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Failure of Lp symmetry of zonal spherical harmonics

Gabriel Beiner and William Verreault

Abstract. We show that the 2-sphere does not exhibit symmetry ofLp norms of eigenfunctions
of the Laplacian for p � 6, which answers a question of Jakobson and Nadirashvili. In other
words, there exists a sequence of spherical eigenfunctions  n, with eigenvalues �n !1 as
n!1, such that the ratio of the Lp norms of the positive and negative parts of the eigenfunc-
tions does not tend to 1 as n!1 when p � 6. Our proof relies on fundamental properties of
the Legendre polynomials and Bessel functions of the first kind.

1. Introduction

The statistical properties of eigenfunctions of the Laplace–Beltrami operator on gen-
eral Riemannian manifolds has been a fruitful area of research. One area of interest,
based on conjectures of quantum chaos [2,6], is the study of symmetries of the posit-
ive and negative parts of these eigenfunctions. Jakobson and Nadirashvili [5] have in
particular investigated the ratio of their Lp norms, proving the following result.

Theorem 1 (Jakobson and Nadirashvilli [5]). Let M be a smooth compact manifold
and p � 1. Then there exists C > 0, depending only on p and the manifold M such
that, for any nonconstant eigenfunction  of the Laplacian,

1=C � k Ckp=k �kp � C:

Here,  C and  � stand for the positive and negative parts of  , respectively.
Analogous quasi-symmetry results for the volume of the support of these positive
and negative parts were first obtained by Donnelly and Fefferman [4] while they were
investigating symmetry distribution problems in relation with Yau’s conjecture. At the
end of their paper, Jakobson and Nadirashvili ask whether this ratio always tends to
one as the corresponding eigenvalue goes to infinity on a given manifold for p > 1
(also see [9]). They comment that the even zonal spherical harmonics on the 2-sphere
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provide a case where this fails for the L1 norm. In this paper, we extend that result
on the 2-sphere to all p � 6.

Theorem 2. For p � 6, there exists a sequence of eigenfunctions  n on the 2-sphere,
with eigenvalues �n !1 as n!1, such that

lim
n!1

k n;Ckp

k n;�kp
> 1:

The authors along with Eagles and Wang [1] have already shown a case where
symmetry fails on the standard flat d -torus for d � 3. Their argument relies on an
example of Martínez and Torres de Lizaur [7] used to disprove the symmetry con-
jecture on the distribution of the eigenfunctions, that is, to show that the ratio of the
volume of the support of  C to  � in the high-energy limit does not tend to 1. The
proof on the torus involves computational methods and uses the symmetry of the torus
to generate a sequence from rescaling a single eigenfunction. In contrast, our proof
relies purely on classical results about orthogonal polynomials and features a bona
fide sequence of distinct eigenfunctions.

The argument in this paper also complements the previous work on this question
in a number of ways. Martínez and Torres de Lizaur [7] have shown that in the case
of the flat 2-torus, Lp symmetry holds for every eigenfunction, and so our argument
provides the first case of the failure of symmetry for a 2-dimensional manifold and for
a non-flat manifold. Martínez and Torres de Lizaur [8] have also shown that for the
even spherical harmonics we use in our proof, the distribution ratio of the volume of
supports of  C to  � tends to one as the corresponding eigenvalue tends to infinity.
As such, our result is the first example of a sequence of eigenfunctions which have
asymptotic distribution symmetry but notLp norm symmetry in the high energy limit.
Lastly, since our result is primarily one about the Legendre polynomials, it may also
be of interest to those studying the asymptotic behaviour of orthogonal polynomials
independent of any of the geometric motivations underlying our study.

2. Preliminaries and notation

For n 2 N, we denote the n-th Legendre polynomial by Pn. We restrict our attention
to Pn in the domain Œ0; 1�. Legendre polynomials can be defined in several equivalent
ways (see [12, pp. 591–605]). We will use their differential equation definition: for
x 2 .�1; 1/,

P 00n .x/ D
1

1 � x2
.2xP 0n.x/ � n.nC 1/Pn.x//; (2.1)
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with the initial condition Pn.1/ D 1. From this definition, we can recover P 0n.1/ D
n.nC 1/=2. We will also use the fact that the Pn satisfy Bonnet’s recursion formula

.nC 1/PnC1.x/ D .2nC 1/xPn.x/ � nPn�1.x/; (2.2)

and that Bernstein’s inequality ([11, p. 165]) gives a bound on Pn.x/ for n 2 N and
x 2 .�1; 1/:

jPn.x/j �

r
2

�n
.1 � x2/�1=4: (2.3)

We label the positive zeroes of Pn as zi;n for i 2 ¹1; 2; : : : ; bn=2cº, where 0 <
zbn=2c;n < zbn=2c�1;n < � � � < z1;n < 1. Sometimes, we abbreviate z1;n as zn. An
important result of Bruns [10] gives estimates for zi;n:

cos
� i � 1

2

nC 1
2

�
�
� zi;n � cos

� i

nC 1
2

�
�
: (2.4)

We label the local extremal points of Pn as xi;n and their corresponding abso-
lute values jPn.xi;n/j D yi;n for i 2 ¹1; : : : ; b.n � 1/=2cº, where 0 < xb.n�1/=2c;n <
xb.n�1/n=2c�1;n < � � � < x1;n < 1.

We will also need to make use of the Bessel functions of the first kind, which we
denote by Jn. We let ji denote the i -th zero of J1 greater than zero. Equivalently,
since J 00 D J1, ji are the critical points of J0 and J0.ji / are the local extrema.

Watson’s classic tome on Bessel functions [13] provides a full analysis of the
zeroes of these functions. It can be inferred from this analysis that�

i C
1

2

�
� > ji > i�: (2.5)

Indeed, Watson [13, pp. 478–479] shows that all the zeroes of J0.x/ lie in intervals
of the form .2n�1

2
�; n�/ and each such interval contains at least one zero. Similarly,

all the zeroes of J1.x/ lie in intervals of the form .n�; 2nC1
2
�/ and each such interval

has at least one zero. Watson also proves that the zeroes of J0 and J1 are interlacing
[13, pp. 479–480], and since the intervals above do not overlap, there must be exactly
one zero of J0; J1 in each interval of the above forms, respectively, from which (2.5)
follows.

These Bessel functions will appear in our argument via the following connection
to the Legendre polynomials as shown by Cooper [3]:

lim
n!1

yi;n D J0.ji /: (2.6)

Finally, Szegő ([11] p. 167) showed that for � 2 Œ�1
2
; 1
2
�,

jJ�.x/j �

r
2

�x
: (2.7)
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We end this subsection by proving a simple lemma about Legendre polynomials,
which will be needed in the next section. We remind the reader that we abbreviate
z1;n as zn.

Lemma 3. For n � 1 and x 2 Œzn; 1�,

Pn.x/ � x:

Proof. We proceed by strong induction, noting that the result clearly holds for
P1.x/ D x and P2.x/ D 1

2
.3x2 � 1/. Under the assumption x 2 Œzn; 1�, we have

0 � x � 1 and Pn.x/ � 0, so from Bonnet’s formula (2.2), we obtain

.nC 1/PnC1.x/ � .nC 1/Pn.x/ D Œ.2nC 1/x � .nC 1/�Pn.x/ � nPn�1.x/

� nPn.x/ � nPn�1.x/;

hence

Pn�1.x/ � Pn.x/ �
.nC 1/

n
.Pn.x/ � PnC1.x//:

Then as long as Pn�1 � Pn on Œzn; 1�, we have Pn � PnC1 on ŒznC1; 1� � Œzn; 1�.
Since P1 � P2 on Œ0; 1�, it follows by strong induction that x D P1 � P2 � � � � � Pn
on Œzn; 1� for all n � 1.

3. Failure of asymptotic symmetry of Lp norms on the sphere

We start by outlining the idea behind the proof of Theorem 2. We are looking for
a lower bound on k n;Ckp and an upper bound on k n;�kp , where  n is the n-th
even zonal spherical harmonic (often denoted by Y 02n.�; '/). Up to normalization,
 n D P2n.cos �/ where � is the latitude on S2, and so by a change of variables, it
is enough to bound the ratio of the Lp norms of the even Legendre polynomials on
Œ0; 1�. In particular, we use the subsequence of the 4n-th polynomials (this is solely
for some simplifications of the algebra in the proof of Lemma 5). In what follows, the
absolute value of the positive and negative parts of Pn are labelled as Pn;C and Pn;�,
respectively. We will underapproximate theLp norm of P4n;C as the area of a triangle
bounding from below the connected component of the support of P4n;C containing 1
(since this component dominates the norm for large p in the semi-classical limit). We
will also overapproximate the Lp norm of P4n;� via an upper Darboux sum, using
the zeroes of P4n as a partition. An illustration of this approximation is shown in
Figure 1. Precisely, we will prove the following lemmas.
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Figure 1. Plots of the Legendre polynomials P4 and P8 indicating the corresponding approx-
imations on the positive and negative parts of the two functions. The negative L1 norm squared
is overapproximated as a sum of areas of rectangles shown in red and the positive L1 norm
squared is underapproximated by the area of a triangle shown in blue. Higher Lp norms are
bounded by taking the p-th power of the constant and linear functions corresponding to the
approximation.

Lemma 4. For n 2 N and p 2 .0;1/,

1Z
zn

P pn �
2

.p C 1/n.nC 1/
:

Lemma 5. For n 2 N and p 2 .0;1/,

1Z
0

P
p
4n;� �

3�2

.4nC 1
2
/2

nX
iD1

iy
p
2i�1;4n; (3.1)

where as above yi;n denotes the i -th largest absolute value of an extremal value of Pn.

In particular, Lemma 4 implies that

1Z
0

P
p
4n;C �

1Z
z4n

P
p
4n;C D

1Z
z4n

P
p
4n �

1

2.p C 1/n.4nC 1/
: (3.2)

Combining these two lemmas, we will prove the following proposition, which will
lead us directly to Theorem 2 in Section 3.4.
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Proposition 6. For p 2 .4;1/, there exists a sequence of increasing natural numbers
n such that the sequence of quotients

R 1
0
P
p
4n;C=

R 1
0
P
p
4n;� is convergent and satisfies

lim
n!1

R 1
0
P
p
4n;CR 1

0
P
p
4n;�

�
1

p C 1

2

3�2

� 1X
iD1

i jJ0.j2i�1/j
p
��1

;

where as above J0.jk/ is the value of the k-th local extrema after x D 0 of the 0-th
Bessel function of the first kind.

3.1. Proof of Lemma 4

Consider the following piecewise linear function defined on Œzn; 1�:

g.x/ D

´
0 if x 2 Œzn; 1 � 2

n.nC1/
�;

n.nC1/
2

x � n.nC1/
2
C 1 if x 2 Œ1 � 2

n.nC1/
; 1�:

To prove the lemma, it will be enough to show that Pn.x/ � g.x/ on Œzn; 1� since

1Z
zn

g.x/p dx D

1Z
1� 2

n.nC1/

�n.nC 1/
2

x �
n.nC 1/

2
C 1

�p
dx

D
2

n.nC 1/

1Z
0

xp dx D
2

.p C 1/n.nC 1/
:

We start by verifying that g is well defined, i.e., that zn � 1 � 2
n.nC1/

. For the
sake of contradiction, we assume that zn > 1 � 2

n.nC1/
and split into two cases. First,

suppose P 0n.zn/ � n.nC 1/=2. By the mean value theorem, there must be some point
q 2 .zn; 1/ at which P 0n.q/ > n.nC 1/=2. Note since P 0n.1/ and P 0n.zn/ are less than
or equal to n.nC 1/=2, by the extreme value theorem applied to P 0n, there must be
some local maximum r 2 .zn; 1/ of P 0n at which P 00n .r/D 0 and P 0n.r/ > n.nC 1/=2.
The differential equation definition of the Legendre polynomials (2.1) then yields

0 D
1

1 � r2
.2rP 0n.r/ � n.nC 1/Pn.r// >

n.nC 1/

1 � r2
.r � Pn.r//;

which is a contradiction with Lemma 3. On the other hand, if P 0n.zn/ > n.nC 1/=2,
then (2.1) gives

P 00n .zn/ D
2znP

0
n.zn/

1 � z2n
> 0;

so P 0n is increasing in a neighbourhood of zn. Since P 0n.1/ < P
0
n.zn/, there must be

some point r 2 .zn; 1/ at which P 00n .r/ D 0 and P 0n.r/ > n.n C 1/=2, which is a
contradiction as in the first case. Hence, g is well defined.
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Note that Pn.x/ � g.x/ holds trivially on Œzn; 1 � 2
n.nC1/

� by what we have just
proved, so assume there is some point q 2 .1� 2

n.nC1/
; 1/ at which Pn.q/ < g.q/. By

the mean value theorem, there must then be some r 2 .q; 1/with P 0n.r/ > n.nC 1/=2,
and so, by the extreme value theorem for P 0n, there is some point s 2 .q; 1/ with
P 0n.s/ > n.n C 1/=2 and P 00n .s/ D 0. By the same logic as above using (2.1), we
arrive at a contradiction, hence there is no q 2 Œzn; 1� such that Pn.q/ < g.q/.

3.2. Proof of Lemma 5

We can upper bound the integral ofP p4n;� using an upper Darboux sum with a partition
P4n given by the zeroes ofP4n, that is, P4nD .0;z2n;4n; z2n�1;4n; : : : ; z1;4n;1/. Since
there is one local extremum between each zero and the extrema oscillate in sign, we
have

1Z
0

P
p
4n;� �

nX
iD1

.z2i�1;4n � z2i;4n/y
p
2i�1;4n:

Using Bruns’ estimates (2.4) as well as the identity

cos.x/ � cos.y/ D 2 sin
�x C y

2

�
sin
�y � x

2

�
;

we obtain
1Z
0

P
p
4n;� �

nX
iD1

h
cos
� 2i � 3

2

4nC 1
2

�
�
� cos

� 2i

4nC 1
2

�
�i
y
p
2i�1;4n

D 2

nX
iD1

sin
� 2i � 3

4

4nC 1
2

�
�

sin
� 3

4.4nC 1
2
/
�
�
y
p
2i�1;4n: (3.3)

The sine arguments in the above expression lie within Œ0; �=2� and so the approxima-
tion x � sin x holds, hence (3.3) is at most

3�2

2.4nC 1
2
/2

nX
iD1

�
2i �

3

4

�
y
p
2i�1;4n �

3�2

.4nC 1
2
/2

nX
iD1

iy
p
2i�1;4n:

3.3. Proof of Proposition 6

Combining (3.2) with (3.1), we getR 1
0
P
p
4n;CR 1

0
P
p
4n;�

�
1

p C 1

1

6�2

.4nC 1
2
/2

n.4nC 1/

� nX
iD1

iy
p
2i�1;4n

��1
D

1

p C 1

� nX
iD1

iy
p
2i�1;4n

��1� 2

3�2
CO.n�1/

�
: (3.4)
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By Theorem 1, for any p 2 .1;1/,
R 1
0
P
p
4n;C=

R 1
0
P
p
4n;� belongs to a compact

interval Œ1=C; C � independent of n and so it must have a convergent subsequence.
Also recall from (2.6) that Cooper showed limn!1 yi;n D J0.ji /, so Proposition 6
follows upon taking limits as n goes to infinity on both sides of (3.4) as long as
we can push the limit inside the summation sign, where we consider, for each i ,
y2i�1;4n as an infinite sequence in n which is zero for n < i . Note that, because
of a result of Szegő [11] which says that yi;n is decreasing in n for a given i , the sumP1
iD1 iy

p
2i�1;4i , which consists of the first nonzero term of every sequence y2i�1;4n

considered above, termwise dominates
Pn
iD1 iy

p
2i�1;4n for each n. By the dominated

convergence theorem applied to the counting measure on N, it suffices to verify that
the dominating sum converges for p > 4.

Recall that we defined yi;n D jPn.xi;n/j, and so

y2i�1;4i D jP4i .x2i�1;4i /j �
1
p
2�i

.1 � x22i�1;4i /
�1=4

by (2.3). Since the zeroes of the Legendre polynomials interlace with the critical
points, and the greatest zero z1;n is always greater than the greatest critical point x1;n,
we know that x2i�1;4i < z2i�1;4i , so we obtain, coupling it with Bruns’ inequal-
ity (2.4),

y2i�1;4i �
1
p
2�i

.1 � z22i�1;4i /
�1=4
�

1
p
2�i

�
1 � cos2

� 2i � 1
4i C 1

2

�
���1=4

D

�
2�i sin

� 2i � 1
4i C 1

2

�
���1=2

: (3.5)

Using the fact that sinx � 2x=� for x 2 Œ0;�=2� and 0 < .2i � 1/=.4i C 1=2/ < 1=2
for i � 1, (3.5) is at most �

2�i
4i � 2

4i C 1
2

��1=2
:

Since .4i � 2/=.4i C 1=2/ is increasing and is equal to 4=9 for i D 1, we have

1X
iD1

iy
p
2i�1;4i �

1X
iD1

i
�8�i
9

��p=2
D

� 3

2
p
2�

�p 1X
iD1

i1�p=2;

which converges for p > 4.

3.4. Proof of Theorem 2

First, let us consider p D1. The argument was outlined in [5] but we include it here
for completeness. For the 2n-th zonal spherical harmonic, we know from our analysis
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of the extremal points and from (2.6) that

lim
n!1

kPC2nk1

kP�2nk1
D lim
n!1

1

y1;n
D

1

J0.j1/
:

Cooper also states in [3] that to four significant figures, J0.j1/ D 0:4027, whence

lim
n!1

kPC2nk1

kP�2nk1
�

1

0:403
� 2:48;

which completes the proof for p D1.
We are now ready to finish the proof of Theorem 2 for 6 � p <1, starting with

the remarks made at the beginning of Section 3 which imply that it will be enough to
prove that

lim
n!1

R 1
0
P
p
4n;CR 1

0
P
p
4n;�

> 1:

First, observe that

1

p C 1

2

3�2

� 1X
iD1

i jJ0.j2i�1/j
p
��1

is increasing in p. To see this, it is enough to show that term by term, the product
.p C 1/jJ0.j2i�1/j

p is decreasing. From calculus, for a given 0 < c < 1, one can
verify that .x C 1/cx is decreasing for x > 1= log.1=c/ � 1. Since jJ0.j1/j < 0:5,
and jJ0.ji /j is a decreasing sequence in i , it is enough that p > 1= log.2/ � 1 for the
quantity .pC 1/jJ0.j2i�1/jp to be decreasing in p for all i , which holds from p D 6

onwards.
Second, combining this last observation with Proposition 6, we will be done if we

show that
1X
iD1

i jJ0.j2i�1/j
6 <

2

21�2
:

From (2.5), we have j2i�1 � .2i � 1/� . Coupling this with the fact that Szegő’s
bound (2.7) is decreasing in x, we have

J0.j2i�1/ �

s
2

�j2i�1
�

s
2

�2.2i � 1/
;

and so
1X
iD1

i jJ0.j2i�1/j
6
�

8

�6

1X
iD1

i

.2i � 1/3
:
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Using partial fraction decomposition and rewriting using the Hurwitz zeta func-
tion, we get

8

�6

1X
iD1

i

.2i � 1/3
D

1

�6

�
�
�
2;�

1

2

�
� 4C

1

2

�
�
�
3;�

1

2

�
� 8

��
: (3.6)

Using the identities �.s; 1
2
/ D �.s;�1

2
/ � 2s for s > 1 and �.s; 1

2
/ D .2s � 1/�.s/,

where �.s/ is the usual Riemann zeta function, we obtain that (3.6) is equal to

1

�6

�
�
�
2;
1

2

�
C
1

2
�
�
3;
1

2

��
D

1

�6

�
3�.2/C

7

2
�.3/

�
: (3.7)

Since �.2/ D �2=6 and �.3/ is Apéry’s constant which is < 1:2021, (3.7) is

<
1

2�6
.�2 C 7 � 1:2021/ < 0:00951:

On the other hand,

2

21�2
> 0:00964 > 0:00951 >

1X
iD1

i jJ0.j2i�1/j
6;

which concludes the proof.
We note that the result of Theorem 2 has a clear corollary on RP 2,

Corollary 7. There is a sequence of eigenfunctions Q n of the Laplacian on the real
projective plane with its usual metric whose eigenvalues �n ! 1 as n ! 1 and
such that, for all p � 6,

lim
n!1

k Q n;Ckp

k Q n;�kp
> 1:

Proof of Corollary 7

Consider the sequence of eigenfunctions  n from Theorem 2. We know they are even
and so they descend to functions Q n on RP 2 under the quotient of S2 by the equi-
valence relation x � �x. Since this quotient is a local isometry, the functions Q n are
eigenfunctions with the same eigenvalues. By lifting back up to the orientable double
cover, we see that these eigenfunctions have the same ratio of positive to negative Lp

norms as for the sphere. Then by Theorem 2 the result follows.

4. Conclusion

The estimates made throughout our lemmas are fairly crude and the statement of our
result for p � 6 was chosen for the niceness of the number; with effort, this value
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of 6 may be brought down. However, the restriction of p > 4 from Proposition 6
seems to be a strict bound for approximations similar to the ones from our proof.
Generalizations of the arguments may also be possible to higher-dimensional spheres
by studying the Gegenbauer polynomials.

This paper, along with the one by the authors and Eagles and Wang [1], estab-
lish a failure of generalised symmetry in model spaces of both zero and constant
positive curvature. In the opinion of the authors, it is an interesting (and likely more
challenging) question to investigate the conjecture on manifolds of constant negative
curvature, where it is believed to hold due to the conjectures of quantum chaos alluded
to in the Introduction
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