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A quantitative formula
for the imaginary part of a Weyl coefficient

Jakob Reiffenstein

Abstract. We investigate two-dimensional canonical systems y0 D zJHy on an interval, with
positive semi-definite HamiltonianH . Let qH be the Weyl coefficient of the system. We prove a
formula that determines the imaginary part of qH along the imaginary axis up to multiplicative
constants, which are independent of H . We also provide versions of this result for Sturm–
Liouville operators and Krein strings.

Using classical Abelian–Tauberian theorems, we deduce characterizations of spectral prop-
erties such as integrability of a given comparison function with respect to the spectral measure
�H , and boundedness of the distribution function of �H relative to a given comparison func-
tion.

We study in depth Hamiltonians for which arg qH .ir/ approaches 0 or � (at least on a
subsequence). It turns out that this behavior of qH .ir/ imposes a substantial restriction on the
growth of jqH .ir/j. Our results in this context are interesting also from a function theoretic
point of view.

1. Introduction

We study two-dimensional canonical systems

y0.t/ D zJH.t/y.t/; t 2 Œa; b/ a.e.; (1.1)

where�1< a < b �1, z 2C is a spectral parameter and J WD � 0 �11 0

�
. The Hamil-

tonian H is assumed to be a locally integrable, R2�2-valued function on Œa; b/ that
further satisfies

• H.t/ � 0 and H.t/ ¤ 0, t 2 Œa; b/ a.e.;

• H is definite, i.e., if v 2 C2 is s.t. H.t/v � 0 on Œa; b/, then v D 0;

•
R b
a

trH.t/ d t D1 (limit point case at b).
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Together with a boundary condition at a, equation (1.1) becomes the eigenvalue
equation of a self-adjoint (possibly multi-valued) operator AH in a Hilbert space
L2.H/ associated with H . Throughout this paper, we fix the boundary condition
.1; 0/y.a/ D 0, which is no loss of generality.

Many classical second-order differential operators such as Schrödinger and
Sturm–Liouville operators, Krein strings, and Jacobi operators can be transformed
to the form (1.1), see, e.g., [3, 14, 16, 24, 25]. Canonical systems thus form a unifying
framework.

All of the above operators have in common that their spectral theory is centered
around the Weyl coefficient q of the operator (also referred to as Titchmarsh–Weyl
m-function). This function is constructed by Weyl’s nested disk method and is a
Herglotz function, i.e., it is holomorphic on C n R and satisfies there Imq.z/

Im z � 0 as
well as q.z/ D q.z/. It can thus be represented as

q.z/ D ˛ C ˇz C
Z
R

� 1

t � z �
t

1C t2
�

d�.t/; z 2 C nR (1.2)

with ˛ 2 R, ˇ � 0, and � a positive Borel measure on R satisfying
R

R
d�.t/

1Ct2
<1.

The measure � in the integral representation (1.2) of the Weyl coefficient is a spectral
measure of the underlying operator model if ˇ D 0 (if ˇ > 0, a one-dimensional
component has to be added). The importance of canonical systems in this context lies
in the Inverse Spectral Theorem of L. de Branges, stating that each Herglotz function
q is the Weyl coefficient of a unique (suitably normalized) canonical system.

Given a Hamiltonian H , we are ultimately interested in the description of prop-
erties of its spectral measure �H in terms of H . The correspondence between H
and �H can be best understood using the Weyl coefficient qH , whose imaginary part
Im qH determines �H via the Stieltjes inversion formula.

In their recent paper [18], Langer, Pruckner, and Woracek gave a two-sided esti-
mate for Im qH .ir/ in terms of the coefficients of H :

L.r/ . Im qH .ir/ . A.r/; r > 0; (1.3)

where L;A are explicit in terms of H , and we used the notation f .r/ . g.r/ to state
that f .r/ � Cg.r/ for a constant C > 0. Moreover, in (1.3) the constants implicit
in . are independent of H . The exact formulation of this result will be recalled in
Theorem 2.1.

It may happen that L.r/ D o.A.r//, and Im qH .ir/ is not determined by (1.3).
A toy example for this is the Hamiltonian

H.t/ D t
�j log t j1 j log t j2
j log t j2 j log t j3

�
; t 2 Œ0;1/:
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For r !1, a calculation shows that

L.r/ � .log r/�3; A.r/ � .log r/�1;

where f .r/ � g.r/ means that both f .r/ . g.r/ and g.r/ . f .r/.
The following theorem, which is our main result, improves the estimate (1.3) by

giving a formula for Im qH .ir/ up to universal multiplicative constants.

1.1 Theorem. Let H be a Hamiltonian on Œa; b/, and denote1

H.t/ D
�
h1.t/ h3.t/

h3.t/ h2.t/

�
; �H .t/ D

�
!H;1.t/ !H;3.t/

!H;3.t/ !H;2.t/

�
WD

tZ
a

H.s/ d s: (1.4)

Let Ot W .0;1/! .a; b/ be a function satisfying2

det�H .Ot .r// � 1

r2
; r 2 .0;1/: (1.5)

Then

Im qH .ir/ �
ˇ̌̌
qH .ir/ � !H;3.

Ot .r//
!H;2.Ot .r//

ˇ̌̌
� 1

r!H;2.Ot .r//
; (1.6)

Im qH .ir/

jqH .ir/j2
� 1

r!H;1.Ot .r//
; (1.7)

for r 2 .0;1/. The constants implicit in� in (1.6) and (1.7) depend on the constants
hidden in� in (1.5), but not on H .

If, in addition, Im qH .ir/ D o.jqH .ir/j/ for r !1 (or r ! 0), then3

qH .ir/ � !H;3.Ot .r//
!H;2.Ot .r//

; r !1 .r ! 0/: (1.8)

The two-sided estimate (1.6) has some useful features: its pointwise nature, its
applicability for r !1 and r ! 0, and the universality of the constants hidden in�.
However, it is rather different from an asymptotic formula: it does not capture small
oscillations of Im qH .ir/ around 1

r!H;2.Ot.r//
.

Note also that the first relation in (1.6) can be seen as a statement about the real
part of qH .ir/. In fact, Im qH .ir/ is also obtained if we subtract Re qH .ir/ from

1When there is no risk of ambiguity, we write� and !j instead of�H and !H;j for short.
2We will see later that the equation det�H .t/ D 1

r2
has a unique solution for every r > 0.

A possible choice of Ot is thus the function that maps r > 0 to this solution.
3With f .r/ � g.r/ meaning lim f.r/

g.r/
D 1:
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qH .ir/, then take absolute values. It is an open question whether Re qH .ir/ can be
described more directly in terms of H .

A most important class of operators is that of Sturm–Liouville (in particular,
Schrödinger) operators. Let us provide a reformulation of Theorem 1.1 for these oper-
ators right away.

Sturm–Liouville operators. We provide a version of Theorem 1.1 for Sturm–
Liouville equations

�.py0/0 C qy D zwy (1.9)

on .a; b/, where 1=p; q; w 2 L1
loc
.a; b/, w > 0 and p; q are real-valued. Suppose

that a is in limit circle case and b is in limit point case. Impose a Dirichlet boundary
condition at a, i.e., y.a/ D 0. The Weyl coefficient for this problem is the unique
number m.z/ with

c.z; �/Cm.z/s.z; �/ 2 L2..a; b/; w.x/ dx/

where c.z; �/ and s.z; �/ are solutions of (1.9) with initial values�
p.a/c0.z; a/

c.z; a/

�
D
�
0

1

�
;

�
p.a/s0.z; a/

s.z; a/

�
D
�
1

0

�
:

1.2 Theorem. For each t 2 .a; b/, let .:; :/t and k:kt denote the scalar product and
norm on L2..a; t/; w.x/ dx/, i.e.,

.f; g/t D
tZ
a

f .x/g.x/w.x/ d x:

For � 2 R, let Ot� W .0;1/! .a; b/ be a function satisfying

kc.�; �/k2
Ot� .r/
ks.�; �/k2

Ot� .r/
� .c.�; �/; s.�; �//2

Ot� .r/
� 1

r2
; r 2 .0;1/: (1.10)

Then

Imm.� C ir/ � 1

rks.�; �/k2
Ot� .r/

; (1.11)

Imm.� C ir/
jm.� C ir/j2 �

1

rkc.�; �/k2
Ot� .r/

; (1.12)

for r 2 .0;1/. The constants implicit in � are independent of p; q; w as well as � ,
but do depend on the constants pertaining to� in (1.10).
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In fact, Theorem 1.2 is a direct consequence of Theorem 1.1 upon employing a
transformation (cf. [24] for p D w D 1 and � D 0) that maps solutions of (1.9) to
solutions of the canonical system y0 D .z � �/JH�y, where

H�.t/ D w.t/ �
�

c.�; t/2 �s.�; t/c.�; t/
�s.�; t/c.�; t/ s.�; t/2

�
; t 2 Œa; b/:

The Weyl coefficients then satisfy m.z/ D qH� .z � �/.
Historical remarks. The origins of the Weyl coefficient in the context of the Sturm–
Liouville differential equation are well summarized in Everitt’s paper [7]. We give
a short account specifically on the history of estimates for the growth of the Weyl
coefficient, which date back at least to the 1950s. Particular attention was often given
to the deduction of asymptotic formulae for the Weyl coefficient [1, 4, 6, 12, 17, 21].
However, asymptotic results usually depend on rather strong assumptions on the data.
When weakening these assumptions, one can still ask for explicit estimates for q.z/ as
z ! 1 nontangentially in the upper half-plane. There is a number of rather early
results that determine jq.z/j up to �, e.g., [2, 4, 9], although these still depend on
data subject to additional restrictions. Fundamental progress has been made by Jito-
mirskaya and Last [10], who considered Schrödinger operators with arbitrary (real-
valued and locally integrable) potentials. They found a formula up to � for jq.z/j,
which also covers the case z ! 0. An analog of this formula for canonical systems
was given in [8].

When it comes to Imq.z/, however, no such formula was available. Only the very
recent estimate (1.3) from [18, Theorem 1.1] made it possible to obtain our main result
that determines Im q.z/ up to�.

Structure of the paper. The proof of Theorem 1.1, together with some immediate
corollaries, makes up Section 2. In Section 3, we continue with a first application,
a criterion for integrability of a given comparison function with respect to �H . We
also characterize boundedness of the distribution function of �H relative to a given
comparison function.

Section 4 is dedicated to the boundary behavior of Herglotz functions. Cauchy
integrals and the relative behavior of its imaginary and real part have been intensively
studied. For example, for a Herglotz function q it is known [22] that the set of � 2 R

for which

lim
r!0

Im q.� C ir/
jq.� C ir/j D 0 (1.13)

is a zero set with respect to �. In contrast to measure theoretic results like this, we
use the de Branges correspondence H $ qH to investigate this behavior pointwise
with respect to � . In Theorem 4.3 (a) we show that if � is such that (1.13) holds, then
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jq.� C ir/j is slowly varying (cf. Definition 4.2). Theorem 4.3 (b) is a partial converse
of this statement.

In Section 5 we turn to a finer study of Im qH .ir/ in the context of the geometric
origins of (1.3) and (1.6). Namely, the functions L and A describe the imaginary
parts of bottom and top of certain Weyl disks containing qH .ir/. We show that there
are restrictions on the possible location of qH .ir/ within the disks, and construct a
Hamiltonian H for which qH .ir/ oscillates back and forth between the bottoms and
tops of the disks. This construction allows us to answer several open problems that
were posed in [18].

We conclude our work with a reformulation of Theorem 1.1 for the principal
Titchmarsh–Weyl coefficient qS of a Krein string. This reformulation is the content
of Section 6.

Notation associated to Hamiltonians. LetH be a Hamiltonian on Œa;b/. An interval
.c; d/ � Œa; b/ is calledH -indivisible ifH.t/ takes the form h.t/

�cos'
sin'

��cos'
sin'

�� a.e. on
.c; d/, with scalar-valued h and fixed ' 2 Œ0; �/. The angle ' is then called the type
of the interval.

1.3 Definition. Let

Va.H/ WD inf
°
t > a

ˇ̌̌
.a; t/ is not H -indivisible of type 0 or

�

2

±
; (1.14)

Oa.H/ WD inf¹t > a j .a; t/ is not H -indivisibleº: (1.15)

Usually, we write Va and Oa for short. Since H is assumed to be definite, both of these
numbers are smaller than b.

Note that .!1!2/.t/ > 0 if and only if Œa; t/ is notH -indivisible of type 0 or �
2

, i.e.,

t > Va. Using the assumption
R b
a

trH.t/ dt D 1, we infer that !1!2 is an increasing
bijection from . Va; b/ to .0;1/.

Similarly, det�.t/ > 0 is equivalent to t > Oa. We have

d

dt

�det�.t/
!1.t/

�
D !1.t/�2

��!3.t/
!1.t/

��
H.t/

��!3.t/
!1.t/

�
� 0

and (by symmetry) d
dt
. det�
!2
/� 0. Since at least one of !1 and !2 is unbounded, det�

is an increasing bijection from . Oa; b/ to .0;1/.
1.4 Definition. For a Hamiltonian H and a number � > 0, set

Vr�;H W . Va; b/! .0;1/; t 7! �

2
p
.!1!2/.t/

;

Or�;H W . Oa; b/! .0;1/; t 7! �

2
p

det�.t/
:
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Both of these functions are decreasing and bijective. We define their inverse func-
tions,

Vt�;H WD Vr�1�;H W .0;1/! . Va; b/; Ot�;H WD Or�1�;H W .0;1/! . Oa; b/: (1.16)

Note that the functions Ot�;H , for any � > 0, satisfy (1.5). Functions of this form will
be the default choice of Ot for the sake of Theorem 1.1. We will often fix � and H and
write Vr , Vt , Or , Ot for short. If � is fixed but the Hamiltonian is ambiguous, we may write
VrH , VtH , OrH , OtH to indicate dependence on H .

2. On the imaginary part of the Weyl coefficient

We start by providing the details of the estimate (1.3), which is the central result
in [18].

2.1 Theorem ([18, Theorem 1.1]). Let H be a Hamiltonian on Œa; b/, and let � 2
.0; 1 � 1p

2
/ be fixed. For r > 0, let Vt .r/ be the unique number satisfying

.!H;1!H;2/.Vt .r// D �2

4r2
; (2.1)

cf. Definition 1.4. Set4

A�;H .r/ WD �

2r!H;2.Vt .r//
; L�;H .r/ WD det�H .Vt .r//

.!H;1!H;2/.Vt .r//
� A�;H .r/:

Then the Weyl coefficient qH associated with the Hamiltonian H satisfies

jqH .ir/j � A�;H .r/; (2.2)

L�;H .r/ . Im qH .ir/ . A�;H .r/ (2.3)

for r 2 .0;1/. The constants implicit in these relations are independent of H . Their
dependence on � is continuous.

In the following proof of Theorem 1.1, we will also show that Theorem 2.1 still
holds if Vt W .0;1/! .a; b/ is a function satisfying .!H;1!H;2/.Vt .r// � 1

r2
, and

A.r/ WD 1

r!H;2.Vt .r//
; L.r/ WD det�H .Vt .r//

.!H;1!H;2/.Vt .r//
� A.r/:

In particular, we can choose any � > 0 in (2.1).

4If � and H are clear from the context, we may write A and L for short.
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Proof of Theorem 1.1. Let Ot�;H be defined as in Definition 1.4. We show that for any
� > 0, Theorem 1.1 holds for Ot�;H in place of Ot , and that the dependence on � of
the constants hidden in � in (1.6) and (1.7) is continuous. This then implies that
Theorem 1.1 holds for any function Ot satisfying (1.5).

The proof is divided into five steps.

Step 1. We introduce a family of transformations of H that leave the imaginary part
of the Weyl coefficient unchanged. If p 2 R and

Hp.t/ WD
�
1 p

0 1

�
H.t/

�
1 0

p 1

�
D
�
h1.t/C 2ph3.t/C p2h2.t/ h3.t/C ph2.t/

h3.t/C ph2.t/ h2.t/

�
;

an easy calculation shows that the Weyl coefficient qp of Hp is given by qp.z/ D
q0.z/C p D qH .z/C p.

Step 2. We prove (1.6)–(1.8) for fixed � 2 .0; 1 � 1p
2
/. The abbreviations of Table 1

are used only in Step 2.

short form meaning short form meaning short form meaning

Vt Vt�;H Vtp Vt�;Hp �p �Hp

Ot Ot�;H Otp Ot�;Hp !p;j !Hp;j

Lp L�;Hp Ap A�;Hp � �H

Table 1

Let r > 0 be fixed (this is important). Our first observation is that Otp.r/D Ot .r/ for
any p since det�p.t/ D det�.t/ does not depend on p. If we can find p such that
Vtp.r/ D Otp.r/ D Ot .r/, then clearly

Lp.r/

Ap.r/
D det�p.Vtp.r//
.!p;1!p;2/.Vtp.r//

D det�p.Otp.r//
.!p;1!p;2/.Vtp.r//

D 1:

We apply Theorem 2.1 with � and Hp . The estimate (2.3) then takes the form

Ap.r/ D Lp.r/ . Im qH .ir/ . Ap.r/ (2.4)

while (2.2) turns into
jqH .ir/C pj � Ap.r/; (2.5)

where
Ap.r/ D �

2r!p;2.Vtp.r//
D �

2r!2.Ot .r//
:
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The right choice of p is

p D �!3.Ot .r//
!2.Ot .r//

;

leading to !p;3.Ot .r// D 0 and thus

.!p;1!p;2/.Ot .r// D det�p.Ot .r// D det�.Ot .r// D �2

4r2
:

Consequently, Vtp.r/ D Ot .r/. Observe that the implicit constants in (2.2) and (2.3) are
independent of H and r and depend continuously on �. This shows that (1.6) holds,
with constants depending continuously on �.

Step 3. (1.7) follows from an application of (1.6) to zH WD J>HJ D
�

h2 �h3
�h3 h1

�
and

note that Ot�; zH D Ot�;H . Thus

Im qH .ir/

jqH .ir/j2
D Im

�
� 1

qH .ir/

�
D Im q zH .ir/ �

1

r! zH;2.Ot�; zH .r//
D 1

r!H;1.Ot�;H .r//
:

Formula (1.8) follows if we divide (1.6) by jqH .ir/j. Hence, we proved the assertion
for � 2 .0; 1 � 1p

2
/.

In the remaining steps we treat the missing case � � 1 � 1p
2

.

Step 4. Let k > 0. For use in Step 5, we show that

Im qH .ir/ � Im qH .ikr/; jqH .ir/j � jqH .ikr/j (2.6)

for r 2 .0;1/, where the constants in � depend continuously on k and are indepen-
dent of H .

For the imaginary part, the statement is easy to see from the integral representa-
tion (1.2). For the absolute value, we use the Hamiltonian zH from Step 3 to obtain

Im qH .ir/

jqH .ir/j2 D Im q zH .ir/ � Im q zH .ikr/ D
Im qH .ikr/

jqH .ikr/j2 :

This shows that jqH .ir/j � jqH .ikr/j as well.

Step 5. Fix a Hamiltonian H , and let �0 � 1 � 1p
2

. Then

Vt�0;H .r/D Vt 1
4 ;

1
4�0

H .r/; Ot�0;H .r/D Ot 1
4 ;

1
4�0

H .r/ (2.7)

and
A�0;H .r/D A 1

4 ;
1
4�0

H .r/; L�0;H .r/D L 1
4 ;

1
4�0

H .r/: (2.8)
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Since 1
4

is less than 1 � 1p
2

, we can use Theorem 2.1 with � WD 1
4

to obtain

L�0;H .r/ D L 1
4 ;

1
4�0

H .r/ . Im q 1
4�0

H .ir/

�jq 1
4�0

H .ir/j � A 1
4 ;

1
4�0

H .r/ D A�0;H .r/ (2.9)

for r 2 .0;1/. Since q 1
4�0

H .z/ D qH . z
4�0
/ and by Step 4, we see that Theorem 2.1

holds for arbitrary � > 0. It is easy to check that continuous dependence of constants
on � is retained. Repeating Steps 1 � 3 now shows that also Theorem 1.1 holds for
Ot�;H for any � > 0. Moreover, it is not hard to see that everything still works if Ot is a
function satisfying (1.5).

2.2 Remark. Theorem 2.1 and Theorem 1.1, in the form we stated them, give infor-
mation about qH .z/ for z D ir . However, if # 2 .0; �/ is fixed, these theorems also
hold

• for z D rei# uniformly for r 2 .0;1/ and

• for z D rei' uniformly for r 2 .0;1/ and j�
2
� 'j � j�

2
� #j.

We restate the explicit constants coming from [18]. Fix � 2 .0; 1 � 1p
2
/ and set � WD

.1 � �/�2 � 1 2 .0; 1/. With

c�.�; #/ D � sin#
2.1C j cos#j/ �

1 � �
1C � ; cC.�; #/ D

� C 2
� sin#

1 � � ;

we have5

c�.�; #/ � �
2
� 1

r!2.Ot�;H .r//
� Im qH .re

i#/

� cC.�; #/ � �
2
� 1

r!2.Ot�;H .r//
; (2.10)

c�.�; #/ � �
2
� 1

r!1.Ot�;H .r//
� Im qH .re

i#/

jqH .rei#/j2

� cC.�; #/ � �
2
� 1

r!1.Ot�;H .r//
: (2.11)

In order to show (2.10), we need to slightly adapt the proof of Theorem 1.1 by
replacing ir with rei# in (2.4) and taking into account the constants provided in
[18, Theorem 1.1]. Then (2.11) follows as in Step 3 of the proof.

5Since c� and cC are clearly monotonic in # , (2.10) and (2.11) still hold when qH .rei# /
is replaced by qH .rei'/, where j�

2
� 'j � j�

2
� #j.
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For # D �
2

, the optimal choice of � is around 0:13833 which gives

cC

�
0:13833;

�

2

�
� 1:568;

c�

�
0:13833;

�

2

�
� 0:002;

cC.0:13833;
�
2
/

c�.0:13833;
�
2
/
� 675:772:

While it is possible to derive explicit constants also for � � 1� 1p
2

, doing so does not
result in an improvement of the quotient cC=c�.

Immediate consequences of Theorem 1.1. In order to simplify calculations, unless
specified otherwise, we will always assume that Vt .r/ and Ot .r/ are defined implicitly
by

.!1!2/.Vt .r// D 1

r2
; det�.Ot .r// D 1

r2
; (2.12)

and similarly for Vr and Or (cf. Definition 1.4 with � D 2).
We revisit the example from the introduction in more generality. The following

example was communicated by Matthias Langer. The calculations can be found in the
extended preprint [23] of this article.

2.3 Example. Let ˛ > 0 and ˇ1; ˇ2 2R where ˇ1 ¤ ˇ2. Set ˇ3 WD ˇ1Cˇ2
2

and define,
for t 2 .0;1/,

H.t/ D t˛�1
�j log t jˇ1 j log t jˇ3
j log t jˇ3 j log t jˇ2

�
:

Then for r !1, we have

• L.r/ � .log r/
ˇ1�ˇ2
2 �2 and

• A.r/ � jqH .ir/j � .log r/
ˇ1�ˇ2
2 ,

i.e.,L.r/D o.A.r//. Using Theorem 1.1, we can now continue the calculations, lead-
ing to

Im qH .ir/ � .log r/
ˇ1�ˇ2
2 �1 �

p
L.r/A.r/:

It is an immediate consequence of Theorem 1.1 that ImqH depends monotonically
on the off-diagonal of H .

2.4 Corollary. Let H D
�
h1 h3
h3 h2

�
and zH D

�
h1 Qh3
Qh3 h2

�
be two Hamiltonians on Œa; b/.

If t > Oa.H/ such that ˇ̌̌̌ tZ
a

h3.s/ d s
ˇ̌̌̌
�
ˇ̌̌̌ tZ
a

Qh3.s/ d s
ˇ̌̌̌
;
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then
Im qH .i OrH .t// . Im q zH .i OrH .t//

with a constant independent of t , H , and zH .

Proof. Our condition states that j!H;3.t/j � j! zH;3.t/j. Taking into account that
t > Oa.H/, this means that 0 < det�.t/� det z�.t/. Hence, OrH .t/� Or zH .t/, and further
Ot zH . OrH .t// � t . Now, by (1.6),

Im qH .i OrH .t// � 1

OrH .t/!H;2.t/ �
1

OrH .t/! zH;2.Ot zH . OrH .t///
� Im q zH .i OrH .t//:

The following result elaborates on the relative behavior of Im qH and jqH j. We
obtain a quantitative and pointwise relation between ImqH

jqH j
and det�

!1!2
, leading to the

equivalence

lim
r!1

Im qH .ir/

jqH .ir/j
D 0 () lim

t!Oa

det�.t/
.!1!2/.t/

D 0: (2.13)

The relation between det�
!1!2

and ImqH .ir/
jqH .ir/j

has been investigated also in [19]. Their
proof of (2.13),6 is based on compactness arguments.

Note that our result shows that (2.13) holds true for r ! 0 and t ! b as well.

2.5 Proposition. Let H be a Hamiltonian on Œa; b/. Then7

Im qH .ir/

jqH .ir/j
� Vr.Ot .r//

r
D
s

det�.Ot .r//
.!1!2/.Ot .r//

(2.14)

for r 2 .0;1/. Moreover,

jqH .i Vr.Ot .r///j � jqH .ir/j; r 2 .0;1/: (2.15)

All constants implicit in� do not depend on H .

Proof. By definition of Vr and using (1.6) and (1.7),

Vr.Ot .r// D 1p
.!1!2/.Ot .r//

� r Im qH .ir/

jqH .ir/j :

We also have s
det�.Ot .r//
.!1!2/.Ot .r//

D 1p
r2.!1!2/.Ot .r//

D Vr.Ot .r//
r

;

and (2.14) follows.

6In [19] limt!a was considered instead of limt!Oa.
7 Vr.Ot .r// is well defined because of Ot .r/ 2 . Oa; b/ � . Va; b/.
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For the proof of (2.15), we need the formula

!1.Vt .r// � jqH .ir/j
r

which we get from Theorem 2.1 applied to J>HJ . Combine this with (2.2) to get

jqH .ir/j2 � !1.Vt .r//
!2.Vt .r//

:

On the other hand, (1.6) and (1.7) give

jqH .ir/j2 � !1.Ot .r//
!2.Ot .r//

D !1.Vt . Vr.Ot .r////
!2.Vt . Vr.Ot .r////

� jqH .i Vr.Ot .r///j2:

The freedom in the choice of � leads to the following formula that we will refer
to later on.

2.6 Corollary. Let H be a Hamiltonian on Œa; b/. Then, for any k > 0,

Im qH .ikr/ �
ˇ̌̌
qH .ikr/ � !3.

Ot .r//
!2.Ot .r//

ˇ̌̌
�
ˇ̌̌
qH .ir/ � !3.

Ot .r//
!2.Ot .r//

ˇ̌̌
(2.16)

with constants depending on k, but not on H .
If Im qH .ir/ D o.jqH .ir/j/ for r !1 [r ! 0], then

qH .ikr/ � !3.Ot .r//
!2.Ot .r//

; r !1 Œr ! 0�: (2.17)

Proof. Apply Theorem 1.1 to H using Ot1;H , and to kH using Otk;kH . Then Ot1;H .r/ D
Otk;kH .r/, and we write Ot .r/ for short. Keeping in mind that qkH .z/ D qH .kz/, this
leads to

Im qH .ir/ �
ˇ̌̌
qH .ir/ � !H;3.

Ot .r//
!H;2.Ot .r//

ˇ̌̌
� 1

r!H;2.Ot .r//
as well as

Im qH .ikr/ �
ˇ̌̌
qH .ikr/ � k!H;3.

Ot .r//
k!H;2.Ot .r//

ˇ̌̌
� 1

kr � !H;2.Ot .r//
:

(2.16) follows. Now, (2.17) is obtained by dividing (2.16) by jqH .ikr/j.
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3. Behavior of tails of the spectral measure

Theorem 1.1 that approximately determines the imaginary part of qH .ir/ allows us
to determine the growth of the spectral measure �H relative to suitable comparison
functions. Let us introduce the measure Q�H on Œ0;1/ by

Q�H .Œ0; r// WD Q�H .r/ WD �H ..�r; r//; r > 0: (3.1)

In Section 3.1, equivalent conditions are given for when the function r 7! Q�H is
integrable with respect to a given weight function, and also when the measure Q�H is
finite with respect to a rescaling function.

On the other hand, we can view Q�H as a function of the positive real parameter r ,
and compare this to a given function g. This is what we do in Section 3.2.

We note that the content of this section is analogous to [18, Section 4]. The avail-
ability of formula (1.6) leads to improved results in the present article, however we
provide less detail as was given in [18].

The proofs in this section are based on standard theorems of Abelian-Tauberian
type, relating �H to its Poisson integral

P Œ�H �.z/ WD
Z
R

Im
� 1

t � z
�

d�H .t/: (3.2)

By (1.2), we have P Œ�H �.z/ D Im qH .z/ � ˇ Im z. If ˇ D 0, we can proceed with
the application of Abelian-Tauberian theorems without problems. The case ˇ > 0 is
equivalent to a being the left endpoint of an H -indivisible interval of type �

2
, i.e.,

Va.H/ > a and h2 vanishes a.e. on Œa; Va.H//. The restricted Hamiltonian H� WD
H jŒ Va.H/;b/ then has the Weyl coefficient qH�.z/D qH .z/�ˇz and thus ImqH�.z/D
P Œ�H �.z/. Hence, we can investigate �H by applying the theorems from this section
to H�.

3.1. Finiteness of the spectral measure with respect to given weight functions

3.1 Theorem. Let H be a Hamiltonian defined on Œa; b/, and assume that h2 does
not vanish identically in a neighborhood of a. Let f be a continuous, nondecreasing
function, and denote by �H the spectral measure of H .

Then the following statements are equivalent:

(i) we have
1Z
1

Q�H .r/f .r/
r3

d r <1I (3.3)
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(ii) there is a0 2 . Oa; b/ such that

a0Z
Oa

1

!2.t/2

�
!2.t/

�!3.t/
��
H.t/

�
!2.t/

�!3.t/
�
� f .det�.t/�

1
2 / d t <1:

If, in addition, f is differentiable, then the above condition holds if and only if
there is a0 2 . Oa; b/ such that

a0Z
Oa

.det�/0.t/

!2.t/ det�.t/
1
2

f 0.det�.t/�
1
2 / d t <1:

Proof. First note that finiteness of the integrals in the proposition clearly does not
depend on a0 2 . Oa; b/.

Let � be the measure on Œ1;1/ such that f .r/ D �.Œ1; r//, r � 1. It follows from
[13, Lemma 4] thatZ

Œ1;1/

P Œ�H �.ir/

r
d �.r/ <1 ()

1Z
1

Q�H .r/f .r/
r3

d r <1:

Since h2 does not vanish identically in a neighborhood of a, we have P Œ�H �D ImqH .
By Theorem 1.1, we have

P Œ�H �.ir/

r
� 1

r2!2.Ot .r//
� det�.Ot .r//

!2.Ot .r//
:

Hence
1Z
1

Q�H .r/f .r/
r3

d r <1 ()
Z

Œ1;1/

det�.Ot .r//
!2.Ot .r//

d �.r/ <1: (3.4)

We define a measure � on .0;1/ via �..r;1// D det�.Ot.r//
!2.Ot.r//

, r > 0. Let O� be the

measure on . Oa; b/ satisfying O�.. Oa; t//D �.. Or.t/;1//D det�.t/
!2.t/

, t > Oa. Integrating by
parts (see, e.g., [11, Lemma 2]), we can rewrite the first integral in (3.4) as follows:Z
Œ1;1/

det�.Ot .r//
!2.Ot .r//

d �.r/ D
Z

Œ1;1/

�..r;1// d �.r/ D
Z

Œ1;1/

f .r/ d �.r/

D
Z

. Oa;Ot.1/�

f . Or.t// d O�.t/ D
Z

. Oa;Ot.1/�

f . Or.t// d
�det�
!2

�
.t/

D
Ot.1/Z
Oa

f . Or.t// � 1

!2.t/2

�
!2.t/

�!3.t/
��
H.t/

�
!2.t/

�!3.t/
�

d t:
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To prove the additional statement, let us assume that f is differentiable. Using a sub-
stitution we can rewrite the second integral in (3.4) differently:

Z
Œ1;1/

det�.Ot .r//
!2.Ot .r//

d �.r/ D
1Z
1

det�.Ot .r//
!2.Ot .r//

f 0.r/ d r D
OaZ

Ot.r/

det�.t/
!2.t/

f 0. Or.t// Or 0.t/ d t

D 1

2

Ot.r/Z
Oa

det�.t/
!2.t/

f 0. Or.t// .det�/0.t/

det�.t/
3
2

d t:

The following result provides, in particular, information on when the measure Q�H
is finite with respect to a regularly varying rescaling function g.

3.2 Corollary. LetH be a Hamiltonian on Œa; b/, and assume that h2 does not vanish
identically in a neighborhood of a. Let g be a continuous function that is regularly
varying with index ˛ 2 Œ0; 2�, and denote by �H the spectral measure ofH as in (1.2).
Then, for ˛ 2 .0; 2/ and every a0 2 . Oa; b/, the following statements are equivalent:Z

Œ1;1/

d Q�H .r/
g.r/

<1I(i)

a0Z
Oa

1

!2.t/2

�
!2.t/

�!3.t/
��
H.t/

�
!2.t/

�!3.t/
�

d t

det�.t/g.det�.t/�
1
2 /
<1I(ii)

a0Z
Oa

.det�/0.t/

!2.t/ det�.t/g.det�.t/�
1
2 /

d t <1I(iii)

If ˛ D 0, then (iii) H) (i) and (iii) () (ii), while for ˛ D 2 we have (iii) H) (i)
and (iii) H) (ii).

Proof. The increasing function f .r/ WD R r
1

t
g.t/

dt is regularly varying by Karamata’s
Theorem [5, Propositions 1.5.8 and 1.5.9a]. Moreover,

f .r/

8̂<̂
:
� r2

g.r/
; 0 � ˛ < 2;

� r2

g.r/
; ˛ D 2:

(3.5)

Clearly, (iii) is equivalent to

a0Z
Oa

.det�/0.t/

!2.t/ det�.t/
1
2

f 0.det�.t/�
1
2 / d t <1
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which is the term appearing in the additional statement of Theorem 3.1. Applying
Theorem 3.1 and using (3.5), this is equivalent to (for ˛ 2 Œ0; 2/) or implies (for
˛ D 2) both (ii) and

1Z
1

Q�H .r/ d r
rg.r/

<1:

By [18, Proposition 4.5], this is further equivalent to (for ˛ 2 .0; 2�) or implies (for
˛ D 0) the first item.

3.2. Comparative growth of the distribution function

In this section we investigate lim sup-conditions for the quotient Q�H .r/
g.r/

instead of
integrability conditions. Let us introduce the corresponding classes of measures.

3.3 Definition. Let g.r/ be a regularly varying function with index ˛ 2 Œ0; 2� and
limr!1 g.r/ D1. Then we set

Fg WD ¹� j Q�.r/ . g.r/; r !1º;
F 0

g WD ¹� j Q�.r/ D o.g.r//; r !1º;
where again Q�.r/ WD �..�r; r//.

It should be mentioned that, for nondecreasing g, ifZ
Œ1;1/

d Q�.r/
g.r/

<1;

then�2F 0
g �Fg. For further discussion of this relation, the reader is referred to [18].

3.4 Theorem. LetH be a Hamiltonian on Œa; b/, and assume that h2 does not vanish
identically in a neighborhood of a. Let g.r/ be a regularly varying function with
index ˛ 2 Œ0; 2� and limr!1 g.r/ D 1. Denote by �H the spectral measure of H .
For ˛ < 2, the following statements hold:

�H 2 Fg () lim sup
t!Oa

1

!2.t/g.det�.t/�
1
2 /
<1I(i)

�H 2 F 0
g () lim

t!Oa

1

!2.t/g.det�.t/�
1
2 /
D 0:(ii)

If ˛ D 2, then the right-hand side of (i), (ii) implies the left-hand side, respectively.

Proof. We use [18, Lemma 4.16] which, adapted to our situation, reads as

c˛ lim sup
r!1

� r

g.r/
P Œ�H �.ir/

�
� lim sup

r!1

Q�H .r/
g.r/

� c0˛ lim sup
r!1

� r

g.r/
P Œ�H �.ir/

�
;
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and the second inequality holds even for ˛ D 2. Since h2 does not vanish identically
in a neighborhood of a, we have P Œ�H � D Im qH . Therefore, the assertion follows
from Theorem 1.1 and a substitution r D Or.t/.

4. Weyl coefficients with tangential behavior

In this section, we investigate the scenario

lim
r!1

Im qH .ir/

jqH .ir/j D 0 or lim inf
r!1

Im qH .ir/

jqH .ir/j D 0: (4.1)

This is equivalent to tangential behavior of qH .ir/, i.e.,

lim
r!1

arg qH .ir/ 2 ¹0; �º or lim inf
r!1

min¹arg qH .ir/; � � arg qH .ir/º D 0:

From Proposition 2.5 we get that

lim
n!1

Im qH .irn/

jqH .irn/j D 0 () lim
n!1

det�.Ot .rn//
.!1!2/.Ot .rn//

D 0: (4.2)

for every sequence rn!1. All results in this section can be seen from the canonical
systems perspective as well as from the Herglotz functions perspective.

To start with, we observe that the second assertion in (4.1) implies the first unless
the limit inferior is assumed only along very sparse sequences. We formulate this
fact in the language of Herglotz functions, and prove it within the canonical systems
setting. However, we do not know a purely function theoretic proof (which may very
well exist in the literature).

4.1 Lemma. Let q be a Herglotz function. Suppose there is a sequence .rn/n2N with
rn !1, supn2N

rnC1
rn

<1, and

lim
n!1

Im q.irn/

jq.irn/j D 0:

Then limr!1
Imq.ir/
jq.ir/j

D 0.

Proof. LetH be a Hamiltonian (on Œ0;1/), such that q D qH . Let d.t/ WD det�.t/
.!1!2/.t/

.
Set tn WD Ot .rn/, then by (2.14),

d.tn/ �
� Im q.irn/

jq.irn/j
�2 n!1����! 0:

Suppose that the assertion was not true, i.e., there is a sequence �1 > �2 > � � � con-
verging to 0, such that d.�k/ � C > 0 for all k. For k 2 N, set

n.k/ WD max¹n 2 N j tn > �kº:
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We obtain�rn.k/C1
rn.k/

�2
D det�.tn.k//

det�.tn.k/C1/
� det�.�k/

det�.tn.k/C1/

D d.�k/

d.tn.k/C1/
� .!1!2/.�k/

.!1!2/.tn.k/C1/
� C

d.tn.k/C1/

k!1����!1

which contradicts our assumption.

Recall formulae (2.15) and (2.14). On an intuitive level, they tell us that in the
case that Im qH .ir/ 6� jqH .ir/j, the growth of jqH .ir/j is restricted since Vr.Ot .r// is
then far away from r . If read in the other direction, this means that if jqH .ir/j grows
quickly and without oscillating too much, then Vr.Ot .r// and r should be close to each
other, and hence the quotient ImqH .ir/

jqH .ir/j
should not decay.

The following definition introduces the notions needed in Theorems 4.3 (a) and
4.3 (b), which confirm this intuition.

4.2 Definition. A measurable function f W .0;1/! .0;1/ is called regularly varying
(at infinity) with index ˛ 2 R if, for any � > 0,

lim
r!1

f .�r/

f .r/
D �˛: (4.3)

If ˛ D 0, then f is also called slowly varying (at infinity).
A measurable function f W .0;1/! .0;1/ is positively increasing (at infinity) if

there is � 2 .0; 1/ such that

lim sup
r!1

f .�r/

f .r/
< 1: (4.4)

Let us say explicitly that we do not require f to be monotone.

4.3 (a) Theorem. Let q ¤ 0 be a Herglotz function. If jq.ir/j or 1
jq.ir/j

is positively
increasing at infinity (in particular, if jq.ir/j is regularly varying with index ˛ ¤ 0),
then Im q.ir/ � jq.ir/j as r !1.

4.3 (b) Theorem. Let q ¤ 0 be a Herglotz function. If Im q.ir/ D o.jq.ir/j/ as
r !1, then, for every ı 2 Œ0; 1/,

lim
r!1

q
�
ir
� Imq.ir/
jq.ir/j

�ı�
q.ir/

D 1: (4.5)

For k > 0, we also have limr!1
q.ikr/
q.ir/

D 1, in particular, jq.ir/j is slowly varying
at infinity.
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4.4 Remark. In Theorem 4.3 (a), the requirement that jq.ir/j should be positively
increasing is meaningful. It is not enough that jq.ir/j grows sufficiently fast, say,
jq.ir/j & rı for r !1 and some ı > 0.

In fact, for any given ı 2 .0; 1/, we construct in Definition 5.2 a Hamiltonian8 H

whose Weyl coefficient qH satisfies (see Lemma 5.6) jqH .ir/j & rı as r !1, but

lim inf
r!1

Im qH .ir/

jqH .ir/j D 0:

In other words, Im qH .ir/ 6� jqH .ir/j.
Note also that for the above-mentioned H , certainly jqH .ir/j is not slowly vary-

ing [5, Proposition 1.3.6]. Hence, in Theorem 4.3 (b) it is not enough to require
Im q.irn/ D o.jq.irn/j/ on some sequence rn !1.

4.5 Example. Let q.z/ D log z, satisfying jq.ir/j D Œ.log r/2 C �2

4
�1=2 which is

increasing. However, Imq.ir/ is constant and hence Imq.ir/D o.jq.ir/j/ as r!1.
Theorem 4.3 (a) fails because jq.ir/j is not positively increasing.

Proof of Theorem 4.3 (a). Assume first that jq.ir/j is positively increasing. Then there
are �; � 2 .0; 1/ and R > 0 such that

jq.i�r/j
jq.ir/j � �; r � R: (4.6)

Let H be a Hamiltonian with Weyl coefficient qH D q, allowing us to use (2.15).
Suppose that the assertion was not true. Then there is a (without loss of generality,

monotone) sequence rn !1 with limn!1
Imq.irn/
jq.irn/j

D 0. Let m.n/ be such that

�m.n/C1 � Vr.Ot .rn//
rn

< �m.n/:

Note that m.n/!1 because of (2.14).
Furthermore, (2.15) ensures that there is ˇ > 0 with

ˇ � jq.i Vr.Ot .r///jjq.ir/j ; r 2 .0;1/:

We will also need that for 0 < r < r 0,

jq.ir/j
jq.ir 0/j �

r 0!2.Vt .r 0//
r!2.Vt .r//

� r 0

r

because !2 is nondecreasing.

8Choose suitable parameters p; l 2 .0; 1/, such that ı D log l
log.pl/ , i.e., p D lı�1�1.
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Choosing n so big that Vr.Ot .rn// � R, we get the contradiction

ˇ � jq.i Vr.Ot .rn///jjq.irn/j D jq.i Vr.Ot .rn///jjq.i�m.n/rn/j
�
m.n/�1Y
jD0

jq.i�jC1rn/j
jq.i�j rn/j

.
�m.n/rn

Vr.Ot .rn//
�m.n/ � �m.n/

�

n!1����! 0:

This proves the theorem in the case that jq.ir/j is positively increasing.
If, on the other hand, 1

jq.ir/j
is positively increasing, we may set Qq WD � 1

q
, for

which j Qq.ir/j is positively increasing. We obtain

Im q.ir/

jq.ir/j D
Im Qq.ir/
j Qq.ir/j � 1:

Finally, we note that if jq.ir/j is regularly varying with index ˛ > 0, then it is also
positively increasing. If jq.ir/j is regularly varying with index ˛ < 0, then 1

jq.ir/j
is

regularly varying with index �˛ > 0 and thus positively increasing.

Our proof of Theorem 4.3 (b) is elementary - only folklore facts that follow from
the Herglotz integral representation (1.2) are needed. We would be interested in an
elementary proof of Theorem 4.3 (a) as well, which so far we have not found.

One fact needed in the following proof is the following: For any Herglotz function
q and any z 2 CC, we have

jq0.z/j � Im q.z/

Im z
: (4.7)

This can be seen using the representation (1.2): We write

q0.z/ D b C
Z
R

d �.t/
.t � z/2

and obtain

jq0.z/j � b C
Z
R

d �.t/
jt � zj2 D

Im q.z/

Im z
:

Proof of Theorem 4.3 (b). Let k 2 .0; 1/. Then

j log q.ikr/ � log q.ir/j D
ˇ̌̌̌ rZ
kr

i.log q/0.is/ d s
ˇ̌̌̌
�

rZ
kr

j.log q/0.is/j d s: (4.8)

Apply (4.7) to log q and to i� � log q to obtain

j.log q/0.is/j � 1

s
min¹ImŒlog q.is/�; � � ImŒlog q.is/�º

D 1

s
min¹arg q.is/; � � arg q.is/º � Im q.is/

sjq.is/j
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for all s > 0. We will also need monotonicity in s of s Imq.is/
jq.is/j

. In fact, it is easy to see
from (1.2) that s Im q.is/ is nondecreasing in s. Now, we can write

s
Im q.is/

jq.is/j D
s
s Im q.is/ � s Im

�
� 1

q.is/

�
and hence s Imq.is/

jq.is/j
is nondecreasing in s. Putting together and continuing the estima-

tion in (4.8), we obtain

j log q
�
ikr

� � log q.ir/j .
rZ

kr

Im q.is/

sjq.is/j d s � r Im q.ir/

jq.ir/j �
rZ

kr

d s
s2

D r Im q.ir/

jq.ir/j
� 1
kr
� 1
r

�
� Im q.ir/

jq.ir/j
r!1����! 0: (4.9)

This shows limr!1
q.ikr/
q.ir/

D 1. To prove (4.5), set k.r/ WD Imq.ir/
jq.ir/j

and repeat the
calculations up to the second to last term in (4.9), but with k replaced by k.r/ı , where
ı 2 Œ0; 1/. Since

rk.r/
� 1

rk.r/ı
� 1
r

�
� k.r/1�ı r!1����! 0;

we arrive at (4.5).

Note that limr!1
q.ikr/
q.ir/

D 1 is also a consequence of (2.17). The preceding proof,
in addition to being elementary, is needed to show (4.5) which, upon taking absolute
values, can be seen as slow variation with a rate.

5. Maximal oscillation within Weyl disks

In order to explain the aim of this section, let us first recall the notion of Weyl disks.
Let W.t; z/ 2 C2�2 be the fundamental solution of

d

dt
W.t; z/J D zW.t; z/H.t/; (5.1)

with initial conditionW.a; z/D I , solving the transpose of equation (1.1). We define
the Weyl disks

Dt;z WD
°w11.t; z/� C w12.t; z/
w21.t; z/� C w22.t; z/

ˇ̌̌
� 2 CC

±
� CC; (5.2)
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where CC D ¹z 2 Cj Im z > 0º, and the closure is taken in the Riemann sphere C D
C [ ¹1º. For fixed z 2 CC and t1 � t2, we haveDt1;z �Dt2;z , and the disks shrink
down to a single point which is qH .z/:\

t2Œa;b/

Dt;z D ¹qH .z/º:

Now, we review the estimate (1.3) which has a geometric interpretation. Namely,
the functions L.r/ and A.r/ give, up to �, the imaginary part of the bottom and top
point of D

Vt.r/;ir
, respectively. The size of Im qH .ir/ relative to L.r/ and A.r/ thus

corresponds to the vertical position of qH .ir/ within the disk D
Vt.r/;ir

.
In this section we give answers to several questions from [18]. For instance, the

question was raised whether there is a HamiltonianH for whichL.r/� ImqH .ir/ 6�
A.r/ for r ! 1. The answer to this particular question is no, cf. Proposition 5.1.
However9, L.rn/ � Im qH .irn/� A.rn/ on a subsequence rn!1 is possible, and
we provide examples for this in Definition 5.2 and in Example 5.7. The Weyl coeffi-
cient of the Hamiltonian constructed in Definition 5.2 exhibits “maximal” oscillatory
behavior in the sense that it goes back and forth between the bottoms and tops of the
disks D

Vt.r/;ir
.

5.1 Proposition. Let H be a Hamiltonian on .a; b/. The following statements hold.

(i) Suppose thatL.r/ 6� A.r/ as r!1. Then there exists a sequence .rn/n2N

such that rn !1, L.rn/� A.rn/, and

Im qH .irn/ &
p
L.rn/A.rn/:

(ii) Suppose that L.r/ 6� A.r/, but not L.r/� A.r/ as r !1. Then there is
also .r 0n/n2N with r 0n !1, L.r 0n/� A.r 0n/, and

Im qH .ir
0
n/ �

p
L.r 0n/A.r

0
n/: (5.3)

Proof. We shorten notation by setting

d.t/ WD det�.t/
.!1!2/.t/

:

By assumption, lim inft!Oa d.t/ D 0. Let c 2 . Oa; b/ be fixed and set

tn WD max
°
t � c

ˇ̌̌
d.t/ � 1

n

±
:

9In this section, we use the more transparent notation f .r/ � g.r/ instead of f .r/ D
o.g.r//.
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With tCn WD Ot . Vr.tn// � tn, we have d.tCn / � 1
n
D d.tn/ if n is large enough for tCn � c

to hold. Using (2.14), we obtain� Im qH .i Vr.tn//
A. Vr.tn//

�2
� d.tCn / � d.tn/ D

L. Vr.tn//
A. Vr.tn//

:

Note that L. Vr.tn//� A. Vr.tn// because of d.tn/! 0.
Suppose now that s WD lim supr!1

L.r/
A.r/

> 0. Set �n WD max¹t � tn j d.�n/ D s
2
º

and find �n between �n and tn such that d.�n/ D min¹d.t/ j t 2 Œ�n; tn�º. Certainly,
d.�n/ � d.tn/ D 1

n
and d.�n/ � d.t/ for all t 2 Œ�n; c�. Also note that by the same

arguments as above,

Im qH .i Vr.�n// &
q
L. Vr.�n/A. Vr.�n///: (5.4)

We prove next that Or.�n/ � Vr.�n/. Note that by passing to a subsequence and
possibly switching signs of !3 by looking at J>HJ instead of H , we can assume
that

lim
n!1

!3.�n/p
.!1!2/.�n/

D 1:

A calculation shows that
p
.!1!2/.t/ � !3.t/ is increasing. Hence� Or.�n/

Vr.�n/
�2
D .!1!2/.�n/

det�.�n/

D
.!1!2/.�n/

�
1 � !3.�n/p

.!1!2/.�n/

�
.
p
.!1!2/.�n/ � !3.�n//2

�
1C !3.�n/p

.!1!2/.�n/

�
�

.!1!2/.�n/
�
1 � !3.�n/p

.!1!2/.�n/

�
.
p
.!1!2/.�n/ � !3.�n//2

�
1C !3.�n/p

.!1!2/.�n/

�
D

�
1 � !3.�n/p

.!1!2/.�n/

��
1 � !3.�n/p

.!1!2/.�n/

�2�
1C !3.�n/p

.!1!2/.�n/

� . 1 � !3.�n/p
.!1!2/.�n/

! 0:

(5.5)

Let ��n WD Vt . Or.�n//. By the calculation above, Vr.��n /D Or.�n/ < Vr.�n/ for large enough
n, implying ��n > �n and hence d.��n / � d.�n/. Consequently,

L. Or.�n//
A. Or.�n// D d.�

�
n / � d.�n/ �

� Im qH .i Or.�n//
A. Or.�n//

�2
:

This means that
Im qH .i Or.�n// � C

p
L. Or.�n//A. Or.�n//
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for some C > 0 and all large n. Recall (5.4) and choose C 0 > 0, w.l.o.g. C 0 < C , such
that

Im qH .i Vr.�n// � C 0
q
L. Vr.�n//A. Vr.�n//

for large n. By continuity, we find, for each large n, an r 0n 2 Œ Vr.�n/; Or.�n/� with

Im qH .ir
0
n/p

L.r 0n/A.r
0
n/
2 ŒC 0; C �;

such that .r 0n/n2N satisfies (5.3). The only thing left to prove is that L.r 0n/� A.r 0n/.
Suppose not, then on a subsequence we would have L.r 0n/ � A.r 0n/. Consider

� 0n WD Vt .r 0n/ � �n which would then satisfy d.� 0n/ & 1 and hence

1 � !3.�
0
n/p

.!1!2/.� 0n/
& 1:

Now, look at (5.5), but with �n replaced by � 0n. It follows that, for large n, Or.�n/ < r 0n,
contradicting the choice of r 0n.

In the following definition, we construct a Hamiltonian by prescribing f WD !3p
!1!2

and choosing f to be a highly oscillating function. It should be mentioned that the
method we use for prescription works on a general basis: any locally absolutely
continuous function with values in .�1; 1/ occurs as !3p

!1!2
for some Hamiltonian.

Details can be found in the appendix of the extended preprint [23] of this article.

5.2 Definition. Let .tn/n2N ; .�n/n2N be sequences of positive numbers converging
to zero, where �nC1 < tn < �n for all n 2 N. Choose p; l 2 .0; 1/ and set

f .tn/ D 1 � pn; f .�n/ D ln

and interpolate between those points using monotone and absolutely continuous func-
tions (e.g., linear interpolation). Set

˛1.t/ WD

8̂<̂
:

f 0.t/

1 � f .t/ ; t 2 .�nC1; tn/;

0; t 2 .tn; �n/
and

˛2.t/ WD

8̂̂̂<̂
ˆ̂:

f 0.t/

1 � f .t/ ; t 2 .�nC1; tn/;

�2f
0.t/

f .t/
; t 2 .tn; �n/



J. Reiffenstein 580

For t 2 Œ0; t1�, let !i .t/ WD exp.� R t1
t
˛i .s/ d s/, i D 1; 2, and !3.t/ WD

p
.!1!2/.t/ �

f .t/. Set hi .t/ D !0i .t/, i D 1; 2; 3, t 2 Œ0; t1�. For t 2 .t1;1/, let h1.t/ WD 1 and
h2.t/ WD h3.t/ WD 0. Finally, define

Hp;l WD
�
h1 h3

h3 h2

�
:

5.3 Lemma. Hp;l is a Hamiltonian on Œ0;1/, and !i .t/D
R t
0
hi .s/ds for i D 1; 2; 3

and t 2 Œ0; t1�. Moreover, 0 is not the left endpoint of an Hp;l -indivisible interval.

Proof. We write H instead of Hp;l for short. First we show that H.t/ � 0 for all
t 2 Œ0; t1�. Start by noting that, for i D 1; 2,

hi .t/

!i .t/
D .log!i /0.t/ D ˛i .t/;

and calculate

h3.t/
2

.!1!2/.t/
D Œ.
p
!1!2f /

0.t/�2

.!1!2/.t/
D
�
f 0.t/C 1

2

hh1.t/
!1.t/

C h2.t/

!2.t/

i
f .t/

�2
D
�
f 0.t/C ˛1.t/C ˛2.t/

2
f .t/

�2
:

If t 2 .tn; �n/, then this equates to 0, as does

.h1h2/.t/

.!1!2/.t/
D ˛1.t/˛2.t/ D 0:

For t 2 .�nC1; tn/,�
f 0.t/C ˛1.t/C ˛2.t/

2
f .t/

�2
D
� f 0.t/

1 � f .t/
�2
D ˛1.t/˛2.t/ D .h1h2/.t/

.!1!2/.t/
:

In both cases, detH.t/ D 0. For i D 1; 2, as ˛i .t/ � 0, t 2 Œ0; t1�, certainly !i .t/ is
increasing and thus hi .t/ � 0. This suffices to show that H.t/ � 0.

H is in limit point case since, for t > t1, the trace of H.t/ equals 1. To show that
!i .t/ D

R t
0
hi .s/ ds, i D 1; 2; 3, t 2 Œ0; t1�, we need to check that limt!0 !i .t/ D 0.

For i D 1, this follows from

t1Z
0

˛1.s/ d s D
1X
nD1

tnZ
�nC1

f 0.s/

1 � f .s/ d s D
1X
nD1

Œlog.1 � lnC1/ � log.pn/� D1: (5.6)

For i D 2, it follows from the fact that ˛2.t/ � ˛1.t/ for all t 2 Œ0; t1�, and for i D 3
it follows from the definition of !3 and the fact that f .t/ < 1, t 2 Œ0; t1�.
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V n/

O n/

Vr.tn/

Or.tn/

V nC1/

O nC1/

Vr.tnC1/

Or.tnC1/

V nC2/

O nC2/

L.r/

r
log l

log.pl/

Im qH .ir/

A.r/

Figure 1. A sketch of the behavior of qHp;l .

Finally, 0 is not the left endpoint of an H -indivisible interval because

det�.t/ D .!1!2/.t/.1 � f .t/2/ > 0
for all t 2 .0; t1�.

We investigate the behavior for r !1 of Im qHp;l .ir/ as well as L.r/ and A.r/.
A rough description of the situation is given in Figure 1 Formal details are given in
the following theorem as well as in Lemma 5.6.

5.4 Theorem. Let p; l 2 .0; 1/. For the Hamiltonian H D Hp;l from Definition 5.2
and for all sufficiently large n 2 N, we have

Vr.�n/ < Or.�n/ < Vr.tn/ < Or.tn/ < Vr.�nC1/: (5.7)

On the intervals delimited by the terms in (5.7), the functions L.r/, Im qH .ir/, and
A.r/ behave in the following way.

(i) Im qH .ir/ � A.r/ uniformly for r 2 Œ Vr.�n/; Or.�n/�, n 2 N.

(ii) Im qH .ir/ � A.r/ uniformly for r 2 Œ Or.�n/; Vr.tn/�, n 2 N. Moreover,
L. Vr.tn//� A. Vr.tn//.

(iii) L.r/�A.r/ uniformly for r 2 Œ Vr.tn/; Or.tn/�, n2N. In addition,L. Vr.tn//�
ImqH .i Vr.tn//�A. Vr.tn// as well asL. Or.tn//� ImqH .i Or.tn//�A. Or.tn//.

(iv) L.r/ � Im qH .ir/� A.r/ uniformly for r 2 Œ Or.tn/; Vr.�nC1/�, n 2 N.
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The proof of this theorem involves some (partly tedious) computations that are
partly contained in the forthcoming lemma. The symbol � should mean equality up
to an additive term that is bounded in n and t .

5.5 Lemma. For the Hamiltonian Hp;l , the following formulae hold:

log Vr.tn/��n2 log.pl/
2

� n
log. l

p
/

2
; log Or.tn/��n2 log.pl/

2
� n log l

2
;

log Vr.�n/��n2 log.pl/
2

C n log.pl/
2

; log Or.�n/��n2 log.pl/
2

C n log.pl/
2

;

log Vr.t/��n2 log.pl/
2

� n
log. l

p
/

2
C logf .t/; t 2 Œtn; �n�;

log Vr.t/��n2 log.pl/
2

� n log.pl/
2

C log.1 � f .t//; t 2 Œ�nC1; tn�;

log Or.t/��n2 log.pl/
2

� n
log. l

p
/

2
C logf .t/ � log.1 � f .t//

2
; t 2 Œtn; �n�;

log Or.t/��n2 log.pl/
2

� n log.pl/
2

C log.1 � f .t//
2

; t 2 Œ�nC1; tn�:

Proof. First we calculate

log. Vr.tn// D �1
2

logŒ.!1!2/.tn/� D 1

2

t1Z
tn

.˛1.s/C ˛2.s// d s

D
n�1X
kD1

� �kC1Z
tkC1

�f 0.s/
f .s/

d s C
tkZ

�kC1

f 0.s/

1 � f .s/ d s
�

D
n�1X
kD1

�
log.1 � pkC1/ � .k C 1/ log l C log.1 � lkC1/ � k logp

�
� �n2 log.pl/

2
� n

log. l
p
/

2
: (5.8)

This also leads to

log Or.tn/ D �1
2

log.1 � f .tn/2/C log Vr.tn/

� �1
2

log.1 � f .tn//C log Vr.tn/

� �n2 log.pl/
2

� n log l
2
:
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If t 2 Œtn; �n�, then

log Vr.t/ D log Vr.tn/ �
tZ

tn

�f 0.s/
f .s/

d s � �n2 log.pl/
2

� n
log. l

p
/

2
C logf .t/:

If t 2 Œ�nC1; tn�, then

log Vr.t/ D log Vr.tn/C
tnZ
t

f 0.s/

1 � f .s/ d s

� �n2 log.pl/
2

� n log.pl/
2

C log.1 � f .t//:

By adding �1
2

log.1 � f .t/2/ � �1
2

log.1 � f .t//, the analogous formula for Or.t/
follows. Lastly,

log Vr.�n/ � �n2 log.pl/
2

� n
log

�
l
p

�
2

C logf .�n/

� �n2 log.pl/
2

C n log.pl/
2

:

and

log Or.�n/ D �1
2

log.1 � f .�n/2/C log Vr.�n/ � log Vr.�n/:

Proof of Theorem 5.4. It follows from Lemma 5.5 that Or.�n/ < Vr.tn/ and Or.tn/ <
Vr.�nC1/ for large enough n. The remaining two inequalities in (5.7) follow from the
basic fact that Vr.t/ < Or.t/ for all t 2 .0;1/.

We will now prove (i)–(iv) in reverse order.

(iv) �nC1 � Vt .r/ � tn and �nC1 � Ot .r/ � tn. By Lemma 5.5,

� n2 log.pl/
2

� n log.pl/
2

C 1

2
log.1 � f .Ot .r/// � log Or.Ot .r// D log r

D log Vr.Vt .r// � �n2 log.pl/
2

� n log.pl/
2

C log.1 � f .Vt .r///:

Hence,

Im qH .ir/

A.r/
�
q
1 � f .Ot .r//2 � 1 � f .Vt .r//2 D L.r/

A.r/
:

In addition,
L. Vr.�nC1//
A. Vr.�nC1//

� 1 � f .�nC1/2 � 1;
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while
L. Or.tn//
A. Or.tn// � 1 � f .

Vt . Or.tn///2 �
p
1 � f .tn/2 D p n2 � 1:

(iii) �nC1 � Vt .r/ � tn and tn � Ot .r/ � �n. Thus

� n2 log.pl/
2

� n
log. l

p
/

2
C logf .Ot .r// � 1

2
log.1 � f .Ot .r///

� log Or.Ot .r// D log Vr.Vt .r// � �n2 log.pl/
2

� n log.pl/
2

C log.1 � f .Vt .r///:

Consequently,

1

2
log

�
1 � f .Ot .r//� � n logp C logf .Ot .r// � log

�
1 � f .Vt .r//�;

which implies q
1 � f .Ot .r// � pn f .Ot .r//

1 � f .Vt .r//
:

Let us check that the term f .Ot .r// can be neglected. Using that f .Vt .r// � 1� pn, we
get q

1 � f .Ot .r// . f .Ot .r//
which is only possible if f .Ot .r// stays away from 0. As f .Ot .r// < 1, this means that
f .Ot .r// � 1, leading to

Im qH .ir/

A.r/
�
q
1 � f .Ot .r// � pn

1 � f .Vt .r//
:

Hence, Im qH .i Vr.tn// � A. Vr.tn//. Looking back at case (iv), we know that

Im qH .i Or.tn// � L. Or.tn//� A. Or.tn//:

In particular, since L.r/
A.r/
D 1 � f .Vt .r//2 is increasing for r in Œ Vr.tn/; Or.tn/�, we have

L.r/� A.r/ uniformly on this interval.

(ii) tn � Vt .r/ � �n and tn � Ot .r/ � �n, leading to

� n2 log.pl/
2

� n
log. l

p
/

2
C logf .Ot .r// � 1

2
log.1 � f .Ot .r///

� log Or.Ot .r// D log Vr.Vt .r// � �n2 log.pl/
2

� n
log. l

p
/

2
C logf .Vt .r//:

Hence q
1 � f .Ot .r// � f .Ot .r//

f .Vt .r//
> f .Ot .r//:
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In particular, 1 � f .Ot .r// stays away from 0, which means that

Im qH .ir/

A.r/
�
q
1 � f .Ot .r// � 1:

In other words, Im qH .ir/ � A.r/ uniformly for r 2 Œ Or.�n/; Vr.tn/�. As we already
know, L. Vr.tn//� Im qH .i Vr.tn// � A. Vr.tn//.

(i) tn � Vt .r/ � �n and �n � Ot .r/ � tn�1. In this case

� n2 log.pl/
2

C n log.pl/
2

C 1

2
log.1 � f .Ot .r///

� log Or.Ot .r// D log Vr.Vt .r// � �n2 log.pl/
2

� n
log. l

p
/

2
C logf .Vt .r//:

Taking into account that f .Vt .r// � ln by definition, it follows that

Im qH .ir/

A.r/
�
q
1 � f .Ot .r// � f .Vt .r//

ln
� 1:

Therefore, Im qH .ir/ � A.r/ uniformly for r 2 Œ Vr.�n/; Or.�n/�. At the left end of this
interval, we even have L. Vr.�n// � A. Vr.�n// by case (iv).

Before we state our next result, we note that by definition of Hp;l ,

lim inf
t!0

det�.t/
.!1!2/.t/

D lim inf
t!0

.1 � f .t/2/ D 0: (5.9)

In view of (2.14), we have

lim inf
r!1

Im qHp;l .ir/

jqHp;l .ir/j
D 0

and hence Im qHp;l .ir/ 6� jqHp;l .ir/j.
Nevertheless, the following lemma shows that jqHp;l .ir/j grows faster than a

power. Recalling Theorem 4.3 (a), this means that jq.ir/j & rı for r ! 1 is not
a sufficient condition for Im q.ir/ � jq.ir/j as r !1. Instead, we see that jq.ir/j
being positively increasing really means that not only does jq.ir/j grow sufficiently
fast, but also without oscillating too much.

5.6 Lemma. Let ı WD log l
log.pl/ 2 .0; 1/. Then

• jqHp;l .ir/j & rı , r !1,

• jqHp;l .i Vr.�n//j � Vr.�n/ı .
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Proof. We start the proof with calculating, for t 2 Œtn; �n�,

log

s
!1.t/

!2.t/
D 1

2
log
�!1.t/
!2.t/

�
D

n�1X
kD1

�kC1Z
tkC1

�f 0.s/
f .s/

d s C
tZ

tn

f 0.s/

f .s/
d s

D
n�1X
kD1

.log.1 � pkC1/ � .k C 1/ log l/C logf .t/ � log.1 � pn/

� �.n2 C n/ log l
2
C logf .t/:

Now, we use our formula for log Vr.t/:

log

s
!1.t/

!2.t/
� log l

log.pl/
log Vr.t/C 1

2

� log.l/ log. l
p
/

log.pl/
� log l

�
n

C
�
1 � log l

log.pl/

�
logf .t/

D log l
log.pl/

log Vr.t/C logp
log.pl/

�
logf .t/ � n log l

�
; t 2 Œtn; �n�:

(5.10)

Since f was assumed to be monotone decreasing on Œtn; �n�, and logf .�n/ D n log l ,

log

s
!1.t/

!2.t/
'

log l
log.pl/

log Vr.t/ D ı log Vr.t/;

where ' indicates that the inequality holds up to an additive term that is bounded in
n and t . Therefore

jqHp;l .i Vr.t//j �
s
!1.t/

!2.t/
& Vr.t/ı ; t 2 Œtn; �n�:

Observing that !1
!2

is constant on Œ�nC1; tn� (since ˛1 � ˛2 D 0 there), we obtain this
estimate also for t 2 Œ�nC1; tn�:

jqHp;l .i Vr.t//j �
s
!1.t/

!2.t/
D
s
!1.�nC1/

!2.�nC1/
& Vr.�nC1/ı � Vr.t/ı :

Finally, setting t D �n in (5.10) yields jqHp;l .i Vr.�n//j � Vr.�n/ı .
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5.7 Example. Let H be as in Definition 5.2, but f .�n/ D 1 � ln�1 instead, where
l >
p
p. Similarly to Theorem 5.4, one can show that

L. Or.tn// � Im qH .i Or.tn//� A. Or.tn//:

However, for our new Hamiltonian,

lim
t!0

det�.t/
.!1!2/.t/

D lim sup
t!0

det�.t/
.!1!2/.t/

D lim sup
t!0

�
1 � f .t/2� D 0

as opposed to (5.9).

6. Reformulation for Krein strings

Recall that a Krein string is a pair SŒL;m� consisting of a number L 2 .0;1� and a
nonnegative Borel measure m on Œ0;L�, such that m.Œ0; t �/ is finite for every t 2 Œ0;L/,
and m.¹Lº/ D 0. To this pair we associate the equation

y0C.x/C z
Z
Œ0;x�

y.t/ d m.t/ D 0; x 2 Œ0; L/; (6.1)

where y0C denotes the right-hand derivative of y, and z is a complex spectral parame-
ter.

For each string, we can construct a function qS called the principal Titchmarsh–
Weyl coefficient of the string ([20] following [15]). This function belongs to the Stielt-
jes class, i.e., it is analytic on C n Œ0;1/, its imaginary part is nonnegative on CC,
and its values on .�1; 0/ are positive. The correspondence between Krein strings and
functions of Stieltjes class is bijective, as was shown by M. G. Krein.

Theorem 6.1 below is the reformulation of Theorem 1.1 for the Krein string case.

6.1 Theorem. Let SŒL;m� be a Krein string and set

ı.t/ WD
� Z
Œ0;t/

�2 d m.�/

�
�
� Z
Œ0;t/

d m.�/

�
�
� Z
Œ0;t/

� d m.�/

�2
(6.2)

for t 2 Œ0; L/. Let

O�.r/ WD inf
°
t > 0

ˇ̌̌ 1
r2
� ı.t/

±
; r 2 .0;1/:

We set

f .r/ WD m.Œ0; O�.r///Cm.¹O�.r/º/
1
r2
� ı. O�.r//

ı. O�.r/C/ � ı. O�.r// (6.3)
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if ı is discontinuous at O�.r/, and f .r/ WD m.Œ0; O�.r/// otherwise. Then

Im qS .ir/ � 1

rf .r/
; r 2 .0;1/; (6.4)

with constants independent of the string.

Before proving Theorem 6.1, we need to introduce the concept of dual strings as
well as a Hamiltonian associated to a string. Writing

m.t/ WD m.Œ0; t//; t 2 Œ0; L/

we can define the dual string SŒyL; Om� of SŒL;m� by setting

yL WD
´
m.L/ if LCm.L/ D1;
1 else

and
ym.�/ WD inf¹t > 0 j � � m.t/º:

The function ym is increasing and left-continuous and thus gives rise to a nonnegative
Borel measure ym.

The Hamiltonian defined by

H.t/ WD

8̂̂̂̂
<̂̂
ˆ̂̂̂:

� ym.t/2 ym.t/
ym.t/ 1

�
if t 2 Œ0; yL�;

�
1 0

0 0

�
if yLC R yL

0
ym.t/2 dt <1; yL < t <1

(6.5)

then satisfies qS D qH , see, e.g., [16].

Proof of Theorem 6.1. In view of Theorem 1.1 and the fact that qS D qH for the
Hamiltonian H defined in (6.5), our task is to express OtH .r/ in terms of the string. If
ı. O�.r// D 1

r2
, this is easy because of [16, Corollary 3.4] giving

det�H .m. O�.r/// D ı. O�.r// D 1

r2

and hence OtH .r/ D m. O�.r//.
Otherwise, we have ı. O�.r// < 1

r2
and ı. O�.r/C/ � 1

r2
. Using again [16, Corol-

lary 3.4], we have

det�H .m. O�.r/// D ı. O�.r// < 1

r2
; det�H .m. O�.r/C// D ı. O�.r/C/ � 1

r2
(6.6)
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which tells us that OtH .r/ 2 .m. O�.r//;m. O�.r/C/�. By [16, Lemma 3.1], ym is constant
on this interval. Therefore, for t 2 .m. O�.r//;m. O�.r/C/�,

det�H .t/ D
�m. O�.r//Z

0

ym.x/2 d x C .t �m. O�.r/// ym.t/2
�
� t

�
�m. O�.r//Z

0

ym.x/ d x C .t �m. O�.r/// ym.t/
�2

D c1.r/t C c2.r/

for some constants c1.r/; c2.r/. Using (6.6), this leads to

det�H .t/ D ı. O�.r//C t �m. O�.r//
m. O�.r/C/ �m. O�.r//

�
ı. O�.r/C/ � ı. O�.r//�:

If we equate this to 1
r2

, we find that

OtH .r/ D m. O�.r//C
�
m. O�.r/C/ �m. O�.r//� 1

r2
� ı. O�.r//

ı. O�.r/C/ � ı. O�.r// D f .r/:

Now, we have !H I2.t/ D
R t
0
h2.s/ ds D t , and Theorem 1.1 now shows

Im qS .ir/ D Im qH .ir/ � 1

r OtH .r/
D 1

rf .r/
:
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