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Distinguished self-adjoint extension and eigenvalues
of operators with gaps.

Application to Dirac–Coulomb operators

Jean Dolbeault, Maria J. Esteban, and Eric Séré

Abstract. We consider a linear symmetric operator in a Hilbert space that is neither bounded
from above nor from below, admits a block decomposition corresponding to an orthogonal
splitting of the Hilbert space and has a variational gap property associated with the block decom-
position. A typical example is the Dirac–Coulomb operator defined on C1c .R3 n ¹0º;C4/. In
this paper we define a distinguished self-adjoint extension with a spectral gap and characterize
its eigenvalues in that gap by a min-max principle. This has been done in the past under tech-
nical conditions. Here we use a different, geometric strategy, to achieve that goal by making
only minimal assumptions. Our result applied to the Dirac–Coulomb-like Hamitonians covers
sign-changing potentials as well as molecules with an arbitrary number of nuclei having atomic
numbers less than or equal to 137.

1. Introduction and main result

In three space dimensions, the free Dirac operator is of the form D D �i˛ � r C ˇ

with

ˇ D

�
I2 0

0 �I2

�
; ˛k D

�
0 �k
�k 0

�
.k D 1; 2; 3/;

�1; �2; �3 being the Pauli matrices (see [30]). The Dirac–Coulomb operator isDV D
DC V where V is the Coulomb potential � �

jxj
(� > 0) or, more generally, the convo-

lution of � 1
jxj

with an extended charge density. Usually, one first defines D��=jxj on
the so-called minimal domain C1c .R

3 n ¹0º;C4/. The resulting minimal operator is
symmetric but not closed in the Hilbert spaceL2.R3;C4/. It is essentially self-adjoint
when � lies in the interval .0;

p
3=2�. In other words, its closure is self-adjoint and

there is no other self-adjoint extension. For larger constants � one must define a distin-
guished, physically relevant, self-adjoint extension and this can be done when � � 1.
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The essential spectrum of this extension is R n .�1; 1/, which is neither bounded
from above nor from below. In atomic physics, its eigenvalues in the gap .�1; 1/ are
interpreted as discrete electronic energy levels.

Important contributions to the construction of distinguished self-adjoint realisa-
tions of Dirac–Coulomb operators were made in the 1970s, see, e.g., [17, 18, 23, 24,
27, 34–36]. In these papers, general classes of potentials V are considered, but in the
case V D ��=jxj one always assumes that � is smaller than 1.

Reliable computations of the discrete electronic energy levels in the spectral gap
.�1; 1/ are a central issue in Relativistic Quantum Chemistry. For this purpose, Tal-
man [29] and Datta and Devaiah [2] proposed a min-max principle involving Rayleigh
quotients and the decomposition of four-spinors into their so-called large and small
two-components. A related min-max principle based on another decomposition using
the free-energy projectors 1R˙.D/ was proposed in [14] and justified rigorously
in [5] for � 2 .0; 2

�=2C2=�
/. An abstract version of these min-max principles deals

with a self-adjoint operator A defined in a Hilbert space H and satisfying a varia-
tional gap condition, to be specified later, related to a block decomposition under an
orthogonal splitting

H D HC ˚H�: (1.1)

Such an abstract principle was proved for the first time in [16], but its hypotheses
were rather restrictive and the application to the distinguished self-adjoint realization
of DV only gave Talman’s principle for bounded electric potentials (see also [19,
33] for related abstract principles). In [15], an improved abstract min-max princi-
ple was applied to DV with the splitting given by the free-energy projectors, for the
unbounded potential ��=jxj with � 2 .0; 0:305�. In [4], thanks to a different abstract
approach, the range of essential self-adjointness � 2 .0;

p
3=2� was dealt with, both

for Talman’s splitting and the free projectors. The articles [10,11,21,22,26] followed
and the full range � 2 .0; 1� is now covered.

Using some of the tools of [4], Esteban and Loss [12,13] proposed a new strategy
to build a distinguished, Friedrichs-like, self-adjoint extension of an abstract sym-
metric operator with variational gap and applied it to the minimal Dirac–Coulomb
operator, with � 2 .0; 1�. In [10, 11], connections were established between this new
approach and the earlier constructions for Dirac–Coulomb operators.

Important closability issues had been overlooked in some arguments of [4] and
some domain invariance questions had not been addressed properly in [12, 13] (see
the beginning of Section 3.2). In [26] these issues are clarified and the self-adjoint
extension problem considered in [12,13] is connected to the min-max principle for the
eigenvalues of self-adjoint operators studied in [4]. The abstract results in [26] have
many important applications, but some examples are not covered yet, due to an essen-
tial self-adjointness assumption made on one of the blocks. In the corrigendum [8]
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of [4], we present another way of correcting the arguments of [4] thanks to a new
geometric viewpoint. In the present work, by adopting this viewpoint, we are able to
completely relax the essential self-adjointness assumption of [26]. Additionally, our
variational gap assumption is more general, as it covers a class of multi-center Dirac–
Coulomb Hamiltonians in which the lower min-max levels fall below the threshold of
the continuous spectrum (see, e.g., [6] for a study of such operators): we shall use the
image that some eigenvalues dive into the negative continuum.

Before going into the detail of our assumptions and results, we fix some general
notations that will be used in the whole paper. We consider a Hilbert space H with
scalar product h�; �i and associated norm k � k. When the sum V CW of two subspaces
V , W of H is direct in the algebraic sense, we use the notation V PCW . We reserve
the notation V ˚W to topological sums. We adopt the convention of using the same
letter to denote a quadratic form q.�/ and its polar form q.�; �/. We use the notations
D.q/ for the domain of a quadratic form q, D.L/ for the domain of a linear operator
L and R.L/ for its range. The space D.L/ is endowed with the norm

kxkD.L/ WD
p
kxk2 C kLxk2; for all x 2 D.L/:

We denote the resolvent set, spectrum, essential spectrum and discrete spectrum of a
self-adjoint operator T by �.T /, �.T /, �ess.T / and �disc.T / respectively.

Let us briefly recall the standard Friedrichs extension method. Let S WD.S/!

H be a densely defined operator. Assume that S is symmetric, which means that
hSx; yi D hx; Syi for all x, y 2 D.S/. If the quadratic form s.x/ WD hx; Sxi asso-
ciated to S is bounded from below, i.e., if

`1 WD inf
x2D.S/n¹0º

s.x/

kxk2
> �1;

then S has a natural self-adjoint extension T , which is called the Friedrichs extension
of S and can be constructed as follows (see, e.g. [25] for more details). First of all,
since the quadratic form s is bounded from below and associated to a densely defined
symmetric operator, it is closable in H . Denote its closure by Ns. Take ` < `1, so
that Ns.�; �/ � `h�; �i is a scalar product on D.Ns/ giving it a Hilbert space structure. By
the Riesz isomorphism theorem, for each f 2 H , there is a unique uf 2 D.Ns/ such
that Ns.v; uf / � `hv; uf i D hv; f i for all v 2 D.Ns/. Note that uf is also the unique
minimizer of the functional 	f .u/ WD

1
2
.Ns.u/ � `kuk2/ � hu; f i in D.Ns/. The map

f 7! uf is linear, bounded and self-adjoint for h�; �i. Its inverse is T � `idH and
one easily checks that T does not depend on `: this operator is just the restriction of
S� to D.Ns/ \D.S�/. An important property of the Friedrichs extension is that the
eigenvalues of T below its essential spectrum, if they exist, can be characterized by
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the classical Courant–Fisher min-max principle: for every positive integer k, the level

`k WD inf
V subspace of D.S/

dimVDk

sup
x2V n¹0º

s.x/

kxk2

is either the bottom of � ess.T / (in the case j̀ D `k for all j � k) or the k-th eigenvalue
of T (counted with multiplicity) below � ess.T /.

In the special case of the Laplacian in a bounded domain � of Rd with smooth
boundary, S D��WC1c .�/! L2.�/, one has D.Ns/DH 1

0 .�/ and the construction
of the Friedrichs extension T corresponds to the weak formulation in H 1

0 .�/ of the
Dirichlet problem: ��u D f in �, u D 0 on @�. In other words, uf is the unique
function in H 1

0 .�/ such that for all v 2 H 1
0 .�/,

R
�
ruf � rvdx D

R
�
f vdx. So,

T is the self-adjoint realization of the Dirichlet Laplacian. By regularity theory, we
learn that D.T / D H 2.�/ \H 1

0 .�/.
From now on, in this paper, we consider a dense subspaceF of H and a symmetric

operator AWF ! H . We do not assume that the quadratic form a.x/ WD hx; Axi is
bounded from below, so we cannot apply the standard Friedrichs extension theorem
to A. We introduce an orthogonal splitting H D HC ˚ H� of H as in (1.1). We
denote by

ƒ˙WH ! H˙

the orthogonal projectors associated to this splitting. We make the following assump-
tions:

FC WD ƒCF and F� WD ƒ�F are subspaces of F (H1)

and

�0 WD sup
x�2F�n¹0º

a.x�/

kx�k2
< C1: (H2)

We also make the variational gap assumption that

for some k0 � 1, we have �k0 > �k0�1 D �0 (H3)

where the min-max levels �k .k � 1/ are defined by

�k WD inf
V subspace of FC

dimVDk

sup
x2.V˚F�/n¹0º

a.x/

kxk2
: (1.2)

In order to construct a distinguished self-adjoint extension ofA, forE >�0 we are
going to decompose the quadratic form a �Ek � k2 as the difference of two quadratic
forms qE and NbE with qE bounded from below and closable, while NbE is positive and
closed. Before stating our main result, let us define these quadratic forms.
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We first introduce a quadratic form b on F�:

b.x�/ D �a.x�/ D hx�; .�ƒ�A �F�/x�i for all x� 2 F�: (1.3)

For E > �0, it is convenient to define the associated form

bE .x�/ D b.x�/CEkx�k
2 for all x� 2 F�: (1.4)

As a consequence of assumption (H2) and of the symmetry of �ƒ�A �F� ; we have
that

bE is positive definite for all E > �0 and b is closable in H�. (b)

We denote by Nb the closure of b and by NbE D Nb C Ek � k2 the closure of bE , their
domain being D. Nb/. We can consider the Friedrichs extension B of � ƒ�A �F� .
For every parameter E > �0, the operator B C EWD.B/ ! H� is invertible with
bounded inverse. This allows us to define the operator LE WFC ! D.B/ such that

LExC WD .B CE/
�1ƒ�AxC; for all xC 2 FC: (1.5)

We then introduce the subspace

�E WD ¹xC C LExCW xC 2 FCº � FC ˚D.B/: (1.6)

Making an abuse of terminology justified by the isomorphism

FC ˚D.B/ � FC �D.B/;

we call �E the graph of LE . On this space, we define a quadratic form qE by

qE .xC C LExC/ WD hxC; .A �E/xCi C hLExC; .B CE/LExCi: (1.7)

Denoting by x�E the closure of �E in H and by…E the orthogonal projection on x�E ,
we may write

qE .x/ D hx; SExi; for all x 2 �E ;

where
SE WD …E .ƒC.A �E/ƒC Cƒ�.B CE/ƒ�/ ��E : (1.8)

The operator SE is symmetric and densely defined in the Hilbert space .x�E ;

h�; �i �x�E�x�E /. It is one of the two Schur complements associated with the block
decomposition of the operator A � EidH under the orthogonal splitting H D HC ˚

H�. Further details on qE , SE are given in Section 2. In particular, in Section 2.1 the
decomposition of a �Ek � k2 in terms of qE , NbE is given. Note that in [4] (before its
corrigendum [8]) as well as in [12,13,26], the form Nb was already present and a form
analogous to qE was defined, but its domain was FC instead of �E .

The main result of this paper is as follows.
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Theorem 1. Let A be a densely defined symmetric operator on the Hilbert space
H with domain F . Assume (H1), (H2), and (H3) and take E > �0. With the above
notations, the quadratic forms b and qE are bounded from below, b is closable in H�,
qE is closable in x�E and they satisfy

D. NqE / \D. Nb/ D ¹0º:

The operator A admits a unique self-adjoint extension zA such that

D. zA/ � D. NqE / PCD. Nb/:

The domain of this extension is

D. zA/ D D.A�/ \ .D. NqE / PCD. Nb//

and it does not depend on E.
Writing

�1 WD lim�k 2 .�0;1�

one has
�1 D inf.� ess. zA/ \ .�0;C1//:

In addition, the numbers �k (k � 1) satisfying �0 < �k < �1 are all the eigenvalues
– counted with multiplicity – of zA in the spectral gap .�0; �1/.

Theorem 1 deserves some comments.

• In some situations, one encounters a symmetric operator A that does not sat-
isfy (H1) but has the weaker propertyƒ˙D.A/�D. xA/, where xA denotes the closure
of A. This happens for instance if one defines a Dirac–Coulomb operator on a “mini-
mal” domain consisting of compactly supported smooth functions, and one considers
the splitting associated with the free energy projectorsƒ˙ D 1R˙.D/; see the exam-
ple of Section 6.2. In such a case one can replace A by its symmetric extension
xA �ƒCD.A/˚ƒ�D.A/. Then (H1) is automatically satisfied by the new domain and

it remains to check that the new operator satisfies (H2)–(H3) before applying Theo-
rem 1.

• In the earlier works [4–6,10,15,16,21,22,26] on the min-max principle in gaps,
one assumes that �1 > �0; which amounts to consider assumption (H3) with k0 D 1.
Allowing k0 � 2 can be important in some applications; see Section 6. The abstract
min-max principle for eigenvalues in the case k0 � 2 was first considered in [7], but
in that paper (H2) was replaced by a much more restrictive assumption. Moreover, the
proof in [7] was based on the arguments of [4], so it suffered from the same closability
issue solved in [26] and the corrigendum [8] of [4]: the closure of LE was used but
its existence was not proved.
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• Compared with [13, 26], another important novelty is that for constructing
zA we do not need the operator � ƒ�A �F� to be self-adjoint or essentially self-

adjoint in H�. This assumption was used in [26] to prove that LE is closable, while
in the present work this closability is not needed thanks to a new geometric view-
point: instead of trying to close LE we consider the subspace x�E , which of course
always exists, but is not necessarily a graph. As pointed out in [26], essential self-
adjointness of �ƒ�A �F� holds true in many important situations. However, there
are also interesting examples for which it does not hold true. An application to Dirac–
Coulomb operators in which the essential self-adjointness of �ƒ�A �F� does not
hold true is described in Section 6.2. Let us give a simpler example: on the domain
F WD .C1c .�;R//

2 consider the operator

A

�
u

v

�
WD

�
��u

�v

�
(1.9)

taking values in H D .L2.�;R//2, where � is a bounded open subset of Rd with
smooth boundary. In this case one takes

ƒC

�
u

v

�
D

�
u

0

�
; ƒ�

�
u

v

�
D

�
0

v

�
and (H1) holds true. If �.�/ > 0 is the smallest eigenvalue of the Dirichlet Laplacian
on �, we have �0 D ��.�/ in (H2) and �1 D �.�/ > �0, so (H3) with k0 D 1

holds true. But �ƒ�A �F� is the Laplacian defined on the minimal domain ¹0º �
C1c .�;R/, and it is well known that this operator is not essentially self-adjoint in
¹0º � L2.�;R/, so one cannot apply the abstract results of [13, 26]. In this example,
the distinguished extension given by Theorem 1 is easily obtained as follows. One
checks that

D. Nb/ D ¹0º �H 1
0 .�;R/;

D. NqE / D H
1
0 .�;R/ � ¹0º;

D.A�/ D .H 2.�;R//2:

So, denoting by �.D/ the Dirichlet Laplacian with domain H 2.�;R/ \H 1
0 .�;R/,

one finds that
zA D

�
��.D/ 0

0 �.D/

�
:

• In [26], it is proved that the extension zA is unique among the self-adjoint
extensions whose domain is included in ƒCD. NqE / ˚H�, assuming that the oper-
ator �ƒ�A �F� is essentially self-adjoint. But the above example shows that with-
out this assumption, such a uniqueness result does not hold true in general. Indeed,
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since �WC1c .�;R/! L2.�;R/ is not essentially self-adjoint, the operator A given
by (1.9) has infinitely many self-adjoint extensions with domains included in
ƒCD. NqE /˚H�. For instance, one can take

yA D

�
��.D/ 0

0 �.N/

�
with �.N/ the self-adjoint extension of � associated with the Neumann boundary
condition rv � n D 0, where n denotes the outward normal unit vector on @�. Obvi-
ously, yA ¤ zA.

• As we will see in Section 6.1, when dealing with the Dirac–Coulomb operator
D��=jxj with Talman’s splitting, it is natural to choose F D C1c .R

3 n ¹0º;C4/. Then
the large and small two-components appearing in Talman’s min-max principle are
taken in C1c .R

3 n ¹0º;C2/. But other functional spaces can be used for these com-
ponents. In [21, 22] an abstract min-max principle is stated in the setting of quadratic
forms and applied to Talman’s min-max principle with H 1=2.R3;C2/ as space of
large and small two-components, under the condition � 2 .0; 1/. However, it seems
that some closability issues are present in the proof of the abstract principle, as in [4].
We do not know whether the geometric approach of the present paper could be adapted
to the framework of [21] in order to avoid these closability issues without additional
assumptions. Note that, by a completely different approach, Talman’s min-max prin-
ciple is proved in [10] for all � 2 .0; 1�, with arbitrary spaces of large and small
two-components lying between C1c .R

3 n ¹0º;C2/ and H 1=2.R3;C2/.

Concerning the proof of Theorem 1, we emphasize three main facts.

(1) The quadratic form qE .x/D hx;SExi is bounded from below for all E > �0,
so that it has a closure NqE in x�E and SE has a Friedrichs extension TE . This fact will
allow us to define the distinguished extension zA as the restriction of A� to D.A�/ \

.D. NqE / CD. Nb//. We will prove its symmetry thanks to a formula expressing the
product h. zA � E/X; U i in terms of NqE and NbE , for X 2 D. zA/ and U 2 D. NqE /C

D. Nb/. This formula will be deduced by density arguments from a decomposition of
a �Ek � k2 as the difference of qE and NbE .

(2) The self-adjoint operator TE is invertible for all �0 < E < �k0 . Combined
with the (obvious) invertibility of B C E, this fact will allow us to construct the
inverse of the distinguished extension zA�E, by using once again the formula relating
h. zA � E/X; U i to NqE and NbE . Then, by a classical argument, we will conclude that
zA is self-adjoint.

(3) Although we are not able to prove that x�E is a graph above HC, we will see
that the sum x�E C D. Nb/ is direct in the algebraic sense. More importantly, if we
denote by �E W x�E PCD. Nb/! x�E and � 0E W x�E PCD. Nb/!D. Nb/ the associated projec-
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tors, the linear map

X 2 D. zA/ 7! .�EX;�
0
EX/ 2

x�E �D. Nb/

is continuous for the norms kXk
D. zA/ and k�EXk C k� 0EXk. Thanks to this fact, we

will be able to give a relation between the spectra of zA and TE which will allow us to
prove the min-max principle for the eigenvalues of zA above �0.

For k0 D 1 the facts (1) and (2) are a consequence of the positivity of qE for
E 2 .�0; �1/ and of the Riesz isomorphism theorem. When k0 � 2 the positivity is
lost, but these two key facts still hold true for other reasons to be given in the proofs
of Proposition 6 and Lemma 7 and in Remark 8.

The paper is organized as follows. In Section 2, we study the quadratic form qE

under assumptions (H1) and (H2). In Section 3, under the additional condition (H3)
we prove that qE is bounded from below, then we study its closure NqE and the
Friedrichs extension TE . The self-adjoint extension zA is constructed in Section 4 and
the abstract version of Talman’s principle for its eigenvalues is proved in Section 5,
which ends the proof of Theorem 1. Section 6 is devoted to Dirac–Coulomb operators
with charge configurations that are not covered by earlier abstract results.

2. The quadratic form qE

The results of this section are essentially contained in the earlier works [4, 13, 26],
we recall them here for the reader’s convenience. We first give a more intuitive inter-
pretation of the objects LE , qE that have been defined in the introduction. Then we
define a sequence of min-max levels for qE that will be related to the min-max levels
�k of A in Section 5.

2.1. A family of maximization problems

In this section we motivate the definition of LE and qE given in the introduction.
Consider the eigenvalue equation .A � E/x D 0 with unknowns x 2 F and E 2 R.
Writing xC WD ƒCx, y� WD ƒ�x and projecting both sides of the equation on H�,
one gets

ƒ�AxC Cƒ�.A �E/y� D 0

which is also the Euler–Lagrange equation for the problem

sup
y�2F�

hxC C y�; .A �E/.xC C y�/i:

Given xC in FC, one can try to look for a solution y�. In general, the problem is
not solvable in F� but one can consider a larger space in which a solution exists.
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We denote by LExC the generalized solution. In order to make these explanations
more precise, we need to express the quadratic form a �Ek � k2 in terms of qE , NbE .

Given xC 2 FC and E > �0, let 'E;xC WF� ! R be defined by

'E;xC.y�/ WD hxC C y�; .A �E/.xC C y�/i; for all y� 2 F�;

One easily sees that 'E;xC has a unique continuous extension to D. Nb/ which is the
strictly concave function

N'E;xC Wy� 2 D. Nb/ 7! hxC; .A �E/.xC/i C 2RehAxC; y�i � NbE .y�/:

The main result of this section is the following.

Proposition 2. Let A be a symmetric operator on the Hilbert space H . Assume
hypotheses (H1) and (H2), take E > �0, and remember the definition (1.7) of qE .
Then

• one has the decomposition

hX; .A �E/Xi D qE .ƒCX C LEƒCX/

� NbE .ƒ�X � LEƒCX/; for all X 2 F I (2.1)

• for each xC 2 FC, LExC is the unique maximizer of N'E;xC and one has

qE .xC C LExC/ D N'E;xC.LExC/

D max
y�2F�

N'E;xC.y�/

D sup
y�2F�

'E;xC.y�/: (2.2)

Proof. If X 2 F , taking xC WD ƒCX 2 FC, y� WD ƒ�X 2 F� and z� WD y� �

LExC 2 D.B/, we obtain

hX; .A �E/Xi D hxC; .A �E/xCi C 2RehAxC; y�i � hy�; .B CE/y�i

D hxC; .A �E/xCi C 2RehLExC; .B CE/y�i

� hy�; .B CE/y�i

D hxC; .A �E/xCi C hLExC; .B CE/LExCi

C RehLExC; .B CE/z�i � Rehz�; .B CE/y�i

D hxC; .A �E/xCi C hLExC; .B CE/LExCi

� hz�; .B CE/z�i;

which proves (2.1). Now, given xC 2 FC this identity can be rewritten in the form

'E;xC.y�/ D qE .xC C LExC/ �
NbE .y� � LExC/; for all y� 2 F�:
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By density of F� in the Hilbert space .D. Nb/; NbE .�; �// one thus has

N'E;xC.y�/ D qE .xC C LExC/ �
NbE .y� � LExC/; for all y� 2 D. Nb/

and by the positivity of NbE one concludes that (2.2) holds true, which completes the
proof.

2.2. The min-max levels for qE

If assumptions (H1) and (H2) hold true, to each E > �0 we may associate the nonde-
creasing sequence of min-max levels .`k.E//k�1 defined by

`k.E/ WD inf
V subspace of �E

dimVDk

sup
x2V n¹0º

qE .x/

kxk2
2 Œ�1;C1/: (2.3)

We may also define the (possibly infinite) multiplicity numbers

mk.E/ WD card¹k0 � 1W `k0.E/ D `k.E/º � 1: (2.4)

In this section we analyze the dependence on E of the quadratic form qE and its
associated min-max levels. The results are summarized in the following proposition.

Proposition 3. Assume that (H1) and (H2) of Theorem 1 are satisfied. Then

• for all �0 < E < E 0 and for all xC 2 FC, we have

kxC C LE 0xCk � kxC C LExCk �
E 0 � �0

E � �0
kxC C LE 0xCk (2.5)

and

.E 0 �E/kxC C LE 0xCk
2
� qE .xC C LExC/ � qE 0.xC C LE 0xC/

� .E 0 �E/kxC C LExCk
2
I (2.6)

• for every positive integer k and all � > �0, one has

`k.�/ � �k � �I (2.7)

• for every positive integer k, if �k > �0 then for all � > �0, one has

`k.�/ � .�k � �/
� � � �0
�k � �0

�2
: (2.8)

As a consequence, when �k > �0 the min-max level `k.�/ is finite for every � > �0.
It is positive when �0 < � < �k , negative when � > �k and one has `k.�/ D 0 if and
only if � D �k . Therefore, the formula mk.�k/ D card¹k0 � 1W�k0 D �kº holds true.



J. Dolbeault, M. J. Esteban, and E. Séré 502

Proof. Both formula (2.5) and (2.6) as well as their detailed proof can be found in [4,
Lemma 2.1] and [26, Lemma 2.4], so here we just give the main arguments. In order
to prove (2.5) one can start from the fact that for all t � ��0,

.t CE 0/�1 � .t CE/�1 �
E 0 � �0

E � �0
.t CE 0/�1:

Then one can use the inclusion �.B/ � Œ��0;1/ and the definition of LE . In order
to prove (2.6), one notices that this formula is equivalent to the two inequalities
N'E .LE 0xC/ � qE .xC CLExC/ and N'E 0.LExC/ � qE 0.xC CLE 0xC/, which both
hold true thanks to (2.2).

We now prove (2.7) and (2.8). By definition of �k , for each " > 0 there is a
k-dimensional subspace V" of FC such that for all xC 2 V" and y� 2 F�, a.X/ �
.�k C "/kXk

2 withX D xCC y�. IfE 2 .�0;1/, then this inequality can be rewrit-
ten as

'E;xC.y�/ � .�k �E C "/kxC C y�k
2:

By a density argument, one infers that the inequality

N'E;xC.y�/ � .�k �E C "/kxC C y�k
2

holds true for all y� 2 D. Nb/. Choosing y� D LExC and using (2.2), one gets the
estimate qE .x/ � .�k �E C "/kxk2 with x D xC C LExC, hence

sup
x2W"n¹0º

qE .x/

kxk2
� �k �E C "

withW" WD ¹x 2 �E WƒCx 2 V"º: Since " is arbitrary and dim.W"/D k, we conclude
that (2.7) holds true.

On the other hand, using once again the definition of �k , we find that for each
" > 0 and each k-dimensional subspace W of ��k , there is a nonzero vector x" in
the k-dimensional space V WD ƒCW � FC and a vector y" 2 F� such that a.X"/ �
.�k � "/kX"k

2 with X" D x" C y". If �k > �0, after imposing " < �k � �0 we get
'�k�";x".y"/� 0, hence, invoking (2.2), q�k�".x"CL�k�"x"/� 0. Then, using (2.5)
and (2.6) with the choices E D �k � ", E 0 D �k , we get

q�k .x" C L�kx"/ � q�k�".x" C L�k�"x"/ � "kx" C L�k�"x"k
2

� �"
� �k � �0

�k � " � �0

�2
kx" C L�kx"k

2:

Since W and " are arbitrary, we thus have `k.�k/ � 0: Combining this with (2.7), we
see that `k.�k/ D 0.
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It remains to study the case �k > �0 and � 2 .�0;1/ n ¹�kº. We take an arbitrary
k-dimensional subspace �W of ��. We define

V WD ƒC �W � FC
and

W WD ¹x D xC C L�kxCW xC 2 V º � ��k :

ThenW is also k-dimensional, so one has supx2W n¹0º
q�k .x/

kxk2
� 0, from what we have

just seen. So, by compactness of the unit sphere for k � k of the k-dimensional spaceW
and the continuity of q�k on this space, there is x0 2 V such that kx0 C L�kx0k D 1
and q�k .x0CL�kx0/� 0. In order to bound q�.x0CL�x0/ from below, we use (2.5)
and (2.6) with E D min.�; �k/ and E 0 D max.�; �k/. We get

q�.x0 C L�x0/ � .�k � �/kx0 C L�kx0k
2

� .�k � �/
� � � �0
�k � �0

�2
kx0 C L�x0k

2:

Since �W is arbitrary, we conclude that (2.8) holds true.
The last statements of Proposition 3 – finiteness and sign of `k.�/, the fact that

�k is the unique zero of `k – are an immediate consequence of (2.7) and (2.8). Note
that this characterization of �k as unique solution of a nonlinear equation was already
stated and proved in [4, Lemma 2.2 (c)] and [26, Lemma 2.8 (iii)].

Remark 4. Assumptions (H1) and (H2) are rather easy to check in practice, but
checking (H3) is more delicate. The second point in Proposition 3 provides a way
to do this: one just has to prove that for some k0 � 1 and E0 > �0 the level `k0.E0/
is nonnegative, which implies that �k0 � E0. In Section 6 we will apply this method
to one-center and multi-center Dirac–Coulomb operators.

Remark 5. The numerical calculation of eigenvalues in a spectral gap is a delicate
issue, due to a well-known phenomenon called spectral pollution: as the discretiza-
tion is refined, one sometimes observes more and more spurious eigenvalues that do
not approximate any eigenvalue of the exact operator (see [20]). It is possible to elim-
inate these spurious eigenvalues thanks to Talman’s min-max principle. A method
inspired of Talman’s work was proposed in [6, 9]. The idea was to calculate each
eigenvalue �k as the unique solution of the problem `k.�/ D 0. This method is free
of spectral pollution, but solving nonlinear equations has a computational cost. The
estimates (2.7) and (2.8) proved in the present work suggest a fast and stable iter-
ative algorithm that could reduce this cost. Starting from a value E.0/ comprised
between �0 and �k , one can compute a sequence of approximations by the formula
E.jC1/ D E.j / C `k.E

.j //. From (2.7), one proves by induction that for all j � 0,
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one has E.j / 2 .�0; �k/, E.jC1/ � E.j / D `k.E.j // > 0 and E.j / converges mono-
tonically to �k . Moreover, combining the inequalities (2.7) and (2.8) one finds that for
jhj small, hC `k.�k C h/D O.h2/. So, E.j / converges quadratically to �k . It would
be interesting to perform numerical tests of this algorithm in practical situations.

3. The closure NqE and the Friedrichs extension TE

In this section, under assumptions (H1), (H2), and (H3) we prove that the form qE is
bounded from below and closable, so that the Schur complement SE has a Friedrichs
extension TE . We then relate the spectrum of TE to the min-max levels �k . Finally,
we construct a natural isomorphism between the domains of NqE and NqE 0 for all
E; E 0 > �0.

3.1. Construction of NqE and TE

In this section we are going to prove the following result.

Proposition 6. Let A be a symmetric operator on the Hilbert space H . Assum-
ing (H1), (H2), and (H3) and with the above notations,

• for each E > �0, the quadratic form qE .x/ D hx; SExi is bounded from below
hence closable in x�E and SE has a Friedrichs extension TE ;

• ifE 2 .�0;�1/ n ¹�k Wk � k0º, then TE WD.TE /! x�E is invertible with bounded
inverse; if �0 < �k < �1, then 0 is the k-th eigenvalue of T�k counted with
multiplicity; moreover, its multiplicity is finite and equal to card¹k0 � 1W�k0 D �kº.
If �k D �1 for some positive integer k, then 0 D min � ess.T�k /.

The main tool in the proof of Proposition 6 is the following result.

Lemma 7. Under assumptions (H1), (H2), and (H3), for every E > �0, there is
�E > 0 such that qE C �Ek � k2 � k � k2 on �E .

Proof. We distinguish two cases depending on the value of k0Dmin¹k � 1W�k >�0º.
When k0 D 1, one has �1 > �0 and q�1.x/ � 0 for all x 2 ��1 . So, using the

inequalities (2.5) and (2.6), one finds that for all E > �0 and x 2 �E , qE .x/ C
�Ekxk

2 � kxk2, with

�E WD 1Cmax¹0; .E � �1/º
� E � �0
�1 � �0

�2
:

When k0 � 2, we need a different argument and the formula for �E is less explicit.
As in the case k0 D 1, we just have to find a constant �E for some E > �0; then



Distinguished self-adjoint extension and eigenvalues of operators with gaps 505

the inequalities (2.5) and (2.6) will immediately imply its existence for all E > �0.
We take E 2 .�0; �k0/. Since �k0�1 D �0 < E, by the second point of Proposition 3
we have `k0�1.E/ 2 Œ�1; 0/. So, there is a .k0 � 1/-dimensional subspaceW of �E
such that

`0 WD sup
w2W n¹0º

qE .w/

kwk2
2 .�1; 0/:

Let C WD sup¹kSEwkWw 2 W; kwk � 1º. This constant is finite, since the space W
is finite-dimensional. We now consider an arbitrary vector x in �E and we look for a
lower bound on qE .x/. We distinguish two cases.

First case: x 2 W . Then qE .x/ D hx; SExi � �Ckxk2.

Second case: x … W . Then the vector space span¹xº ˚W has dimension k0. Since
�k0 > E > �0, by the third point of Proposition 3 we obtain `k0.E/ > 0, so there is
a vector w0 2 W such that qE .x C w0/ � 0. Then we have

qE .x/ D qE .x C w0/ � 2Rehx; SEw0i � qE .w0/

� �2Ckxkkw0k C j`
0
jkw0k

2
� �

C 2

j`0j
kxk2:

In all cases, if we choose �E D 1 C max¹C; C 2=j`0jº, we get qE .x/ C �Ekxk2 �
kxk2. This completes the proof of the lemma.

Proof of Proposition 6. As mentioned in the introduction, we have qE .x/Dhx;SExi,
where SE W�E ! x�E is the Schur complement of the block decomposition of A �E
under the splitting H DHC˚H� given by formula (1.8). The operator SE is densely
defined in the Hilbert space x�E and it is clearly symmetric, moreover we have just
seen that qE is bounded from below, so qE is closable in x�E . We denote its closure
by NqE . We call TE the Friedrichs extension of SE in x�E . With

`1.E/ WD lim
k!1

`k.E/;

the classical min-max principle implies that the levels `k.E/ such that `k.E/ <
`1.E/ are all the eigenvalues of TE below `1.E/ counted with multiplicity, and
one has `1.E/ D inf � ess.TE /. So we have the following cases.

If E 2 .�0; �1/ n ¹�k W k � 1º, then by Proposition 3, one has 0 < `1.E/ and 0
is not in the set ¹`k.E/W k � 1º. As a consequence, it is not in the spectrum of TE , so
TE is invertible with bounded inverse.

If E D �k with �0 < �k < �1, then, using once again Proposition 3, we find that
`k.E/ D 0 and `1.E/ > 0. So, 0 is an eigenvalue of TE of finite multiplicity equal
to mk.�k/ where mk has been defined in (2.4). From Proposition 3, mk.�k/ equals
card¹k0 � 1W�k0 D �kº.
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If �k D �1, then for all k0 � k one has �k0 D �k , so 0D `k0.�k/ by Proposition 3.
In other words, 0 D `1.�k/. Then the classical min-max theorem implies that 0 D
min � ess.T�k /.

Proposition 6 is thus proved.

Remark 8. When k0 D 1 and �0 < E < �1, the closed quadratic form NqE is positive
definite and the invertibility of TE is just a consequence of the Riesz isomorphism
theorem.

3.2. A family of isomorphisms

In the earlier works [4] (before its corrigendum [8]) and [12,13,26], qE was seen as a
quadratic form on FC and the domain of its closure was independent ofE. Note, how-
ever, that the existence of the closure was claimed without proof in [4] and this was a
serious gap. Moreover, the proof of the domain invariance was based on an incorrect
estimate in [12, Proposition 2] and was incomplete in [13], but this domain invariance
problem is easily fixed using [4, inequalities (10)–(11)] which are called (2.5)–(2.6)
in the present work.

In our situation, since we do not know whetherLE is closable or not, it is essential
to define qE on �E and then to close it in x�E . So, the domain of qE cannot be
independent ofE: indeed, it is a subspace of x�E which itself depends onE. However,
if we endow each space D. NqE / with the norm kxkD. NqE/ WD

p
NqE .x/C �Ekxk2,

there is a natural isomorphism O{E;E 0 between any two Banach spaces D. NqE / and
D. NqE 0/, as explained in the next proposition.

Proposition 9. Under conditions (H1), (H2), and (H3), for E, E 0 2 .�0;1/; the
linear map iE;E 0 W xC C LExC 7! xC C LE 0xC can be uniquely extended to an iso-
morphism O{E;E 0 between the Banach spaces D. NqE / and D. NqE 0/ which can itself be
uniquely extended to an isomorphism N{E;E 0 between x�E and x�E 0 for the norm k � k.
Moreover, one has the formula

N{E;E 0.x/ D x C .E �E
0/.B CE 0/�1ƒ�x; for all x 2 x�E : (3.1)

Proof. The linear map iE;E 0 is obviously a bijection between �E and �E 0 , of inverse
iE 0;E . The estimates (2.5) and (2.6) of Proposition 3 imply that iE;E 0 is an isomor-
phism for the norm k � k as well as for the norms k � kD. NqE/ and k � kD. NqE0 /, hence
the existence and uniqueness of the successive continuous extensions O{E;E 0 and N{E;E 0 ,
that are isomorphisms of inverses O{E 0;E and N{E 0;E .

From the formulaLExCD .B CE/�1ƒ�AxC one easily gets the resolvent iden-
tity

LE 0xC D LExC C .E �E
0/.B CE 0/�1LExC; for all xC 2 FC
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which is the same as

N{E;E 0.x/ D x C .E �E
0/.B CE 0/�1ƒ�x; for all x 2 �E :

By continuity of N{E;E 0 , .B C E 0/�1 and ƒ� for the norm k � k, one can extend the
above formula to x�E and this ends the proof of the proposition.

Proposition 9 has the following consequence which will be useful in the next
section.

Corollary 10. Assume that conditions (H1), (H2), and (H3) hold true. Let E, E 0 >
�0. Then

D. NqE 0/CD. Nb/ D D. NqE /CD. Nb/: (3.2)

Proof. From formula (3.1), for each x 2D. NqE / one has O{E;E 0.x/� x 2D.B/, hence

D. NqE 0/ � D. NqE /CD.B/ � D. NqE /CD. Nb/;

which of course implies the inclusion

D. NqE 0/CD. Nb/ � D. NqE /CD. Nb/:

Exchanging E and E 0, one gets the reverse inclusion, so (3.2) is proved.

4. The distinguished self-adjoint extension

In this section, we continue with the proof of Theorem 1 by constructing the distin-
guished self-adjoint extension zA and studying some properties of its domain that will
be useful in the sequel. But before doing this, we need to establish a decomposition
of the product h.A� �E/X;U i under weak assumptions on the vectors X , U .

4.1. A useful identity

In this section we state and prove an identity that plays a crucial role in the construc-
tion and study of zA.

Proposition 11. Assume that conditions (H1), (H2), and (H3) hold true. Let x, u 2
D. NqE / and z�, v� 2 D. Nb/ be such that X D x C z� 2 D.A�/. Then, with U D
uC v�, we have

h.A� �E/X;U i D NqE .x; u/ � NbE .z�; v�/ (4.1)

for every E > �0.
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Proof. Formula (2.1) of Proposition 2 exactly says that for all X D x C z� 2 F with
x D ƒCX C LEƒCX and z� D ƒ�X � LEƒCX , one has

hX; .A �E/Xi D hx; SExi � hz�; .B CE/z�i:

This relation between quadratic forms directly implies a formula involving their polar
forms: for all X D x C z� 2 F and U D uC v� 2 F with x D ƒCX C LEƒCX ,
uDƒCU CLEƒCU , z� Dƒ�X �LEƒCX and v� Dƒ�U �LEƒCU , one has

hx C z�; .A �E/U i D hx; SEui � hz�; .B CE/v�i: (4.2)

In order to prove Proposition 11, we have to generalize (4.2) to larger classes of vec-
tors X;U . We proceed in two steps.

First step: we fix U D uC v� in F , with u D ƒCU C LEƒCU and v� D ƒ�U �
LEƒCU . If x D 0 and X D z� 2 F�, the identity (4.2) holds true and reduces to

hz�; .A �E/U i D �hz�; .B CE/v�i: (4.3)

Both sides of (4.3) are continuous in z� for the norm k � k, and we recall that F� is
dense in H�. So (4.3) remains true for all z� 2 H�.

Now, in the special case X D xC 2 FC, x D xCCLExC and z� D �LExC, the
identity (4.2) becomes

hxC; .A �E/U i D hx; SEui C hLExC; .B CE/v�i:

We may also apply (4.3) to z� D �LExC and we get

�hLExC; .A �E/U i D hLExC; .B CE/v�i:

Subtracting these two identities, we find

hx; .A �E/U i D hx; SEui; for all x 2 �E : (4.4)

Both sides of (4.4) are continuous in x for the norm k � k, so (4.4) remains true for all
x 2 x�E .

Then, for x 2 x�E and z� 2H�, we may add (4.3) and (4.4). We conclude that (4.2)
remains valid for all x 2 x�E and z� 2 H�. When x 2 D. NqE / and z� 2 D. Nb/, this
identity may be rewritten in the form

hx C z�; .A �E/U i D NqE .x; u/ � NbE .z�; v�/: (4.5)

In particular, when X D x C z� 2 D.A�/ with x 2 D. NqE / and z� 2 D. Nb/, one
obtains the equality

h.A� �E/X;U i D NqE .x; u/ � NbE .z�; v�/: (4.6)
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This formula is the same as (4.1) under the additional assumptions U 2 F , u 2 �E
and v� D U � u 2 D.B/.

Second step: we fix X D x C z� 2 D.A�/ with x 2 D. NqE /, z� 2 D. Nb/. If u D 0
and v� D U 2 F�, the identity (4.6) holds true and reduces to

h.A� �E/X; v�i D � NbE .z�; v�/: (4.7)

Both sides of (4.7) are continuous in v� for the norm k � k
D. Nb/ and we recall that F�

is dense in D. Nb/ for this norm. So (4.7) remains true for all v� 2 D. Nb/.
Now, in the special case U D uC 2 FC, u D uC C LEuC and v� D �LEuC,

the identity (4.6) becomes

h.A� �E/X; uCi D NqE .x; u/C NbE .z�; LEuC/:

We may also apply (4.7) to v� D �LEuC 2 D.B/ � D. Nb/ and we get

�h.A� �E/X;LEuCi D NbE .z�; LEuC/:

Subtracting these two identities, we find

h.A� �E/X; ui D NqE .x; u/; for all u 2 �E : (4.8)

Both sides of (4.8) are continuous in u for the norm k � kD. NqE/, and we recall that �E
is dense in D. NqE / for this norm. So (4.8) remains true for all u 2 D. NqE /.

Then, for u 2 D. NqE / and v� 2 D. Nb/, we may add (4.7) and (4.8) and we finally
get (4.1) in the general case.

4.2. Construction of the self-adjoint extension

In this section we prove

Proposition 12. Under conditions (H1), (H2), and (H3), given E > �0 the operator
A admits a unique self-adjoint extension zA such that D. zA/ � D. NqE /CD. Nb/. This
extension is independent of E and defined by

zAx WD A�x; for all x 2 D. zA/ (4.9)

where
D. zA/ WD .D. NqE /CD. Nb// \D.A�/: (4.10)

Moreover, for each E in .�0; �1/ n ¹�k W k0 � k < 1º, the operator zA � E is
invertible with bounded inverse given by the formula

. zA �E/�1 D T �1E ı…E � .B CE/
�1
ıƒ�: (4.11)
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Proof. For E > �0, the operator zA defined by (4.9)–(4.10) is indeed an extension
of A, since

D.A/ D F � .�E CD.B// \D.A�/ � D. zA/ and A� �D.A/ D A:

By Corollary 10, D. zA/ is independent of E, as well as zA D A� �
D. zA/ . Moreover,

the extension zA is symmetric: this immediately follows from Proposition 11.
Now, given f 2 H and E > �0, we want to study the equation . zA � E/X D f .

For this purpose, we introduce the following problem written in weak form.

Problem. Find .x; z�/ 2 D. NqE / �D. Nb/ such that´
NqE .x; u/ D hf; ui; for all u 2 D. NqE /;

NbE .z�; v�/ D �hf; v�i; for all v� 2 D. Nb/:
(Pf )

We recall the identity (4.5), which is a special case of formula (4.1) stated in
Proposition 11: if .x; z�/ 2 D. NqE / �D. Nb/ then, for all U 2 F , one has

hX; .A �E/U i D NqE .x; u/ � NbE .z�; v�/

with X D x C z�, u D ƒCU C LEƒCU and v� D U � u. Thanks to this identity,
we see that for any solution .x; z�/ of (Pf ), the sum X D x C z� satisfies

hX; .A �E/U i D hf; U i; for all U 2 F:

As a consequence, X is in D.A�/ and solves .A� �E/X D f . But this vector is also
in D. NqE /CD. Nb/, so it solves . zA �E/X D f .

On the other hand, we can rewrite (Pf ) in terms of the Friedrichs extensions TE
and B .

Problem. Find .x; z�/ 2 D.TE / �D.B/ such that´
TEx D …E .f /;

.B CE/z� D �ƒ�.f /:
(4.12)

Since E > �0, the operator B C E is invertible with bounded inverse, and by
Proposition 6 the same is true with TE ifE is in .�0; �1/ n ¹�k; k � k0º. Then (4.12)
has a unique solution given by´

x D T �1E ı…E .f /;

z� D �.B CE/
�1 ıƒ�.f /

(4.13)

and the vector X D .T �1E ı…E � .B CE/
�1 ıƒ�/.f / solves . zA �E/X D f .
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The above discussion shows that for E in .�0; �1/ n ¹�k; k � k0º the symmetric
operator zA �E is surjective and admits the bounded operator

T �1E ı…E � .B CE/
�1
ıƒ�

as a right inverse. But it is well known that the surjectivity of a symmetric operator
implies its injectivity, since its kernel is orthogonal to its range. So, zA � E is invert-
ible and (4.11) holds true. Another classical result is that a densely defined surjective
symmetric operator is always self-adjoint: see, e.g., [28, Corollary 3.12]. Applying
this to zA �E, we conclude that zA is self-adjoint.

The self-adjoint extension zA is thus built. Its uniqueness among those whose
domain is contained in D. NqE /CD. Nb/ is almost trivial. Indeed, if yA is a self-adjoint
extension ofA, we must have D. yA/�D.A�/, hence, if in addition D. yA/�D. NqE /C

D. Nb/ then D. yA/ � D. zA/, which automatically implies yA D zA since both operators
are self-adjoint. This completes the proof of Proposition 12.

4.3. Direct sums

Recall that in (1.6) we defined the graph �E of LE as

�E WD ¹xC C LExCW xC 2 FCº � FC ˚D.B/:

A natural question is whether its closure x�E in H has the graph property x�E \H� D

¹0º. A partial answer to this question is given in the next lemma.

Lemma 13. Under conditions (H1) and (H2), and with the above notations,

x�E \H� � ..B CE/.F�//
?: (4.14)

Proof. The arguments below are essentially contained in the proof of [26, Lemma 2.2],
but we repeat them here for the reader’s convenience. If y 2 x�E \H�, then there
is a sequence .xn/ in FC such that kxnk ! 0 and kLExn � yk ! 0. Then, for
z 2 .B CE/.F�/, we may write hy; zi D limhLExn; zi. On the other hand,

jhLExn; zij D jhxn; A.B CE/
�1zij � kxnkkA.B CE/

�1zk ! 0;

so hy; zi D 0.

If one assumes as in [26] that ƒ�A �F� is essentially self-adjoint, then the sub-
space .B C E/.F�/ of H� is dense in H� and one concludes that x�E has the graph
property. But we do not make this assumption, and for this reason we cannot infer
from (4.14) that x�E \H� D ¹0º. In other words, we do not know whether the oper-
ator LE is closable or not. This is why we have to resort to a geometric strategy in
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which the linear subspace x�E replaces the possibly nonexistent closure of LE . Here
is the main difference between the present work and [26].

While we may have x�E \H� ¤ ¹0º, the following property holds true, as a con-
sequence of Lemma 13.

Proposition 14. Under conditions (H1) and (H2) and with the above notations,

x�E \D. Nb/ D ¹0º:

Proof. From (4.14), we have

x�E \D. Nb/ D .x�E \H�/ \D..B CE/1=2/

� ..B CE/.F�//
?
\D..B CE/1=2/

D .B CE/�1=2..B CE/1=2F�/
?/ D ¹0º;

since .B CE/1=2F� is dense in H�.

Proposition 14 tells us that the sum of x�E and D. Nb/ is algebraically direct. Let us
denote by �E W x�E PCD. Nb/! x�E and � 0E W x�E PCD. Nb/!D. Nb/ the associated projec-
tors. In Section 5 we will need some information on the continuity of the restrictions
�E �

D. QA/ and � 0E �
D. QA/ . These operators are not necessarily continuous for the

k � k norm, but we have the following result.

Proposition 15. Under assumptions (H1), (H2), and (H3), for all E > �0, one has

�E .D. zA// � D.TE / and � 0E .D. zA// � D.B/:

As a consequence, the domain of zA may also be written as

D. zA/ D .D.TE / PCD.B// \D.A�/: (4.15)

Moreover, the operator �E �
D. QA/ is continuous for the norms k � k

D. zA/, k � kD.TE/
and the operator � 0E �

D. QA/ is continuous for the norms k � k
D. zA/, k � kD.B/. More

precisely, there is a positive constant CE such that for all X 2 D. zA/,

k� 0E .X/kD.B/ � CEkƒ�.
zA �E/Xk and k�E .X/kD.TE/ � CEkXkD. zA/:

The constant CE remains uniformly bounded when E stays away from �0 and1.

Proof. Note that formula (4.11) for the inverse of zA � E already proves the two
inclusions �E .D. zA// � D.TE / and � 0E .D. zA// � D.B/ when E is in .�0; �1/ n
¹�k W k0 � k <1º. But we want to prove a statement for all values of E in .�0;1/
and this requires some additional work.
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In the arguments below, the constant CE changes value from line to line but we
keep the same notation for the sake of simplicity. We shall use the weak form (Pf )
of the equation . zA�E/X D f and the equivalent system of strong equations (4.12),
introduced in the proof of Proposition 12. In that proof, f was given,X D xC z� was
unknown and it was shown that for each E > �0 the solvability of (Pf ) is a sufficient
condition for the solvability of . zA � E/X D f . But it turns out that this condition is
also necessary. Indeed, taking E > �0, X 2 D. zA/ and defining

x WD �E .X/; z� WD �
0
E .X/; f WD . zA �E/X;

we can apply formula (4.1) of Proposition 11 with the successive choices U D u 2
D. NqE /, U D v� 2D. Nb/ and this tells us that .x; z�/ satisfies (Pf ). Then, the second
equation of the equivalent system (4.12) implies that

z� D �.B CE/
�1ƒ�. zA �E/X;

so z� is in D.B/ with an estimate of the form

kz�kD.B/ � CEkƒ�. zA �E/Xk:

This estimate on z� implies in turn the estimate kxk � CEkXkD. zA/, since x D X �
z�, kXk � kXk

D. zA/ and kz�k � kz�kD.B/. Moreover, the first equation in (4.12)

exactly means that x is in D.TE / and TEx D …E . zA � E/X , so we finally get the
estimate

kxkD.TE/ � CEkXkD. zA/:

We thus have the desired inclusions �E .D. zA// � D.TE / and � 0E .D. zA// � D.B/,
hence D. zA/ � D.TE / PCD.B/. Then, remembering the definition

D. zA/ D .D. NqE / PCD. Nb// \D.A�/

and the inclusions D.TE /�D. NqE /, D.B/�D. Nb/, one easily gets (4.15). This ends
the proof of Proposition 15.

Remark 16. In Section 5, we do not use all the information contained in Proposi-
tion 15: we only need the weaker estimates

k� 0E .X/k � CEkƒ�.
zA �E/Xk and k�E .X/k � CEkXkD. zA/: (4.16)

4.4. Variational interpretation when k0 D 1

In the special case k0 D 1, for �0 < E < �1 the quadratic form NqE is positive definite
as well as NbE and the existence and uniqueness of a solution to the weak problem (Pf )
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directly follows from the Riesz isomorphism theorem. One can even give an interpre-
tation of (Pf ) that generalizes the minimization principle for the Friedrichs extension
of semibounded operators mentioned in the introduction. We describe it in this short
section, as a side remark.

Assuming thatE 2 .�0; �1/ and given f 2H , let us consider the inf-sup problem

IE;f D inf
xC2FC

sup
y�2F�

°1
2
hxC C y�; .A �E/.xC C y�/i � hf; xC C y�i

±
:

Of course, in general, IE;f is not attained, but using the decomposition (2.1) and
replacing F D FC˚ F� by the larger space D. NqE / PCD. Nb/, one can transform it into
a min-max:

IE;f D inf
xC2FC

sup
z�2D.B/

°1
2
qE .xC C LExC/ � hf; xC C LExCi �

1

2
NbE .z�/

� hf; z�i
±

D inf
xC2FC

°1
2
qE .xC C LExC/ � hf; xC C LExCi

±
� inf
z�2D.B/

°1
2
NbE .z�/C hf; z�i

±
D min
x2D. NqE/

°1
2
NqE .x/ � .f; x/

±
� min
z�2D. Nb/

°1
2
NbE .z�/C hf; z�i

±
:

Each of these last two convex minimization problems has a unique solution, and the
system of Euler–Lagrange equations solved by the two minimizers is just (Pf ), so
their sum is X D . zA �E/�1f .

5. The min-max principle

In this section, we establish the min-max principle for the eigenvalues of zA that con-
stitutes the last part of Theorem 1.

Proposition 17. Under assumptions (H1), (H2), and (H3), for k � k0, the numbers
�k satisfying �k < �1 are all the eigenvalues of zA in the spectral gap .�0; �1/
counted with multiplicity. Moreover, one has

�1 D inf.� ess. zA/ \ .�0;1//:

Even if our assumptions are weaker and our formalism slightly different, the argu-
ments in the proof of Proposition 17 are essentially the same as in [4, § 2] (but some
details are missing in that reference) and [26, Section 2.6]. This proof is based on two
facts:
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• a relation between the min-max levels �k and the spectrum of TE which is pro-
vided by the second part of Proposition 6;

• a relation between the spectra of TE and zA which is provided by the next lemma,
and whose proof relies on Proposition 11 and on the estimates (4.16) of Remark 16.

Lemma 18. Under assumptions (H1), (H2), and (H3), let E > �0 and let r be a
positive integer. The two following properties are equivalent:

(i) for all ı > 0, Rank.1.�ı;ı/.TE // � r;

(ii) for all " > 0, Rank.1.E�";EC"/. zA// � r .

In other words, 0 2 � ess.TE / if and only if E 2 � ess. zA/; 0 2 � disc.TE / if and only
if E 2 � disc. zA/ and when this happens they have the same multiplicity; 0 2 �.TE / if
and only if E 2 �. zA/.

Proof. If (i) holds true, for each ı > 0 there is a subspace Xı of R.1.�ı;ı/.TE // of
dimension r (we recall the notation R.L/ for the range of an operator L). Then we
have Xı �D.TE /�D. NqE /. Using Proposition 11 and the second estimate of (4.16),
we find that, for all x 2 Xı and Y 2 D. zA/,

jhx; . zA �E/Y ij D j NqE .x; �E .Y //j D jhTEx; �E .Y /ij

� ıkxkk�E .Y /k � CEıkxkkY kD. zA/:

Assume, in addition, that the property (ii) does not hold true. This means that, for
some "0 > 0, Rank.1.E�"0;EC"0/. zA// � r � 1. Then for each ı > 0 there is xı in Xı

such that kxık D 1 and 1.E�"0;EC"0/. zA/xı D 0. So, there is Yı 2 D. zA/ such that
. zA � E/Yı D xı and kYık � "�10 . We thus get hxı ; . zA � E/Yıi D kxık2 D 1 and
CEkxıkkYıkD. zA/ is bounded independently of ı. So, taking ı small enough we obtain

jhxı ; . zA � E/Yıij > CEıkxıkkYıkD. zA/ and this is absurd. We have thus proved by
contradiction that (i) implies (ii).

It remains to show that (ii) implies (i). If (ii) holds true, then for each " > 0 there
is a subspace Y" of R.1.E�";EC"/. zA// of dimension r and we have Y" � D. zA/ �

D.TE / PCD.B/. Using Proposition 11 we find that for all x 2 D.TE / and Y 2 Y",

jhTEx; �E .Y /ij D j NqE .x; �E .Y //j D jhx; . zA �E/Y ij � "kxkkY k:

Moreover, for all Y 2 Y"; from the first estimate of (4.16) one has

k� 0E .Y /k � CEkƒ�.
zA �E/Y k � CE"kY k:

So, imposing " � 1
2CE

and using the triangular inequality, we get the estimate kY k �
2k�E .Y /k for all Y 2 Y". As a consequence, the subspace V" WD �E .Y"/ � D.TE /

is r-dimensional and for all x 2 D.TE / and y 2 V", one has

jhTEx; yij � 2"kxkkyk:
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Assume, in addition, that (i) does not hold true. This means that there exists ı0 > 0
such that Rank.1.�ı0;ı0/.TE // � r � 1. Then for each small " there is y" in V" such
that ky"k D 1 and 1.�ı0;ı0/.TE /y" D 0. So, there is x" 2D.TE / such that TEx" D y"
and kx"k � ı�10 . We thus get hTEx";y"i D ky"k2D 1 and kx"kky"k � ı�10 . So, taking
" small enough we get jhTEx"; y"ij > 2"kx"kky"k and this is absurd. We have thus
proved by contradiction that (ii) implies (i), so the two properties are equivalent.

Now, given E > �0, 0 is in � ess.TE / if and only if (i) holds true for every r , and
this is equivalent to saying that (ii) holds true for every r , which exactly means that
E 2 � ess. zA/. Similarly, we can say that 0 is in � disc.TE / and has multiplicity �E
as an eigenvalue if and only if (i) holds true for �E but not for �E � 1, and this is
equivalent to saying that (ii) holds true for �E but not for �E � 1, which exactly
means that E 2 � disc. zA/ with multiplicity �E . The last statement on �. zA/ follows
immediately, since for any operator L, � ess.L/, � disc.L/ and �.L/ form a partition
of C. This ends the proof of the lemma.

Proof of Proposition 17. Let us define

N
� WD inf.� ess. zA/ \ .�0;1// 2 Œ�0;1�:

By Proposition 6, if E 2 .�0; �1/, then 0 is either an element of �.TE / or an
eigenvalue of TE of finite multiplicity �E . The second case occurs when E D �k
for some positive integer k. Then �E D card¹k0W �k0 D �kº. So, by Lemma 18,
.�0; �1/ \ � ess. zA/ is empty hence �1 �

N
�, and the levels �k in .�0; �1/ are all

the eigenvalues of zA in this open interval, counted with multiplicity.
It remains to prove that

N
� � �1. The nontrivial case is when the sequence .�k/

is bounded, so that �1 2 .�0;1/. If the sequence is nonstationary and bounded,
then ¹�k W k � k0º is an infinite subset of � disc. zA/, so its limit point �1 is in � ess. zA/.
If the sequence is stationary, let k be such that �k D �1. Then, by Proposition 6,
0 2 � ess.T�1/ so, by Lemma 18, we find once again that �1 2 � ess. zA/. In conclusion,
one always has

N
� � �1 and this ends the proof of Proposition 17.

Proof of Theorem 1. Propositions 12, 14, and 17 together imply Theorem 1.

6. Applications to Dirac–Coulomb operators

In this section, we consider the three-dimensional Dirac–Coulomb operator DV D
D C V mentioned in the introduction. We assume that V is a linear combination
of Coulomb potentials jx � xj j�1 due to J distinct point-like charges located at
x1; : : : ;xJ . If we defineDV on the minimal domain F DC1c .R

3 n ¹x1; : : : ;xJ º;C4/,
it is obviously symmetric in the Hilbert space H DL2.R3;C4/. Thanks to Theorem 1
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we are going to construct a distinguished self-adjoint realization of DV and give a
min-max principle for its eigenvalues, under some conditions on the coefficients of
the linear combination. In each case, assumption (H3) will be checked by the method
of Remark 4.

6.1. The attractive case

In this section we assume that V.x/ D �
PJ
jD1

�j
jx�xj j

is an attractive potential gen-
erated by J distinct point-like nuclei, each having Zj protons with 0 < Zj � Z� �
137:04 so that 0 < �j D Zj =Z� � 1 (we allow non-integer values of Zj ). We are
going to use Talman’s splitting ƒC D

�
�
0

�
, ƒ� D

�
0
�

�
of four-spinors  D

�
�
�

�
into upper and lower two-spinors, also called large and small two-components. Then
ƒCF D F � ¹0º andƒ�F D ¹0º �F with F WD C1c .R

3 n ¹x1; : : : ; xJ º;C2/. With
the standard notation � D .�1; �2; �3/ for the collection of Pauli matrices, we recall
(see [30]) that

DV

�
�

�

�
D

�
�i� � r�C .1C V /�

�i� � r� � .1 � V /�

�
:

Assumptions (H1) and (H2) are easily checked with �0 D �1. It remains to check
assumption (H3). By Remark 4, it suffices to show that for some k0 � 1, `k0.0/ � 0.
Indeed, this inequality implies that �k0 � 0 > �0. So, we are led to study the quadratic
form q0. For � 2 F and  C D

�
�
0

�
, the quantity q0. C C L0 C/ is a function of

�; V and in the rest of the section it is more convenient to denote it by qV .�/. With
this notation, we have

qV .�/ D

Z
R3

°
j� � r�j2

1 � V
C .1C V /j�j2

±
; for all � 2 F: (6.1)

We start by the potential V.x/ D ��jxj�1 with 0 < � � 1, corresponding to a
unique point-like nucleus. We recall the Hardy–Dirac inequality

q�j�j
�1

.�/D

Z
R3

°
j� � r�j2

1C jxj�1
C .1� jxj�1/j�j2

±
� 0; for all � 2 C1c .R

3
n ¹0º;C2/

(6.2)
proved in [3, 4]. Since q��j�j

�1
� q�j�j

�1
, (6.2) implies that `1.0/ � 0 and assump-

tion (H3) is satisfied with k0 D 1. Then, using Theorem 1 we can define a distin-
guished self-adjoint extension of DV for 0 < � � 1 and we can also characterize all
the eigenvalues of this extension in the spectral gap .�1; 1/ by the min-max princi-
ple (1.2). This is not a new result; see [4, 10, 12, 26], and it is known that V can be
replaced by more general attractive potentials that are bounded from below by�jxj�1.
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We now assume that J � 2. In such a case, the distinguished self-adjoint exten-
sion was constructed in [17, 24] in the subcritical case �i < 1 for all i by a method
completely different from the one considered in the present work. Talman’s min-max
principle for the eigenvalues of the extension was studied in [11], also in the subcrit-
ical case. But that paper appealed to the abstract result of [7] and as mentioned in
the introduction, the arguments in [7] suffered from the same closability issue as [4].
Theorem 1 solves this issue, moreover it provides a unified treatment: construction of
the extension and justification of the min-max principle even in the critical case, i.e.,
when some of the coefficients �i are equal to 1. But of course, in order to apply this
theorem we have to check (H3) and this is more delicate than in the one-center case.
Indeed, when the total number of protons

P
j Zj is larger than 137:04, if the nuclei

are close to each other one expects some eigenvalues of the distinguished extension to
dive into the negative continuum. If this happens, the corresponding min-max levels
�k should become equal to �0. To check assumption (H3) in such a situation, let us
prove by contradiction that for some k0 � 1, the inequality `k0.0/ � 0 holds true.

Otherwise, there exists a sequence .Gk/k�1 of k-dimensional subspaces of F such
that qV .�/ < 0 for all � 2 Gk n ¹0º. So, one can construct by induction a sequence
.�k/ of wave functions such that �k 2 Gk and h�k; �liL2.R3;C2/ D ıkl . Then �k
converges weakly to 0 in L2.R3;C2/. In order to derive a contradiction, one can try
to prove that for k large enough, qV .�k/ � 0. In the subcritical case �i < 1 for all i
this has been done in [11, Section 6, Step 4, p. 1448f]. We give below a proof that is
also valid in the critical case. In what follows, the constant C changes from line to
line but we keep the same notation for the sake of simplicity.

With ı WD 1
2

min1�j<j 0�K jxj � xj 0 j one takes R > ı C max1�j�J jxj j (to be
chosen later) and a partition of unity .�j /0�j�JC1 consisting of smooth functions
with values in Œ0;1� such that

PJC1
jD0 �

2
j D 1, supp.�0/�B.0;2R/ n

SJ
jD1B.xj ; ı=2/,

supp.�j / � B.xj ; ı/ for 1 � j � J and supp.�JC1/ \ B.0; R/ D ;. The pointwise
IMS formula [1, Lemma 4.1] for the Pauli operator gives

j� � r�kj
2
D

JC1X
jD0

j� � r.�j�k/j
2
�

� JC1X
jD0

jr�j j
2
�
j�kj

2;

so, remembering that k�kk2L2.R3/ D 1, one gets

qV .�k/ D

JC1X
jD0

qV .�j�k/ �

Z
R3

� JC1X
jD0

jr�j j
2
�
j�kj

2

1 � V

D
1

2
C

JX
jD0

qV .�j�k/C
�
qV .�JC1�k/ �

1

2
k�JC1�kk

2
L2.R3/

�
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�

Z
R3

�1 � �2JC1
2

C
1

1 � V

JC1X
jD0

jr�j j
2
�
j�kj

2

�
1

2
C

JX
jD0

qV .�j�k/C
�
qV .�JC1�k/ �

1

2
k�JC1�kk

2
L2.R3/

�
� C

Z
B.0;2R/

j�kj
2:

From now on, we fix R such that �V � 1=4 on R3 n B.0;R/. Then one has

qV .�JC1�k/ �
1

2
k�JC1�kk

2
L2.R3/ �

1

4
k�JC1�kk

2
H1.R3/:

Let

M WD 1Cmax¹ sup
x2supp.�0/

�V.x/I sup
x2supp.�1/

.�V.x/ � jx � x1j
�1/I : : : I

sup
x2supp.�J /

.�V.x/ � jx � xJ j
�1/º:

Then
qV .�0�k/ �

1

M
k�0�kk

2
H1.R3/ � C

Z
R3

j�0�kj
2

and, introducing the rescaled functions O�j;k.y/ WD .�j�k/.xj CM�1y/ for 1�j �J ,
one finds

qV .�j�k/ �
1

M 2
q�j�j

�1

. O�j;k/ � C

Z
R3

j�j�kj
2:

Gathering these estimates, one gets the lower bound

qV .�k/ �
1

2
C

1

M 2

JX
jD1

q�j�j
�1

. O�j;k/C
1

M
k�0�kk

2
H1.R3/

C
1

4
k�JC1�kk

2
H1.R3/ � C

Z
B.0;2R/

j�kj
2: (6.3)

From the Hardy–Dirac inequality (6.2), each of the terms q�j�j
�1
. O�j;k/ is nonnegative,

so the assumptions that k�kkL2.R3/ D 1 and qV .�k/ < 0 imply that the quantities
q�j�j

�1
. O�j;k/, k�0�kkH1 and k�JC1�kkH1 are uniformly bounded. But from [10,

Theorem 1.9], for 0 � s < 1=2 there is a positive constant �s such that

q�j�j
�1

.�/C k�k2
L2.R3/ � �sk�k

2
H s.R3/

; for all � 2 F:
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Applying this inequality to the functions O�j;k (1 � j � J ), one easily finds that the
sequence .�k/k�1 is bounded in H s.R3/, hence precompact in L2loc.R

3/. Since this
sequence converges weakly to zero in L2.R3/, one concludes that

lim
k!1

Z
B.0;2R/

j�kj
2
D 0:

Combining this information with (6.3) one finds that for k large enough, qV .�k/ � 0

and this is a contradiction.
In conclusion, the assumptions of Theorem 1 are satisfied in our multi-center

example, with k0 possibly larger than 1.

6.2. The sign-changing case

We now consider a potential of the form

V.x/ D �
�1

jxj
C

�2

jx � x0j
with x0 ¤ 0; 0 < �1 � 1; and 0 < �2 �

2
�
2
C

2
�

:

The corresponding Dirac–Coulomb operator DV is obviously symmetric if we define
it on the “minimal” domain C1c .R

3 n ¹0; x0º;C4/. But Talman’s decomposition in
upper and lower spinors cannot be used: due to the unbounded repulsive term �2

jx�x0j
,

(H2) would not be satisfied. Instead, for the splitting we choose the free-energy pro-
jectors

ƒ˙ D 1R˙.D/:

We recall (see [30]) that

Dƒ˙ D ƒ˙D D ˙
p
1 ��ƒ˙ D ˙ƒ˙

p
1 ��:

In momentum space (i.e., after Fourier transform), ƒ˙ becomes the multiplication
operator by the matrix

M˙.p/ D
1

2

�
I4 ˙

˛ � p C ˇp
jpj2 C 1

�
:

This matrix depends smoothly on p and is bounded on R3 as well as its derivatives.
As a consequence, the multiplication byM˙ preserves the Schwartz class �.R3;C4/.
So, the same is true forƒ˙ in position space. But this nonlocal operator does not pre-
serve the compact support property, so (H1) does not hold for the domain C1c .R

3 n

¹0;x0º;C4/. SinceƒCC1c .R
3 n ¹0;x0º;C4/� �.R3;C4/�D.DV /, one can either

replace the minimal domain by

F D ƒCC
1
c .R

3
n ¹0; x0º;C

4/˚ƒ�C
1
c .R

3
n ¹0; x0º;C

4/
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as mentioned in the first comment after Theorem 1, or by

F D �.R3;C4/:

In what follows, A is the restriction of DV to one of these two domains. We do not
need to specify which one: the arguments proving (H2)–(H3) are the same in both
cases.

By the upper bound on �2, it follows from an inequality of Tix [32] that the
Brown–Ravenhall operator�ƒ�.AC 1� �2/�F�Dƒ�.

p
1 ���V � 1C �2/�F�

is nonnegative, so (H2) holds true with �0 � �1 C �2. In order to bound �1 from
below, we can use [4, inequality (38)]. This inequality involves a parameter � 2 .0; 1/
and is stated for all functions  C 2 FC. One easily passes to the limit �! 1 with  C
fixed and this gives us the inequality

h C;
p
1 �� CiL2.R3/ �

Z
R3

j Cj
2

jxj

C

D
ƒ�

1

jxj
 C; .B�jxj�1/

�1ƒ�
1

jxj
 C

E
L2.R3/

� 0 (6.4)

for all  C 2 FC. Here, we denote by BV the Friedrichs extension of the Brown–
Ravenhall operator ƒ�.

p
1 �� � V/ �F� , for any electric potential V such that

this operator is bounded from below. Inequality (6.4) exactly says that if one chooses
.�1; �2/D .1;0/, then there holds q0. CCL0 C/� 0 for all C 2FC, so `1.0/� 0,
hence �1 � 0 > �0. This remains true for 0 < �1 � 1 and 0 < �2 � 2

�=2C2=�
, since

the min-max level �1 is a non-decreasing function of V . Thus, Theorem 1 can be
applied with k0 D 1 in order to find a distinguished self-adjoint extension of DV and
to characterize its eigenvalues by a min-max principle.

Note that by [31, Corollary 3], the operator �ƒ�A �F� is not essentially self-
adjoint for �2 > 3=4. So, the abstract result [26, Theorem 1.1] cannot be applied in
this case.
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