrinking if this function is, respectively, increasing
or decreasing in � away from a neighborhood of the origin; these qualifications are
labeled as strict if lim�!1 a.�/ D 1 and lim�!1 a.�/ D 0 holds, respectively.
A simple spiral laying between these two extremes, for which the limit is finite and
nonzero, is called asymptotically Archimedean.

The main object of our interest is the two-dimensional Laplace operator with the
Dirichlet condition imposed at the boundary represented by the curve � , in other
words, the Dirichlet Laplacian H� defined in the standard way [21, Section XIII.15]
on the open set � D �� D R2 n � , or alternatively on BR n � if lim�!1 r.�/ D

R <1 where BR is the disc of radius R centered at zero. As shown in [10], spectral
properties of such operators on simple spiral regions depend strongly on the function
a.�/. For strictly expanding regions, the spectrum is purely essential and covers the
halfline RC. On the other hand, if the spiral � is strictly shrinking the spectrum of
H� is purely discrete which is the situation we will be interested in.

Remark 2.1. In the intermediate case of asymptotically Archimedean spirals the
spectrum may be more complicated. Its essential part covers the intervalh1

4
. lim
�!1

a.�//�2;1
�
:

The discrete part may be empty as in the case of the pure Archimedean spiral, but
also infinite, accumulating at the threshold of �ess.H�/ if the spiral is shrinking in the
appropriate way [10, Proposition 5.4]. It is clear that neither of these situations allows
us to derive bounds on eigenvalues moments analogous, say, to what one can derive
in case of bent Dirichlet tubes [9].

A useful way to characterize the region�, possibly with the exception of a neigh-
borhood of the origin of the coordinates, is to employ the the Fermi (or parallel)
coordinates, that is a locally orthogonal system in which the Cartesian coordinates of
� are written as

x1.�; u/ D r.�/ cos � �
up

Pr.�/2 C r.�/2
. Pr.�/ sin � C r.�/ cos �/;

x2.�; u/ D r.�/ sin � C
up

Pr.�/2 C r.�/2
. Pr.�/ cos � � r.�/ sin �/; (2.2)

where u measures the distance of .x1; x2/ from � . A natural counterpart of the vari-
able u is the arc length of the spiral given by

s.�/ D

�Z
0

p
Pr.�/2 C r.�/2d�: (2.3)
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We want to use the relations (2.2) and (2.3) to parametrize the region � with the
coordinates .s; u/, possibly with the exception of a finite central part, as

�1 D � \ ¹.s; u/W s > s0º D ¹x.s; u/W s > s0; u 2 .0; d.s//ºI (2.4)

here s0 > 0 is a number depending on curve � characterizing the excluded part, and
d.s/ is the length of the inward normal starting from the point x.s; 0/ of � towards
the intersection with the previous coil of the spiral.

One more quantity associated with the spiral that we will need to state the result
is its curvature which is in terms of the angular variable given by

.�/ D
r.�/2 C 2 Pr.�/2 � r.�/ Rr.�/

.r.�/2 C Pr.�/2/3=2
; (2.5)

provided, of course, that the derivatives make sense. Using the pull-back, s 7! �.s/,
of the map (2.3) we can express it alternatively as a function of the arc length s, even
if in general we lack an explicit expression; with abuse of notation we will write .s/
instead of .�.s//.

3. Main result

The domains to be considered are determined by the function r . In addition to its
monotonicity and the requirement r.0/ D 0 we suppose that

(a) r is C 2-smooth and such that lim�!1 Pr.�/ D 0; its second derivative is
bounded and Rr.�/ < 0.

Under this assumption � is shrinking, because in view of the concavity of r the deriv-
ative Pr is decreasing and so is the function Pa.�/ WD 1

2�
. Pr.�/� Pr.� � 2�//. Moreover,

it is strictly shrinking, because a.�/ D 1
2�

R �
��2�

Pr.�/ d � ! 0 holds as � !1, and
furthermore, in view of (2.5) we have .�/ > 0. At the same time, the relation (2.5)
in combination with the assumed boundedness of Rr.�/ implies that .�/D O.r.�/�1/

as � !1, and since d.s/ � 2�a.�.s// vanishes asymptotically, there is an s0 > 0
such that d.s/.s/ < 1 holds for all s � s0 which means, in particular, that in the
corresponding part of � the Fermi coordinates are well defined.

The quantities we are interested in are moments of negative part of the operator
H� �ƒ for a fixed energy ƒ. We have the following bound:

Theorem 3.1. Let � D �� be a simple strictly shrinking domain determined by
a spiral curve � satisfying assumption (a), and let H� be corresponding Dirichlet
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Laplacian. Then for any ƒ > 0 and � � 3
2

the following inequality holds,

tr.H� �ƒ/�� �
Lcl
�;1

�
.kW k1 Cƒ/

�C1

Z
¹d.s/��.W.s/Cƒ/�1=2º

d.s/ d s C c1ƒ�C1 C c2.ƒ/; (3.1)

where c1 is a positive constant expressed explicitly in (3.23) below which depends on
the geometry of the finite subset of� referring to the arc length s � s0, c2.ƒ/ is given
in (3.16), k � k1 WD k � kL1.s0;1/, and Lcl

�;1 is the semiclassical constant,

Lcl
�;1 WD

�.� C 1/
p
4��.� C 3

2
/
I (3.2)

the function W in (3.1) is given by

W.s/ WD
2.s/

4.1 � .s/d.s//2
C

d.s/j R.s/j

2.1 � .s/d.s//3
C
5

4

d.s/2j P.s/j2

.1 � d.s/.s//4
: (3.3)

Moreover, we have

c2.ƒ/ D O

�
ƒ2

Z
¹d.s/� �p

ƒ
º

d.s/ ds

�
for large values of ƒ.

As a consequence, we get the asymptotic form of the bound:

Corollary 3.2. In the regime ƒ!1, the inequality (3.1) with � � 3
2

becomes

tr.H� �ƒ/�� � ƒ�C1
�
Lcl
�;1

�

Z
¹d.s/� �p

ƒ
º

d.s/ d s C c1

�
.1C No.1//: (3.4)

The coefficient of the leading power of ƒ consists of two parts. As the proof of The-
orem 3.1 given below will show, the first one, itself ƒ dependent, comes from the
spiral width, the other reflects the central part of �� where we cannot use the paral-
lel coordinates. The mutual relation of the two depends of the defining curve � . The
first term dominates the asymptotics if � is such that

R
¹d.s/>0º

d.s/ d s D 1. If, on
the other hand, the spiral shrinks sufficiently fast so that the said integral is finite,
the central part plays role in asymptotics, the more important the more “dominant”
this part is. The same naturally applies to the behavior of the right-hand side of the
original formula (3.1).

We also note that in the asymptotic regime the curvature-related effects are sup-
pressed being contained in the error term of (3.4). Beyond the asymptotics, they may
be significant; for an analogy, recall the numerical result of [10, Section 5.1] about
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the number of eigenvalues in the Fermat spiral region which is at low energies larger
than an estimate based on the spiral width only.

Proof of Theorem 3.1. As argued above, assumption (a) makes it possible to use the
Fermi coordinate parametrization (2.4) of � with some s0 > 0. We employ the Neu-
mann bracketing method [21, Section XIII.15] which gives

H� � H�1 ˚H�2 ; (3.5)

where H�1 and H�2 are the restrictions of H� referring to the regions �1 � �
corresponding to the arc lengths s > s0 and�2 WD� n x�1, both having the additional
Neumann condition at s D s0.

Consider first the operator H�1 . According to [10] the coordinates (2.2) allow us
to pass from H�1 to a unitarily equivalent operator zHz�1 acting on the “straightened”
region z�1 WD ¹.s; u/W s > s0; 0 < u < d.s/º with Neumann boundary condition at
s D s0 and the Dirichlet condition on the rest of the boundary of �1 as follows:�
zHz�1 

�
.s; u/ D �

� @
@s

1

.1 � u.s//2
@ 

@s

�
.s; u/ �

@2 

@u2
.s; u/C �W.s; u/ .s; u/;

(3.6)
where

�W.s; u/ WD 2.s/

4.1 � u.s//2
C

u R.s/

2.1 � u.s//3
C
5

4

u2 P.s/2

.1 � u.s//4
: (3.7)

It is straightforward to check that

zHz�1 � H0; (3.8)

where operator H0 D ���W acts on L2. z�1/ and satisfies the same boundary con-
ditions as zHz�1 , and W is given by (3.3).

Hence, it is enough to deal with H0.
We take inspiration from [16, 30] and use a variational argument to reduce the

problem to a Lieb–Thirring inequality with an operator-valued potential. Given a
function g 2 C1. z�1/ with zero trace at the “transverse part” of the boundary, that
is, at the points ¹s 2 .s0;1/; u D 0; d.s/º, and a number ƒ > 0, we can express the
value of the corresponding quadratic form as
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Z
z�1

.jrg.s; u/j2 � .W Cƒ/.s/jg.s; u/j2/ d s du

D

Z
z�1

ˇ̌̌@g
@s
.s; u/

ˇ̌̌2
d s duC

1Z
s0

d s

d.s/Z
0

�ˇ̌̌@g
@u
.s; u/

ˇ̌̌2
� .W.s/Cƒ/jg.s; u/j2

�
du

D

Z
z�1

ˇ̌̌@g
@s
.s; u/

ˇ̌̌2
d s duC

1Z
s0

hL.s;W;ƒ/g.s; �/; g.s; �/iL2.0;d.s// d s;

where L.s;W;ƒ/ is the Sturm–Liouville operator

L.s;W;ƒ/ D �
d2

du2
�W.s/ �ƒ

defined on L2.0; d.s// with Dirichlet conditions at u D 0 and u D d.s/.
Next, we consider the complement of z�1 to the halfplane ¹s � s0; u 2 Rº and

denote its interior as z�c. We take arbitrary functions g 2 C1. z�1/ and v 2 C1. z�c/,
both having zero trace at ¹s 2 .s0;1/; u D 0; d.s/º; extending them by zero to the
complements of z�1 and z�c, respectively, we can regard them as functions in the
whole halfplane. Similarly we extend L.s;W;ƒ/ to the operator on L2.R/ acting as
L.s;W;ƒ/˚ 0 with the zero component on R n Œ0; d.s/�. For their sum, h D g C v,
we then have

kr gk2
L2.z�1/

C kr vk2
L2.z�2/

�

Z
z�1

.W.s/Cƒ/jg.s; u/j2 d s du

�

Z
¹s>s0;u2Rº

ˇ̌̌@h
@s
.s; u/

ˇ̌̌2
d s duC

1Z
s0

hL.s;W;ƒ/h.s; �/; h.s; �/iL2.R/ d s:

The left-hand side of this inequality is the quadratic form corresponding to the direct
sum of operator H0 �ƒ and the Laplace operator defined on z�c with the Neumann
boundary conditions at sD s0 and Dirichlet conditions at the rest part of the boundary,
while the right-hand side is the form associated with the operator

�
@2

@ s2
˝ IL2.R/ C L.s;W;ƒ/;

the form domain of which is larger, namely H1..s0;1/; L
2.R//. Since the Laplace

operator is positive, the minimax principle allows us to infer that

tr .H0 �ƒ/�� � tr
�
�
@2

@s2
˝ IL2.R/ C L.s;W;ƒ/

��
�

(3.9)

holds for any nonnegative number � .
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At this place a comment is due. Our strategy is based on dimension lifting in
the spirit of [14, 16], see also [9], which in principle could allow us to bring the
parameter down to � � 1

2
. However, the operator on the right-hand side of the above

inequality acts on L2..s0;1/; L2.R// with the Neumann condition at s D s0. The
price for using the Lieb–Thirring bounds for operators on a larger domain, namely
L2.R;L2.R//, would be then the additional factor of two in the leading-term constant
of (3.1). Since we prefer to have our estimate to be as close asymptotically exact as
possible, cf. the comment following Corollary 3.2, we employ instead the following
version of Lieb–Thirring inequality for operator-valued potentials (the proof of which
is given in Appendix):

Theorem 3.3. Let Q.s/; s � 0, be a family of self-adjoint operators on L2.R/ with
discrete spectrum. Then the following estimate holds for any � � 3=2,

tr
�
�
@2

@ s2
˝ IL2.R/ CQ.s/

��
�
� Lcl

�;1

1Z
0

trQ�C1=2
� .s/ d s C

1

2
N�

.N/
1 ; (3.10)

where the operator on the left-hand side acts on the space L2.RC; L2.R// of vector-
valued functions with the Neumann boundary condition at s D 0, the number of its
negative eigenvalues is denoted by N , and

��
.N/
1 WD inf

�
�
�
�
@2

@ s2
˝ I C PNQ.s/PN

�
\ .�1; 0/

�
; (3.11)

where PN is the projection on the span of the eigenfunctions referring to the negative
eigenvalues of the operator � @2

@ s2
˝ IL2.R/ CQ.s/.

Remark 3.4. One can easily check that Theorem 3.3 holds true if L2.RC; L2.R//
is replaced by L2..s0;1/; L2.R// with some s0 2 R; the only price to pay is the
change of the integration interval on the right-hand side of (3.10) to .s0;1/. Let us
also note that the claim of the theorem bears a certain similarity with the result of [8]
about Schrödinger operators on a halfline with matrix potentials in that the integral
term is amended by an expression containing the lowest eigenvalue of the operator,
here a truncated one; the form of the expression and the power of the eigenvalues are,
however, different.

Let us now return to the estimate (3.9). In order to apply Theorem 3.3 we have
to find a suitable upper bound for the number of negative eigenvalues of � @2

@ s2
˝

IL2.R/ C L.s; W; ƒ/. We employ a “mirroring” trick the idea of which belongs to
Rupert Frank [11]. It consists of introducing extended potential functions,�W .s1 C t /D W.s1 C t / and Od.s1 C t /D d.s1 C t / if t � 0; (3.12)�W .s1 C t /D W.s1 � t / and Od.s1 C t /D d.s1 � t / if t < 0; (3.13)
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with which it is easy to see that for anyƒ0 > 0 the spectrum of operator yH D� @2

@ s2
˝

IL2.R/ C L.s; �W ;ƒ0/ defined on L2.R; L2.R// contains the spectrum of operator of

it “Neumann half,” � @2

@ s2
˝ IL2.R/ C L.s;W;ƒ

0/. This implies

tr
�
�
@2

@ s2
˝ IL2.R/ C L.s;W;ƒ

0/
��
�
� tr

�
yH
��
�
; � � 0:

Next, we use to fact the validity of spectral estimates of this type can be extended
to smaller values of the power � at the price of having a multiplicative coefficient
r.�; 1/ on the right-hand side, cf. inequality (3.24) in Remark 3.5 below in which also
the explicit knowledge of eigenvalues of the transverse part of the operator is used.
From that inequality, in combination with the above estimate, we get for � D 1=2 and
ƒ0 D 2ƒ the bound

tr
�
�
@2

@ s2
˝ IL2.R/ C L.s;W; 2ƒ/

�1=2
�

�
2r.1=2; 1/Lcl

1=2;1

�
.kW kL1.s0;1/ C 2ƒ/

3=2

Z
¹d.s/��.W.s/C2ƒ/�1=2º

d.s/ d s

Let N.ƒ/ be the number of negative eigenvalues of � @2

@s2
˝ IL2.R/ C L.s; W; ƒ/.

Using the last inequality together with a simple estimate,

tr
�
�
@2

@ s2
˝ IL2.R/ C L.s;W; 2ƒ/

�1=2
�

D tr
�
�
@2

@ s2
˝ IL2.R/ C L.s;W;ƒ/ �ƒ

�1=2
�
�
p
ƒN.ƒ/;

we infer that

N.ƒ/ �
2r.1=2; 1/Lcl

1=2;1

�
.kW kL1.s0;1/ C 2ƒ/

3=2

Z
¹d.s/��.W.s/C2ƒ/�1=2º

d.s/ d s: (3.14)

Now, we are in a position to apply the operator-valued version of Lieb–Thirring
inequality. Let PN.ƒ/ be the projection on the span of the eigenfunctions correspond-
ing to the negative eigenvalues of operator � @2

@ s2
˝ IL2.R/ CL.s;W;ƒ/. Combining

Theorem 3.3 with (3.14) we arrive at the estimate

tr
�
�
@2

@ s2
˝ IL2.R/ C L.s;W;ƒ/

��
�
� Lcl

�;1

1Z
0

trL.s;W;ƒ/�C1=2� d s C c2.ƒ/;

(3.15)
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where

c2.ƒ/ WD
r.1=2; 1/Lcl

1=2;1
�1.ƒ/

�
p
ƒ

.kW kL1.s0;1/ C 2ƒ/
3=2

Z
¹d.s/��.W.s/C2ƒ/�1=2º

d.s/ d s (3.16)

and

��1.ƒ/ WD inf
�
�
�
�
@2

@s2
˝ IL2.R/CPN.ƒ/L.s;W;ƒ/PN.ƒ/

�
\ .�1; 0/

�
: (3.17)

To make use of (3.15), we need to know the negative eigenvalues of L.s;W;ƒ/.
Those, however, are easy to be found using the fact L.s; 0; 0/ is the Dirichlet Lapla-
cian on .0; d.s// with the eigenvalues

�
�j
d.s/

�2
; j D 1; 2; : : : ; and the potential is

independent of the transverse variable u. Consequently, the right-hand side of (3.9)
can be for any � � 3=2 estimated as

tr.H0 �ƒ/�� � L
cl
�;1

1Z
s0

1X
jD1

�
�

� �j
d.s/

�2
CW.s/Cƒ

��C 12
C

d s C c2.ƒ/:

Combining next the above bound with (3.8) and using the unitary equivalence between
H�1 and zHz�1 , we obtain

tr.H�1 �ƒ/
�
� � L

cl
�;1

1Z
s0

1X
jD1

�
�

� �j
d.s/

�2
CW.s/Cƒ

��C 12
C

d s C c2.ƒ/

and a simple manipulation of the right-hand side of this inequality leads to

tr.H�1 �ƒ/
�
� � L

cl
�;1

Z
¹d.s/��.W.s/C2ƒ/�1=2º

Œ 1� .W.s/Cƒ/
1=2d.s/�X

jD1

.W.s/Cƒ/�C
1
2 d s C c2.ƒ/

�
Lcl
�;1

�

Z
¹d.s/��.W.s/C2ƒ/�1=2º

.W.s/Cƒ/�C1d.s/ d s C c2.ƒ/

�
Lcl
�;1

�
.kW kL1.s0;1/ Cƒ/

�C1

Z
¹d.s/��.W.s/C2ƒ/�1=2º

d.s/ d s C c2.ƒ/: (3.18)

Now, let us pass to the inner part of the spiral associated with operator H�2 .
We use another version of the “mirroring” trick [11]. Let l be the segment obtained
by extending the straight part of that boundary, that is, the interval ¹s D s0º � ¹u 2
.0; d.s0//º, to the left up to the boundary of �2. It divides the region into two parts;
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2

0/

Figure 1. The region �2.

we denote by �12 and �22 the upper and lower one, respectively. By Neumann brack-
eting one gets

H�2 � H�1
2
˚H�2

2
; (3.19)

where both operators H�1
2

and H�2
2

are the restrictions of H�2 to �12 and on �22,
respectively, with the additional Neumann condition imposed on l . The spectra of
H�1

2
and H�2

2
are contained in the spectra H

�
1;sym
2

and H
�
2;sym
2

, respectively, where
the latter regions are unions of the former ones and their mirror images with respect
to the line spanned by the segment l . Using the Berezin inequality [2, 3] we estimate
the traces of H

�
j;sym
2

; j D 1; 2; as follows:

tr.H
�
j;sym
2

�ƒ/�� � L
cl
�;2 vol.�j;sym

2 /ƒ�C1; j D 1; 2; (3.20)

where ƒ > 0, � � 1 are any numbers and the semiclassical constant

Lcl
�;2 WD

�.� C 1/

4��.� C 2/
D

1

4�.� C 1/
: (3.21)

Finally, combining inequalities (3.5) and (3.18)–(3.20), we arrive at

tr.H� �ƒ/�� �
Lcl
�;1

�
.kW kL1.s0;1/ Cƒ/

�C1

Z
¹d.s/��.W.s/C2ƒ/�1=2

d.s/ d s C c1ƒ�C1 C c2.ƒ/;

where

c1 WD L
cl
�;2.vol.�1;sym

2 /C vol.�2;sym
2 // (3.22)

D 2Lcl
�;2.vol.�12/C vol.�22// D 2L

cl
�;2 vol.�2/: (3.23)
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It remains to check the asymptotic behavior of the quantity (3.16). Since �1.ƒ/ �
kW kL1.s0;1/ Cƒ, it is straightforward to check that

c2.ƒ/ D O

�
ƒ2

Z
¹d.s/� �p

ƒ
º

d.s/ ds

�
:

holds for large values of ƒ; this concludes the proof.

Remark 3.5. Let us note that Theorem 3.1 remains valid for smaller powers,
� � 1=2, provided we replace the semiclassical constant Lcl

�;1 in the right-hand side
of (3.1) by 2r.�; 1/Lcl

�;1. On the other hand, we may then set c2 D 0. This is related
with the modification of the Lieb–Thirring inequality for operator-valued potentials
defined on the line R to the powers � � 1=2 and the constant r.�; 1/Lcl

�;1 where
r.�; 1/ � 2 if � < 3=2 (see [9, 14]), which we used to derive the estimate (3.14).
Indeed, for � � 1=2 we have

tr
�
�
@2

@s2
˝ IL2.R/ C L.s; �W ;ƒ0/��

�

� r.�; 1/Lcl
�;1

Z
R

1X
jD1

�
�

� �j
Od.s/

�2
C �W .s/Cƒ0��C 12

C
d s

D 2r.�; 1/Lcl
�;1

1Z
s1

1X
jD1

�
�

� �j
d.s/

�2
CW.s/Cƒ0

��C 12
C

d s

�
2r.�; 1/Lcl

�;1

�
.kW kL1.s0;1/ Cƒ

0/�C1
Z

¹d.s/��.W.s/C2ƒ/�1=2º

d.s/ d s: (3.24)

This completes the argument leading to (3.14) and at the same time, allows us to
get the result mentioned in the opening of the remark by repeating the steps of the
previous proof.

4. Concluding remarks

4.1. Optimality of the bound (3.1)

Let us now show that the bound of Theorem 3.1 is asymptotically sharp in the sense
that the dependence onƒ the first part of the leading term in (3.4) cannot be improved.
To provide an example proving this claim, consider a spiral region � such that its
parallel coordinates representation (2.4) outside a compact area satisfies d.s/ D s�1
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starting from some s0 > 0. As indicated in the discussion of assumption (a), one can
choose s0 so that w WD kd.s/.s/kL1.s0;1/ < 1.

Using the Dirichlet bracketing method, one estimates H� from above as follows:

H� � H1 ˚H2; (4.1)

where H1 and H2 are the Dirichlet restrictions of H� to �1 � � satisfying s > s0
and on�2 D� n x�1. Since�2 is bounded, its contribution to the eigenvalue moment
count is of the standard form [31],

tr.H2 �ƒ/�� D L
cl
�;2 vol.�2/ƒ�C1 C No.ƒ�C1/; � � 0; ƒ!1; (4.2)

with Lcl
�;2 given by (3.21). To deal with H1 we pass to the unitary equivalent oper-

ator (3.6) acting as

zH D �
@

@s

� 1

.1 � u.s//2
@

@s

�
�
@2

@u2
C �W.s; u/

on z�1 WD ¹.s; u/W s > s0; u 2 .0; d.s//º with the effective potential �W given by (3.7).
It is straightforward to check that

zH �
1

.1 � w/2
.��D/C k�W kL1.z�1/;

where�D is the Dirichlet Laplacian in L2. z�1/. Consequently, for any � � 0 we have

tr. zH �ƒ/�� �
1

.1 � w/2�
tr.��D � .1 � w/

2.ƒ � k�W kL1.s>s0;u2.0;d.s/////��:
(4.3)

The right-hand side can be estimated using the asymptotic properties of the spectral
counting function of the Dirichlet Laplacian on horn-shaped regions [29]:

Theorem 4.1. Let functions fj W Œ0;1/ ! RC; j D 1; 2; be right-continuous and
decreasing to zero. Consider the region

D D ¹.s; u/ W s > 0;�f1.s/ < u < f2.s/º � R2

and suppose that f .s/ WD f1.s/C f2.s/; s > 0; satisfies

1Z
0

e�tf .s/
�2

d s <1; t > 0:
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Then, for the number ND.�/ of eigenvalues of the Dirichlet Laplacian on D that are
less than � we have

ND.�/ �

1Z
0

1X
kD1

�� �
�2
�

k2

f 2.s/

�
C

�1=2
d s; �!1; (4.4)

where f .t/ � g.t/ means that f .t/=g.t/! 1 as t !1.

In our case, f1 D 0; f2.s/D f .s/D d.s/, and �Dƒ; a series of simple estimates
then gives

1Z
0

1X
kD1

�� ƒ
�2
�

k2

d2.s/

�
C

�1=2
d s D

1Z
0

X
¹k�

p
ƒd.s/
� º

�� ƒ
�2
�

k2

d2.s/

�
C

�1=2
d s

D

1Z
¹d.s/� �p

ƒ
º

X
¹k�

p
ƒd.s/
� º

�� ƒ
�2
�

k2

d2.s/

��1=2
d s

�

1Z
¹d.s/� �p

ƒ
º

X
¹k�

p
ƒd.s/p
2�
º

�� ƒ
�2
�

k2

d2.s/

��1=2
d s

�
ƒ

2�2

Z
¹d.s/� �p

ƒ
º

d.s/ d s;

where in the last step we simply took the lower bound to the square root expression
times the number of summands. Using next the fact that we have d.s/ D s�1 in com-
bination with (4.3) in which we divide the potential into the sum of two equal parts,
we get

tr. zH �ƒ/�� �
1

.1 � w/2�

�1
2
.1 � w/2.ƒ � k�W kL1.s>s0;u2.0;d.s////��

�Nz�1

�1
2
.1 � w/2.ƒ � k�W kL1.s>s0;u2.0;d.s////�

>
�1
2
.ƒ � k�W kL1.s>s0;u2.0;d.s////��

�
1

4�2
.1 � w/2.ƒ � k�W kL1.s>s0;u2.0;d.s////

�

Z
¹d.s/��

p
2.1�w/�1.ƒ�k �W kL1.s>s0;u2.0;d.s////�1=2º

d.s/ d s

D
.1 � w/2

2�C3�2
ƒ�C1 lnƒ.1C No.1//; (4.5)
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which differs from (3.4) by a multiplicative constant only. We note thatw in the above
discussion can be chosen arbitrarily small and the ratio of the two constants,

2�C3� Lcl
�;1 D 2

�C2
p
�

�.� C 1/
p
4��.� C 3

2
/
; (4.6)

should not be smaller than one. In fact, the bound (4.5) illustrates that the estimate
in (3.4) is getting worse with increasing � , since we have [27]

�.z/

�.z C 1=2/
D

1
p
z
.1C No.1// as z !1:

For half-integer values, � D n C 1
2

with n 2 N0 the ratio (4.6) can be expressed
explicitly as

2�C3� Lcl
�;1 D 2

3=2
p
�
.2nC 1/ŠŠ

.nC 1/Š
;

in particular, for � D 3=2 the value is 3
p
2� � 13:3.

4.2. Multi-arm spirals

Let us note finally that the obtained result extends easily to the situation where the
region is determined by a multi-armed spiral.

Let �0 D .r0.�/; �/ be a shrinking spiral satisfying the assumptions of The-
orem 3.1 and let �m be the union of m “angularly shifted” spirals �j D .rj .�/; �/,
where rj .�/ WD r.� � �j / for 0 � j � m � 1 corresponding to the partition
0 D �0 < � � � < �m�1 < 2� . Let H��m be the Laplace operator defined on
��m D R2 n �m with the Dirichlet conditions imposed on �m. It is obvious that
H��m decomposes into the direct sum of m Dirichlet Laplacians unitarily equival-
ent to operators Hj acting on the “rotated” spiral-shaped domains �j WD ¹.r; �/W r 2
.max¹0; r.� � �j�1/º; r.� � �j /º, and consequently, it is enough to estimate separ-
ately tr.Hj �ƒ/��; 0� j �m� 1. By a straightforward modification of Theorem 3.1,
we get

tr.Hj �ƒ/�� �
Lcl
�;1

�
.kWj kL1.s0

1;j
;1/ Cƒ/

�C1

Z
¹dj .s/��.Wj .s/Cƒ/

�1=2º

dj .s/ d s C cjƒ�C1 C c
j
2 .ƒ/;

(4.7)

where dj .s/; Wj .s/; s00;j ; cj , and cj2 .ƒ/ are natural modifications of the quantities
appearing in the main result. To estimate tr.H��m �ƒ/

�
� one has to sum the expres-

sions on the right-hand side of (4.7). In particular, in the asymptotic regime,ƒ!1,
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we have

tr.H��m �ƒ/
�
� � ƒ

�C1
�Lcl

�;1

�

m�1X
jD0

Z
¹dj .s/�

�p
ƒ
º

dj .s/ d s C Qcm
�
.1C No.1//;

where the constant Qc WD max
0�j�m�1

cj .

Appendix

Here we provide proof of Theorem 3.3 which was skipped in Section 3. Let �1; : : : ;�N
be the negative eigenvalues of � @2

@s2
˝ IL2.R/ CQ.s/ and denote by PN the projec-

tion on the linear span of the corresponding eigenfunctions. It is easy to see that

tr
�
�
@2

@s2
˝ IL2.R/ CQ.s/

��
�
� tr.HN /��; � � 0; (4.8)

holds for the finite-dimensional restriction of the operator,

HN D PN

�
�
@2

@ s2
˝ IL2.R/ CQ.s/

�
PN :

The expression on the right-hand side of (4.8) is nothing but the Riesz mean of the
order � of the negative eigenvalues of theN �N -system of ordinary differential equa-
tions � @2

@ s2
˝ I C PNQ.s/PN acting on L2.RC;CN / with the Neumann boundary

condition at s D 0, where I denotes the identity operator on CN . This allows us to
use the Lieb–Thirring inequality for general second-order differential operators with
matrix-valued potentials on the positive half-line with Neumann condition at the ori-
gin proved in [20]. In this way we get

tr.HN /�� � L
cl
�;1

1Z
0

tr .PNQ.s/PN /�C1=2.s/ d s C
1

2
N�

.N/
1

� Lcl
�;1

1Z
0

trQ�C1=2.s/ d s C
1

2
N�

.N/
1

with �.N/1 given by 3.11 which is the sought result.
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