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Regularity of the scattering matrix
for nonlinear Helmholtz eigenfunctions

Jesse Gell-Redman, Andrew Hassell, and Jacob Shapiro

Abstract. We study the nonlinear Helmholtz equation .� � �2/u D ˙jujp�1u on Rn,
� > 0, p 2 N odd, and more generally .�g C V � �2/u D NŒu�, where �g is the (pos-
itive) Laplace–Beltrami operator on an asymptotically Euclidean or conic manifold, V is a
short range potential, and NŒu� is a more general polynomial nonlinearity. Under the condi-
tions .p � 1/.n � 1/=2 > 2 and k > .n � 1/=2, for every f 2 Hk.Sn�1! / of sufficiently small
norm, we show there is a nonlinear Helmholtz eigenfunction taking the form

u.r; !/ D r�.n�1/=2.e�i�rf .!/C eCi�rb.!/CO.r�"//; as r !1;

for some b 2 Hk.Sn�1! / and " > 0. That is, the nonlinear scattering matrix f 7! b pre-
serves Sobolev regularity, which is an improvement over the authors’ previous work (2020)
with Zhang, that proved a similar result with a loss of four derivatives.

1. Introduction and statement of results

We consider a HamiltonianH D�g CV defined on Rn, where g is an asymptotically
Euclidean Riemannian metric in the sense defined below (an example is any smooth,
compactly supported perturbation of the flat metric), and V 2C1.Rn/ is a real valued
potential function which is short range and satisfies symbolic estimates in the sense
that

jD˛
z V.z/j � C hzi

�
�j˛j

for some 
 > 1. We study the scattering problem for the nonlinear Helmholtz equation

.H � �2/u D NŒu�; (1.1)

for certain polynomial nonlinearities N . The admissible nonlinearities are defined
below, but for now we note that examples include

NŒu� D .c1juj
p�1
C c2jruj

p�1/u;
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where p � 3 is an odd integer. For prescribed, sufficiently small data f 2H k.Sn�1/,
we seek u solving equation (1.1), such that

u.r; y/ � r�.n�1/=2.e�i�rf .y/C eCi�rb.y//; b 2 H k0.Sn�1/: (1.2)

Here f is the “incoming” data and b is the “outgoing” data. We refer to the association
f 7! b as the “nonlinear scattering matrix.” In the linear setting, whereNŒu�� 0, the
map f 7! b is called the linear scattering matrix and denoted Slin.�/. In this setting,
it is a pseudodifferential operator of order zero on Sn�1 composed with the antipodal
map.

The results from [1] include the following.

Theorem. Assume that .p � 1/.n � 1/=2 > 2 and suppose that k � 4 > .n � 1/=2,
k 2 N. Then there is c > 0 sufficiently small, such that for all f 2 H k.Sn�1/ with
kf kHk < c, there is a solution u to (1.1) satisfying (1.2) with k0 D k � 4.

The purpose of this article is to prove, as is expected from the inherent symmetry
in the determination of b from f and vice-versa, that the value of k0 can be taken
equal to k, i.e., that the nonlinear scattering matrix preserves Sobolev regularity.

Theorem 1. Assume that p is an odd integer and k is an integer satisfying

.p � 1/
n � 1

2
> 2 and k > max

�
1;
n � 1

2

�
: (1.3)

There is a c > 0 such that for all f 2H k.Sn�1/ with kf kHk < c, there is a solution
u to (1.1) satisfying (1.2) with b 2 H k.Sn�1/.

Moreover, u is unique in the sense of the main theorem of [1], described in detail
in Section 4, and the error term in the asymptotic expansion (1.2),

Er WD u � r
�.n�1/=2.e�i�rf C eCi�rb/

satisfies
kErkHk�2.Sn�1/ D O.r

�.n�1/=2�"/ for some " > 0: (1.4)

Assume further that the stricter inequality .p � 1/.n � 1/=2 > 3 holds. Then
we have a decomposition b D Slin.�/f C b1 where Slin.�/ is as defined above and
b1 2H

kC1. Moreover, still for this stricter condition, for j 2N, if f 2H kCj .Sn�1/

(in addition to the smallness condition in H k) then b1 2 H kCjC1.Sn�1/, in particu-
lar, f 2 C1.Sn�1/ H) b 2 C1.Sn�1/.

To elaborate on the uniqueness statement, we show that, for an appropriate
microlocalizing pseudodifferential operator A� (see (2.6)) to the incoming radial set,
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with u� D A�u0 and u0 D P.�/f the linear generalized eigenfunction with incom-
ing data f , then u � u� is uniquely determined in a small ball around the origin in
the Hilbert space H s;�1=2�ıI1;k�1

C defined in Section 2.2.
Note the convergence in (1.4) is in H k�2.Sn�1/. This reflects the well-known

phenomenon from the linear setting whereby an asymptotic expansion for an incom-
ing (or outgoing) approximate eigenfunction is produced by computing successive
terms in a formal expansion in negative powers of r . This process in general pro-
duces a “distributional” expansion, in which coefficients of higher order terms have
decreasing regularity. For example, in flat Euclidean space, an incoming approximate
eigenfunction .�0 � �2/u� 2 �.Rn/ with incoming data f 2 C1.Sn�1/ admits an
asymptotic expansion

u� � r
�.n�1/=2ei�r

1X
jD0

r�j vj .y/;

v0 D f; vjC1 D
1

2i.j C 1/�

�
�Sn�1 C

.n � 1/.n � 3/

4
� j.j C 1/

�
vj :

From this, one sees immediately that with f 2H k one can obtain a partial expansion
of an approximate eigenfunction in which each subsequent term has a coefficient two
orders rougher than the previous one. It therefore seems very natural that the conver-
gence in our theorem takes place in H k�2.Sn�1/. See also Remark 3.8.

Our methods extend to prove a generalization of this result in the setting of asymp-
totically conic manifolds. These are Riemannian manifolds .M ı; g/ where M ı is the
interior of a compact manifold M with boundary @M and g is a so-called scattering
metric, meaning it takes the form

g D
dx2

x4
C
h.x; y; dy/

x2
;

in a neighborhood of @M where x is a boundary defining function, i.e., @M D ¹xD 0º
and x � 0 has that dx is nonvanishing over @M , and y are coordinates on @M . Here
h is a smooth .0; 2/-tensor that restricts to a metric on @M . Flat Euclidean space is
an example of an asymptotically conic space; write M ı D Rn and include Rn ,!

Rn D ¹w 2 RnW jwj � 1º DWM where the inclusion can be realized by the map z 7!
z=.1C hzi/ and note that the metric form is realized by writing the flat metric in polar
coordinates and setting x D 1=r .

In the Euclidean case, @M is the sphere Sn�1 at infinity with its standard metric,
and h is independent of x. In general, if .@M; h.0// is the sphere with its standard
metric, then we call .M ı; g/ an asymptotically Euclidean metric.

On a general asymptotically conic manifold, writing r D 1=x one obtains an ana-
logue of the radial variable in this more general context, and the metric then takes the
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form near infinity

g D dr2 C r2h
�1
r
; y; dy

�
:

The admissible nonlinearities are those NŒu� ..D N.u; Nu;ru;r Nu;r.2/u;r.2/ Nu/

which are a sum of monomial terms, of degree not less than p, in u and Nu and their
derivatives up to order two, with coefficients smooth on M . Moreover, we require p
to satisfy the first condition in (1.3).

Theorem 2 (Main theorem, asymptotically conic case). Let .M ı; g/ be an asymptot-
ically conic manifold of dimension n, and let V be a conormal short range potential,
that is, a smooth potential on M ı satisfying estimates near infinity of the form

j.rDr/
jD˛

yV.r; y/j � C hri
�
 for all j � 0; ˛ 2 Nn�1 (1.5)

for some 
 > 1. Let H D �g C V where �g is the Laplace–Beltrami operator on
.M ı; g/. Let NŒu� be an admissible nonlinearity, and let p and k be integers satisfy-
ing (1.3). There exists c > 0 sufficiently small, such that for every f 2 H k.@M/ with
kf kHk.@M/ < c, there is a solution u to

.H � �2/u D NŒu�

on M ı satisfying

u.r; y/ D r�.n�1/=2.e�i�rf .y/C eCi�rb.y/COHk�2.r
�"// (1.6)

for some b 2 H k.@M/ and some " > 0.
Assume further that the stricter inequality .p � 1/.n � 1/=2 > 3 holds and that

the nonlinearity NŒu� involves derivatives up to order one (instead of two as allowed
above). Then we again have the decomposition b D Slin.�/f C b1 with Slin.�/f

again the linear scattering matrix (now an FIO associated to geodesic flow for time
� [8]) and b1 2 H kC1.@M/. Again, if f 2 H kCj .@M/ (in addition to the smallness
condition in H k), then b1 2 H kCjC1.@M/.

For ease of exposition, we return to the Euclidean case in the remainder of this
introduction. Given f 2 L2.Sn�1/, the linear solution u0 to .H � �2/u0 D 0 with
incoming data f is the image of f under the incoming Poisson operator, P.�/. This
u0 can be written (non-uniquely) as a sum of incoming and outgoing terms u0 D
u�C uC, where, roughly speaking, u˙ � r�.n�1/=2e˙ir�f˙ as r goes to infinity. For
adequate decompositions u˙, solutions u to (1.1) satisfying (1.2) can be constructed
by a contraction mapping argument in which one writes

u D u� C w D u0 C .w � uC/
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where w will be outgoing (in a sense to be made precise below) and a fixed point of
the mapping

ˆ.w/ D uC CR.�C i0/N Œu� C w�;

where R.� C i0/ is the outgoing resolvent, that is, .H � .� C i0/2/�1. The true
nonlinear solution therefore satisfies

u D u0 CR.�C i0/N Œu�:

At issue in this paper is the regularity of the outgoing data of w, and how this can be
understood in terms of the mapping properties of the Poisson operator, the decompo-
sition u˙, and the resolvent.

The construction of the nonlinear eigenfunction u requires a decomposition u0 D
u� C uC for the free solution, and we improve on the results in [1] by using the
Schwartz kernel of the Poisson operator P.�/ (see Section 3) to obtain a decompo-
sition with optimal regularity. Indeed, the Poisson operator is given by the action of
a well-understood oscillatory integral kernel, due to [8] in the asymptotically conic
case, with many antecedents in the Euclidean case, e.g., [5, 6]. Using this we prove a
relationship between the regularity of the incoming data f 2H k.Sn�1/ for k � 0 and
the corresponding linear generalized eigenfunction u0. This is best understood using
the theory of scattering pseudodifferential operators [9]. It is well known that u0 lies
in weighted Sobolev spacesH s;�1=2�".Rn/, where s 2R and " > 0 are arbitrary. This
means that

hzi�1=2�"u0 2 H
s.Rn/;

where H s.Rn/ are the standard L2-based Sobolev spaces on Rn. (In particular, u0
is a smooth function in the interior, a consequence of elliptic regularity.) What we
prove below is that u0 can be decomposed into u0 D u� C uC where each u˙ has k
additional order of “module regularity,” specifically each remains in H s;�1=2�" after
application of k�fold combinations of angular derivatives and the radial annihilators
r.Dr � �/ of the oscillatory factors e˙i�r . As we describe below, these operators
are determined directly by the microlocal structure of the problem; they comprise
the modules M˙ of scattering pseudodifferential operators in ‰1;1sc which are char-
acteristic on the incoming/outgoing (�/C) radial sets R˙ of the operators H � �2,
thought of as a non-elliptic scattering operator with non-degenerate characteristic set
over spatial infinity.

The paper is organized as follows. In Section 2 we recall the basic definitions and
structures that will be used in the paper, including scattering pseudodifferential oper-
ators and the weighted Sobolev spaces between which they act. We also recall there
the definitions of the module regularity spaces used in [1] and the crucial mapping
properties of the resolvent between such spaces. In Section 3 we discuss the map-
ping properties of the Poisson operator. These properties are very closely related to
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mapping properties of the incoming and outgoing resolvents, due to formula (3.4).
The key result is Proposition 3.4 which shows that the resolvent applied to certain
functions admit asymptotic expansions corresponding to one of the terms in (1.6).
The PDE-type argument, however, does not give the optimal regularity for the lead-
ing coefficient. The optimal regularity is obtained in Propositions 3.6 and 3.9, which
relates the map taking a function F to the leading expansion of R.�˙ i0/F to the
adjoint of the Poisson operator, P.��/�, applied to F . In Section 4 we put these
results together to prove the main theorem.

Our analysis of the Poisson operator is based on the description of its Schwartz
kernel as an oscillatory integral, which is due to Melrose and Zworski [8]. The pow-
erful tools from microlocal scattering theory we employ were developed in [9] (radial
point estimates), [2] (test modules), [11] (Fredholm theory for real principal type
operators on anisotropic Sobolev spaces) and [12] (radial point estimates and Fred-
holm theory in the scattering calculus), and we refer the reader to [1] for the detailed
discussion of related literature.

2. Microlocal analysis of the resolvents R.�˙ i 0/

We review the relevant objects here only briefly as they are discussed in detail in other
work. A detailed introduction to scattering differential operators on Rn can be found
in Vasy’s minicourse notes [12], while the more general development on scattering
manifolds is due to Melrose [9]. See also [1, Sections 2 and 3].

2.1. Weighted Sobolev spaces and scattering pseudodifferential operators

We confine most of our introductory discussion to the case of Euclidean space. Letting
�.Rn/ denote the space of Schwartz functions and � 0 the tempered distributions, each
u 2 � 0 lies in some weighted L2-based Sobolev space

H s;l.Rn/ D hzi�lHm.Rn/;

for s; l 2 R.
Recall the scattering symbols and scattering pseudodifferential operators, defined

for m; l 2 R by

S s;l.Rn/ D ¹a.z; �/ 2 C1.Rnz �Rn� /W kaks;lIN <1 for all N 2 N0º;

‰s;lsc .R
n/ D ¹Op.a/W a 2 S s;l.Rn/º;

where
kaks;lIN D

X
j˛jCjˇ j�N

sup
z;�

jhzi�lCj˛jh�i�sCjˇ jD˛
zD

ˇ

�
a.z; �/j;
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Here Op.a/ denotes the operator with integral kernel
R
e�i.z�z

0/a.z; �/d�. Thus, the
scattering pseudodifferential operators are by definition (here) the left quantizations
of scattering symbols.

There is a notion of principal symbol attached to scattering PsiDO’s which
includes their leading order behavior at spatial infinity. The (filtered) algebra of scat-
tering PsiDO’s admits a natural mapping to the graded algebra of scattering symbols,

‰s;lsc ! S Œs;l� WD S s;l=S s�1;l�1:

Given A 2 ‰s;lsc its principal symbol will be denoted by �s;l.A/.
We work here exclusively with classical scattering symbols, which are functions

a.z; �/ with joint asymptotic expansions in z; � as jzj; j�j ! 1. We will need to
construct explicit symbols whose corresponding operators will function as microlocal
cutoffs. In general, classical symbols can be written

a � hzilh�isa0.z; �/;

where a0.z; �/ is bounded and is smooth in r�1 D jzj�1 and j�j�1. This characteriza-
tion of the asymptotic behavior of a0 is equivalent to the statement that a0 extends to
an element in C1.Rn �Rn/ where Rn is the radial compactification of Rn in which
the map z 7! z=.1C hzi/ realizes Rn as the interior of the unit ball Bn, and the over-
line notation denotes this entire structure (the map from Euclidean space into the ball
as opposed to just the ball.)

For Œa� 2 S Œs;l�, i.e., Œa� the principal symbol of a scattering PsiDO, the value of
a0 is determined here only to the addition of elements in S s�1;l�1, so in particular, in
sets of bounded frequency, j�j < C , with supp.�WRt ! R/ � ¹jt j � C º,

�.�/.a0.z; �/ � a. Oz; �// � 0 .modS s�1;l�1/;

with a similar expression in the jzj < C regions. An A 2 ‰s;lsc is by definition scatter-
ing elliptic if its principal symbol is invertible in the graded algebra

S
s;l S

Œs;l�. The
microlocal notion of scattering ellipticity will be used as follows. On regions of large
frequency j�j > C , scattering ellipticity is implied by the uniform estimate

�s;l.A/.z; �/ � C hzi
l
h�is for j�j > C:

Below, the operators of interest are (scattering) elliptic on such large frequency regions
but are not globally scattering elliptic, hence the more detailed estimates coming
from propagation phenomena will arise from analysis on sets of bounded frequency,
whence we will typically need only to discuss the “spatial” principal symbol of A 2
‰m;lsc , defined for classical scattering symbols by

�base; l.A/. Oz; �/ D lim
r!1
hzi�la.z; �/:
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Note that the behavior in � of this function is in general symbolic but not homo-
geneous. In this region, (scattering) ellipticity is the same familiar ellipticity but in
the z directions; . Oz0; �0/ is in the elliptic set if �s;l.A/.z; �/ � C hzil in a region
jzj > C; j Oz � Oz0j; j� � �0j < ". It is straightforward to check that this is equivalent to
�base; l.A/. Oz0; �0/ ¤ 0.

The basic boundedness property of scattering pseudodifferential operators is that
for A 2 ‰s

0;l 0

sc ,
AWH s;l

! H s�s0;l�l 0 is bounded. (2.1)

The residual operators are
‰�1;�1 D

\
m;l

‰m;lsc ;

which have Schwartz kernels in �.Rn � Rn/, and in particular A 2 ‰�1;�1sc is
bounded between any two weighted L2-based Sobolev spaces; in particular since
H s;l � H s0;l 0 for any s > s0; l > l 0, residual A’s define compact operators on L2.
If A is globally scattering elliptic then the map in (2.1) is Fredholm, since in that case
there is an approximate inverse B 2 ‰�s;�lsc such that Id�AB; Id�BA 2 ‰�1;�1sc .

All of the foregoing material extends directly to the general asymptotically con-
ical case; see [1, Section 2.2] for further details. In the general case, one has the
fiberwise radial compactification of the scattering cotangent bundle sc xT �M which
is a manifold with corners of codimension 2; there are boundary-defining functions
x for spatial infinity and � for fiber infinity (which in the Euclidean case can be
taken to be hzi�1 and h�i�1, respectively) and the symbol estimates are essentially
the same as the Euclidean space symbol estimates written in terms of x and �. The
scattering pseudodifferential operators ‰s;lsc .M/ are the quantizations of these sym-
bols, and the scattering Sobolev spaces, denoted H s;l

sc .M/, consist of distributions u
with Au 2 L2.M/ for all A 2 ‰s;lsc .M/.

2.2. Mapping properties ofH � �2 and the resolvent

Analysis of H � �2 as a scattering differential operator was first carried out by Mel-
rose in [9]. We review the relevant material again on Rn. We have H � �2 2 ‰2;0sc ,
with

�2;0.H � �
2/ D j�j2 C V � �2 � C h�i2; for j�j > C:

In the general asymptotically Euclidean case, we get that the spatial principal symbol
is rather simple:

�base; 2.H � �
2/. Oz; �/ D j�j2 � �2:
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In particular,H � �2 is not globally scattering elliptic. Its characteristic set†, which
is a subset of Sn�1

Oz
�Rn

�
, is the vanishing locus of the fiber principal symbol:

† D ¹. Oz; �/W j�j2 � �2 D 0º:

To understand the action of the flow of the Hamilton vector field on †, we can
work in polar coordinates .r; y/, where y are arbitrary coordinates in a coordinate
patch on the sphere Sn�1; these automatically give rise to dual coordinates .�; �/, and
we rescale the angular dual variable � by writing r� D �. Via this localization and
rescaling we effectively pass to the case of an arbitrary asymptotically conic manifold.

Noting that in these variables we have

j�j2 D �2 C j�j2h;

where j�jh denotes the norm with respect to the dual of metric h in the definition
of the asymptotically conic metric g. Apart from giving the obvious rewriting of the
characteristic set as † D ¹�2 C j�j2

h
D �2º, it clarifies the behavior of the Hamilton

vector field, which, recall, is defined with respect to arbitrary coordinates and their
canonical dual coordinates to be

Hp WD
@p

@�

@

@r
�
@p

@r

@

@�
C

n�1X
jD1

� @p
@ Q�j

@

@yj
�
@p

@yj

@

@ Q�j

�
:

Scattering calculus propagation results are phrased in terms of the natural conformal
rescaling (or reweighting) of this vector field, namely Hp WD hziHp; and with p D
�2;0.H � �

2/; we obtain

Hp D �2�.x@x CR�/C 2j�j2h@� CH@M;h; (2.2)

where R� is the radial vector field in � and H@M;h is the Hamilton vector field on
@M for the metric h. (Note that the apparent discrepancy in sign between (2.2) and
[9, equation (8.19)] is due to our usage of �, the dual variable to r , in contrast with
Melrose’s use of � D ��.)

From this one deduces that the two submanifolds

R˙ WD ¹� D 0 D x; � D ˙�º

are sinks (C) or sources (�) for the (rescaled) Hamilton flow, i.e., the flow of Hp , on
the characteristic set †. The well-known formula for the principal symbol of a com-
mutator of pseudodifferential operators also extends to the scattering setting, namely
if A 2 ‰s;lsc ; B 2 ‰

s0;l 0

sc with a D �s;l.A/; b D �s0;l 0.B/, then ŒA;B� 2 ‰sCs
0�1;lCl 0�1

sc

and
�sCs0�1;lCl 0�1.i ŒA; B�/ D ¹a; bº D Hab;

where here ¹�; �º denote the Poisson bracket.
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The most important example of the use of commutators for us will be those of the
form ŒH;Q� where H is the Hamiltonian and Q 2 ‰0;0sc , in particular we will take
Q to have various microsupport properties (discussed below) which will allow them
to act as microlocal cutoffs to various portions of scattering phase space. Particularly
simple examples include symbols of the form

q.x; y; �; �/ D �.x/�
� j�j2

h
C �2

2
�2
�
�.�/; � 2 C1c .R

n/;

where � is a smooth function with �.t/ D 1 for t � 1 and �.t/ D 0 for t � 2. (This q
is then a function whose support lies in a neighborhood of † and whose restriction to
† depends only on �.) Then in fact Q 2 ‰�1;0sc and ŒH;Q� 2 ‰�1;�1sc , whence

hzi��1;�1.i ŒH;Q�/ D Hpq D 2j�j2h�
0.�/ (2.3a)

in the region jxj < 1; j�j2
h
C �2 < 2�2, and

hzi��1;�1.i ŒH;Q�/ D 0 for j�j2h C �
2
� 2�: (2.3b)

We can now define the modules of pseudodifferential operators M˙ used to mea-
sure the regularity of distributions in the domain and range of our formulation of the
resolvent mapping. Specifically,

M˙ WD ¹A 2 ‰
1;1
sc WR˙ � †1;1.A/º;

or, in words, MC is the vector space of scattering pseudodifferential operators of order
.1; 1/ which are characteristic on the “outgoing” radial set RC and M� is the same
for R�. Locally, an element A 2 ‰1;1sc lies in M˙ if and only if it can be written

A D B0r.Dr � �/C

n�1X
iD1

BiDyi C B
0

with B0; Bi ; B 0 2 ‰0;0sc . Note that MC and M� both contain the identity operator.
Also, M˙ contain an elliptic element of order .1; 1/, namely the radial operator
r.Dr � �/, at the opposite radial set R�.

We also need the “small” module of angular derivatives

N D
°n�1X
iD1

BiDyi C B
0
WBi ; B

0
2 ‰0;0sc

±
DMC \M�:

[1, Theorem 2.7] then gives the following mapping property for the resolvent. Let
s; l 2 R; �; k 2 N0, and define

Y
s;lI�;k
˙

WD H
s;lI�;k
˙

D ¹u 2 H s;l
WN kM�

˙u � H
s;l
º;

X
s;lI�;k
˙

WD ¹u 2 H
s;lI�;k
˙

W .H � �2/u 2 H
s�2;lC1I�;k
˙

º:
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Then
R.�˙ i0/WY

s;lC1I�;k
˙

! X
sC2;lI�;k
˙

(2.4)

provided k � 1, l 2 .�1
2
� k;�1

2
/. Here, the value l D �1=2 is referred to as the

“threshold” value; it is the critical spatial order for which we need different “radial
propagation estimates” for l greater than vs. less than �1=2. See [1, Section 3]. The
condition in (2.4) is that l is below threshold, but that l C k is above threshold. That
means that module regularity for M˙ of order k gives above threshold regularity at
the opposite radial set R�, which is the key to obtaining estimates such as (2.4). This
statement can be rephrased as follows: for such k 2N and l 2R, the operatorH � �2

is an isomorphism from X
s;lIk;k0

˙
to Y

s�2;lC1Ik;k0

˙
, and its inverse is the resolvent

R.�˙ i0/.
The reason for introducing the small module N to treat the nonlinear problem is

explained in detail in the introduction of [1]. We remark here only that for multiplica-
tion of distributions in H s;lI�;k

C , large module regularity produces loss in decay – see,
e.g., [1, Corollary 2.10] from which one has H s;lI�;k

C �H
s;lI�;k
C � H

s;2lC.n=2/��I�;k
C .

Small module regularity is used to minimize this loss of � in the spatial order.

2.3. Microlocalization

It will be important to microlocalize distributions both near to and away from the
radial set. To this end, we recall some features of the operator wavefront set WF0.A/ of
A 2‰s;lsc .M/. We will work mostly with thoseA which are compactly microlocalized
in frequency. Concretely, this means that

A D Op.a.z; �//CE; supp a.z; �/ � ¹j�j < C º; �E 2 �.Rn �Rn/;

for some C > 0 (�E is the Schwartz kernel of E). The condition on �E is equivalent
to E being a residual operator, meaning

E 2 ‰�1;�1sc WD

\
m;l2R�R

‰m;lsc :

For such A, WF0.A/ � Sn�1
Oz
� Rn

�
is by definition the complement of the set . Oz; �/

such that a is Schwartz in � in the Oz direction.
Clearly, WF0.A/ D ¿ H) A 2 ‰�1;�1sc , and thus for any S;L 2 R,

WF0.A/ D ¿ H) AWHS;L.Rn/! �.Rn/:

Also, wavefront sets have the expected algebraic property of supports, namely, for
A 2 ‰s;lsc ; B 2 ‰

s0;l 0

sc ,

WF0.AB/ �WF0.A/ \WF0.B/:
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a � 0
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�

Figure 1. The bicharacteristic flow in the characteristic set †.P / D ¹x D 0; �2 C j�j2
h
D �2º

with P D � � �2 and a the principal symbol of the microlocalizer AC.

Two particularly useful examples of such operators are those of the form Q˙ 2

‰0;0sc which are microlocalized near the two components of the radial set R˙. This can
be done by definingQ˙ explicitly in a way similar to the definition ofQ above (2.3),
specifically one can take

Q˙ D Op.q˙/; q˙.x; y; �; �/ D �.x/�
� j�j2

h
C �2

2
�2
�
�
�� � �

"

�
; (2.5)

where again �.s/ D 1 for s � 1 and �.s/ D 0 for s � 2.
Alternatively, one can simply break up phase space into a region where � is pos-

itive and its complement, excluding one radial set from each. We choose an operator
AC 2‰

0;0
cl .M/ such thatAC is microlocally equal to the identity in a neighborhood of

RC, and microlocally equal to 0 in a neighborhood of R�. We also letA� D Id�AC;
thus, A� is microlocally equal to the identity in a neighborhood of R�, and microlo-
cally equal to 0 in a neighborhood of RC. It is convenient to choose AC such that
its principal symbol a is a function only of � in a neighborhood of the characteristic
variety of H , and is monotone. Indeed, we can take

AC D Op.a/; a.x; �/ D �.x/
� j�j2

h
C �2

2
�2
�
Q�.�/; (2.6)

where � is as in the definition of Q˙ and Q�.�/ � 1 in � > �=4 and Q�.�/ � 0 for
� < ��=4, and is monotone in between.

While microlocalization gives us a concrete mechanism for analyzing frequen-
cy-localized spatial decay, it will be useful to note that this is also possible using
anisotropic Sobolev spaces, meaning Sobolev spacesH s;l in which the parameters s; l
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are themselves functions on phase space. Since the operators under consideration here
are elliptic outside a compact set in frequency, we will always take s constant, but we
shall employ variable spatial weights l˙ 2 S0;0 satisfying

lC is equal to �1=2 outside small neighborhoods of RC and R�, (2.7a)

lC equals �1=2� ı in smaller neighborhoods of R˙, (2.7b)

lC is nonincreasing along the Hamilton flow of P within †.P /, (2.7c)

and

l� D �1 � lC has corresponding properties with R� and RC switched. (2.7d)

For definiteness, we suppose that for some sufficiently small ı 2 Œ0; 0:01�, we have
lC equal to �1=2 outside the sets ¹x2 C j�j2

h
C .� � �/2 � 4ı�2º, and is equal to

�1=2� ı within the sets ¹x2C j�j2
h
C .� � �/2 � ı�2º. Thus, distributions inH s;lC

lie in H s;�1=2�" and are microlocally H s;�1=2C" near R�; that is, they are below
threshold regularity at RC and above threshold at R�, with a corresponding state-
ment true with reversed signs for H s;l� . Then, by [1, Theorem 3.2] we have the
isomorphisms

H � �2WXs;l˙ ! Ys�2;l˙C1;

Ys�2;l˙C1 D H s�2;l˙C1; Xs;l˙ D ¹u 2 H s;l˙ W .H � �2/u 2 Ys�2;l˙C1º:
(2.8)

The inverse maps are the incoming/outgoing resolvent R.�˙ i0/. As with (2.4), we
notice the sharp difference of one in the spatial regularity, and the avoidance of the
threshold value at the radial sets.

Moreover, we can combine variable order spaces with module regularity, obtain-
ing isomorphisms

H � �2WX
s;l˙I�;k
˙

! Y
s�2;l˙C1I�;k
˙

;

Y
s0;l0I�;k
˙

D ¹u 2 Y
s0;l0
˙
WN kM�

˙
u � Y

s0;l0
˙
º;

X
s;l˙I�;k
˙

D ¹u 2 Y
s;l˙I�;k
˙

W .H � �2/u 2 Y
s�2;l˙C1I�;k
˙

º:

(2.9)

We emphasize that in (2.9), we can allow � D 0, that is, only consider small module
regularity, in contrast to (2.4).

These variable order module regularity results do not appear explicitly in our pre-
vious work [1], but such results follow readily from the propagation estimates in
Section 3 of that paper. (The reason for restricting the module regularity spaces to
constant orders in [1] is that it is more convenient to analyze multiplicative proper-
ties of such spaces when the orders are constant.) We shall not review variable order
spaces in detail here, referring the reader to [12]. Here we only mention one elemen-
tary property of such spaces. Namely, we can conclude containment in these types
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of variable order spaces using microlocalization. For example, it is straightforward to
show that, given a tempered distribution u, for " > 0 sufficiently small andQC 2‰0;0sc

as in (2.5), if QCu 2 H s;�1=2�ı and .Id�QC/u 2 H s;�1=2Cı , then u 2 H s;lC .
We note that in all these considerations, the value of l˙ off † is essentially irrele-

vant, since off † one has elliptic estimates for H � �2.

3. Mapping properties of the linear Poisson operator

The Poisson operator furnishes a distorted or generalized Fourier transform for the
operatorH . Constructions in the Euclidean case go back a long way in scattering the-
ory, see, e.g., [5, 6]. We use the results of Melrose and Zworski [8], who constructed
the Poisson operator P.�/, � > 0, for the Helmholtz operatorH D�� �2 on asymp-
totically conic manifolds (scattering metrics). Their results extend readily to the case
of a Schrödinger operator with potential in the conormal space A
 .M/, for 
 > 1,
which is by definition the space of smooth functions V on M ı satisfying estimates
near @M of the form

j.xDx/
jD˛

yV.x; y/j � Cx

 ; j � 0; ˛ 2 Nn�1:

These estimates on V are equivalent to (1.5) in the case of Euclidean space.
The Poisson operator has the property that it maps a smooth function � 2C1.@M/

to a function u0 satisfying Hu0 D 0, with the asymptotics

u0 D u� C uC; u˙ D r
�.n�1/=2e˙i�rf˙; (3.1)

with f˙ 2 C.M/, f�j@M D �: In fact, the f˙ can be taken to lie in C1.M/ C

A
�1.M/ (which are continuous up to the boundary, as 
 � 1 > 0); moreover, if V is
equal to r�2 times a smooth function onM , then the f˙ can be taken in C1.M/. We
shall also define P.��/, again for � > 0, to be the operator mapping � 2 C1.@M/

to a function u0 satisfying Hu0 D 0, with the asymptotics

u0 D u� C uC; u˙ D r
�.n�1/=2e˙i�rf˙;

with f˙ 2 C1.M/CA
�1.M/; fCj@M D �. Recall that C1 functions on M , as
opposed to C1 functions on M ı, are (by definition) smooth functions of x D 1=r

and y near @M .
The adjoint operator P.�/� will also play a role in this article. To describe it, let

v be a Schwartz function1 on M , and let u˙ D ˙R.�˙ i0/v. Then each u˙ has a

1By a Schwartz function onM we mean a smooth function that vanishes, with all its deriva-
tives, at the boundary. WhenM is the radial compactification of Rn this corresponds to the usual
meaning of Schwartz function.
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similar expansion as in (3.1), but with only the outgoing (C)/incoming(�) oscillation
[9, Proposition 12]:

u˙ D r
�.n�1/=2e˙i�rf˙; f˙ 2 C

1.M/CA
�1.M/:

We claim that P.�/�v D 2i�f�j@M . To see that this is true, we use a pairing identity
that follows from Green’s formula. Suppose that u1 and u2 are two functions of the
form

ui D r
�.n�1/=2.e�i�rfi;� C e

Ci�rfi;C/; fi;˙ 2 C
1.M/CA
�1.M/:

Suppose further that .H � �2/ui DO.r�.nC1/=2�"/ for some " > 0. Then the follow-
ing identity holds [9, equation (13.1)] (see also [3, Section 5]):Z
M

.u1.H � �2/u2� ..H ��
2/u1/u2/d volg D 2i�

Z
@M

.f1;Cf2;C�f1;�f2;�/d volh;

where we take the restrictions to @M in the integral over the boundary. To prove this,
one notes that the left-hand side is absolutely integrable, so it can be obtained as the
limit, as R ! 1, of the integral restricted to ¹r � Rº. Then one applies Green’s
formula and uses the asymptotic form of the functions ui to see that the limit as
R!1 is the right-hand side.

We apply this with u1 D P.�/a, a 2 C1.@M/ and u2 D u� above. Then one has
.H � �2/u1 D 0, and f2;C D 0, while f1;� D a. We obtainZ

M

.P.�/a/ Nv D 2i�

Z
@M

af�:

This immediately yields
P.�/�v D 2i�f�j@M : (3.2)

A similar argument with uC shows

P.��/�v D 2i�fCj@M : (3.3)

Moreover, applying P.˙�/ to f�, we obtain uCC u�, since this is the unique eigen-
function with incoming/outgoing data equal to f�. It follows that we have

P.˙�/P.˙�/� D 2�i.R.�C i0/ �R.� � i0//; (3.4)

acting on Schwartz functions. Notice that the quantity in (3.4) is equal to the spectral
measure, up to a factor of d�=4� . Note also the simple consequence of (3.2) and (3.3):

P.˙�/� maps Schwartz functions on M to smooth functions on @M . (3.5)
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Our first purpose in this section is to analyze the range of P.˙�/ on the L2-based
Sobolev space Hm.@M/. We begin with a basic mapping property for the Poisson
operator on L2.@M/. For any ı > 0, identity (3.4) implies that we have a continuous
mapping

P.˙�/WL2.@M/! H s;�1=2�ı.M/ (3.6)

Indeed, first note that both R.�˙ i0/ map H�1;1=2Cı.M/ to H 1;�1=2�ı.M/. This
result is well known but follows in particular from (2.8) taking s D 1 since, for either
choice of˙ and any s,

H s�2;1=2Cı
� Y

s�2;l˙C1
˙

; X
s;l˙
˙
� H s;�1=2�ı :

Formula (3.4) then shows that P.˙�/ extends from C1.@M/ to a bounded map
from L2.@M/ to H 1;�1=2�ı.M/, as this holds if and only if P.˙�/P.˙�/�

maps H�1;1=2Cı.M/ to H 1;�1=2�ı.M/ (since H�1;1=2Cı.M/ is the dual of
H 1;�1=2�ı.M/), whence (3.6) holds for s D 1. Finally, since the image of P.�/ is
contained in solutions to .H � �2/u D 0, the differential index 1 can be replaced by
any s using elliptic regularity.

Now, we note that (3.6) can be improved easily using the microlocalization dis-
cussed above. If we define

lmin D min.lC; l�/; lmax D max.lC; l�/; (3.7)

then these are smooth functions on phase space for ı0>0 sufficiently small, and (again
for arbitrary s),

.H s;lmin/� D H�s;�lmin D H�s;lmaxC1

by the final property in (2.7). Repeating our argument to deduce mapping properties
for P.�/ from (3.4), we use

H s�2;lmaxC1 � Y
s�2;l˙C1
˙

; X
s;l˙
˙
� H s;lmin

to conclude that for any s 2 R,

P.˙�/WL2.@M/! H s;lmin.M/; P.˙�/�WH s;lmaxC1.M/! L2.@M/; (3.8)

the latter following from adjunction of the former. This improves (3.6) since lmin D

�1=2 > �1=2 � ı away from the radial sets.
Again, we can phrase this in terms of microlocalization, giving improved decay

for P.˙�/f , f 2 L2.@M/ away from the radial sets. That is to say, if Q 2 ‰0;0sc has
WF0.Q/ \RC [R� D ¿, then

QP.˙�/WL2.@M/! H s;�1=2.M/; (3.9)
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as follows immediately from (3.8), provided Q is microsupported where l˙ D �1=2,
so thatQWH s;lmin !H s;�1=2. Proposition 3.1, a crucial step in proving our main the-
orem, improves on this; it asserts that increased regularity of the boundary distribution
f corresponds to increased decay of P.˙�/f away from the radial sets.

The Poisson operator extends to a map on distributions, or equivalently on nega-
tive order Sobolev spaces H k.@M/ for all k � 0. The representation of the Poisson
kernel as a distribution associated to an intersecting pair of Legendre submanifolds
with conic points in [8] shows that there is a mapping property of the form

P.˙�/WH k.@M/! H s;kCc.M/ for all k � 0 (3.10)

for some c 2 R; this is obtained by passing derivatives from the distribution onto
the Poisson kernel, thus reducing to the case k � 0. The next proposition, plus pos-
itive commutator estimates as in [1, Section 3], show that in fact c D �1=2 is sharp
for (3.10), although we do not need this fact in the present article.

Proposition 3.1. Let Q 2 ‰0;0sc satisfy WF0.Q/ \ .RC [ R�/ D ¿. Then for all
s 2 R, k 2 R,

QP.˙�/WH k.@M/! H s;k�1=2.M/: (3.11)

Before we prove the proposition we note the straightforward corollary.

Corollary 3.2. Let AC be chosen as in (2.6), and s be any real number. Then for
f 2 H k.@M/,

ŒH;A˙�P.�/f; ŒH;A˙�P.��/f 2 H
s;kC1=2.M/ (3.12)

and is microlocally trivial in a neighborhood of RC [R�. Consequently, we also
have

ŒH;A˙�P.�/f; ŒH;A˙�P.��/f 2 Y
s;lmaxC1Ik;0
˙

.M/: (3.13)

The statement about microlocal triviality here means that there is a neighborhood
U of R� [RC so that for any Q 2 ‰0;0sc with WF0.Q/ � U , QŒH;A˙�P.˙�/f 2
HS;L for any S;L, i.e., is rapidly decaying.

Proof of Corollary. Statement (3.12) follows immediately from Proposition 3.1 and
the fact that ŒH; A˙� are scattering pseudodifferential operators of order .1;�1/. To
obtain (3.13), we first replace s by s C k in (3.12), and then note that the k-th power
of the module M˙ maps the functions ŒH;A˙�P.˙�/f to H s;1=2.M/ simply using
the fact that module elements have order .1; 1/, whence we find that these functions
are in Y

s;1=2Ik;0
˙

.M/. Finally, the microlocal triviality near the radial sets allows us to
vary the spatial order 1=2 arbitrarily near the radial sets, so we can replace the order
1=2 with lmax C 1.
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We remark that when H D H0 WD �Rn is the flat structure and k 2 N, Propo-
sition 3.1 follows without using the Poisson kernel used in the more general proof
below. Let P0.�/ denote the Poisson operator in the flat case. Assuming, without loss
of generality, that suppQ � ¹r � 1º, one can make use of the generators of rotation
on Sn�1; which form a family Rot WD ¹V º of vector fields commuting with �Sn�1

and generating the cotangent space at every point, in particular

f 2 H k.Sn�1/ () Rotjf � L2.Sn�1/ for all j � k.

Let V denote an arbitrary such vector field. Using ŒH0; V �D 0 in r > 0, we claim that
for f 2 H k ,

P0.�/Vf D VP0.�/f: (3.14)

This follows from the explicit formula for the Poisson operator and integration by
parts, but in using the results presented here one can argue as follows. For f 2
C1.Sn�1/, the expansion for P0.�/f gives that P0.�/Vf � VP0.�/f lies in Xs;lC ,
but we have .H0 � �2/.P0.�/Vf � VP0.�/f / D 0, so since H0 � �2 is injective on
this domain, (3.14) follows. The condition on WF0.Q/, means that p WD . Oz; �; �/ 2
WF0.Q/ then�¤ 0, and thus we can find V with �1;1.V /.p/¤ 0. SinceQV 2‰�1;1

is elliptic at p, if f 2H k , sinceQP0.�/Vf 2H s;�1=2 we have by scattering elliptic
regularity thatQP0.�/f 2H s;�1=2Ck . We will use the structure of the Schwartz ker-
nel of the Poisson operator to deduce this same result for more general Hamiltonians.

Proof of Proposition 3.1. We prove (3.11) forC� only. This will follow by using the
well-understood structure of the integral kernel of P.�/, due in this generality to
Melrose and Zworski [8]. The proof of (3.11) for �� follows analogously.

As we show below, using propagation of singularities, it will suffice to restrict
the microsupport of Q to punctured neighborhoods of R� over small balls on the
boundary, as follows. First, pick a small coordinate patch V on @M with coordinates
y, and then a small neighborhood V 0 of R� \

scT �VM ; our Q will be supported in
the punctured neighborhood U D V 0 nR�. Concretely, this can be parametrized as
¹.x; y; �;�/Wx; �2 C j�j2

h
� �2 < "; 0 < j� C �j < "º with y in the coordinate patch.

For such Q, the operator QP.�/ takes the form [8]

e�i� cosdh.y;y0/=x Qa.x; y; y0/C e.x; y; y0/ (3.15)

where dh is the distance function on .@M;h/, Qa is smooth and is supported where y is
in a deleted neighborhood of y0 (with y0 varying in the same chosen coordinate patch
as y) and we integrate with respect to the h-Riemannian measure on @M . Here e is a
smooth function which is rapidly decaying as x ! 0 which we subsequently ignore.

Since F .H s;k.Rn// D H k;s.Rn/, were we working in Euclidean space, it would
now suffice to prove that F ı QP.�/WH k ! H k�1=2;s . To use this approach, we
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identify the open set .0; "/x � V � M ı with a subset of Euclidean space by first
choosing any local diffeomorphism  W V ! Sn�1, and then writing Oz D  .y/, r D
1=x, z D r Oz.y/ 2 Rn. Then F ıQP.�/ has Schwartz kernel

zK.�; y0/ WD

Z
e�iz��e�i�jzj cosdh. Oz; .y0//a.z; y0/ dz;

where a.z; y/ D Qa.x; y; y0/ is a classical symbol in the z-variable of order 0, smooth
in y. We claim that for � 2 C1.Rn/ with �.�/ D 1 on j�j < 2� and
supp� � ¹j�j < 4�º, then

K.�; y0/ WD

Z
e�iz��e�i�jzj cosdh. Oz; .y0//a.z; y0/�.�/ dz; a 2 S0

satisfies
zK.�; y0/ �K.�; y0/ 2 �.Rn� /; (3.16)

smoothly in y0, i.e., it is rapidly decreasing as �!1, as follows from non-stationary
phase.

We now view K as a Fourier integral operator mapping from the sphere to the
dual Rn, parametrized by �, with z playing the role of a homogeneous phase vari-
able. We use the mapping properties of FIOs found in [4, Chapter 25, in particular
Theorem 25.3.8]. Recall throughout that a is supported where y is close to y0 but not
equal to it. Here K is an FIO of order 0 � ..n � 1/C n � 2n/=4 D 1=4 with phase
function �.�; z; y0/ D �iz � � � i�jzj cos dh. Oz; y0/ where z is the auxiliary variable.
We compute that � defines the canonical relation

C WD ¹.�;zIy0;�0/W�D � Oz cosdh. Oz;y0/C��2 sindh. Oz;y0/; �0D �jzj�1 sindh. Oz;y0/º

where �1 and �2 are the initial, resp. final, fiber coordinates of the unit length geodesic
between y0 and Oz with respect to the Riemannian metric h on @M , interpreted as being
in T �y0@M in the first case and T �

y. Oz/
@M in the second. The dimension of the canonical

relation is 2n � 1. It is parametrized by z; y0 since for y; y0 sufficiently close (recall
that y parametrizes Oz), the �i are determined by y; y0 and therefore by Oz and y and
the other variables �0; � are given in terms of these. On the other hand, the projection
of C to the “right” factor T �y0@M is a surjective submersion since @�0=@ Oz is full rank
for y; y0 sufficiently close but not equal. Thus, the pullback of the symplectic form on
T �@My0 to C is rank 2.n � 1/ or corank 1. Finally, at no point are either of the radial
vector fields �0D�0 in T �@M n ¹0º or zDz in T �Rn

�
n ¹0º tangential to C .

Therefore, [4, Theorem 25.3.8] together with the standard argument (see, e.g., [4,
Corollary 25.3.2]) in which one pre/post composes an FIO by invertible elliptic pseu-
dodifferential operators, give that K maps H k.@M/ to H k�1=2.Rn

�
/ continuously.

(Note that the theorem concludes a mapping to H k�1=2
loc .Rn

�
/ but K is compactly
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supported in �.) Compact support of zK in � and (3.16) then give that h�is zK maps
H k.@M/ to H k�1=2;s.Rn

�
/ for any s, whence composing with the inverse Fourier

transform gives (3.9) for Q microlocalized near the radial sets and locally over the
boundary.

To treat general Q with WF0.Q/ \ .RC [R�/ D ¿, we recall that the assertion
of continuity in (3.11) can be microlocalized in the sense that it will follow if, for all
q 2WF0.Q/ there is zQ 2 ‰0;0sc such that q 2 Ell0;0. zQ/ and for some C > 0

k zQP.�/f kH s;k�1=2.M/ � Ckf kHk.@M/:

for all f 2Hm.@M/. For q 2Ell2;0.H ��2/, this follows from the microlocal elliptic
estimate (see, e.g., [1, Proposition 3.3])

k zQP.�/f kH s;k�1=2.M/ . k.H � �2/P.�/f kH s�2;k�1=2.M/ C kP.�/f kH�S;�L

D kP.�/f kH�S;�L.M/ . kf kHk.@M/

where S;L are chosen sufficiently large and the final bound comes from (3.10). (Here
. means there exists a C > 0 such that the left-hand side is bounded by C times the
right-hand side.) For q 2†2;0.H � �2/ n .RC [R�/, then there is a bicharacteristic
ray 
 in † such that 
.0/ D q and lim�!�1 
.�/ 2 R�. The first part of our proof
implies the existence of a �0 � 0 and Q 2 ‰0;0sc such that 
.�0/ 2 Ell0;0.Q/ and
Q satisfies (3.11). On the other hand, by the standard propagation of singularities
estimate (see, e.g., [1, Proposition 3.4]), there exists zQ 2 ‰0;0sc with q 2 Ell0;0. zQ/
such that

k zQP.�/f kH s;k�1=2.M/ . kQP.�/f kH s;k�1=2.M/

C k.H � �2/P.�/f kH s�2;kC1=2.M/ C kP.�/f kH�S;�L

D kQP.�/f kH s;k�1=2.M/ C kP.�/f kH�S;�L

. kQP.�/f kH s;k�1=2.M/ C kf kHk ;

where we choose S;L sufficiently large and use (3.10) to estimateP.�/f by f . Then,
using kQP.�/f kH s;k�1=2.M/ . kf kHk gives the result for q on the characteristic set
away from the radial sets, completing the proof.

The next proposition is known to experts, see, e.g., [10] and [2, Section 3] in a
slightly different context. It is implicit in older works, e.g., [7]; no doubt many other
references could be given. Notice that in (3.17), R.�C i0/ � R.� � i0/ is, up to a
constant, the “spectral projection” dE.�2/ for the operatorH . This operator is not an
actual projection, however; in fact, it is not bounded on any natural Hilbert space. The
proposition shows that a modification of this operator leads to a genuine projection,
that acts as the identity on the generalized eigenfunctions.
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Proposition 3.3. Let u D P.�/f , for f 2 H k.@M/, k D 0; 1; 2; : : : ; and let s 2 R.
Then we can express

u D uC C u�;

u˙ D A˙u D R.�˙ i0/ŒH;A˙�u 2 X
sC2;l˙Ik;0
˙

.M/:
(3.17)

Conversely, letw 2H s;kC1=2.M/ be such thatw is microlocally trivial in a neigh-
borhood of R� [RC. Then, defining u by

u WD .R.�C i0/ �R.� � i0//w;

u can be obtained as u D P.�/f for a function f 2 H k.Sn�1/, namely the function
f D .i=2�/P.�/�w.

Proof. First we show (3.17). Using the identity .H � �2/uD 0 we evaluate the right-
hand side:

.R.�C i0/ �R.� � i0//ŒH;AC�u

D R.�C i0/ŒH � �2; AC�uCR.� � i0/ŒH � �
2; A��u

D R.�C i0/.H � �2/ACuCR.� � i0/.H � �
2/A�u:

We claim that ACu is in the space Xs;lC (for any s). To see this, we use (3.6),
which shows that P.�/f is in H s;�1=2�" globally, for arbitrary " > 0, and Propo-
sition 3.1, which shows that it is in H s;�1=2 microlocally away from RC, together
with the definition of the operator AC which microlocalizes away from R�. Simi-
larly, A�u is in the space Xs;l� . On these spaces, R.�C i0/, respectively R.� � i0/
is a left inverse to H � �2 (see (2.8)). It follows that the right-hand side is equal to
ACuC A�u D u, proving the identity (3.17) with u˙ D A˙u. Moreover, by Corol-
lary 3.2, ŒH; A˙�u is in Y

s;lmaxC1Ik;0
˙

� Y
s;l˙C1Ik;0
˙

, so using the resolvent mapping

property (2.9), we see that u˙ is in X
sC2;l˙Ik;0
˙

.M/ as claimed.
We show the converse statement first for k D 0. This follows immediately

from (3.4) and (3.8) since the assumption on w implies that w 2 H s;lmaxC1, provided
that ı in the definition of l˙ is sufficiently small, so that w is microlocally trivial in
the region where lmax ¤ �1=2. For any positive integer k, we write

P.�/�w D P.�/�Qw C P.�/�.Id�Q/w;

where Q is microlocally equal to the identity on the microsupport of w, and
microlocally trivial near the radial sets. Then .Id�Q/w is Schwartz, so using (3.5),
P.�/�.Id�Q/w is C1. For the other term, the adjoint of Proposition 3.1 shows that
P.�/�Qf is in H k.@M/.
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We now begin our analysis of the incoming/outgoing data of distributions in
the image of R.� ˙ i0/. The main improvement in the regularity of this incom-
ing/outgoing data comes from a combination of the mapping properties of the Poisson
operator and its adjoint, together with the reproducing formula (3.17).

Proposition 3.4. Let s � 0, and assume F is in Y
s;lmaxC1I1;k�1
C , k � 2, where lmax is

defined in (3.7). Assume that ı satisfies

0 < 2ı < min.1; 
 � 1/; (3.18)

where 
 is as in (1.5). Then uC WDR.�C i0/F is such that, in a collar neighborhood
of the boundary @M � .R;1/r , the limit

L.�/uC WD lim
r!1

r .n�1/=2e�i�ruC.r; �/

exists in H k�2.@M/, with estimates

kL.�/uCkHk�2.@M/ � CkF kYs;lmaxC1I1;k�1
C

;

kr .n�1/=2e�i�ruC.r; �/ �L.�/uCkHk�2.@M/ D O.r
�"/

(3.19)

for 0 < " < ı. Similarly, if F 2 Ys;lmaxC1I1;k�1
� , k � 2, then u� WDR.�� i0/F is such

that the limit
L.��/u� WD lim

r!1
r .n�1/=2eCi�ru�.r; �/

exists in H k�2.@M/, with estimates

kL.��/u�kHk�2.@M/ � CkF kYs;lmaxC1I1;k�1
�

;

kr .n�1/=2eCi�ru�.r; �/ �L.��/u�kHk�2.@M/ D O.r
�"/

(3.20)

for 0 < " < ı.

Proof. We follow the argument of [1, Section 4], which in turn is based on [9]. We do
this only for uC, as the argument is similar for u�. From now on, we denote uC by u.

We use the microlocalizing operatorsQ˙ from Section 2.3, and complete these to
a partition of unity, IdDQCCQ�CQ3. Thus,QC is microsupported close to RC,
Q� is microsupported close to R�, andQ3 is microsupported away from RC [R�.
Assuming that the microsupports of Q˙ are sufficiently close to R˙, the hypothesis
on F implies that Q˙F is in the space Y

s;1=2CıI1;k�1
C , while Q3F is in Y

s;1=2I1;k�1
C .

We notice that all of the commutators ŒH;Q�� have boundary order 1 and microlo-
cally vanish near RC [R�, so r2ŒH;Q�� belongs in both modules, MC and M�.
We write u1 D QCu, u2 D Q�u, and u3 D Q3u.

Write Qu1 D �.r/r .n�1/=2e�i�ru1, where � is supported in r > R and identically 1
near r � 2R. Our first goal is to show that Qu1.r;y/ has a limit b.y/ inH k�2.@M/, and
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that Qu1.r; y/� b.y/ D OHk�2.@M/.r
�"/ as r !1. To do this, we write the operator

H � �2 in the form

H � �2 D D2
r � i.n � 1/r

�1Dr C r
�2LC r�2 QLC V � �2; (3.21)

where L is a second order differential operator involving only tangential Dyj deriva-
tives, and QL is a scattering differential operator of order .1; 0/. Since .H � �2/uD F ,
we obtain

.Dr C �/
�
Dr � � �

i.n � 1/

2r

�
u1 DQCF C ŒH;QC�u � r

�2 QLu1

C
1

2r2
.i.n � 1/r.Dr��/C.n�1/�2L/u1

� V u1: (3.22)

We are going to show that the right-hand side lies in Ys;1=2CıI0;k�2, with the norm in
this space bounded by

CkF k
Y
s;lmaxC1I1;k�1
C

: (3.23)

This has already been noted for the first term, QCF . For the remaining terms, it
suffices to bound them by

CkukYsC2;�1=2�ıI1;k�1 (3.24)

since, as we have seen in (2.9), this is bounded by (3.23). For the second term, we
use the fact that ŒH;QC� is r�2 times a small module element, so the Ys;1=2CıI0;k�2-
norm of this term is bounded by the YsC1;�3=2CıI0;k�1 norm of u, which is bounded
by (3.24) since ı < 1=2 according to (3.18). The next term is very similar: since
r�2 QL has order .1; �2/, the Ys;1=2CıI0;k�2-norm of this term is bounded by the
YsC1;�3=2CıI0;k�2 norm of u, which is again bounded by (3.24). For the term with
the r�2 prefactor, we observe that the differential operator in large parentheses is con-
tained in MC �N , that is, one factor in the large module and one in the small module.
It follows that the Ys;1=2CıI0;k�2-norm of this term is bounded by the Ys;�3=2CıI1;k�1

norm of u1, which again is bounded by (3.24). Finally, for the V term this follows
from the fact that V satisfies the conormal estimates (1.5), hence multiplication by
V is a scattering pseudodifferential operator of order .0;�
/. Recalling (3.18), we
have �1=2� ıC 
 > 1=2C ı, and it follows that the Ys;1=2CıI0;k�2-norm of V u1 is
bounded by the Ys;�1=2�ıI0;k�2-norm of u1, which is bounded by (3.24).

Now, observe the operatorDr C � is elliptic everywhere on WF0.QC/, sinceQC
is microsupported near RC. Thus, we may write invert this operator microlocally;
that is, we can write

Id D J.Dr C �/CR0;

where J 2 ‰�1;0sc is a microlocal inverse, and the microsupport of the remainder R0 is
disjoint from QC. Then for any scattering pseudodifferential operator A, R0AQCu
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can be bounded by (a suitable multiple of) any Sobolev norm of u, for example
kuksC2;�1=2�ı , which in turn is bounded by (3.24). Applying this operator identity to
AQCu D Au1, where A D .Dr � � � i.n � 1/=.2r//, then applying (3.22) and the
estimate (3.23) on the right-hand side of this equation, we find�

Dr � � �
i.n � 1/

2r

�
u1 2 Ys;1=2CıI0;k�2;


�Dr � � � i.n � 1/

2r

�
u1





Ys;1=2CıI0;k�2

� CkF k
Y
s;lmaxC1I1;k�1
C

:

(3.25)

Now, using s � 0 and observing that

Dr Qu1 D �.r/r
.n�1/=2e�i�r

�
Dr � � �

i.n � 1/

2r

�
u1 C .Dr�/r

.n�1/=2e�i�ru1;

we find that Dr Qu1 2 H 0;1=2Cı�.n�1/=2I0;k�2, or equivalently

Dr Qu1 2 r
n=2�1�ıL2..ŒR;1/; rn�1dr/IH k�2.@M//;

with a corresponding norm estimate (where we used the support property of Dr� for
the inclusion in H 0;1=2Cı�.n�1/=2I0;k of the second term). Combining this estimate
with the inclusions

rn=2�1�ıL2..ŒR;1/; rn�1dr/IH k�2.@M//

� r�1=2�ıL2..ŒR;1/; dr/IH k�2.@M//

� r�"L1..ŒR;1/; dr/IH k�2.@M//; 0 < " < ı;

we find
kr"Dr Qu1kL1..ŒR;1/;dr/IHk�2.@M// � CkF kYs;lmaxC1I1;k�1

C

: (3.26)

We note that, since Qu1 is locally H 1 in r with values in H k�2.@M/, it is in fact
continuous in r with values in H k�2.@M/. By (3.26), we can integrate to infinity to
find

b.y/ D

1Z
R

@r 0 Qu1.r
0; y/ dr 0; kbkHk�2.@M/ � CkF kYs;lmaxC1I1;k�1

C

;

is well defined as an element of H k�2.@M/. Moreover,

Qu1.r; y/ � b.y/ D �

1Z
r

@r 0 Qu1.r
0; y/ dr 0;

k Qu1.r; y/ � b.y/kHk�2.@M/ � Cr
�"
kr"Dr Qu1kL1..ŒR;1/;dr/IHk�2.@M//

� Cr�"kF k
Y
s;lmaxC1I1;k�1
C

:
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To treat u2, we apply a similar argument with the role of RC and R� inter-
changed. In this case we define Qu2 D �.r/r .n�1/=2eCi�ru2 and write (3.22) in the
form

.Dr � �/
�
Dr C � �

i.n � 1/

2r

�
u2DQ�F C ŒH;Q��u2 C

i.n � 1/

2r2
.r.Dr C �//uC

C

�n � 1
2r2

� r�2L � r�2 QL � V
�
uC:

Following the same reasoning as above, we find that Qu2 has a limit as r!1, with the
same O.r�"/ of convergence. But here, the mapping property of the outgoing resol-
vent near the incoming radial set (the inverse mapping to (2.9), see [1, Theorem 3.1])
shows that u2 is actually inH s;�1=2Cı , i.e., the spatial order is above threshold, since
lC D �1=2C ı on the microsupport of Q�. Therefore, since we know that Qu2 has a
limit in H k�2.@M/ as r !1, this limit must be zero (were the limit nonzero, then
Qu2 would fail to lie in the space H s;�1=2Cı�.n�1/=2 for ı > 0). It then follows that
�.r/r .n�1/=2e�i�ru2 D e

�2i�r Qu2 also has a zero limit inH k�2.@M/ as r!1, with
the same rate of convergence as Qu2.

It remains to discuss u3. We claim that u3 is an element of Y
sC2;1=2�ıI1;k�2
C . We

argue separately in the microlocal regions (i) near the characteristic variety†, and (ii)
away from †. The mapping property (2.9) shows that u is in Y

sC2;�1=2�ıI1;k�1
C .

In region (i), since u3 is microsupported away from the radial sets, the small mod-
ule N is elliptic there, so we can trade one order of small module regularity for a
gain of one spatial order. In region (ii), we already have u 2 Y

sC2;C1=2�ıI1;k�1
C since

H � �2 is elliptic there and we incur no loss in the spatial regularity from applying
the resolvent in this region.

Now, using the MC module regularity, and replacing the differential order with
zero, we see that

r
�
Dr � � � i

n � 1

2r

�
u3 2 H

0;1=2�ıI0;k�2;

that is, �
Dr � � � i

n � 1

2r

�
u3 2 H

0;3=2�ıI0;k�2;

which is stronger than (3.25) as ı < 1=2. We can thus apply the same reasoning as
for u1 to obtain a limit for �.r/r .n�1/=2e˙i�ru3 (which are necessarily zero, for the
same reason as for u2), with the same rate of convergence.

The estimates in (3.19) are obtained by adding the contributions from u1, u2,
and u3. The estimates (3.20) are obtained similarly.

Remark 3.5. From the proof above, we see the following: if Q 2 ‰0;0sc is micro-
supported away from RC, then L.�/.QuC/ D 0. Similarly, if Q0 2 ‰0;0sc is micro-
supported away from R�, then L.��/.Q0u�/ D 0. Also note that L.�/.QuC/ D 0
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immediately implies L.��/.QuC/D 0. In the same way, L.��/.Q0u�/D 0 implies
L.�/.Q0u�/ D 0.

Proposition 3.6. Let f 2 H k.@M/, with k 2 N, k � 2, and let u D P.�/f . Then
A�u is such that the limit

L.��/.A�u/ D lim
r!1

r .n�1/=2ei�r.A�u/.r; �/ (3.27)

exists in H k�2.@M/. Moreover, this limit is f . Similarly, the limit

L.�/.ACu/ D lim
r!1

r .n�1/=2e�i�r.ACu/.r; �/ (3.28)

exists in H k�2.@M/ as r !1. Moreover, this limit is in H k.@M/. Both limits are
achieved with an O.r�"/ convergence rate, as in Proposition 3.4.

Proof. As we have already seen in Proposition 3.3, A�u is the incoming resolvent
applied to ŒH; A��u, and ACu is the outgoing resolvent applied to ŒH; AC�u D
�ŒH;A��u. We have also seen in Corollary 3.2 that for f 2H k.@M/, ŒH;A˙�u is in
the module regularity space Y

s;lmaxC1Ik;0
˙

. Therefore, the existence of the limits (3.27)
and (3.28) in H k�2.@M/ follows from Proposition 3.4.

We next note that, for f 2 C1.@M/, and u D P.�/f , the limit L.��/.A�u/

is exactly f . This is a defining property of the Poisson kernel; see [8, Equations
(0.2) and (0.4)]. However, we will elaborate on this point, as it is closely related
to the form of (3.15). Suppose, without loss of generality, that f is supported in a
small neighborhood of b 2 @M . Outside any microlocal neighborhood of R�, the
contribution ofA�u to this limit is zero, as it is inH s;k for every k by Proposition 3.1.
Therefore, given the canonical relation of P.�/, see [8, Propositions 4 and 19], we can
replace A�P.�/f byQP.�/f whereQ is microsupported near R� and its kernel is
supported near .b; b/. The kernel of QP.�/ is then as in (3.15), that is,

e�i� cosdh.y;y0/=x Qa.x; y; y0/C e.x; y; y0/;

except that Qa.x; y; y0/ is now supported close to .0; b; b/ but not in a deleted neigh-
borhood, as was the case in (3.15). In fact, we have

Qa.0; y; y/ D .�=.2�//.n�1/=2e�i.n�1/�=4 for y near b.

Then, in normal coordinates around y, we have

cos dh.y; y0/ D 1 �
jy � y0j2

2
CO.jy � y0j3/;

dh.y0/ D dy0.1CO.jy � y0j//;
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the stationary phase lemma shows that indeed L.��/.QP.�/f /.y/ D f .y/ in a
neighborhood of b.

Now, for arbitrary f 2 H k.@M/, we choose a sequence of smooth fj converg-
ing to f in H k.@M/. Let uj D P.�/fj ; then ŒH; A��uj converges to ŒH; A��u in
Ys;lmaxC1I1;k�1
� using Corollary 3.2. As above, we have A�uj DR.�� i0/ŒH;A��uj .

Using (3.19) in Proposition 3.4, limj!1 L.��/A�uj exists in H k�2.@M/ and is
L.��/A�u. On the other hand, since the fj are smooth, L.��/A�uj is precisely fj ,
which converge to f inH k , and so a fortiori inH k�2, showing that L.��/A�uD f .

To obtain the result for ACu, we could just appeal to the main result of [8] that
says that the limit is the scattering matrix S.�/ applied to f , and since S.�/ is an FIO
of order zero, then S.�/f is in H k . However, we prefer a direct argument. Using the
formula (3.4), we see that u can be expressed as

u D
1

2�i
P.��/P.��/�ŒH;AC�u:

That is, u is equal to P.��/f 0, where f 0 D .2�i/�1P.��/�ŒH;AC�u. Now, arguing
as in the proof of the converse to Proposition 3.3, but for P.��/ instead of P.�/, we
see that f 0 is in H k.@M/. Now, applying the argument in the first half of this proof,
with signs switched, we conclude that the limit (3.28) exists in H k�2.@M/ and is
equal to f 0 2 H k.@M/.

The statement about the convergence rate is shown by applying Proposition 3.4 to
F D ŒH;A˙�u.

Remark 3.7. The previous proof shows that the operators L.˙�/ ı R.� ˙ i0/

in Proposition 3.4 coincide with ˙.2i�/�1P.��/�. Also, we remark that
L.�/ACP.�/f , the limit in (3.28), is precisely Slin.�/f , the linear scattering matrix
applied to f .

Remark 3.8. There is a subtlety here: the limiting functions in (3.27) and (3.28) are
more regular than one would expect based on the topology of convergence. In fact, the
convergence does not take place, in general, in the topology of H k.@M/. To see this,
consider the operator that maps f to r .n�1/=20 P.�/f restricted to ¹r D r0º. This is a
semiclassical FIO of order zero on @M (with 1=r0 playing the role of semiclassical
parameter) but the canonical relation has fold singularities. This is best seen in the case
of flat Euclidean space, where the phase function of this FIO is ˆ. Oz; !/ D �� Oz � !,
z D r Oz, Oz; ! 2 Sn�1. Such an FIO cannot be expected to be (and is not) bounded on
H k uniformly in r0, and hence, convergence cannot be expected to take place, even
weakly, in H k as r0 !1.

We combine the previous two propositions to obtain

Proposition 3.9. The limits in Proposition 3.4 lie in H k.@M/.
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Proof. In the notation of Proposition 3.4, we have F 2Y
s;lmaxC1I1;k�1
˙

, and therefore it
lies in both of the variable order module regularity spaces Ys;l˙C1I0;k . It follows that
u˙

..D R.�˙ i0/F lies in XsC2;l˙I0;k . In particular, u ..D uC � u� is inH sC2;k�1=2

microlocally away from small neighborhoods of RC and R�, since l˙ D�1=2 there.
(Notice that, on the characteristic set but away from the radial sets, the small module is
elliptic, so the small module regularity of order k affords k orders of spatial regularity.
Away from the characteristic set, u is rapidly decaying by microlocal ellipticity, since
.H � �2/u D 0.)

We next observe that, by (3.4), u D P.�/f 0 with f 0 D .2�i/�1P.�/�F . Using
(3.8) we see that f 0 2 L2. Applying Proposition 3.3, with k D 0, we have u D
.R.�C i0/ �R.� � i0//ŒH;AC�u. But then, since ŒH;AC�u is in H sC1;kC1=2, and
microlocalized away from RC and R�, Proposition 3.3 shows that u D P.�/f with
f 2 H k.@M/.

Consider the limit L.�/uC. We claim that is the same as L.�/ACu. In fact, the
difference is

L.�/.uC � ACu/ D L.�/.uC � ACuC � ACu�/

D L.�/.A�uC � ACu�/:

Using Remark 3.5, we see that L.�/A�uC D 0 and L.��/ACu� D 0, which implies
that L.�/ACu�D0. Thus, L.�/uCDL.�/ACu. Similarly, L.��/u�DL.��/A�u.
The conclusion then follows from applying Proposition 3.6 to u.

4. Proof of the main theorem

We now elaborate on the construction and regularity of nonlinear Helmholtz eigen-
function u, whose asymptotic behavior is the subject of the main theorem. We begin
by discussing (linear) generalized eigenfunctions.

Given f 2 H k.@M/, we let u0 D P.�/f and decompose using Proposition 3.3
into

u0 D u� C uC; u˙ D A˙u0 2 X
sC2;�1=2�ıIk;0
˙

.M/

where A˙ are as in (2.6). According to Proposition 3.6, we have

u0 D u� C uC D r
�.n�1/=2.e�i�rf .y/C eCi�rb0.y/COHk�2.r

�"//; (4.1)

where b0 is in H k.@M/.



Regularity of the scattering matrix for nonlinear Helmholtz eigenfunctions 423

To address the nonlinear problem, following [1], we obtain a nonlinear Helmholtz
eigenfunction u satisfying

u D u� C w; u solves (1.1);

u� 2 XsC2;�1=2�ıI1;k�1
� ; w 2 X

sC2;�1=2�ıI1;k�1
C ; s 2 N;

w D uC CR.�C i0/N Œu� C w�:

(4.2)

Moreover, if the nonlinearity N involves products of degree p, then, as described in
detail in [1, Section 4.2],

NŒu� C w� 2 H
s;`0I1;k�1
C

provided

`0 �
.p � 1/.n � 1/

2
�
3

2
� pı: (4.3)

The contraction mapping argument which produces this w requires that `0 D 1=2 � ı
for the same ı appearing in (2.7) and (3.18), whence the bound for p in (1.3), which
in fact allows for `0 D 1=2 C ı for ı > 0 sufficiently small to satisfy all the above
conditions. Thus, F D NŒu� C w� satisfies the assumptions of Proposition 3.4. We
conclude that

w � uC D r
�.n�1/=2ei�r.b1.y/COHk�2.r

�"//; b1 2 H
k.@M/; (4.4)

using Proposition 3.9 for the regularity of b1. Combining u D u0 C .w � uC/ using
(4.1) and (4.4) proves the asymptotic behavior stated in the main theorem, with b D
b0 C b1 2 H

k.@M/.
Now, we assume we are given k 2 N, k > .n � 1/=2, and f 2 H k.@M/ with

kf kHk.@M/ < c, as in the statement of Theorem 2. In addition, we suppose

.p � 1/.n � 1/=2 > 3

and that NŒu� only involves derivatives of u and Nu up to order one. Then by (4.3) we
can take `0 D 3=2C ı, which is to say we obtain w with

NŒu� C w� 2 H
sC1;3=2CıI1;k�1
C � H

s;1=2CıI2;k�1
C � H

s;1=2CıI1;k
C :

The first containment is because we can exchange one order of scattering differentia-
bility plus one order of spatial decay, and gain one order of module regularity. Then
applying (2.4), we see that w � uC is in the better space X

sC2;�1=2�ıI1;k
C , that is,

one additional order of small module regularity compared to (4.2). Applying Propo-
sitions 3.4 and 3.9, we have

w � uC D r
�.n�1/=2ei�r.b1.y/COHk�1.r

�"//; b1 2 H
kC1.@M/;
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Thus, under the stronger assumption on p, the decomposition b D b0C b1 holds with
b0 D Slin.�/f 2 H

k and b1 2 H kC1. If f 2 H kCj .@M/ (together with the H k

smallness assumption on f ), then u˙ 2 H
s;1=2�ıIkCj;0
˙

and by a bootstrap argument
we get b1 2 H kCjC1.@M/. In particular, since Slin.�/ is an FIO of order zero [8], if
f is in C1.@M/, then b D Slin.�/f C b1 is also in C1.@M/.

Uniqueness follows from the same considerations as in [1]. Namely, given u� 2
XsC2;�1=2�ıI1;k�1
� , as the function w above is produced using a contraction mapping

on XsC2;�1=2�ıI1;k�1
� , w D u � u� is uniquely determined in a small ball in this

space.
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