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Deformation of the spectrum
for Darboux–Treibich–Verdier potential along Re� D

1
2

Erjuan Fu

Abstract. In this paper, we study the spectrum �.L/ of the complex Hill operator with Dar-
boux–Treibich–Verdier potential

L D d2

dx2
� 6}.x C z0I �/ � 2}

�
x C 1

2
C z0I �

�
in L2.R;C/;

where }.zI �/ is the Weierstraß elliptic function with periods 1 and � , and z0 2 C is chosen
such that L has no singularities on R. We give a complete picture of the deformation of the
spectrum with � D 1

2
C ib as b > 0 varies. A new idea of the proof is to apply the result of the

mean field equation and its connection with this operator.

1. Introduction

Let T� WD C=.ZCZ�/ be a flat torus with � 2H D ¹� 2 C j Im � > 0º, and }.zI �/
be the Weierstraß elliptic function with basic periods !1 D 1 and !2 D � . Denote by
!0 D 0, !3 D !1 C !2 and nD .n0; n1; n2; n3/ 2 N4 satisfying n¤ .0; 0; 0; 0/. The
Darboux–Treibich–Verdier (DTV for short) potential [33]

qn.zI �/ WD �
3X
kD0

nk.nk C 1/}
�
z C !k

2
I �
�
; z 2 C;

is famous as an algebro-geometric finite-gap potential associated with the stationary
KdV hierarchy, which means that qn.zI �/ is a solution of stationary KdV hierarchy
equations (cf. [17, 20]). Specifically, there is an odd-order differential operator

P2kC1 D
� d
dz

�2kC1
C
2k�1X
jD0

bj .z/
� d
dz

�2k�1�j
(1.1)

2020 Mathematics Subject Classification. Primary 33E10; Secondary 34L40, 35J91, 47A10,
47E05.
Keywords. Spectrum, Darboux–Treibich–Verdier potential, Hill operator, Weierstraß elliptic
function, mean field equation.

https://creativecommons.org/licenses/by/4.0/


E. Fu 348

such that h
P2kC1;

d2

dz2
C qn.zI �/

i
D 0: (1.2)

We refer the reader to [4, 9, 10, 19, 28–33, 35] and references therein for historical
reviews and subsequent developments.

Let P2gC1 be the unique operator of the form (1.1) satisfying (1.2) such that its
order 2g C 1 is smallest. Then a celebrated theorem by Burchnall and Chaundy [3]
implies the existence of the so-called spectral polynomial Qn

� .�/ of degree 2g C 1 in
� associated to qn.zI �/ such that

P 22gC1 D Qn
�

� d2
dz2
C qn.zI �/

�
:

In this paper, we study the spectrum �.Ln
� / of the complex Hill operator with the

DTV potential

Ln
� D

d2

dx2
C qn.x C z0I �/; x 2 R;

in L2.R;C/, where z0 2 C is chosen such that qn.x C z0I �/ has no singularities
on R. The spectral theory of the complex Hill operator has been studied widely in the
literature; see e.g., [1,2,18,20,21,27] and references therein. In particular, it is known
[27] that

�.Ln
� / D ��1.Œ�2; 2�/ D ¹� 2 C j � 2 � �.�/ � 2º;

where �.�/ is the so-called Hill’s discriminant which is the trace of the monodromy
matrix for Ln

�y D �y with respect to x ! x C 1. Furthermore, it was proved in [20]
that �.Ln

� / consists of finitely many bounded simple analytic arcs and one semi-
infinite simple analytic arc with the finite endpoints of such arcs being those zeros
of the spectral polynomial Qn

� .�/ with odd orders.
Let � 2 iR>0. We introduce two relations:

.n1 C n2/ � .n0 C n3/ � 2; n1 � 1; n2 � 1; (1.3)

.n0 C n3/ � .n1 C n2/ � 2; n0 � 1; n3 � 1: (1.4)

Recently, we proved in [8, Theorem 1.1] that �.Ln
� / � R if and only if n satisfies

neither (1.3) nor (1.4), and in this case �.Ln
� / is completely determined by the spec-

tral polynomial Qn
� .�/ as follows. If n satisfies neither (1.3) nor (1.4), then all the

roots of Qn
� .�/ are real and distinct, denoted by �2g < �2g�1 < � � � < �1 < �0, and

consequently,

�.Ln
� / D .�1; �2g � [ Œ�2g�1; �2g�2� [ � � � [ Œ�1; �0� � R:

Naturally, people would ask what �.Ln
� / is if n satisfies either (1.3) or (1.4). This

question is very difficult to study because �.Ln
� / 6� R! So, we start from some special
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cases. Note that if nD .g; 0; 0; g/ (or .0; g; g; 0/) with g � 1, the spectrum of the Hill
operator Ln

� with Re� D 0 is a horizontal translation of the spectrum of the classical
Lamé operator LgQ� with Re Q� D 1=2 (cf. [7, Lemma 4.1]), where

L
g

Q� WD Ln
Q� D

d2

dx2
� g.g C 1/}.x C z0I Q�/; x 2 R:

denotes the Lamé operator [22] which corresponds to n D .g; 0; 0; 0/. If g D 1, this
question has been solved even for all � 2H (see [1,18,21]). In this case, the spectrum
�.L1� / consists of two regular analytic arcs and so there are totally three different
types of graphs for different � ’s. It was pointed out in [21, Section 5] that the rigorous
analysis of g � 2 cases seems to be difficult since the related explicit formulae quickly
become quite complicated as g grows. The case g D 2 already becomes very com-
plicated and was studied recently in [7], where we proved that the spectrum �.L2� /

has exactly 9 different types of graphs for different b’s. Furthermore, the g D 3 case
is much more difficult and only some partial results were given in [16], where we
discovered 7 different types of graphs for the spectrum as b varies around the double
zeros of the spectral polynomial.

In this paper, we will focus on the operator L.2;1;1;2/� with Re� D 0. Compared
with previous cases, we cannot relate the spectrum �.L

.2;1;1;2/
� /with a Lamé operator

and there is no explicit description of the spectrum for any DTV potential which can-
not convert to the Lamé case in the literature. Fortunately, Lemma 2.3 in Section 2.1
tells us that �.L.2;1;1;2/� / is a horizontal translation of the spectrumL

.2;1;0;0/

Q� for some
Q� 2 H with Re Q� D 1=2, which is symmetric with respect to R. Let � D 1

2
C bi with

b > 0 in what follows and consider the spectrum of

Lb WD L.2;1;0;0/b
D d2

dx2
� 6}.x C z0I �/ � 2}

�
x C 1

2
C z0I �

�
in L2.R;C/:

In order to emphasize � D 1
2
C bi , we use b instead of � in notations. Sometimes, we

omit the notation � freely to simplify notations when no confusion arises.
Let ek WD ek.b/D}.!k

2
Ib/, kD 1;2;3 be the well-known invariants of the elliptic

curve. It is well known (see [31, p.394]) that the spectral polynomial Qb.�/ of Lb is
given by

Qb.�/ D .� � 4e1/R1.�/R2.�/; (1.5)

where

R1.�/ D �2 � 2.3e2 C 4e3/� � 31e22 � 52e2e3 � 12e23 ;
R2.�/ D �2 � 2.3e3 C 4e2/� � 31e23 � 52e2e3 � 12e22 :

By applying [20, Theorem 4.1], we see that the spectrum �.Lb/ consists of Qg � 2
bounded simple analytic arcs �k and one semi-infinite simple analytic arc �1 which
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tends to �1C hqi, with hqi D R x0C1
x0

q.x/dx, i.e.,

�.L/ D �1 [
Qg[

kD1
�k; Qg � 2;

where the finite endpoints of such arcs must be those roots of the spectral polynomial
Qb.�/ with odd order.

In order to study the geometry of �.Lb/, we first need to determine all finite
endpoints of �.Lb/. For this purpose, we have to analyze the roots of Qb.�/ and the
number of semi-arcs met at each root, which are described in the following theorem.

Theorem 1.1. Let � D 1
2
C bi with b > 0 and d.�/ be the number of semi-arcs

met at �. Then all zeros of the spectral polynomial Qb.�/ are distinct and listed as
follows:

4e1; �; N�; �; N�:
Furthermore, d.�/D d. N�/D d.�/D d. N�/D 1, and there exist b1 � 0:2716572 and
b2 � 0:596803 such that

d.4e1/

´
� 3 if b 2 ¹b1; b2º;
D 1 otherwise:

This theorem tells us that the spectrum �.Lb/ has exactly 5 finite endpoints and
thus has exactly 3 spectral arcs. The main result of this paper is as follows, which says
that there are totally 5 different patterns for the spectrum �.Lb/ during the deforma-
tion as b > 0 deforms.

Theorem 1.2. Let � D 1
2
C ib with b > 0. Then

�.Lb/ D .�1; 4e1� [ �1 [ �2;

where the notations �i with i D 1; 2 denote simple arcs symmetric with respect to R

and they are disjoint with each other. Denote by ��; �C the roots of

f .�/ WD �2 C .5e1 C 4�1/� � 27e21 C 2e1�1 C
3

4
g2:

The deformation of �.Lb/ as b > 0 increases are described in the following graphs
and statements (see Figure 1.

(1) If 0 < b < b1, then �i \R D ¹�iº, i D 1; 2, and 4e1 < �1 < �2.

(2) If b D b1, then �1 \R D ¹4e1º and �2 \R D ¹�0º for some �0 > 4e1.

(3) If b1 < b < b2, then �1 \ R D ¹��º with �� < 4e1 and �2 \ R D ¹�0º for
some �0 > 4e1.
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4e1 4e1 4e1

0 < b < b1 b D b1 b1 < b < b2

4e1

4e1

b D b2 b > b2

Figure 1

(4) If b D b2, then �1 \R D ¹��º and �2 \R D ¹4e1º with �� < �C D 4e1.

(5) If b > b2, then �1 \R D ¹��º and �2 \R D ¹�Cº with �� < �C < 4e1.

Note that �.Lb/ is symmetric with respect to R (see Lemma 2.3 in Section 2)
and the complement C n �.Lb/ is path-connected (cf. [18, Theorem 2.2]). In order to
prove this main theorem, we need to determine the intersection points of �i with R

for i D 1; 2 as b > 0 varies. There are three kinds of intersection points: the one is
less than 4e1, so it is met by 2k semi-arcs for some k � 2, and we call this kind of
intersection point as an inner intersection point; the one is equal to 4e1, so it is the
endpoint of the spectrum; the third one is bigger than 4e1, which could be an inner
intersection point if �1 and �2 intersect. Therefore, there are two questions we need
to solve:

Question 1. If b 2 ¹b1; b2º, what is d.4e1/?

Question 2. Could we determine all inner intersection points of the spectrum for all
b > 0? In particular, how to prove �1 \ �2 D ;?

For example, d.4e1/ � 3 at b D b1 indicates that there are at least two possible
diagrams for �.Lb1

/ (Figure 2, where (S4a) (resp. (S4b)) corresponds to d.4e1/ D 3
(resp. d.4e1/ D 5), and how to rule out (S4b) is not easy. To overcome this difficulty,
it is not a good way to compute d.4e1/ directly for b 2 ¹b1; b2º, but we can use other
ideas to get the rough graph of �.Lb/ without solving this question apriori. Taking
the b D b2 case for example, if we know there is an inner intersection point, then
it follows from d.4e1/ � 3 at b D b2 that the rough graph of �.Lb2

/ must be the
one stated in Theorem 1.2, and so d.4e1/ D 3 at b D b2 at a consequence. Inspired
by this observation, we only consider Question 2, which is challenging because the
computation is huge. We overcome this difficulty by some technique and obtain a
complete and nice result.
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4e1

(S4a)

4e1

(S4b)

Figure 2

Theorem 1.3. Let � D 1
2
C bi with b > 0 and �0 2 �.Lb/ with Qb.�0/ ¤ 0. Then

�0 is an inner intersection point if and only if �0 is a root of f .�/. Moreover, the two
roots of f denoted by �C; �� are real and �� < 0 < �C.

Thanks to Theorem 1.3, the rough figure of �.Lb2
/ can be determined as stated in

Theorem 1.2. Unfortunately, Theorem 1.3 is not enough for us to determine the rough
graphs of �.Lb/ for b � b1. For example, we still cannot rule out the figure (S4b)
via Theorem 1.3. However, the graphs for b > b1 give us a new surprising idea: we
should consider the spectrum along the imaginary axis. Specifically, we define

O�.Lb/ D
1

�4b2 �.L 1
4b
/

which plays the same role as the spectrum of Lb along the imaginary axis. As an
auxiliary tool, we consider the mean field equation

4uC eu D 16�ı0 C 8�ı 1
2

on Tb; (1.6)

where�D @2=@x2 C @2=@y2 is the Laplace operator and ıp denotes the Dirac meas-
ure at point p. Geometrically, a solution u to (1.6) leads to a metric 1

2
eujdzj2 with

constant curvature C1 acquiring two conic singularities with angles 10� and 6� .
Physically, (1.6) appears in statistical physics as the mean field limit of the Euler flow,
hence the name. It is also related to the self-dual condensates of the Chern–Simons–
Higgs model in superconductivity. See [4, 6, 13, 15, 23, 24, 26] and references therein.

The solvability of (1.6) depends on the moduli b in a sophisticated manner and has
been studied in [9,10,15]. In particular, a solution u.z/ is called even if u.z/D u.�z/
and is called axisymmetric if u.z/Du. Nz/. The number of even axisymmetric solutions
of (1.6) has been calculated and reviewed here.

Lemma 1.4 ([15, Example 4.3]). Let � D 1
2
C bi with b > 0. Then there are k1 <

k2 <
1
2

such that

(1) If b 2 .0;k1/[ .k2; 1
4k2
/[ . 1

4k1
;C1/, then (1.6) has exactly two even axisym-

metric solutions.
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(2) If b 2 Œk1; k2� [ Œ 14k2
; 1
4k1
�, then (1.6) has a unique even axisymmetric solu-

tion.

In fact, we will see k1 D b1 and 1
4k2
D b2 in the proof of Theorem 1.2. We

prove that the number of even axisymmetric solutions of (1.6), which is computed
in Lemma 1.4, is the same as the number of real points in the set

„b WD . O�.Lb/ \ �.Lb// nZ.Qb/;

where Z.Qb/ denotes the set of roots of Qb.�/.

Theorem 1.5. Let � D 1
2
C bi with b > 0. The number of even solutions of the mean

field equation (1.6) equals #„b . Furthermore, the number of even axisymmetric solu-
tions equals #.„b \R/.

Thanks to Theorem 1.5, we can eliminate all impossible graphs and then uniquely
determine the rough graphs of �.Lb/ for b � b1.

Remark 1.6. This idea might be used to study the spectrum for general DVT poten-
tials qn.zI �/ with � D bi when b > 0 approaches to 0 or1.

Indeed, let � D bi with b > 0. If nD .n0; n1; n2; n3/ satisfies either (1.3) or (1.4),
the spectrum �.Ln

b
/ for the DTV potential qn.zI�/ does not lie on the real axis. On the

other hand, Eremenko and Gabrielov [15] described the number of even axisymmetric
solutions of the corresponding mean field equation:

4uC eu D 8�
3X
kD0

nkı!k
2

on Tb; (1.7)

for b > 0 sufficiently small or large. Specifically, let "D .n1 C n2/� .n0 C n3/. The
quadruple .n0; n1; n2; n3/ is called special if "=2 is an odd integer and one of the
following holds: either min¹2n1; 2n2º � " > 0 or min¹2n0; 2n3º � �" > 0. Denote
by

M0 D min
°
n0 C 2C "

4
; n1 C 2 � "

4
; n2 C 2 � "

4
; n3 C 2C "

4

±
;

M1 D
h
min

°2C "
4

;
1C n1
2

;
1C n2
2

±i
;

M2 D
h
min

°2 � "
4

;
1C n0
2

;
1C n3
2

±i
:

Eremenko and Gabrielov’s results can be translated in the language of the mean field
equation as follows.
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Theorem 1.7 ([15, Theorem 1.5]). Let � D bi with b > 0. If b is sufficiently small or
large, the number of even axisymmetric solutions of (1.7) is8̂̂<̂

:̂
M0 if .n0; n1; n2; n3/ is special and satisfies either (1.3) or (1.4),

M1 if .n0; n1; n2; n3/ is not special and satisfies (1.3),

M2 if .n0; n1; n2; n3/ is not special and satisfies (1.4).

Now, consider the spectrum O�.Ln
b
/ along the imaginary axis (i.e., in � direction).

By a similar calculation, we have

O�.Ln
b/ D �

1

b2
�.Ln

1
b

/:

From the proof of Theorem 1.5, we can obtain that the number of even axisymmetric
solutions of the mean field equation (1.7) equals #.„n

b
\R/, where „n

b
D . O�.Ln

b
/ \

�.Ln
b
// nZ.Qn

b
/. This fact and Theorem 1.7 should be useful in studying the spectrum

�.Ln
b
/ for b > 0 sufficiently small and large.

The rest of this paper is organized as follows. In Section 2, we review the spec-
tral theory of generalized Lamé equation from [9, 10]. In Section 3, we compute the
monodromy at the unique real root of the spectral polynomial and then prove The-
orem 1.1. We prove Theorem 1.3 in Section 4. In Section 5, we study the connection
between the spectrum and the mean field equation and prove Theorem 1.5. In the last
section, we give the proof of Theorem 1.2.

2. Preliminaries

In this section, we briefly review some preliminary results about the spectral theory
of the complex Hill operator with DTV potential

L� D d2

dx2
� 6}.x C z0I �/ � 2}

�
x C 1

2
C z0I �

�
in L2.R;C/;

that are needed in later sections.

2.1. Spectrum of L�

Let y1.x/ and y2.x/ be any two linearly independent solutions of

L�y D �y: (2.1)

Then so do y1.xC 1/ and y2.xC 1/ and hence there is a monodromy matrixM.�/ 2
SL.2;C/ such that

.y1.x C 1/; y2.x C 1// D .y1.x/; y2.x//M.�/:
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Define the Hill’s discriminant �.�/ by

�.�/ WD trM.�/;

which is clearly an invariant of (2.1), i.e., does not depend on the choice of lin-
early independent solutions. This entire function �.�/ encodes all information of the
spectrum �.L� /; see e.g. [18] and references therein. Indeed, Rofe and Beketov [27]
proved that the spectrum �.L� / can be described as

�.L� / D ��1.Œ�2; 2�/ D ¹� 2 C j �2 � �.�/ � 2º:

This important fact plays a key role in this paper.
Clearly, � is a (anti)periodic eigenvalue if and only if �.�/ D ˙2. Define

d.�/ WD ord�.�.�/2 � 4/:

Then it is well known (cf. [34, Section 2.3]) that d.�/ equals the algebraic multi-
plicity of (anti)periodic eigenvalues. Let c.�; x; x0/ and s.�; x; x0/ be the special
fundamental system of solutions of (2.1) satisfying the initial values

c.�; x0; x0/ D s0.�; x0; x0/ D 1; c0.�; x0; x0/ D s.�; x0; x0/ D 0:

Then we have
�.�/ D c.�; x0 C 1; x0/C s0.�; x0 C 1; x0/:

Define

p.�; x0/ WD ord� s.�; x0 C 1; x0/;
pi .�/ WD min¹p.�; x0/W x0 2 Rº:

It is known that p.�; x0/ is the algebraic multiplicity of a Dirichlet eigenvalue on the
interval Œx0; x0 C 1�, and pi .�/ denotes the immovable part of p.�; x0/ (cf. [20]). It
was proved in [20, Theorem 3.2] that d.�/ � 2pi .�/ � 0.

Note that degQ� .�/ D 5. Apply the general result [20, Theorem 4.1] to L� , we
obtain

Theorem 2.1 ([20, Theorem 4.1]). Let � 2H, the spectrum �.L� / consists of finitely
many bounded simple analytic arcs �k , 1 � k � Qg for some Qg � 2 and one semi-
infinite simple analytic arc �1 which tends to �1C hqi, with hqi D R x0C1

x0
q.x/dx,

i.e.,

�.L� / D �1 [
Qg[

kD1
�k :
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Furthermore,

(1) the finite endpoints of such arcs are exactly zeros of Q� .�/ with odd order;

(2) there are exactly d.�/’s semi-arcs of �.L� / meeting at each zero � of Q� .�/
and

d.�/ D ord�Q� .�/C 2pi .�/: (2.2)

Furthermore, we need the following conclusions about �.L� /.

Theorem 2.2 ([18, Theorem 2.2]). The complement C n �.L� / is path-connected.

In addition, the spectrum �.L� / is symmetric with respect to R if Re� D 1
2

. More
general, we have the following conclusion.

Lemma 2.3. Let � D 1
2
C bi with b > 0. The spectrum of

L.m;n/� D d2

dx2
�m.mC 1/}.x C z0I �/ � n.nC 1/}

�
x C 1

2
C z0I �

�
is symmetric with respect to the real line R.

Proof. Let Q� D 2ib and consider

L
.m;n/

Q� WD d2

dx2
�m.mC 1/

�
}.x C z0I Q�/C }

�
x C z0 C 1C Q�

2
I Q�
��

� n.nC 1/
�
}
�
x C z0 C 1

2
I Q�
�
C }

�
x C z0 C Q�

2
I Q�
��
:

Since Q� 2 iR>0, it was proved in [13, Lemma 3.5] that the spectrum �.L
.m;n/

Q� / is
symmetric with respect to R. Since 1CQ�

2
D 1

2
C ib D � , we can rewrite the elliptic

functions in the potential of L.m;n/Q� as

}.zI Q�/C }
�
z C 1C Q�

2
I Q�
�
D }.zI �/C e3. Q�/;

and then

}
�
z C 1

2
I Q�
�
C }

�
z C Q�

2
I Q�
�
D }

�
z C 1

2
I �
�
C e3. Q�/;

which implies �.L.m;n/Q� / D �.L
.m;n/
� / � .m.m C 1/ C n.n C 1//e3. Q�/. From here

and e3. Q�/ 2 R, we conclude that �.L.m;n/� / is also symmetric with respect to R.

2.2. The spectral polynomial

First of all, recall that

}.zI �/ D 1

z2
C

X
.m;n/2Z2n¹.0;0/º

� 1

.z �m � n�/2 �
1

.mC n�/2
�
;
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and it is well known that

}0.zI �/2 D 4
3Y
kD1

.}.zI �/ � ek.�// D 4}.zI �/3 � g2.�/}.zI �/ � g3.�/; (2.3)

where ek.�/ D }.!k

2
I �/, k D 1; 2; 3, and g2.�/; g3.�/ are well-known invariants of

the elliptic curve. The Weierstraß zeta function is defined by

�.z/ D �.zI �/ WD �
zZ
}.�I �/d�

with two quasi-periods �j D �j .�/, j D 1; 2,

�j .�/ D 2�
�!j
2
I �
�
D �.z C !j I �/ � �.zI �/; j D 1; 2;

and the Weierstraß sigma function is defined by

�.z/ D �.zI �/ WD exp

zZ
�.�/d�:

It is well known that �.z/ is an odd meromorphic function with simple poles at ZC
Z� and �.z/ is an odd entire function with simple zeros at ZC Z� .

Recall that (see [31, p. 394]) the spectral polynomial Q� .�/ of L� is given by

Q� .�/ D .� � 4e1/R1.�/R2.�/; (2.4)

where

R1.�/ D �2 � 2.3e2 C 4e3/� � 31e22 � 52e2e3 � 12e23 ;
R2.�/ D �2 � 2.3e3 C 4e2/� � 31e23 � 52e2e3 � 12e22 :

Consider the associated hyperelliptic curve

�� WD ¹.�;W / jW 2 D Q� .�/º;

which is of genus 2. There is an embedding i W�� ,! Sym3T� such that the image of
�� in Sym3T� is defined by (cf. [9, 10])

Y� WD

8̂̂<̂
:̂¹a1; a2; a3º 2 †�

ˇ̌̌̌
ˇ̌̌̌ 2
P
j¤i

�
�.ai � aj /C �.aj / � �.ai /

�
D �.ai C 1

2
/C �.ai � 1

2
/ � 2�.ai /;

for i D 1; 2; 3:

9>>=>>; [
°°1
2
;
1

2
;
1

2

±±
;

where

†� D
°
¹a1; a2; a3º 2 Sym3

�
T� n

°
0;
1

2

±� ˇ̌̌
ai ¤ aj for i ¤ j

±
:
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Then Y� D i.�� /Š�� is a hyperelliptic curve of genus 2. Clearly, if a WD ¹a1;a2;a3º 2
Y� , then �a WD ¹�a1;�a2;�a3º 2 Y� . In fact, we have a branched covering map of
degree 2 (See [4, Theorem 7.4])

��WY� ! C; a WD ¹a1; a2; a3º 7! �a D 3 .}.a1/C }.a2/C }.a3// � 5e1: (2.5)

Note that �a D ��a, then a 2 Y� is a branch point, i.e., Q� .�a/ D 0, if and only if
a D �a. Equivalently, we have

¹a 2 Y� j a D �aº D ¹a 2 Y� jQ� .�a/ D 0º : (2.6)

Lemma 2.4. Let � D 1
2
C bi with b > 0. Then all roots of the spectral polynomial

Qb.�/ are distinct and listed as follows:

4e1; �; N�; �; N�:

Moreover, d.�/ D d. N�/ D d.�/ D d. N�/ D 1.

Proof. Clearly, 4e1 2 R is a root of Qb.�/. Note that the discriminant of R1.�/:

�R1
D 16.2e2 C e3/.5e2 C 7e3/ ¤ 0

because e3 D e2 and e2 62 R. Denote the roots of R1.�/ by �; �, then � ¤ �. Clearly,
N� ¤ N� and N�; N� are roots of R2.�/. Since

�C � D 2.3e2 C 4e3/ 62 R;

we have � ¤ N�. So, if we could show �; � 62 R, then 4e1; �; N�; �; N� are distinct.
Let a 2 Yb . If a D �a, then one of the following cases holds:

(1) a D ¹1
2
; 1
2
; 1
2
º,

(2) a D a1a WD ¹ �2 ; a;�aº for some a 2 Tb n ¹0; 12 ; �2 ; 1C�2 º,
(3) a D a2a WD ¹1C�2 ; a;�aº for some a 2 Tb n ¹0; 12 ; �2 ; 1C�2 º.

In case (1), we have �¹ 1
2 ;

1
2 ;

1
2 º D 4e1 which is a real root of Qb.�/. In case (2)

and (3), by direct computation, we obtain that a1a D ¹ �2 ; a;�aº 2 Yb if and only if
a2Na D ¹1C�2 ; Na;�Naº 2 Yb . Suppose that �a1

a
D 6}.a/C 3e2 � 5e1 is a root ofQb.�a1

a
/.

Since Qb.�a1
a
/ is of real coefficient, �a1

a
D 6}. Na/C 3e3 � 5e1 D �a2Na

is also a root
of Qb.�a1

a
/. From a2Na ¤ ˙a1a and (2.5), we have �a1

a
¤ �a2Na

, so �a1
a
62 R. Therefore,

�; � 62 R, which is desired.
Finally, note that all roots ofQb.�/ are distinct, it was proved in [12, Theorem 1.3]

that the spectrum �.Lb/ has at most one endpoint with d.�/ � 3. Therefore, d.�/ D
d. N�/ D d.�/ D d. N�/ D 1 by Lemma 2.3.
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2.3. Generalized Lamé equation

In this section, we study the generalized Lamé equation

L�W y00.z/ D
�
6}.zI �/C 2}

�
z C 1

2
I �
�
C �

�
y.z/; z 2 C:

Let y.z/ be a solution of L�. Consider the Laurent expansion of y.z/ at z D z0. We
obtain that the local exponent at z0 D 0 is �2 or 3, the local exponent at z0 D 1

2
is

�1 or 2, and the local exponent at any other point is 0 or 1. Furthermore, note that
6}.z/ C 2}.z C 1

2
/ C � is even elliptic, it is easily seen (cf. [19, 28]) that y.z/ is

meromorphic in C. Hence, the monodromy representation of L� is a group homo-
morphism �� W �1.T� /! SL.2;C/, which is abelian and thus reducible. Then there
is a common eigenfunction y.z/ of �� , i.e., y.z C !j / D �jy.z/ for some �j ¤ 0,
j D 1; 2, so y.z/ is elliptic of the second kind. From the theory of elliptic functions,
we conclude that up to a constant, the common eigenfunction y.z/ can be written as
(cf. [4, 36]):

y.z/ D ya.z/ WD ecaz
�.z � a1/�.z � a2/�.z � a3/

�.z/2�.z � 1
2
/

where a 2 ¹¹1
2
; 1
2
; 1
2
ºº [ †� and ca 2 C is a constant related to a. The following

theorem tells us that Y� could parametrize the solutions of L�.

Theorem 2.5 ([4, 36]). Let a D ¹a1; a2; a3º 2 ¹¹12 ; 12 ; 12ºº [ †� . Then ya.z/ is a
solution of L� for some � if and only if a 2 Y� , � D �a and

ca D �.a1/C �.a2/C �.a3/ � 1
2
�1: (2.7)

Proof. Note that

y0a.z/
ya.z/

D ca C �.z � a1/C �.z � a2/C �.z � a3/ � 2�.z/ � �
�
z � 1

2

�
;�y0a.z/

ya.z/

�0
D �}.z � a1/ � }.z � a2/ � }.z � a3/C 2}.z/C }

�
z � 1

2

�
are both elliptic functions. Consider elliptic function

g.z/ WD
�y0a.z/
ya.z/

�0
C
�y0a.z/
ya.z/

�2
� 6}.z/ � 2}

�
z C 1

2

�
� �;

D � }.z � a1/ � }.z � a2/ � }.z � a3/ � 4}.z/ � }
�
z � 1

2

�
� �

C
�
ca C �.z � a1/C �.z � a2/C �.z � a3/ � 2�.z/ � �

�
z � 1

2

��2
;
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where � 2 C. Clearly, ya.z/ is a solution of L� if and only if g.z/ � 0 if and only
if none of 0; 1

2
; a1; a2 and a3 are poles of g.z/ and the constant term of the Laurent

expansion at z D 0 is 0.

Case 1. Assume that a D ¹1
2
; 1
2
; 1
2
º. Note that

g.z/ D
�
ca C 2�

�
z � 1

2

�
� 2�.z/

�2
� 4}.z/ � 4}

�
z � 1

2

�
� �:

First, 0 is not a pole of g.z/ if and only if

ca D 2�
�1
2

�
D �1; (2.8)

if and only if 1
2

is not a pole of g.z/. Second, the constant term of the Laurent expan-
sion of g.z/ at z D 0 is 0 if and only if

� D �4
�
�2}

�1
2

��
� 4}

�1
2

�
D 4e1 D �¹ 1

2 ;
1
2 ;

1
2 º: (2.9)

Case 2. Assume that a 2 †� . First, 0 is not a pole of g.z/ if and only if

ca D �.a1/C �.a2/C �.a3/ � �
�1
2

�
: (2.10)

Second, 1
2

is not a pole of g.z/ if and only if

ca D �
�
a1 � 1

2

�
C �

�
a2 � 1

2

�
C �

�
a3 � 1

2

�
C 2�

�1
2

�
: (2.11)

Third, ai is not a pole of g.z/ if and only if

ca D �.aj � ai /C �.ak � ai /C 2�.ai /C �
�
ai � 1

2

�
; (2.12)

where ¹i; j; kº D ¹1; 2; 3º.
The system of equations (2.10), (2.11), and (2.12) are equivalent to (2.10) and

�
�
ai C 1

2

�
C �

�
ai � 1

2

�
� 2�.ai / D 2

3X
j¤i

�
�.ai � aj /C �.aj / � �.ai /

�
for i D 1; 2; 3, i.e., a 2 Y� . Furthermore, the constant term of the Laurent expansion
of g.z/ at z D 0 is 0 if and only if

� D 3�}.a1/C }.a2/C }.a3/� � 5e1 D �a:

In what follows, we always assume that ca is defined by (2.7) in ya.z/.
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Corollary 2.6 ([12, p. 464]). Let a2 Y� , then either aD�a or a\�aD;. Moreover,
ya.z/ and y�a.z/ are linearly independent if and only if a \ �a D ;, equivalently, if
and only if Q� .�a/ ¤ 0.

Proof. First of all, y˙a.z/ are solutions of L�a because a 2 Y� , then�
ya.z/y

0
�a.z/ � y0a.z/y�a.z/

�0 � 0:
Hence, the Wronskian of ya.z/ and y�a.z/:

W.ya; y�a/ D
ˇ̌̌̌
ya.z/ y�a.z/

y0a.z/ y0�a.z/

ˇ̌̌̌
is constant. Note that the zero set of ya.z/ is a. If a\�a¤;, we haveW.ya;y�a/D 0,
thus ya.z/ and y�a.z/ are linearly dependent, which forces aD�a. On the other hand,
if a D �a, then ya.z/ and y�a.z/ are linearly dependent by the transformation law
(denote by �3 D 2�.!3

2
/ D �1 C �2)

�.z C !k/ D �e�k.zC!k
2 /�.z/; k D 1; 2; 3:

2.4. Monodromy and Hill’s discriminant

Let a 2 Y� in the following discussion, then y˙a.z/ are solutions of the same gener-
alized Lamé equation L�a . The Legendre relation ��1 � �2 D 2�i implies that there
is a unique .r; s/ 2 C2 satisfying

r C s� D a1 C a2 C a3 � 1
2

and
r�1 C s�2 D �.a1/C �.a2/C �.a3/ � 1

2
�1;

which is equivalent to

�.a1/C �.a2/C �.a3/ � �1.a1 C a2 C a3/ D �2�is;
�.�.a1/C �.a2/C �.a3// � �2.a1 C a2 C a3/ � �i D 2�ir:

Furthermore, the transformation law �.z C !j / D �e.zC
!j
2 /�j �.z/ with j D 1; 2

implies

y˙a.z C 1/ D e˙
P3

j D1.�.aj /��1aj /y˙a.z/ D e�2�isy˙a.z/; (2.13a)

y˙a.z C �/D �e˙�
Pg

j D1
.�.aj /��2aj /y˙a.z/D e˙2�iry˙a.z/; (2.13b)

namely y˙a.z/ are elliptic of the second kind. Since y˙a.z/ are solutions of L�a , thus
y˙a.x C z0/ are solutions of L�y D �ay.
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Case 1. If a is not a branch point, i.e., a\�aD ;, then ya.x C z0/ and y�a.x C z0/
are linearly independent solutions of L�y D �ay and satisfy

y˙a.x C z0 C 1/ D e�2�isy˙a.x C z0/: (2.14)

Case 2. If a is a branch point, i.e., a D �a, then ya.z/ and y�a.z/ are linearly
dependent. By (2.13), we get 2r; 2s 2 Z. Note that Q� .�a/ D 0, it was proved in
[9, Theorem 2.7] that the monodromy of L�a is not completely reducible and there is a
solution y2.z/ linearly independent with ya.z/ such that (note e2�is D e�2�is D˙1)

ya.z C 1/ D e�2�isya.z/; y2.z C 1/ D e2�isy2.z/C e2�is�aya.z/; (2.15)

where �a 2 C is a constant.
From (2.14) and (2.15), the Hill’s discriminant in any case is given by

�.�a/ D e�2�is C e2�is D e
Pg

j D1
.�.aj /��1aj / C e�

Pg

j D1
.�.aj /��1aj /: (2.16)

Clearly, �a 2 �.L� / if and only if s 2 R, i.e.,
Pg
jD1.�.aj / � �1aj / 2 iR.

3. Monodromy at the real endpoint

In this section, we always assume � D 1
2
C bi with b > 0. We will first recall some

basic properties for the quantities e1; e2; e3; g2; g3 and �1 associated with the Weier-
straß elliptic function }.zI �/, which will also be frequently used in the following
sections.

First of all, e1; �1 2 R, e3 D e2 62 R and the second equality in (2.3) gives us

e1 C e2 C e3 D 0; (3.1)

g2 D 2.e21 C e22 C e23/ 2 R; (3.2)

g3 D 4e1e2e3 2 R: (3.3)

Note that e1; e2 D e3 62 R and (3.1), in what follows, we set

e1 D 2x; e2 D �x C iy; e3 D �x � iy with x; y 2 R and y ¤ 0; (3.4)

and then

g2 D 4.3x2 � y2/; (3.5a)

g3 D 8x.x2 C y2/ D 4e31 � e1g2: (3.5b)

Since e1 ¤ e2 ¤ e3 ¤ e1, it is easy to see that

g2 � 3e2k D .ei � ej /2 ¤ 0; for ¹i; j; kº D ¹1; 2; 3º: (3.6)
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In particular,

g2 � 3e21 D .e2 � e3/2 D �4y2 < 0; i.e., g2 < 3e
2
1 : (3.7)

The derivatives of e1; g2 and �1 with respect to b are listed as follows:

e01.b/D
1

�

�
e21 � �1e1 �

1

6
g2

�
(see [11, (2.15)]); (3.8a)

g02.b/D
1

�
.3g3 � 2�1g2/ D 1

�
.12e31 � 3e1g2 � 2�1g2/ (see [5]), (3.8b)

�01.b/D
1

24�
.g2 � 12�21/ (see [12, (1.5)]). (3.8c)

Moreover, we have the following conclusions.

Proposition 3.1 ([23, Theorem 1.7]). We have e1.12 / D 0 and

e01.b/ > 0 for all b > 0:

Proposition 3.2 ([5, Corollary 4.4]). There exists bg � 0:47 2 . 1

2
p
3
; 1
2
/ such that

g02.b/

8̂̂<̂
:̂
< 0 for b 2 .0; bg/;
D 0 for b D bg ;
> 0 for b 2 .bg ;1/:

And g2.b/ D 0 if and only if b 2 ¹ 1

2
p
3
;
p
3
2
º.

Proposition 3.3 ([23, Theorem 1.7]). There exists b� � 0:24108 < 1

2
p
3

such that

�01.b/

8̂̂<̂
:̂
> 0 for b 2 .0; b�/;
D 0 for b D b�;
< 0 for b 2 .b�;C1/:

Proposition 3.4. [23, Theorem 1.7] Both e1 C �1 and 1
2
e1 � �1 increase in b, and

1

2
e1 < �1: (3.9)

Moreover, there exists Qb 2 .0:3; 0:4/ such that e1. Qb/C �1. Qb/ D 0.

Remark 3.5. All numerical computations in this paper are based on the q D e2�i� D
�e�2�b expansions of e1; g2; �1 which are recalled here for readers’ convenience:

e1.b/D 16�2
� 1
24
C
1X
kD1

.�1/k�ko e�2k�b
�
; where �ko D

X
1�d jk; d is odd

d;
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g2.b/D 320�4
� 1

240
C
1X
kD1

.�1/k�k3 e�2k�b
�
; where �k3 D

X
1�d jk

d3;

�1.b/D 8�2
� 1
24
�
1X
kD1

.�1/k�k1 e�2k�b
�
; where �k1 D

X
1�d jk

d:

It was proved in [12] that there is a unique Ob > 0 such that �1.12 C Obi/ D 0. Further-
more, a numerical computation shows Ob � 0:13094.

3.1. Monodromy data at the real root

Note that 4e1 is the only real root ofQb.�/, we will calculate the degree d.4e1/ using
the monodromy data in this section.

Note that we may rewrite (see, e.g., [25, Lemma 3.2])

1

}.z/ � }.1
2
/
D c0 C c1}

�
z � 1

2

�
(3.10)

with

c1 D lim
z! 1

2

.z � 1
2
/2

}.z/ � }.1
2
/
D 2

}00.1
2
/
D 2

6e21 � 1
2
g2
D 4

12e21 � g2
¤ 0; (3.11)

c0 D �c1}
�
0 � 1

2

�
D �e1c1 D � 4e1

12e21 � g2
; (3.12)

where (3.12) is due to 0 is a second order pole of }.z/ � }.1
2
/ and so a second order

zero of 1=
�
}.z/ � }.1

2
/
�
.

Define

�.z/ WD
zZ
0

d�

.}.�/ � }.1
2
//2
:

Recall that �.z/ D � R z }.�/d� and }00 D 6}2 � 1
2
g2. We obtain, from (3.10), that

�.z/ D �2c0c1
�
�
�
z � 1

2

�
C �

�1
2

��
C 1

6
c21}

0
�
z � 1

2

�
C
�
c20 C

1

12
g2c

2
1

�
z

D �2c0c1�
�
z � 1

2

�
C 1

6
c21}

0
�
z � 1

2

�
C
�
c20 C

1

12
g2c

2
1

�
z � c0c1�1:

Note that �1D 2�.12 /D �.zC 1
2
/� �.z � 1

2
/, then � is odd and has two quasi-periods:

�1 D �.z C 1/ � �.z/ D c20 C
1

12
g2c

2
1 � 2c0c1�1;

�2 D �.z C �/ � �.z/ D
�
c20 C

1

12
g2c

2
1

�
� � 2c0c1�2:
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Let a D ¹1
2
; 1
2
; 1
2
º, then �a D 4e1. By the transformation law

�.z C !j / D �e�j .zC!j
2 /�.z/;

we have

ya.z/ D e�1z
�.z � 1

2
/2

�.z/2
D e��1z

�.z C 1
2
/2

�.z/2
:

Note that
�.z � 1

2
/�.z C 1

2
/

�.z/2
D ��.1

2
/2
�
}.z/ � }

�1
2

��
I

then, a direct computation shows that

y2.z/ WD �.z/ya.z/ D �
�1
2

�4
ya.z/

zZ
0

1

ya.�/2
d�

is also a solution of the L4e1
Note that ya.z C 1/ D ya.z/. Then

y2.z C 1/ D .�1 C �.z// ya.z/ D �1ya.z/C y2.z/I

thus the monodromy matrix is

M.4e1/ D
�
1 �1

0 1

�
:

Note that d.4e1/ D 1 C 2pi .4e1/ by (2.2) and [20, Proposition 3.1] proved that
pi .�/� 1 if and only if all solutions ofLby D �y are (anti)periodic. Then d.4e1/� 3
if and only if

�1 D
�
e21 C 2e1�1 C

1

12
g2

�
c21 D 0

if and only if

e21 C 2e1�1 C
1

12
g2 D 0:

Let h.b/ D e21 C 2e1�1 C 1
12
g2, we have

h0.b/ D 3e01.e1 C �1/:

Note that

e01 > 0; e1

�1
2

�
D 0;

g2.b�/ D 12.�1.b�//2; e1.b�/C �1.b�/ < 0;

g2

� 1

2
p
3

�
D g2

�p3
2

�
D 0; e1

� 1

2
p
3

�
C 2�1

� 1

2
p
3

�
> 0I
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then

h.b�/D .e1 C �1/2 > 0; h
� 1

2
p
3

�
D e1.e1 C 2�1/ < 0;

h
�1
2

�
D 1

12
g2 < 0; h

�p3
2

�
D e21 C 2e1�1 > 0;

so there exist b1 � 0:2716572 2 .b�; 1

2
p
3
/ and b2 � 0:596803 2 .12 ;

p
3
2
/ such that

h.b/

8̂̂<̂
:̂
> 0 for b 2 .0; b1/ [ .b2;C1/;
D 0 for b 2 ¹b1; b2º;
< 0 for b 2 .b1; b2/:

Therefore, d.4e1/ � 3 if and only if b 2 ¹b1; b2º. From here and Lemma 2.4, we
proved Theorem 1.1.

4. Inner intersection points

In this section, we study the inner intersection points of the spectrum �.L� / with
Re� D 1

2
and prove Theorem 1.3 recalled here.

Theorem 4.1 (D Theorem 1.3). Let � D 1
2
C bi with b > 0 and �0 2 �.L� / with

Q� .�0/ ¤ 0. Then �0 is an inner intersection point if and only if �0 is a root of

f .�/ WD �2 C .5e1 C 4�1/� � 27e21 C 2e1�1 C
3

4
g2:

Moreover, the two roots of f denoted by �C; �� are real and �� < 0 < �C.

Proof. Let �0 2 C with Q� .�0/ ¤ 0. From Y� Š �� and (2.5), there is a small
neighborhood U � C of �0 such that Q� .�/ ¤ 0 for � 2 U and � 2 U can be a
local coordinate for the hyperelliptic curve Y� , namely a1 D a1.�/; a2 D a2.�/ and
a3 D a3.�/ are holomorphic for � 2 U . For all � 2 U , (2.5) tells us that

� D �a D 3 .}.a1/C }.a2/C }.a3// � 5e1 (4.1)

and then

}0.a1/a01.�/C }0.a2/a02.�/C }0.a3/a03.�/ D
1

3
for � 2 U

and so
.a01.�0/; a

0
2.�0/; a

0
3.�0// ¤ .0; 0; 0/: (4.2)



Deformation of the spectrum for Darboux–Treibich–Verdier potential along Re � D 1
2

367

Next, note that Q� .�/ ¤ 0 for � 2 U implies

¹a1.�/; a2.�/; a3.�/º \ ¹�a1.�/;�a2.�/;�a3.�/º D ; for� 2 U;

i.e., a.�/ D ¹a1.�/; a2.�/; a3.�/º is not a branch point of Y� for all � 2 U . Hence

}.ai .�// ¤ }.aj .�// for all � 2 U; 1 � i < j � 3; (4.3)

and, for � 2 U , we have

2
X
j¤i

.�.ai � aj /C �.aj /� �.ai //D �
�
ai C 1

2

�
C �

�
ai � 1

2

�
� 2�.ai /; i D 1; 2; 3;

which is equivalent to (cf. [10, Theorem A.2])8̂̂<̂
:̂
}0.a1/C }0.a2/C }0.a3/ D 0;
3X
iD1

}0.ai /
Y
j¤i
.}.aj / � e1/ D 0:

(4.4)

Taking derivative with respect to � in (4.4) and evaluating at �0, we obtain from
.}0/2 D 4}3 � g2} � g3 and }00 D 6}2 � g2

2
that

3X
iD1

�
6}2i �

g2

2

�
a0i .�0/ D 0; (4.5)

3X
iD1

'ia
0
i .�0/ D 0; (4.6)

where }i WD } .ai .�0// for i D 1; 2; 3, and

'i D }00.ai /.}j � e1/.}k � e1/C }0.ai /}0.aj /.}k � e1/
C }0.ai /}0.ak/.}j � e1/

D
�
6}2i �

g2

2

�
.}j � e1/.}k � e1/C

�
2}2j C 2}j}k C 2}2k �

1

2
g2

�
.}j � }k/2

� 1
2
.4}3i � g2}i � g3/.}j C }k � 2e1/

with ¹i; j; kº D ¹1; 2; 3º.
By .}0/2 D 4}3 � g2} � g3 and (4.4), we easily obtain

4}31 � g2}1 � g3
.}1 � e1/2.}2 � }3/2 D

4}32 � g2}2 � g3
.}2 � e1/2.}1 � }3/2 D

4}33 � g2}3 � g3
.}3 � e1/2.}1 � }2/2 DW Ã;
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which is equivalent to8̂̂<̂
:̂
4}31 � g2}1 � g3 D Ã.}1 � e1/2.}2 � }3/2;
4}32 � g2}2 � g3 D Ã.}2 � e1/2.}1 � }3/2;
4}33 � g2}3 � g3 D Ã.}3 � e1/2.}1 � }2/2:

(4.7)

Note that Ã ¤ 0, otherwise, a1; a2; a3 2 ¹12 ; �2 ; 1C�2 º. Denote by8̂̂<̂
:̂
s1 WD s1.�0/ D }1 C }2 C }3;
s2 WD s2.�0/ D }1}2 C }1}3 C }2}3;
s3 WD s3.�0/ D }1}2}3;

we have
.x � }1/.x � }2/.x � }3/ D x3 � s1x2 C s2x � s3; (4.8)

then (4.7) is equivalent to8̂<̂
:
4s1}

2
1 � .4s2 C g2/}1 C 4s3 � g3 D Ã.}1 � e1/2.}2 � }3/2; (4.9)

4s1}
2
2 � .4s2 C g2/}2 C 4s3 � g3 D Ã.}2 � e1/2.}1 � }3/2; (4.10)

4s1}
2
3 � .4s2 C g2/}3 C 4s3 � g3 D Ã.}3 � e1/2.}1 � }2/2: (4.11)

First, (4.9), (4.10), and (4.11) lead to

4s31 � 12s1s2 C 12s3 � g2s1 � 3g3
D 2Ã.s22 � 3s1s3 � e1s1s2 C 9e1s3 C e21s21 � 3e21s2/: (4.12)

Note that }i ¤ }j for i ¤ j , then (4.9)–(4.10), (4.9)–(4.11), and (4.10)–(4.11) yield

4s2 C g2 � 4s1.}1 C }2/ D Ã.}3 � e1/.3}1}2 C 3e1}3 � e1s1 � s2/; (4.13)

4s2 C g2 � 4s1.}1 C }3/ D Ã.}2 � e1/.3}1}3 C 3e1}2 � e1s1 � s2/; (4.14)

4s2 C g2 � 4s1.}2 C }3/ D Ã.}1 � e1/.3}2}3 C 3e1}1 � e1s1 � s2/: (4.15)

Next, (4.13)–(4.15) gives us

8s21 � 12s2 � 3g2 D Ã.6e1s2 � 2e1s21 C s1s2 � 9s3/; (4.16)

and (4.13)–(4.14) gives us

4s1 D Ã.2e1s1 � s2 � 3e21/: (4.17)

Combine (4.12), (4.16), and (4.17). We obtain that

4s1

2e1s1 � s2 � 3e21
D 8s21 � 12s2 � 3g2
6e1s2 � 2e1s21 C s1s2 � 9s3

; (4.18)

4s1

2e1s1 � s2 � 3e21
D 4.s31 � 3s1s2 C 3s3/ � g2s1 � 3g3
2.s22 � 3s1s3 � e1s1s2 C 9e1s3 C e21s21 � 3e21s2/

: (4.19)
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If s1 D 0, then 2e1s1 � s2 � 3e21 D 0, i.e., s2 D �3e21 , because Ã ¤ 0. Since
8s21 � 12s2 � 3g2 D 3.12e21 � g2/ ¤ 0, by (4.16), 6e1s2 � 2e1s21 C s1s2 � 9s3 ¤ 0,
i.e., s3 ¤ �2e31 . From (4.12) and (4.16), we have s3 D 1

4
.g3 C 2e1g2 � 24e31/.

If s1 ¤ 0, then 2e1s1 � s2 � 3e21 ¤ 0 by (4.17). From (4.18), we have

s3 D 1

12s1
. � 3e21g2 C 2e1g2s1 C 8e21s21 � 8e1s31 � 12e21s2
� g2s2 C 16e1s1s2 C 4s21s2 � 4s22/: (4.20)

Plug (4.20) into (4.19). We have

1

s1
.3e21 � 2e1s1 C s2/

� .3e21g2 C 4e1g2s1 C 3g3s1 � 8e21s21 � g2s21 � 8e1s31 C 4s41 C 12e21s2
C g2s2 C 8e1s1s2 � 8s21s2 C 4s22/ D 0: (4.21)

Note that s1 ¤ 0, 2e1s1 � s2 � 3e21 ¤ 0 and g3 D 4e31 � e1g2, we have

4s22 C .12e21 C g2 C 8e1s1 � 8s21/s2
C 3e21g2 C 4e1g2s1 C 3g3s1 � 8e21s21 � g2s21 � 8e1s31 C 4s41
D 4.s2 � s21 C e1s1 C 3e21/.s2 � s21 C e1s1 C

1

4
g2/ D 0:

(4.22)

From (4.20) and (4.22), we obtain that8̂<̂
:
s2 D s21 � e1s1 � 3e21 ;

s3 D e1s21 �
�
e21 C

1

12
g2

�
s1 � 5e31 C

1

4
e1g2;

(4.23)

or 8̂̂<̂
:̂
s2 D s21 � e1s1 �

1

4
g2

s3 D e1s21 � 2e21s1 C e31 �
1

4
e1g2;

(4.24)

where the s1 D 0 case is only included in (4.23).
Let V D ¹� 2C jQ.�/¤ 0ºwhich is a connected open subset of C. LetAD ¹� 2

V j � satisfies (4.23)º and B D ¹� 2 U j � satisfies (4.24)º. By the above analysis,
we have V D A [ B . Note that �5e1 2 V and s1.�5e1/ D .�5e1 C 5e1/=3 D 0

by (4.1), thus �5e1 2 A. By definition, both A and B are closed subsets of V . Since
V is connected and A ¤ ;, we have A D V and B D ;. Therefore, (4.23) always
holds for all � 2 C combining with the continuity.
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On the other hand, for any � 2 U , denote by A.�/ WDP3
jD1.�.aj /� �1aj /. Since

a.�/ \ �a.�/ D ;, by (2.16), we have that for � 2 U ,

�.�/ D eA C e�A;
�0.�/ D .eA � e�A/A0;
�00.�/ D .eA � e�A/A00 C�.A0/2;
�000.�/ D .eA � e�A/.A000 C .A0/3/C 3�A0A00:

(4.25)

Sufficiency. Let �0 2 �.L� / with Q� .�0/ ¤ 0 be an inner intersection point, then �0
is met by 2k � 4.k 2 Z/ semi-arcs of the spectrum.

Consider the local behavior of the spectrum at �0 2 �.L� /:
�.�/ ��.�0/ D c.� � �0/k.1CO.j� � �0j//; k � 1; c ¤ 0: (4.26)

If �.�0/ 2 .�2; 2/, it follows from (4.26) and �.L� / D ¹�j � 2 � �.�/ � 2º that
there are precisely 2k semi-arcs of �.L� / meeting at �0. If �.�0/ D ˙2, then there
are precisely k semi-arcs of �.L� / meeting at �0.

If �.�0/ D ˙2, then our assumption implies k � 4, i.e., �0.�0/ D �00.�0/ D
�000.�0/ D 0. Since �.�0/ D ˙2 implies eA D ˙1 at �0, we obtain A0.�0/ D 0.

If�.�0/2 .�2;2/, then our assumption implies 2k� 4, i.e. k� 2 and so�0.�0/D
0. Since �.�0/ ¤ ˙2 implies eA ¤ ˙1 at �0, again we obtain A0.�0/ D 0.

Therefore, we always have A0.�0/ D 0, i.e.,

.}1 C �1/ a01.�0/C .}2 C �1/ a02.�0/C .}3 C �1/ a03.�0/ D 0: (4.27)

Noting from (4.2), we conclude from (4.5, 4.6, 4.27) that the determinant of the
matrix

� WD

0B@ }1 C �1 }2 C �1 }3 C �1
6}21 � g2

2
6}22 � g2

2
6}23 � g2

2

'1 '2 '3

1CA
vanishes, i.e.,

det� D 1

4
.}1 � }2/.}2 � }3/.}3 � }1/
� �g22 � 24e1g3 C 36e1g2�1 C 12g3�1 C 4.5e1g2 C 3g3/s1 � 20g2s21
� 48�1s31 C 48s41 C 4.11g2 C 60e1�1/s2 C 48�1s1s2 � 240s21s2
C 192s22 C 48.5e1 � 4�1/s3 C 144s1s3

� D 0
By (4.3), we obtain that

g22 � 24e1g3 C 36e1g2�1 C 12g3�1 C 4.5e1g2 C 3g3/s1 � 20g2s21
� 48�1s31 C 48s41 C 4.11g2 C 60e1�1/s2 C 48�1s1s2 � 240s21s2
C 192s22 C 48.5e1 � 4�1/s3 C 144s1s3 D 0: (4.28)
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Plug (4.23) into (4.28). We get

4.g2 � 12e21/
�
3s21 C .4�1 � 5e1/s1 � 9e21 � 6e1�1 C

1

4
g2

�
D 0: (4.29)

Since
�0 D 3.}1 C }2 C }3/ � 5e1 D 3s1 � 5e1; (4.30)

we have that

�20 C .5e1 C 4�1/�0 � 27e21 C 2e1�1 C
3

4
g2 D 0:

Necessity. Suppose �0 2 �.L� / satisfies Q� .�0/ ¤ 0 and

�20 C .5e1 C 4�1/�0 � 27e21 C 2e1�1 C
3

4
g2 D 0:

This, together with (4.30), (4.29), and (4.28) implies det� D 0. Since }i ¤ }j for
i ¤ j , the second row of� is nonzero. Suppose that the last two rows of� are linearly
dependent. There is c 2 C such that

'i D c
�
6}2i �

g2

2

�
; i D 1; 2; 3:

Let

ri D 'i � c
�
6}2i �

g2

2

�
D
�
6}2i �

g2

2

�
..}j � e1/.}k � e1/ � c/

C
�
2}2j C 2}j}k C 2}2k �

1

2
g2

�
.}j � }k/2

� 1
2
.4}3i � g2}i � g3/.}j C }k � 2e1/

with ¹i; j; kº D ¹1; 2; 3º, then r1 D r2 D r3 D 0. Note that }1 ¤ }2 ¤ }3 ¤ }1,
simplify r1 � r2, r2 � r3 and r3 � r1 gives us p12 D p23 D p31 D 0, where

ri � rj D �1
2
.xi � xj /pij :

Furthermore,

p12 � p23 D .}1 � }3/.12c � 12e21 � g2 C 8s21 � 8s2 � 8e1s1/D 0;
p23 � p13 D .}2 � }1/.12c � 12e21 � g2 C 8s21 � 8s2 � 8e1s1/D 0;
p13 � p12 D .}3 � }2/.12c � 12e21 � g2 C 8s21 � 8s2 � 8e1s1/D 0;

which gives us
12c � 12e21 � g2 C 8s21 � 8s2 � 8e1s1 D 0:
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Since s2 D s21 � e1s1 � 3e21 , we have c D 1
12
g2 � e21 . From here, (4.23) and p12 C

p23 C p31 D 0, we have

s1 D 3e1

2
:

By (4.23), and r1 C r2 C r3 D 0, we have

.12e21 � g2/.39e21 � g2/ D 0;

which is a contradiction!
Hence, the last two rows of � are linearly independent and then the first row can

be linearly spanned by the last two rows. So, (4.5) and (4.6) yields (4.27).
If �.�0/ 2 .�2; 2/, then we see from (4.27) and (4.25) that �0.�0/ D 0, i.e.,

k � 2 in (4.26) and so there are 2k � 4 semi-arcs of �.L� / meeting at this �0. If
�.�0/ D ˙2, then eA D ˙1 at �0. From here and (4.27) and (4.25), we see that
�0.�0/D �00.�0/D �000.�0/D 0. This means k � 4 in (4.26) and so there are k � 4
semi-arcs of �.L� / meeting at this �0. Therefore, �0 is an inner intersection point.

Finally, by direct computation, we have

�f D 133e21 � 3g2 C 32e1�1 C 16�21
D 115e21 C 18

�
e21 � e1�1 �

1

6
g2

�
C 50e1�1 C 16�21

D
�25
4
e1 C 4�1

�2
C 1215

16
e21 C 18�e01.b/ > 0; for all b > 0;

and

f .0/ D �27e21 C 2e1�1 C
3

4
g2

D �2
�
e21 � e1�1 �

1

6
g2

�
� 5

�
5e21 �

1

12
g2

�
< 0; for all b > 0:

Hence, f has two real roots ��; �C for all b > 0 and �� < 0 < �C.

5. Mean field equation

The purpose of this section is to study the relation between the spectrum �.L� / and
the number of even axisymmetric solutions of the mean field equation

4uC eu D 16�ı0 C 8�ı 1
2

on T� : (5.1)

First of all, we recall the connection between (5.1) and the generalized Lamé equation
L� which was studied in [4].
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Theorem 5.1 ([10, Theorem 3.1]). The mean field equation (5.1) has an even solution
if and only if there exists � 2 C such that the monodromy of L� is unitary.

Furthermore, the number of even solutions equals the number of those �’s such
that the monodromy of L� is unitary.

Now, we always assume � D 1
2
C ib with b > 0. For any � 2 C, there exists

a 2 Yb such that � D �a by the covering map (2.5). Recall the monodromy theory of
the generalized Lamé equation

L�a W y00.z/ D
�
6}.zI �/C 2}

�
z C 1

2
I �
�
C �a

�
y.z/ (5.2)

stated in Section 2.3 and

y˙a.z C 2� � 1/ D e˙2�i.2rCs/y˙a.z/;

�.�a/ D e2�is C e�2�is:

Define

y�.�a/ WD e2�i.2rCs/ C e�2�i.2rCs/;
and

O�.Lb/ WD ¹� 2 C j � 2 � y�.�/ � 2º: (5.3)

The geometry of O�.Lb/ can be described as the following lemma.

Lemma 5.2. Let � D 1
2
C bi with b > 0. We have

O�.Lb/ D
1

�4b2 �.L 1
4b
/

and the endpoints of O�.Lb/ are exactly the endpoints of �.Lb/.

Proof. Note that
� � 1
2� � 1 D

1

2
C i 1

4b
for � D 1

2
C ib:

Since y˙a.z/ are solutions of (5.2), then Oy˙a.z/ WD y˙a..2� � 1/z/ satisfies

Oy00˙a.z/ D .2� � 1/2
�
6}..2� � 1/zI �/C 2}

�
.2� � 1/z C 1

2
I �
�
C �a

�
Oy˙a.z/

D
�
6}
�
zI � � 1
2� � 1

�
C 2}

�
z C 1

2
I � � 1
2� � 1

�
C .2� � 1/2�a

�
Oy˙a.z/

D
�
6}
�
zI 1
2
C i 1

4b

�
C 2}

�
z C 1

2
I 1
2
C i 1

4b

�
� 4b2�a

�
Oy˙a.z/;

and
Oy˙a.z C 1/ D y˙a ..2� � 1/z C .2� � 1// D e˙2�i.2rCs/ Oy˙a.z/:
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Therefore, the analysis in Section 2.3 tells us that

�.�4b2�aI 1
4b
/ D e2�i.2rCs/ C e�2�i.2rCs/ D y�.�aI b/: (5.4)

Consequently, we conclude from (5.3) that

O�.Lb/ D
°
� 2 C

ˇ̌̌
�2 � �

�
�4b2�I 1

4b

�
� 2

±
D
°
� 2 C

ˇ̌̌
�4b2� 2 �.L 1

4b
/
±
D 1

�4b2 �.L 1
4b
/: (5.5)

Note that
�
1 �1
2 �1

� 2 SL2.Z/, by the modular properties of e1.b/, e2.b/, we have
(cf. [14])

1

�4b2 e1
� 1
4b

�
D e1.b/; 1

�4b2 e2
� 1
4b

�
D e3.b/; 1

�4b2 e3
� 1
4b

�
D e2.b/:

Consider (5.5) and the expression (2.4) ofQb.�/, the finite endpoints of arcs of O�.Lb/
is also

Z.Qb/ WD ¹� 2 C jQb.�/ D 0º ;
which is the set of finite endpoints of �.Lb/.

By the proof of Lemma 5.2, we

Z.Qb/ � �.Lb/ \ O�.Lb/;

which is the set of finite endpoints of both �.Lb/ and O�.Lb/. Denote by

„b WD .�.Lb/ \ O�.Lb// nZ.Qb/:

The following theorem establishes the precise connection between even solutions of
the mean field equation and the spectrum.

Theorem 5.3 (D Theorem 1.5). Let � D 1
2
C bi with b > 0. The number of even

solutions of the mean field equation (5.1) equals #„b . Furthermore, the number of
even axisymmetric solutions equals #.„b \R/.

Proof. It was proved in [9, Theorem 2.7] that the monodromy of L�a is completely
reducible if and only if Qb.�a/ ¤ 0. Hence, the monodromy of L�a is unitary if and
only ifQb.�a/¤ 0 and the corresponding .r; s/ of this �a satisfies .r; s/ 2 R2 n 1

2
Z2,

and so if and only if �a 2 „b (note .r; s/ … 1
2
Z2 follows fromQb.�a/¤ 0). Together

with Theorem 5.1, we conclude that the number of even solutions of (5.1) equals #„b .
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In order to compute the number of even axisymmetric solutions, we need to apply
the precise connection between an even solution u.z/D u.x;y/ (here we use complex
variable z D x C iy) and the corresponding �a 2 „b proved in [4]:�

uzz � 1
2
u2z

�
.z/ D �2

�
6}.zI �/C 2}

�
z C 1

2
I �
�
C �a

�
;

and in Theorem 5.1 the developing map f .z/ D ya.z/=y�a.z/, where y˙a.z/ are
solutions of (5.2) stated in Section 2.3.

Clearly, Qu.z/ D Qu.x; y/ WD u.x;�y/ D u. Nz/ is also an even solution of (5.1) and
satisfies (note that u.z/ is real-valued as a solution of (5.1))�

Quzz � 1
2
Qu2z
�
.z/ D

�
uzz � 1

2
u2z

�
. Nz/

D �2
�
6}. NzI �/C 2}

�
Nz C 1

2
I �
�
C �a

�
D �2

h
6}.zI �/C 2}

�
z C 1

2
I �
�
C �a

i
;

i.e., �a 2 „b if �a 2 „b . From here and the fact stated in Theorem 5.1 that there is a
one-to-one correspondence between � 2 „b and even solutions of (5.1), we conclude
that �a D �a if and only if u.z/D Qu.z/, i.e., u.z/D u. Nz/ is axisymmetric. Therefore,
the number of even axisymmetric solutions equals #.„b \R/.

From this theorem and Lemma 1.4, we have the following corollary.

Corollary 5.4. Let � D 1
2
C bi with b > 0. Then

#.„b \R/ D

8̂̂<̂
:̂
2 if b 2 .0; k1/ [

�
k2;

1

4k2

�
[
� 1

4k1
;C1

�
;

1 if b 2 Œk1; k2� [
h 1

4k2
;
1

4k1

i
:

(5.6)

6. Proof of the main theorem

In this section, we prove the main Theorem 1.2.

Proof of Theorem 1.2. Let � D 1
2
C bi with b > 0. First of all, by Theorem 1.1, the

zeros of the spectral polynomial Qb.�/ are

4e1; �; N�; �; N�

with 4e1 2 R and �; � 62 R. Moreover,

d.�/ D d. N�/ D d.�/ D d. N�/ D 1
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and d.4e1/ � 3 if and only if b 2 ¹b1; b2º, otherwise, d.4e1/D 1. From Theorem 2.1
and Lemma 2.3, the spectrum can be expressed as

�.Lb/ D .�1; 4e1� [ �1 [ �2; (6.1)

where �1; �2 denote simple arcs and �1 [ �2 is symmetric with respect to R. Since
the complement C n �.Lb/ is path connected (cf. [18, Theorem 2.2]), there is at most
one intersection point for any two spectral arcs among .�1; 4e1�, �1 and �2. Further-
more, all intersection points are real by Theorem 1.3. In particular, � 2 �.Lb/ is an
intersection point if and only if � 2 ¹4e1; ��; �Cº \ �.Lb/ and 4e1 is an intersection
point if and only if b 2 ¹b1; b2º. Here, �� < �C are roots of

f .�/ D �2 C .5e1 C 4�1/� � 27e21 C 2e1�1 C
3

4
g2:

Note that

f .4e1/ D 9h.b/

8̂<̂
:
> 0 for b 2 .0; b1/ [ .b2;C1/;
D 0 for b 2 ¹b1; b2º;
< 0 for b 2 .b1; b2/;

we split the proof into the following steps.

Step 1: the spectrum for b > b2. Since f .4e1/ > 0 and

�5e1 C 4�1
2

< 0 < 4e1;

we obtain that �� < �C < 4e1. Therefore, both �� and �C are inner intersection
points and then the rough graph of spectrum �.Lb/ for b > b2 must be the one given
in Figure 3.

C
4e1

(S1)

Figure 3

Step 2: the spectrum at b D b2 2 .12 ;
p
3
2
/. Note that 4e1 > 0 is a root of f , then the

other root of f is

�� D �.5e1 C 4�1/ � 4e1 D �9e1 � 4�1 < 0 < 4e1; (6.2)

so �� is an inner intersection point of �.Lb2
/. Since d.4e1/ � 3, the rough graph of

�.Lb2
/ is the one given in Figure 4.
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4e1

(S2)

Figure 4

Step 3: the spectrum for b 2 .b1; b2/. Since f .4e1/ < 0, we have �� < 4e1 < �C,
then �� is the one and only one inner intersection point of �.Lb/ for any b 2 .b1; b2/.
Hence, there are two choices for the rough graph of �.Lb/, see Figure 5. In order
to transform from one to the other in the above two graphs, we have to pass 4e1,
but d.4e1/ D 1 for all b 2 .b1; b2/, which means the spectral arc �i cannot pass
through 4e1. So, the rough graph of �.Lb/ is either (S3a) for all b 2 .b1; b2/ or (S3b)
for all b 2 .b1; b2/. Since the rough graph (S2) of �.Lb2

/ cannot be continuously
deformed to (S3b), the rough graph of �.Lb/ must be (S3a) for all b 2 .b1; b2/.

4e1

(S3a)

4e1

(S3b)

Figure 5

Before we move on to next steps. Let b 2 .0; 1
4b2
/. By Lemma 5.2,

Q�.Lb/ D
1

�4b2 �.L 1
4b
/; (6.3)

and Q�.Lb/ has the same endpoints as �.Lb/. Moreover, 1
4b
2 .b2;C1/, by reflecting

the rough graph (S1) with respect to y-axis and with some stretch, we obtain the rough
graph of Q�.Lb/ for b 2 .0; 1

4b2
/ given in Figure 6.

Step 4: the spectrum for b D b1 2 .b�; 1

2
p
3
/. Note that 4e1 < 0 is a root of f , then

the other root of f is

�C D �.5e1 C 4�1/ � 4e1 D �5e1 � 4.e1 C �1/ > 0 > 4e1: (6.4)

So, there is no inner intersection points on �.Lb1
/. Note that d.4e1/ � 3, there are

two possible rough graphs of �.Lb1
/, see Figure 7. It is clear that there is no real
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24e1 1 C1

(T1)

Figure 6

intersection point for (T1) and (S4b), then #.„b1
\ R/ D 0 which contradicts with

Corollary 5.4. So, the rough graph of �.Lb1
/must be (S4a) and then #.„b1

\R/D 1.

4e1

(S4a)

4e1

(S4b)

Figure 7

Step 5: the spectrum for b 2 .0; b1/. Since f .4e1/ > 0 and

�5e1 C 4�1
2

D �1
2
e1 � 2.e1 C �1/ > 0 > 4e1;

we have �C > �� > 4e1. Then .�1; 4e1� \ �i D ; with i D 1; 2 and �1 \ �2 has
at most one point, so there are three possible rough graphs of �.Lb/, see Figure 8.
Note that the rough graph of �.Lb1

/ is (S4a) and (S5a) is the only graph among these
three possible graphs which can be continuously deformed from (S4a), then the rough
graph of �.Lb/ with b1 � b > 0 very small must be (S5a).

4e1

(S5a)

4e1

(S5b)

4e1

(S5c)

Figure 8
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Next, by direct computation, we have #.„b1
\ R/ D 1 and #.„b \ R/ D 2 for

b1� b > 0 very small. By Corollary 5.4, we obtain that b1D k1 and then #.„b \R/D
2 for all b 2 .0; b1/. Hence, except for the real endpoint 4e1, there are exactly 2 real
intersection points of (T1) with �.Lb/ for all b 2 .0;b1/. So, the rough graph of �.Lb/
is (S5a) for all b 2 .0; b1/. The proof is complete.

Remark 6.1. In fact, we also have b2 D 1
4k2

. Indeed, let b 2 . 1
4b2
; 1
4b1
/, then 1

4b
2

.b1; b2/. Similar to b 2 .0; 1
4b2
/ case, we obtain the rough graph of Q�.Lb/ for b 2

. 1
4b2
; 1
4b1
/ by reflecting and stretching the graph (S3a) of �.L 1

4b
/ as in Figure 9.

Consider the rough graph of �.Lb/ for b 2 . 1
4b2
; 1
4b1
/, we get #.„b \ R/ D 2 for

b 2 . 1
4b2
; b2/ and #.„b2

\R/D 1 by direct computations. Hence, b2D 1
4k2

by Corol-
lary 5.4.

4e1 C1

(T2)

Figure 9
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