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Spectral summability for the quartic oscillator
with applications to the Engel group

Hajer Bahouri, Davide Barilari, Isabelle Gallagher, and Matthieu Léautaud

Abstract. In this article, we investigate spectral properties of the sublaplacian ��G on the
Engel group, which is the main example of a Carnot group of step 3. We develop a new approach
to the Fourier analysis on the Engel group in terms of a frequency set.

This enables us to give fine estimates on the convolution kernel satisfying F.��G/u D
u ? kF , for suitable scalar functions F , and in turn to obtain proofs of classical functional
embeddings, via Fourier techniques.

This analysis requires a summability property on the spectrum of the quartic oscillator,
which we obtain by means of semiclassical techniques and which is of independent interest.
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1. Introduction and statement of the main results

1.1. The Engel group

Analysis on Lie groups is nowadays a rich and independent research field, with applic-
ations and intersections with many fields of mathematics, from PDEs to geometry
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[28, 36]. A particular class of such groups receiving increasing attention is given
by the so-called Carnot groups. These groups, playing the role of local models in
sub-Riemannian geometry as the Euclidean Rd does for Riemannian geometry, are
nilpotent Lie groups diffeomorphic to Rd and homogeneous with respect to a fam-
ily of dilations, which are automorphisms of the Lie algebra. The most renowned
examples of such groups are Heisenberg groups, which are Carnot groups of step 2.

The Lie algebra g of a Carnot group admits a stratification g D
Ls
iD1 gi where

the grading is compatible with the dilations, and the first layer g1 is Lie bracket gener-
ating, i.e., the smallest Lie algebra containing g1 is g itself, satisfying giC1 D Œg1;gi �

with the convention gsC1 D 0. The (smallest) integer s satisfying this property is then
called the step of the Carnot group.

While the analysis on Carnot groups of step 2 is now quite well understood (see
for instance [5,6,29,32,35,74–76] and the references therein), much less can be said
for Carnot groups of higher steps. The main example of a Carnot group of step 3,
which is the focus of the present paper, is the so-called Engel group.

The Engel groupG is a nilpotent 4-dimensional Lie group which is connected and
simply connected, and whose Lie algebra g satisfies the following decomposition

g D g1 ˚ g2 ˚ g3;

with
dim g1 D 2; g2

def
D Œg1;g1�; g3

def
D Œg1;g2�:

This group is described in detail in Section 3. Let us recall that it is homogeneous
of degree Q D 7, and one can define a sub-Riemannian distance on G, and the sub-
Riemannian gradient rGf . One can then consider the sublaplacian operator

�Gf
def
D div.rGf /;

where div denotes the divergence with respect to the Haar measure on G.

1.2. Spectral analysis of the sublaplacian

One of our goals in this paper is to provide an effective analysis of the spectral prop-
erties of the sublaplacian �G , having in mind the following version of the classical
spectral theorem for selfadjoint operators (see [66, Theorem VIII.4 p. 260] or [56,
Théorème 4.5 p. 117]).

Theorem 1.1. Let .A;D.A// be a selfadjoint operator on a separable Hilbert space
H . Then, there exists

• a Borel set B � Rd , d � 1, endowed with a locally finite Borel measure m on B ,

• a locally bounded real valued function a 2 L1loc.BIR; d m/,
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• an isometry U WH ! L2.B; d m/,

such that
UAU � DMa;

the operator of multiplication by the function a, with UD.A/ D D.Ma/.

Any such Borel set B can be seen as a “frequency space” for the operator A, and
the unitary operator U WH ! L2.B; d m/ can be understood as a “Fourier transform”
adapted to the operator A.

Let us discuss the spirit of this theorem on two main examples: the Euclidean
space Rd (which is a commutative Lie group) and the Heisenberg group Hd , which
is a noncommutative, nilpotent Lie group, whose Lie algebra h satisfies h D h1 ˚ h2
with h2 D Œh1; h1� and Œh1; h2� D 0.

(1) The Euclidean space Rd . In this case for the (opposite of the) classical Laplace
operator A D �� the standard Fourier identity

F .��u/.�/ D j�j2F .u/.�/; � 2 Rd ; (1.1)

can be reinterpreted in terms of Theorem 1.1 by choosing H D L2.Rd / and
B D Rd endowed with the Lebesgue measure, where U D F is the Fourier
transform and a.�/ D j�j2.

(2) The Heisenberg group Hd . In this case the (opposite of the) sublaplacian
��Hd becomes after noncommutative Fourier transform a rescaled version
of the harmonic oscillator acting on L2.Rd /

H def
D ��z C j�j

2
jzj2; z 2 Rd ; � 2 R�; (1.2)

whose spectrum is given by the set ¹j�j.2jmj C d/; � 2 R�; m 2 Nd º.
A formulation of Theorem 1.1 for the operator A D ��Hd can be given for
H D L2.Hd ; dw/ and U a Heisenberg Fourier transform FHd . An explicit
description has been provided in [4] where B D Nd �Nd �R� (writing ele-
ments ofB as triplets MwD .n;m;�/) is the space of frequencies endowed with
the measure ı.n/ı.m/j�jd d�, where ı.n/ı.m/ denotes the counting measure
on N2d . The function a is given by a.n;m; �/ D j�j.2jmj C d/.

Notice that this translates into the analogue to the Fourier identity (1.1) for
A D ��Hd as follows:

FHd .��Hdu/.n;m; �/ D j�j.2jmj C d/FHd .u/.n;m; �/:

We highlight that the function a in the case of the Heisenberg group does not
depend on n: this is related to the fact that the operator ��Hd is diagonalized
by the Hermite basis of eigenfunctions of H.
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In this paper our first aim is to identify a family of objects .B;m; a;U / as presen-
ted in Theorem 1.1 for the sublaplacian �G on the Engel group, acting on the Hilbert
space L2.G; d x/ (as we shall see in Section 3, the Haar measure on G can be
identified with the Lebesgue measure d x in suitable coordinates), that is useful in
applications. In the case of the Engel group it is known that the noncommutative
Fourier transform exchanges (the opposite of) the sublaplacian ��G with an operator
acting on L2.R/, which turns out to be the (family of conveniently rescaled) quartic
oscillator

P�
def
D �

d2

d �2
C

��2
2
� �

�2
; � 2 R; (1.3)

where � 2 R is a real parameter (see (4.12)–(4.13) below). To the best of our know-
ledge, this operator appeared for the first time in relation with hypoelliptic operators
in the paper by Pham The Lai and Robert [53] (but had already been studied before
that in relation to quantum mechanics). Since then, it has received enduring attention
and has been extensively studied under different perspectives: more references on the
spectral theory for P� are provided in Section 2.

In order to state our first result, we need to recall that P� can be endowed with the
domain

D.P�/ D
°
u 2 L2.R/; �

d2

d �2
C

��2
2
� �

�2
u 2 L2.R/

±
; (1.4)

and that its spectrum consists in countably many real eigenvalues ¹Em.�/ºm2N of
multiplicity 1 and satisfying

0 < E0.�/ < E1.�/ < � � � < Em.�/ < EmC1.�/!C1:

We also define, for .�; �/ 2 R �R�, the rescaled eigenvalues

Em.�; �/
def
D j�j

2
3 Em

� �

j�j
4
3

�
: (1.5)

Theorem 1.2. Set MG def
D N �N � R � R�, write elements of MG as Mx D .n;m; �; �/,

and define a measure on MG by d Mx def
D ı.n/ı.m/ d � d�, recalling that ı.n/ı.m/ is the

counting measure on N2. Then define on MG the function

Mx 7! a. Mx/
def
D Em.�; �/:

There exists a unitary operator U WL2.G; d x/! L2. MG; d Mx/ such that

U.��G/U
�
DMa; UD.��G/ D D.Ma/; (1.6)

where Ma denotes the operator given by multiplication by the function a.
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As in the case of the Heisenberg group described above, notice that the function a
involved in Theorem 1.2 does not depend on n. Again, this is related to the fact that
the Engel sublaplacian is diagonal on the basis of eigenfunctions of P�.

The set MG will be understood in the following as the frequency set of the Engel
group. The operator U will be a Fourier transform F (a function acting on ele-
ments Mx D .n; m; �; �/ of MG) which we construct explicitly, see (4.18)–(4.19). We
recall that the Fourier transform on noncommutative Lie groups is classically defined
as a family of bounded operators on some Hilbert space. That notion of Fourier trans-
form enjoys the same properties (in terms of operators) as the Fourier transform
on Rd , such as inversion and Fourier–Plancherel formulae. As we show in Section 4,
our new approach is equivalent to the classical Engel Fourier transform which as
already mentioned above converts ��G into P�, up to scaling. The Fourier transform
given by Theorem 1.2 consists in considering the classical Engel Fourier transform
(as a family of operators) by means of its coefficients in the basis of the eigenfunc-
tions of P�, and as we shall see, the difficulty of the classical Engel Fourier transform
is shifted to the frequency set MG which turns out to be discrete with respect to a
part of the variables and continuous with respect to the other part, and thus it cannot
be identified with G as in the Euclidean setting; in Section 6, we attempt to equip
it with a topology which takes into account the basic principles of the Fourier trans-
form, namely that regularity of functions onG is converted into decay of their Fourier
transform on MG. Contrary to the Heisenberg setting investigated in [4], the study of
topological properties of MG such as determining its completion, computing the meas-
ure on its unit sphere and providing the spectral decomposition of ��G prove to be a
challenging task requiring refined spectral analysis of P�.

The explicit representation of the Fourier transform in terms of a basis allows us
to make effective computations. Once the Fourier transform is well understood, it is
natural to try to recover via this tool well-known functional inequalities on G, such as
Sobolev embeddings, and to analyze evolution equations involving the sublaplacian.
This requires estimating quantities involving the operator F.��G/, for suitable func-
tions F defined on RC. For such F there holds (for all u in the Schwartz space �.G/

which is nothing else than the Schwartz space �.R4/)

F .F.��G/u/. Mx/ D F.Em.�; �//F .u/. Mx/; (1.7)

hence we are led to computing integrals of the formX
m2N

Z
R�R�

F.Em.�; �// d� d �;

which can be rewritten as
R
MG
F.a. Mx//ın;m d Mx, for Mx D .n;m; �; �/ 2 MG and a. Mx/ D

Em.�;�/. Contrary to the Euclidean case, or to the harmonic oscillator (1.2) appearing
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in the Heisenberg group, the eigenvalues of P� are not explicitly known. However,
the spectral analysis we conduct in this paper leads to the following theorem, which
enables us to generalize (with some technicalities) to the Engel group many results in
real analysis, such as classical functional inequalities and Bernstein inequalities. Our
second main result is indeed the following.

Theorem 1.3. With the notation of Theorem 1.2, the following result holds. For all
measurable functions F WRC ! R, the function F ı a belongs to L1. MG; ın;m d Mx/ if
and only if F 2 L1.RC; r5=2 d r/, and there holdsZ

MG

F.a. Mx//ın;m d Mx D
� X
m2N

Z
R

3

Em.�/
7
2

d�
� 1Z
0

r5=2F.r/ d r: (1.8)

Moreover, X
m2N

Z
R

1

Em.�/
d� <1 ()  > 2: (1.9)

To better understand the content of the previous theorem, let us reconsider our two
basic examples.

(1) In the Euclidean space Rd we have a. Mx/D a.�/D j�j2 with d Mx D d � so that
the left-hand side of (1.8) can be computed using spherical coordinatesZ

B

F.a. Mx// d Mx D
Z

Rd

F.j�j2/ d � D jSd�1j
Z

RC

F.r/r
d�2
2 d r: (1.10)

(2) On the Heisenberg group Hd , we have a. Mx/ D a.n; m; �/ D j�j.2jmj C d/
and ın;m d Mx D ı.m/j�jd d� so thatZ

B

F.a. Mx//ın;m d Mx D
X
m2Nd

Z
R�

F.j�j.2jmj C d//j�jd d�

D

� X
m2Nd

2

.2jmj C d/dC1

� Z
RC

rdF.r/ d r; (1.11)

where the last equality follows from a change of variables. Note that the power
of r is d D .Q � 2/=2 where Q D 2d C 2 is the homogeneous dimension
of Hd , so the summability conditions have the same homogeneity on Rd and
on Hd , and are exactly the same as that given by (1.8) since Q D 7 for the
Engel group.
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Remark 1.4 (On the explicit constants). It is interesting to notice that the prefactor
in the right-hand side of (1.11)

CHd
def
D

X
m2Nd

2

.2jmj C d/dC1

corresponds to the measure of the dual unit sphere of the Heisenberg group (see [64]),
when one endows the dual of the Heisenberg group by its natural metric structure and
volume form. The same property appears also in the Euclidean case, by (1.10) and
recalling that the dual of the Euclidean space coincides in fact with the space itself. It
would be interesting to investigate whether the constant

CG
def
D

X
m2N

Z
R

3

Em.�/
7
2

d� (1.12)

shares a similar geometric property. We stress here that the fact that the integral (1.12)
is finite is part of the statement of Theorem 1.3.

1.3. Functions of the sublaplacian and their convolution kernel

Let us go further in the analysis of operators of the type F.��G/ by considering
their convolution kernel. To this end, we define the space of functions of polynomial
growth O1.RC/

def
D
S
m2N O1m .RC/, with

F 2 O1m .RC/ () h�i
�mF 2 L1.RC/;

where hri def
D
p
1C r2, and recall the following rather classical result (which holds for

any left-invariant sublaplacian on a Carnot group; the proof is recalled in Section 4.4
for the sake of completeness).

Proposition 1.5. For any F 2 O1.RC/, the operator F.��G/W �.G/! L2.G/ is
well defined (via spectral theory) and there is kF 2 � 0.G/ such that

F.��G/u D u ? kF ; for all u 2 �.G/; (1.13)

where ? is the natural convolution product on G (see (3.10) below).

The Fourier transform defined in the present article allows to generalize the set of
functions F for which the functional calculus is well defined and to characterize the
regularity of the kernel in terms of properties of F . We define the space

O1;s.RC/
def
D

[
m2N

O1;s
m .RC/;
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where
F 2 O1;s

m .RC/ () h�i
�mF 2 L1.RC; r

s d r/;

where O
1;s
m .RC/ is endowed with the norm

kF k
O
1;s
m .RC/

def
D kh�i

�mF kL1.RC;rs d r/ D

Z
RC

rshri�mjF.r/j d r:

The space O1;s.RC/ is endowed with the associated Fréchet topology.

Theorem 1.6. Assume F 2 O1;5=2.RC/. For any function u 2 �.G/, one can define
in L1.G/ the inverse Fourier transform of the function

.n;m; �; �/ 7! F.Em.�; �//F .u/.n;m; �; �/

and the operator F.��G/W �.G/! L1.G/ is thus well defined by

F.��G/u
def
D F �1.F.Em.�; �//F .u/. Mx//:

Moreover, there is a distribution kF in � 0.G/ such that (1.13) is satisfied and the map

O1;5=2.RC/! � 0.G/; F 7! kF ;

is continuous.

Remark 1.7. For a function � W MG ! C, sufficient conditions to have a well-defined
inverse Fourier transform are given in Proposition 4.11.

We next give a sufficient condition for continuity/boundedness of the kernel kF
in terms of properties of F .

Theorem 1.8. If F 2 L1.RC; r5=2 d r/, the kernel kF given by Theorem 1.6 belongs
to .C 0 \ L1/.G/ (where the distribution kF is identified with a function using the
Haar measure of G) and there holds

kkF kL1.G/ � .2�/
�3CG

1Z
0

r5=2jF.r/j d r

and

kF .0/ D .2�/
�3CG

1Z
0

r5=2F.r/ d r;

where CG is defined by (1.12).
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Remark 1.9. The proof shows that if F 2 L1.RC; r5=2C` d r/ for some ` 2 N, then
�`GkF belongs to C 0.G/ \ L1.G/ and there holds

k�`GkF kL1.G/ � .2�/
�3CG

1Z
0

r5=2C`jF.r/j d r;

where CG is defined in (1.12).

It is known [59, Proposition 4.1] that the map

kWF 2 .L1 \ L1/.RC; r
5=2 d r/ 7! kF 2 .C

0
\ L1/.G/

is continuous on general connected Lie groups of polynomial growth. Theorem 1.8
expresses in particular that k is continuous from L1.RC; r5=2 d r/ to .C 0 \L1/.G/,
with an explicit constant.

We can also recover (through a different approach based on the Engel Fourier
transform) in this context the “Plancherel identity” of [21, Proposition 3] (see also [72,
Lemma 1], [57, Theorem 3.10], or [59, equation (1.1)]). The latter is known on general
nilpotent Lie groups but we provide here with an explicit constant and slightly relaxed
assumption on F (F is supposed to belong to L1.RC/ in the above references).

Proposition 1.10. Assume F 2 O1;5=2.RC/. Then, kF 2 L2.G/ if and only if F 2
L2.RC; r5=2 d r/ and there holds

kkF k
2
L2.G/

D .2�/�3CG

1Z
0

r5=2jF.r/j2 d r;

where CG is defined in (1.12).

Interpolation between Theorem 1.8 and Proposition 1.10 implies that, for any p 2
Œ1; 2�, if F belongs to Lp.RC; r5=2 d r/ then kF belongs to Lp

0

.G/ with

kkF kLp0 .G/ � ..2�/
�3CG/

1
p kF kLp.RC;r5=2 d r/:

Note that the constant ..2�/�3CG/
1
p obtained from the Riesz–Thorin theorem is not

expected to be optimal for p 2 .1; 2/, although it is in cases p D 1 and p D 2 (accord-
ing to Theorem 1.8 and Proposition 1.10 respectively). Note finally that one can
deduce as usual Lp ! Lq mapping properties for the operator F.��G/ from the
Lp
0

regularity of its convolution kernel kF and the Young inequality (3.7).
Remark that it was shown in [31, 49] that the kernel kF belongs to �.G/ in

the case when F belongs to �.RC/. Here, the assumption on F is much weaker,
and the regularity we deduce is accordingly weaker. However, the regularity of kF
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described in Theorem 1.8 is the appropriate one for many applications in analysis.
As will be discussed in Section 4.2, the Fourier transform of the kernel kF satis-
fies U.kF /. Mx/ D F.Em.�; �//ım;n (see (4.47) below). Taking for instance F.r/ D
Ft .r/D exp.�t r/, t > 0, one recovers the fact that the Engel heat kernel at the origin
satisfies (for further details see (5.11))

kF .0/ D
CG�.Q2 /

.2�/3t
Q
2

;

where � denotes the Gamma function and CG is defined by (1.12).
Finally, let us also recall that the investigation of necessary and sufficient condi-

tions for operators of the form F.��/ to be bounded on Lp (or, more generally from
Lp to Lq) for some p ¤ 2 in terms of properties of the spectral multiplier F is a
traditional and very active area of research of harmonic analysis. For related results
when working with sublaplacians �G we refer the reader to [21, 58–61] and refer-
ences therein.

1.4. Layout

In Section 2 we establish the summability property (1.9), thanks to a semiclassical
analysis of the operator P�. This property is at the core of our work, but is independent
of the rest of this text, and its proof can be skipped altogether by a reader interested
only in applications to the Engel group.

In Section 3 we recall some basic facts about the Engel group. Section 4 is ded-
icated to the study of the Fourier transform on the Engel group. In Paragraph 4.1, we
give a brief description of the standard Engel Fourier transform, using irreducible rep-
resentations. Then in Paragraph 4.2, we start the proof of Theorem 1.2 by revisiting
this Fourier transform in the spirit of [4] providing a new, equivalent, functional point
of view which consists in looking at the Fourier transform as a complex valued func-
tion that is defined on the frequency set MG. This is based on the spectral analysis of
the quartic oscillator P�. Granted with this new approach, we furnish in Paragraph 4.3
a convenient expression for the spectral decomposition of ��G . In Paragraph 4.4 we
achieve the proof of Theorem 1.2 and prove Theorems 1.6 and 1.8 as well as Propos-
itions 1.5 and 1.10.

Section 5 is dedicated to some applications of our Fourier decomposition. In Para-
graph 5.1, taking advantage of (1.8), we recover many functional inequalities due
to Folland [31] using the approach based on the Engel Fourier transform, while in
Paragraph 5.2, we define the notion of spectral localization and establish Bernstein
inequalities as well as their inverse version. In Paragraph 5.3 we highlight once again
the efficiency of (1.8) by analyzing the heat kernel on the Engel group.
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Finally, in Section 6, we endow the frequency set MG with a distance linked to its
Lie structure. We deal in two appendices with several complements for the sake of
completeness, as we strive for a self-contained paper. In Appendix A, we recall the
construction of the irreducible representations. In Appendix B, we relate the spectral
theory of a family of operators P�;� with that of our reference quartic oscillator P�
and recall basic facts of spectral theory.

To avoid heaviness, all along this article C will denote a positive constant which
may vary from line to line. We also use f . g to denote an estimate of the form
f � Cg.

2. Summability of eigenvalues of the operator P�

In this section, we study some spectral properties of the operator .P�; D.P�// intro-
duced in (1.3)–(1.4). This operator appears in different contexts:

• in quantum mechanics, see Simon [73] (see also [67]);

• in the study of irreducible representations of certain nilpotent Lie groups (see for
example [37, 53] with focus on analytic hypoellipticity of hypoelliptic operators,
see also [19]), which is the application we have in mind here (see also [25] for the
analysis of a related sublaplacian);

• in the study of Schrödinger operators with magnetic fields on compact manifolds
and in superconductivity (see e.g. Montgomery [62] or [41, 42, 65]).

Properties of the first eigenvalue of P� have also been investigated in [39].
Here, motivated by the study of functions of the Engel sublaplacian �G , the

ultimate goal of the section is to prove (1.9). Before this, we recall basic spectral
properties of this operator. The following proposition serves as a definition for the
eigenvalue Em.�/ and the associated eigenfunction '�m for m 2 N, and a proof is
given in Appendix B.1 for the convenience of the reader.

Proposition 2.1. For any � 2 R, the following statements hold true. The operator
.P�;D.P�// is selfadjoint on L2.R/, with compact resolvent. Its spectrum consists in
countably many real eigenvalues with finite multiplicities, accumulating only atC1.
Moreover,

(1) all eigenvalues are simple and positive, and we may thus write Sp.P�/ D
¹Em.�/;m 2 Nº with

0 < E0.�/ < E1.�/ < � � � < Em.�/ < EmC1.�/!C1;

dim ker.P� � Em.�// D 1;
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(2) all eigenfunctions are real-analytic and decay exponentially fast at infinity (as
well as all their derivatives),

(3) for all m 2 N, functions in ker.P� � Em.�// have the parity of m,

(4) for all m 2 N, there is a unique function '�m in ker.P� � Em.�// such that

'�m is real-valued;

k'�mkL2.R/ D 1;

'�m.0/ > 0 if m is even;
d

d �
'�m.0/ > 0 if m is odd;

(5) the family .'�m/m2N forms a Hilbert basis of L2.R/.

The aim of this section is now to prove (1.9), that is to say, discuss (in terms of
the parameter  ) convergence of

	
def
D

X
k2N

Z
R

1

Ek.�/
d�; for  > 0:

We rewrite the integral in consideration as

	 D

Z
R�N

1

Ek.�/
d� d ı.k/;

where d ı.k/ is the counting measure on N. As will appear in the proof of (1.9) in
Theorem 1.3, there are three main regimes to be considered in the analysis of the
eigenvalues Ek.�/ in terms of .�; k/ 2 R �N. In each of these regimes, we will use
a semiclassical reformulation of the problem with a single (small) parameter h related
either to a power of k�1 or a power of ��1. The three main regimes in the study of
convergence of 	 are as follows:

(1) j�j . 1 or j�j �
p
Ek.�/ (classical and perturbative classical regime) that is,

� bounded or going to˙1 not too fast,

(2) � ! �1 and Ek.�/ . �2 (Semiclassical Harmonic oscillator/single well
regime),

(3) �!C1 and Ek.�/ . �2 (Semiclassical double well regime).

We shall then split 	 accordingly, for some " > 0 (small) and �0 > 0 (large) as

	 D 	� ."; �0/C 	0 ."; �0/C 	C ."; �0/ (2.1)
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with

	� ."; �0/
def
D

Z
E�.";�0/

d� d ı.k/
Ek.�/

; with � D �; 0;C;

and

E0."; �0/
def
D ¹.�; k/ 2 R �N; j�j � �0 or j�j2 � "2Ek.�/º;

E�."; �0/
def
D ¹.�; k/ 2 R �N; � � ��0 and j�j2 � "2Ek.�/º;

EC."; �0/
def
D ¹.�; k/ 2 R �N; � � �0 and j�j2 � "2Ek.�/º:

In each region, we shall make use of scaling operators in R. We define for ˛ > 0
the following unitary (dilation) operator

T˛WL
2.R/! L2.R/; u.x/ 7! ˛

1
2u.˛x/; (2.2)

having adjoint/inverse T �˛ D T
�1
˛ D T˛�1 .

Note that the (necessary and sufficient) condition  > 2 for having 	 <1, as
stated in Theorem 1.3, comes from the third (double well) region, see Corollary 2.11
below.

2.1. Classical and perturbative classical regime (1)

In the regime (1) we consider P� as a “small” perturbation of the quartic oscillator
P0 D � d2

d �2
C

�4

4
and look at the asymptotics k !C1.

Lemma 2.2. There exist two continuous nondecreasing functions �˙WRC ! RC
such that �˙."0/ > 0 for "0 > 0 and �˙.0/ D 0 satisfying the following statements.

For all " > 0 and � 2 R such that j�ƒ�1=2j � ", we have

ƒ3=4.Vol1���."/C o.1// � 2�]¹k 2 N; Ek.�/ � ƒº

� ƒ3=4.Vol1C�C."/C o.1//; (2.3)

as ƒ!C1, where

Vol1
def
D

Z
¹�2C �

4

4 �1º

d � d � > 0:

For all ";�0 > 0 and for all .�; k/ 2 R�N such that j�Ek.�/�1=2j � " or j�j � �0,
we have

Ek.�/ �
� 2�

Vol1C�C."/
k
�4=3

.1C o.1//; as k !C1:
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For all " > 0 such that Vol1 ���."/ > 0 (that is, " small enough), for all .�; k/ 2
R �N such that j�Ek.�/�1=2j � ",

Ek.�/ �
� 2�

Vol1���."/
k
�4=3

.1C o.1//; as k !C1:

In the end, the first term in the decomposition (2.1) can be estimated as follows.

Corollary 2.3. There is "0 > 0 such that for all " 2 .0; "0/ and for all �0 > 0,
	0 ."; �0/ < C1 if and only if  > 5

4
.

Proof. Fix "0 > 0 such that Vol1 ��˙."0/ > 0 (and take any �0 > 0). For all
" 2 .0; "0/, there is k0 2 N such that if j�jp

Ek.�/
� " or j�j � �0, then

j�j � max.C"k4=3; �0/ and C�1" k4=3 � Ek.�/ � C"k4=3

for all k � k0. As a consequence, using that Ek.�/ > 0 on R together with Lemma 2.2
for all fixed k 2 N, we have

	0 ."; �0/ D

Z
j�j�"
p

Ek.�/
or j�j��0

d� d ı.k/
Ek.�/

�

Z
j�j��0
k�k0

d� d ı.k/
Ek.�/

C

Z
j�j�C"

p
k4=3

k�k0

d� d ı.k/
.C�1" k4=3/

� C.�0; k0/C zC"
X
k2N�

k2=3

.k4=3/

D C.�0; k0/C zC"
X
k2N�

1

.k2=3/2�1
<1;

if and only if  > 1
2
.1C 3

2
/D 5

4
. Finally, Lemma 2.2 also yields the associated lower

bound Z
j�j�"
p

Ek.�/

d� d ı.k/
Ek.�/

� Qc"
X
k2N

1

.k2=3/2�1
:

Corollary 2.3 is proved.

Proof of Lemma 2.2. We use the dilation operator T˛ defined in (2.2) to recast the
problem as k !C1 in a semiclassical setup. We have

P� D Ek.�/ () T˛P�T˛�1T˛ D Ek.�/T˛ ;
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where

T˛P�T˛�1 D �˛
�2 d2

d �2
C

�
˛2
�2

2
� �

�2
:

We deduce that

P� D Ek.�/ ()
h
�˛�6

d2

d �2
C

��2
2
� �˛�2

�2i
T˛ D ˛

�4Ek.�/T˛ :

We now choose h def
D ˛�3, i.e., ˛ D h�1=3, so that

P� D Ek.�/ () P.h/.Th�1=3 / D h
4=3Ek.�/.Th�1=3 /;

with

P.h/ D �h2
d2

d �2
C

��2
2
� �h2=3

�2
:

As a consequence of the simplicity of the spectrum, we obtain that Sp.P.h// D
¹h4=3Ek.�/; k 2 Nº, and that these eigenvalues are sorted increasingly. We may now
apply Proposition B.7 for LD 1, yielding existence of the functions �˙ satisfying the
following statement. For all " > 0 and � 2 R such that j�h2=3j � ", we have

Vol1���."/C o.1/ � .2�h/]¹k 2 N; h4=3Ek.�/ � 1º � Vol1C�C."/C o.1/

as h! 0C. Setting ƒ D h�4=3 ! C1, i.e., h D ƒ�3=4, we have obtained that for
all " > 0 and � 2 R such that j�ƒ�1=2j � ", (2.3) is satisfied.

Finally, we deduce an asymptotics of the Ek.�/ from an asymptotics of the count-
ing function. We recall from Proposition B.1 that the eigenvalues are ordered increas-
ingly, Ek.�/ < EkC1.�/ and we set

k.ƒ/
def
D sup¹k 2 N; Ek.�/ � ƒº:

By definition (forgetting temporarily the dependence in �) and simplicity of eigen-
values, we thus have

Ek.ƒ/ � ƒ < Ek.ƒ/C1 and ]¹k 2 N; Ek.�/ � ƒº D k.ƒ/C 1:

As a consequence, (2.3) rewrites,

ƒ3=4.Vol1���."/C o.1// � 2�.k.ƒ/C 1/

� ƒ3=4.Vol1C�C."/C o.1//; as ƒ!C1;

whence, assuming j�E�1=2
k.ƒ/
j � " (which then implies j�ƒ�1=2j � "),

E3=4
k.ƒ/

.Vol1���."/C o.1// � 2�.k.ƒ/C 1/

� E3=4
k.ƒ/C1

.Vol1C�C."/C o.1//; as ƒ!C1:
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Since ƒ 7! k.ƒ/ is nondecreasing, tending to infinity and onto from RC ! N, we
deduce that, assuming j�Ek.�/�1=2j � ",

E3=4
k
.Vol1���."/C o.1// � 2�k � E3=4

k
.Vol1C�C."/C o.1//; as k !C1;

which implies the last two statements.

2.2. Semiclassical Harmonic oscillator/single well regime (2)

In this region, we only need rather loose properties. First notice that, for all m 2 N,

for all � < 0; Em.�/ � j�j2: (2.4)

Indeed, starting from the eigenvalue equation�
�

d2

d �2
C

��2
2
� �

�2�
'�m D Em.�/'�m;

and taking the inner product with '�m yields

k@�'
�
mk

2
L2.R/ � �k�'

�
mk

2
L2
C
1

4
k�2'�mk

2
L2
C �2 D Em.�/;

which implies the bound (2.4). We further need a Weyl-type asymptotics.

Lemma 2.4. For all L > 0, one has

]¹k 2 N; Ek.�/ � Lj�j2º D .2�/�1j�j3=2.VolLCo.1//; as �! �1; (2.5)

where VolL is defined by

VolL
def
D

Z
¹p.x;�/�Lº

d x d �; with p.x; �/D�2CV.x/; V .x/D
�x2
2
C1

�2
;

D

xC.L/Z
x�.L/

r
L �

�x2
2
C 1

�2
d x; with

�x˙.L/2
2

C 1
�2
D L for L > 1: (2.6)

In the end, this is helpful to estimate the second term in the decomposition (2.1).

Corollary 2.5. For any " > 0, there is Q�0 > 0 such that, for all �0 � Q�0, 	� .";�0/ <

C1 if  > 5
4

.

Proof of Corollary 2.5 from Lemma (2.4). The set of integration is � � �"
p
Ek.�/

and � � ��0 < 0. Then, the integral can be estimated as follows: given " > 0, there
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is �0 D �0."/ > 0 such that for all � � ��0, the number of eigenvalues in � �
�"
p
Ek.�/ is, according to (2.5),

]
°
k 2 N; Ek.�/ �

1

"2
j�j2

±
� .2�/�1j�j3=2.Vol"�2 C1/; for � � ��0."/:

Since Ek.�/ � j�j2 for � < ��0."/, there is C" such that

	� ."; �0/ D

Z
���"
p

Ek.�/
j�j��0

d� d ı.k/
Ek.�/

�

Z
���"
p

Ek.�/
j�j��0

d� d ı.k/
j�j2

�

Z
�<��0

.2�/�1j�j3=2.Vol"�2 C1/
d�
j�j2

� C" <1;

as soon as 2 � 3
2
> 1 that is  > 5

4
:

Proof of Lemma 2.4. We set � def
D �� and study for �!C1,

P�� D �
d2

d �2
C

��2
2
C �

�2
:

We choose ˛ D
p
� in the rescaling

T˛P��T˛�1 D �˛
�2 d2

d �2
C

�
˛2
�2

2
C �

�2
D �˛�2

d2

d �2
C ˛4

��2
2
C 1

�2
:

As a consequence

P�� D Ek.��/ () T˛P��T˛�1T˛ D Ek.��/T˛ 

()

h
�˛�6

d2

d �2
C

��2
2
C 1

�2i
T˛ D ˛

�4Ek.��/T˛ :

We set h D ˛�3 D ��3=2 and obtain

P�� D Ek.��/ ()
h
�h2

d2

d �2
C

��2
2
C 1

�2i
T˛ D h

4=3Ek.��/T˛ :

The Weyl Law (B.5) applied to the operator �h2 d2

d �2
C . �

2

2
C 1/2 then reads: for all

L > 0 fixed,

]¹k 2 N; h4=3Ek.�/ � Lº D .2�h/�1.VolLCo.1//; as h! 0;

with VolL defined by (2.6). Recalling that h D ��3=2 then yields

]¹k 2 N; ��2Ek.��/ � Lº D .2�/�1�3=2.VolLCo.1//; as �!C1;

and then we write back � D �� to obtain (2.5).
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2.3. Semiclassical double well regime (3)

We want to estimate the last term in the decomposition (2.1), namely 	C ."; �0/.
To this aim, we study for � ! C1, the operator P� and as above rescale it with
h D ˛�3 D ��3=2, as

P� D Ek.�/ ()
h
�h2

d2

d �2
C

��2
2
� 1

�2i
T˛ D h

4=3Ek.�/T˛ 

D ��2Ek.�/T˛ : (2.7)

We thus need to study the spectrum of the operator

Ph
def
D �h2

d2

d �2
C V.�/; with V.�/ D

��2
2
� 1

�2
(2.8)

for energies 0 � E �M for M D "�2 (fixed by Corollary 2.3). Remark that this is a
symmetric double well problem, which has been much studied [26, 38, 44, 45, 68].

In this section, we only work in a semiclassical regime; we thus reformulate com-
pletely the problem with h D ��3=2, and Ek.h/ D h4=3Ek.�/ the k-th eigenvalue of
Ph. In the integral 	C .";�0/ in (2.1), we set �D h�2=3, d�D 2

3
h�5=3 dh, and obtain

with h0 D �
�3=2
0

	C ."; �0/ D
2

3

Z
Ek.h/�"

�2

0<h�h0

h�5=3 d h d ı.k/
.h�4=3Ek.h//

D
2

3

Z
Ek.h/�"

�2

0<h�h0

h.4�5/=3

Ek.h/
d h d ı.k/: (2.9)

To prove convergence of this integral, we split the energy region Œ0;M � where M D
"�2 is large into three different regions as

Œ0;M � D Œ0; ˇh� [ Œˇh; ˛� [ Œ˛;M �;

where ˇ > 0; ˛ 2 .0; 1/;M > ˛ are fixed (independent of h). Concerning the energy
window Œ˛;M �, a counting estimate will be enough for our needs: the following is a
rewriting of (B.5) in the present context.

Lemma 2.6. For V.�/ D . �
2

2
� 1/2 and p.�; �/ D �2 C V.�/, for any ˛ � M , we

have

]¹j 2 N; Ej .h/ 2 Œ˛;M �º D .2�h/�1.Volp�1.Œ˛;M�/C o˛;M .1//; as h! 0C:

Concerning the energy window Œˇh; ˛�, we shall use the following much more
precise result from [44, p. 294f].
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Lemma 2.7. For E 2 Œ0; 1/, we set

ˆ.E/
def
D

1

4�

Z
p.�;�/�E

d � d �; with p.�; �/ D �2 C
��2
2
� 1

�2
: (2.10)

There are ˇ > 0 and Nˇ 2 N such that for all ˛ < 1, there are K; h0 > 0 such that
for all h 2 .0; h0/, there exist N˙.h/ 2 N with jNC.h/�N�.h/j � 1 and N˙.h/ �
Kh�1, and two finite sequences E˙j .h/ 2 Œˇh; ˛� for j 2 ¹Nˇ ; : : : ; N˙.h/º with

ˆ.E˙j .h// D .j C 1=2/hCO˛;ˇ .h
2/; as h! 0C;

such that we have

Sp.Ph/ \ Œˇh; ˛� D
[

j2¹Nˇ ;:::;N
C.h/º

ECj .h/ [

[
j2¹Nˇ ;:::;N

�.h/º

E�j .h/:

Note that here, E˙j .h/ is not the j -th eigenvalue of Ph. However, the E˙j .h/’s
exhaust the spectrum of Ph in the energy window Œˇh; ˛� as h! 0.

Concerning the bottom of the spectrum, that is the energy window Œ0;ˇh�, we shall
need a precise description of the eigenvalues [45]. We recall that V 0.�/D 2�. �

2

2
� 1/

and V 00.�/ D 3�2 � 2. In particular, at the two minima V 00.˙
p
2/ D 4 and

! WD

s
V 00.˙

p
2/

2
D
p
2:

The following result is a consequence of [45], see also [68] and [38, pp. 55–60], and
states that the low-lying eigenvalues are close to those of the Harmonic oscillator
�h2 d2

d �2
C !2�2.

Lemma 2.8 (Bottom of the spectrum for the double well problem). For all ˇ 2 RC n

!.2N C 1/, there are Nˇ 2 N; h0 > 0 such that

Sp.Ph/ \ .�1; ˇh/ D ¹En.h/; n 2 ¹0; : : : ; Nˇ ºº; uniformly for h 2 .0; h0/;

with 0<En.h/<EnC1.h/<ˇh for all n2 ¹0; : : : ;Nˇ � 1º and h2 .0;h0/. Moreover,
as h! 0C, we have

(1) E2k.h/ D .2k C 1/!hCOˇ .h2/ is simple and associated to an even eigen-
function  2k.h/,

(2) E2kC1.h/D .2kC 1/!hCOˇ .h2/ is simple and associated to an odd eigen-
function  2kC1.h/.

The regimes of Lemmata 2.7 and 2.8 overlap (depending on the choice of the
constant ˇ in these two statements) and we now check that the two asymptotics as
h! 0C coincide.
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Lemma 2.9. The function ˆW Œ0; 1/! RC defined in (2.10) is continuous, of class
C 1 on .0; 1/, and we have, for E 2 .0; 1/,

ˆ0.E/ D
1

2�

xC.E/Z
x�.E/

1p
E � V.x/

d x > 0; with x˙.E/ D
q
2˙ 2

p
E:

Moreover, the function ˆ is differentiable at E D 0C with ˆ0.0C/ D .2
p
2/�1 > 0.

Remark 2.10. A consequence of Lemma (2.9) is that the asymptotics given by Lem-
mata (2.7) and (2.8) coincide in the regime in which they overlap. Indeed, for all
eigenvalues belonging to both regimes, we have, using Lemmata (2.7) and (2.9)

.j C 1=2/h � ˆ.E˙j .h// � ˆ
0.0C/E˙j .h/ D .2

p
2/�1E˙j .h/;

that is to sayE˙j .h/�
p
2.2j C 1/h as h! 0C, which is consistent with Lemma 2.8.

The proof of Lemma 2.9 is postponed to the end of the section. As a corollary of
these four lemmata, we prove that 	C ."; �0/ is finite.

Corollary 2.11. For allM D "�2 >0, there exists�0 >0 such that 	C .";�0/ <C1

if  > 2. If  � 2, 	C ."; �0/ D C1 for all " > 0 and �0 > 0.

Proof of Corollary 2.11. We let ˇ be fixed by Lemma 2.7, fix ˛ D 1
2

in this lemma
and split the integral in (2.9) according to

3

2
	C ."; �0/ D 	1 C 	2 C 	3;

with, writing h0 D �
�3=2
0 sufficiently small,

	1 D

Z
Ek.h/2Œ0;ˇh�;
0<h�h0

; 	2 D

Z
Ek.h/2Œˇh;1=2�

0<h�h0

; 	3 D

Z
Ek.h/2Œ

1
2 ;M�

0<h�h0

:

Concerning 	3, we use Lemma 2.6 (which applies for h0 sufficiently small) to estim-
ate

	3 D

Z
Ek.h/2Œ

1
2 ;M�

0<h�h0

h.4�5/=3

Ek.h/
d h d ı.k/ � 2

Z
Ek.h/2Œ

1
2 ;M�

0<h�h0

h.4�5/=3 d h d ı.k/

� 2

h0Z
0

h.4�5/=3]¹k 2 N; Ek.h/2 Œ1=2;M�º d h � C

h0Z
0

h.4�5/=3h�1 d h <1;

as soon as .4 � 5/=3 � 1 > �1, that is  > 5
4

.
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Concerning 	2, we need additional information on the function ˆ in (2.10).
Lemma 2.9 implies that ˆ0 is continuous (and positive) on Œ0; 1=2�, and we may thus
set Mˆ

def
D maxŒ0;1=2�ˆ0. We therefore obtain

MˆE � ˆ.E/; for all E 2 Œ0; 1=2�: (2.11)

According to Lemma 2.7, we have

Sp.Ph/ \ Œˇh; 1=2� D
[

j2¹Nˇ ;:::;N
C.h/º

ECj .h/ [

[
j2¹Nˇ ;:::;N

�.h/º

E�j .h/

with, for all j 2 ¹Nˇ ; : : : ; N˙.h/º

MˆE
˙
j .h/ � ˆ.E

˙
j .h// D .j C 1=2/hCO˛;ˇ .h

2/ �
�
j C

1

4

�
h; for h � h0;

where the inequality comes from (2.11). As a consequence, we have

	2 D

Z
Ek.h/2Œˇh;1=2�

0<h�h0

h.4�5/=3

Ek.h/
d h d ı.k/ D

h0Z
0

h.4�5/=3
X
˙

N˙.h/X
jDNˇ

1

E˙j .h/


d h

� C

h0Z
0

h.4�5/=3
max¹N�.h/;NC.h/ºX

jDNˇ

1

..4j C 1/h/
d h

� C

h0Z
0

h.4�5/=3h�
X

j�Kh�1

1

.4j C 1/
d h

� C

h0Z
0

h.4�5/=3h� d h <1;

as soon as  > 1 and .4 � 5/=3 �  > �1, that is to say  > 2. The term 	1 is
estimated similarly but using Lemma 2.8:

	1 D

Z
Ek.h/2Œ0;ˇh�
0<h�h0

h.4�5/=3

Ek.h/
d h d ı.k/ � C

h0Z
0

h.4�5/=3
NˇX
jD0

1

..2j C 1/h/
d h

� C

h0Z
0

h.4�5/=3h� d h;

which is finite as soon as  > 2 for the same reason.
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To conclude the proof, we simply notice that Lemma 2.8 also implies

	1 D

Z
Ek.h/2Œ0;ˇh�
0<h�h0

h.4�5/=3

Ek.h/
d h d ı.k/ � c

h0Z
0

h.4�5/=3h� d h D C1

if  � 2.

For the proof to be complete, we now prove Lemma 2.9.

Proof of Lemma 2.9. We have ˆ.0/ D 0 and, for E 2 .0; 1/,

ˆ.E/ D
1

4�

Z
¹p.�;�/�Eº

d � d � D
1

2�

Z
¹�2CV.�/�E;�>0º

d � d �

D
1

�

Z
¹0<��

p
E�V.�/;�>0º

d � d � D
1

�

�C.E/Z
��.E/

p
E � V.�/ d �;

with V.�/ D . �
2

2
� 1/2 and

�˙.E/ are such that V.�˙.E// D E and 0 < ��.E/ <
p
2 < �C.E/;

that is, �˙.E/ D
p
2˙ 2

p
E. As a consequence, ˆ is a continuous and strictly

increasing function on Œ0; 1/ with ˆ.0/ D 0. The functions E 7! �˙.E/ are smooth
on .0; 1/ and

�ˆ0.E/ D � 0C.E/
p
E � V.�C.E// � �

0
�.E/

p
E � V.�C.E//

C

�C.E/Z
��.E/

1

2
p
E � V.�/

d �

D
1

2

�C.E/Z
��.E/

1p
E � V.�/

d �:

Moreover, recalling ! D
q
V 00.
p
2/

2
D
p
2, we have

V.�/ D !2.� �
p
2/2 CO..� �

p
2/3/; as � !

p
2:
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Hence, setting y D !p
E
.� �

p
2/, we have

�ˆ.E/ D

�C.E/Z
��.E/

p
E � V.�/ d � D

p
E

!

!p
E
.�C.E/�

p
2/Z

!p
E
.��.E/�

p
2/

s
E � V

�p
2C

p
E

!
y
�
dy;

with the following asymptotic properties as E ! 0C

1 D
V.�˙.E//

E
 

!2

E
.�˙.E/ �

p
2/2; whence

!
p
E
.�˙.E/ �

p
2/!˙1;

V
�p

2C

p
E

!
y
�
D Ey2 CO.E3=2/ uniformly for y bounded:

As a consequence, as E ! 0C we have,

�ˆ.E/ D

p
E

!

1Z
�1

q
E �Ey2 CO.E3=2/dy C o.E/ D

E

!

1Z
�1

p
1 � y2dy C o.E/;

with
R 1
�1

p
1 � y2dy D �

2
. As a consequence, recalling thatˆ.0/D 0, we deduce that

ˆ is differentiable at E D 0C with ˆ0.0C/ D 1
2!
D

1

2
p
2

. Lemma (2.9) is proved.

3. Basic facts on the Engel group

As recalled in the introduction, the Engel group G is a nilpotent 4-dimensional Lie
group which is connected and simply connected, and whose Lie algebra g satisfies
the following decomposition

g D g1 ˚ g2 ˚ g3

with giC1 D Œg1;gi � for i D 1; 2; 3 with the properties dim g1 D 2 and Œg1;g3� D 0.
Notice that the subspace g1 is bracket-generating in the Lie algebra g and if g1 is

endowed with an inner product, we can define on G a left-invariant sub-Riemannian
structure. In this way G belongs to the class of the so-called Carnot groups [2, 14].
There exists a unique Carnot group satisfying the above properties, up to isomorph-
isms [1, 13], called the Engel group (cf. also the discussion in [63, Section 6.11]).

It is well known that the exponential map expWg! G is a global diffeomorphism
and defining for x; y 2 g

x � y
def
D exp�1.exp.x/ � exp.y//
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the Lie group G can be identified with g ' R4 endowed with a polynomial group
law [14]. Indeed, using the Baker–Campbell–Hausdorff formula and the fact that the
Engel group G is nilpotent, we can write for x; y 2 g the identity

exp.x/ � exp.y/ D exp
�
x C y C

1

2
Œx; y�C

1

12
.Œx; Œx; y�� � Œy; Œx; y��/

�
: (3.1)

Fixing a basis X1; X2; X3; X4 of g (which we can identify with left-invariant vector
fields on G) such that

g1 D span¹X1; X2º; g2 D span¹X3º; g3 D span¹X4º;

X3
def
D ŒX1; X2�; X4

def
D ŒX1; X3�

one can define a set of coordinates x D .x1; x2; x3; x4/ on G by the identity

g D exp
� 4X
iD2

xiXi

�
exp.x1X1/: (3.2)

After some computations exploiting (3.1), one gets0BBB@
x1

x2

x3

x4

1CCCA �
0BBB@
y1

y2

y3

y4

1CCCA D
0BBB@

x1 C y1

x2 C y2

x3 C y3 C x1y2

x4 C y4 C x1y3 C
x2
1

2
y2

1CCCA : (3.3)

With this choice of coordinates, a basis of left-invariant vector fields is given by

X1
def
D @x1 ; and X2

def
D @x2 C x1@x3 C

x21
2
@x4 ;

and thus
X3 D @x3 C x1@x4 and X4 D @x4 :

Notice that the inverse of an element x D .x1; x2; x3; x4/ in the coordinates (3.2) is
given by

.x1; x2; x3; x4/
�1
D

�
�x1;�x2;�x3 C x1x2;�x4 C x1x3 �

1

2
x21x2

�
: (3.4)

One can define a sub-Riemannian structure on the Engel group G by introducing
the bracket-generating distribution D spanned by the vector fields in g1 and defining
an inner product h�; �i onD such thatX1 andX2 define an orthonormal frame. Thanks
to the bracket generating condition, we have the following well-known connectivity
property through the so-called horizontal curves for the distribution, which is a con-
sequence of the classical Rashevski–Chow theorem: for every pair of points x; y 2 G
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there exists an absolutely continuous curve  W Œ0; T �! G such that P.t/ 2 D.t/ and
.0/ D x, .T / D y. We denote by �x;y the set of absolutely continuous horizontal
curves joining x and y. If  W Œ0; T �! G belongs to �x;y we set

`G./
def
D

TZ
0

h P.t/; P.t/i1=2 d t:

This enables one to introduce the sub-Riemannian (also called Carnot–Carathéodory)
distance dG on G which is defined as follows

dG.x; y/
def
D inf¹`G./ j  2 �x;yº: (3.5)

This is a well-defined distance inducing the Euclidean topology, moreover the metric
space .G; dG/ is complete. In particular, all closed balls xBG.x; r/ are compact [2].

By construction, the sub-Riemannian distance on the Engel group is invariant with
respect to left-invariant multiplications �z WG ! G defined by �z.x/

def
D z � x, namely

dG.�zx; �zy/ D dG.x; y/:

Moreover, being a Lie group,G can be endowed with a Haar measure which turns out
to be a scalar multiple of the Lebesgue measure in R4 in the coordinate set we have
chosen; we shall therefore denote in what follows for simplicity by dx the Haar meas-
ure on G. The corresponding Lebesgue spaces Lp.G/ are thus the set of measurable
functions uWG ! C such that

kukLp.G/
def
D

�Z
G

ju.x/jp d x
� 1
p

<1; if 1 � p <1;

with the standard modification if p D1.
The convolution product of any two integrable functions u and v is defined by

u ? v.x/
def
D

Z
G

u.x � y�1/v.y/dy D

Z
G

u.y/v.y�1 � x/dy; (3.6)

and even though it is not commutative, the following Young inequalities hold true:

ku? vkLr .G/�kukLp.G/kvkLq.G/; whenever 1�p;q;r �1 and
1

r
D
1

p
C
1

q
� 1:

(3.7)
Moreover, if X is a left-invariant vector field on G, then we have for all C 1 functions
u and v with sufficient decay at infinity:

X.u ? v/ D u ? .Xv/: (3.8)
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We also define the left translation by

.Lxu/.y/
def
D u.�xy/ D u.x � y/: (3.9)

According to (3.6), we may also define the convolution between T 2 � 0.G/ and u 2
�.G/ (where we recall that the Schwartz space �.G/ is nothing else than the Schwartz
space �.R4/) as

.T ? u/.x/
def
D hT; Luxi� 0.G/;�.G/; with Lux.y/

def
D u.y�1 � x/ D .Ly�1u/.x/;

.u ? T /.x/
def
D hT; Luxi� 0.G/;�.G/; with Lux.y/ def

D u.x � y�1/ D .Lxu/.y
�1/;

(3.10)

which both satisfy T ? u 2 C1.G/ and u ? T 2 C1.G/. Note that this actually
stands for the definition of the convolution product in (1.13), between the tempered
distribution kF and the Schwartz function u.

Recall also the following homogeneity property: the Haar measure jBG.x; r/j of
the ball centered at x 2 G and of radius r satisfies

jBG.x; r/j D cr
Q (3.11)

where c def
D jBG.0;1/j, andQ is the homogeneous dimension of the Engel group which

is given by

Q
def
D

3X
jD1

j dim gj D 7:

Identity (3.11) is related to the following crucial fact: defining the dilations

ı�WG ! G; ı�.x1; x2; x3; x4/
def
D .�x1; �x2; �

2x3; �
3x4/ for all � > 0;

we have the following homogeneity

dG.ı�x; ı�y/ D �dG.x; y/:

Given uWG ! R, one can introduce its sub-Riemannian gradient rGu defined as the
unique horizontal vector field satisfying

hrGu;Xi
def
D du.X/

for every horizontal vector field X 2 D. This translates in terms of the vector fields
in the identity

rGu D .X1u/X1 C .X2u/X2:

One can then introduce a sublaplacian operator �G as follows:

�Gu
def
D div.rGu/
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where div denotes the divergence with respect to the Haar measure of G. In terms of
the vector fields we have

�Gu D .X
2
1 CX

2
2 /u; (3.12)

but the definition given above guarantees that �G is an operator which is canonically
associated with the sub-Riemannian structure on G, i.e., independent of the choice of
orthonormal frame X1; X2.

Remark 3.1. In a similar way, one can build a right-invariant sub-Riemannian struc-
ture on the Engel group, and build the corresponding right-invariant sub-Riemannian
Laplacian. With respect to the product law given by (3.3), a basis of right-invariant
vector fields is given as follows:

zX1
def
D @x1 C x2@x3 C x3@x4 ;

zX2
def
D @x2 :

This defines a right-invariant metric which in turn defines a right-invariant sublapla-
cian z�G as follows:

z�Gu
def
D div.zrGu/;

where div denotes the divergence with respect to the Haar measure on G (which is
indeed bi-invariant since the groupG is nilpotent) while the gradient is different since
the metric has changed. In terms of the vector fields, we have

z�Gu D . zX
2
1 C

zX22 /u:

Remark 3.2. The Engel group can also be described as the set J 2.R;R/ of 2-jets
of a real function of a single real variable as follows: an element .x; y; p; q/ 2 R4

represents a 2-jet of a real function if it is of the form .x; u.x/; u0.x/; u00.x// which is
equivalent to the relations pD dy

dx , qD dp
dx . These relations define a vector distribution

(playing the role of g1) defined by the kernel of the differential forms in R4

!1 D dy � p d x; !2 D dp � q d x:

For more details on sub-Riemannian structures on jet spaces, one can see, for instance,
[16, 78].

4. The Fourier transform on the Engel group: Proof of Theorems 1.2
and 1.3

4.1. The standard Fourier theory on the Engel group

4.1.1. Definition. As recalled in the introduction, the standard way to define an Engel
Fourier transform consists in using irreducible unitary representations. The one
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that we shall use here relies on the representations .R�;�
x /.�;�/2R�R� introduced in

Appendix A, and that are given for all x in G and � in L2.R/, by

R�;�
x �.�/

def
D exp

h
i
�
�
�

�
x2 C �.x4 C �x3 C

�2

2
x2/
�i
�.� C x1/ for all � 2 R:

(4.1)
For any .�; �/ 2 R �R�, the map

R�;�
WG ! U.L2.R//; x 7! R�;�

x ;

is a group homomorphism between the Engel group and the unitary group U.L2.R//

of L2.R/. Actually .R�;�/.�;�/2R�R� , plays the same role as the map x 7! eih�;xi in
the Euclidean case, as regards the definition of the Fourier transform.

Remark 4.1 (Adjoint representation). Note that for any .�; �/ 2 R � R� and any
x 2 G, we have .R�;�

x /� D .R
�;�
x /�1 DR

�;�

x�1
(the adjoint is taken in L2.R/), where

the first equality follows from unitarity and the second from the group homomorphism
property. This also follows from the explicit expression (4.1) and a straightforward
computation.

Definition 4.2. The Fourier transform of an integrable function u on G is defined by

F.u/.�; �/
def
D

Z
G

u.x/R�;�
x d x for all .�; �/ 2 R �R�: (4.2)

Remark 4.3. Observe that if u 2 L1.G/, then for all .�; �/ 2 R �R� and all x 2 G,

F.Lxu/.�; �/ D R
�;�

x�1
F.u/.�; �/ (4.3)

where Lx is the left-translation operator defined in (3.9). Indeed, by definition of Lx ,
we have

F.Lxu/.�; �/ D

Z
G

u.x � y/R�;�
y dy:

Using the left invariance of the Lebesgue measure, changing variable z D x � y and
taking advantage of the fact that R�;� is a group homomorphism, we get

F.Lxu/.�; �/ D

Z
G

u.z/R
�;�

x�1�z
d z

D R
�;�

x�1

Z
G

u.z/R�;�
z d z

D R
�;�

x�1
F.u/.�; �/

which proves (4.3).
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4.1.2. Main properties. According to Definition 4.2, the Fourier transform is a map

FWL1.G/! L1.R �R�IL.L2.R///; (4.4)

that is to say, for any u 2 L1.G/, F.u/ is a family, parametrized by .�; �/ 2 R �R�,
of bounded operators on L2.R/ with

kF.u/.�; �/kL.L2.R// � kukL1.G/ for all .�; �/ 2 R �R�: (4.5)

Despite first appearances, this Fourier transform has many common features with the
Fourier transform on Rd . First, since R�;� is a group homomorphism, F.u/.�; �/
transforms convolution into composition, that is to say, for all integrable functions u
and v,

F.u ? v/.�; �/ D F.u/.�; �/ ı F.v/.�; �/ for all .�; �/ 2 R �R�:

Moreover, as in the Euclidean case, the Fourier–Plancherel and inversion formulae
hold true in that setting, with d � d� as Plancherel measure, resorting respectively to
Hilbert–Schmidt norms and trace-class operators (see for instance Corwin and Green-
leaf [23]).

In order to state the Fourier–Plancherel formula, let us recall the definition of the
Hilbert–Schmidt norm. Denoting by .em/n2N an orthonormal basis of L2.R/, we
define the Hilbert–Schmidt norm kF.u/.�; �/kHS on L2.R/ (which is independent of
the choice of the basis) by

kF.u/.�; �/kHS
def
D

�X
m2N

kF.u/.�; �/emk
2
L2.R/

� 1
2

:

The following result is very classical, see e.g. [23, Theorems 4.3.10 and 4.3.17]. In
order to justify the constant appearing in the formula and for the convenience of the
reader, we provide a sketch of proof below.

Proposition 4.4. The Fourier transform F, defined on L1.G/ \ L2.G/ (see (4.4)),
extends uniquely as a map

FWL2.G/! L2.R �R�IHS.L2.R///;

where HS.L2.R// denotes the space of Hilbert–Schmidt operators on L2.R/. A func-
tion u belongs to L2.G/ if and only if F.u/.�; �/ is a Hilbert–Schmidt operator for
almost every .�; �/ in R �R�, and there holds

kuk2
L2.G/

D .2�/�3
Z

R�R�

kF.u/.�; �/k2HS d � d�: (4.6)
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Proof. As usual, using the extension theorem for linear continuous maps, it suffices
to prove that if u belongs to .L1 \ L2/.G/, then for almost every .�; �/ 2 R � R�

the operator F.u/.�;�/ defined by (4.2) is a Hilbert–Schmidt operator satisfying (4.6).
The rest of the argument is left to the reader. According to (4.1), for all .�;�/2R�R�

and � in L2.R/

.F.u/.�; �/�/.�/ D

Z
G

u.x/ exp i
�
�
�

�
x2 C �

�
x4 C �x3 C

�2

2
x2

��
�.� C x1/ d x

D

Z
R

Ou.x1;
�

�
� �

�2

2
;���;��/�.� C x1/ d x1;

where Ou denotes the Euclidean Fourier transform with respect to .x2; x3; x4/. It fol-
lows that

kF.u/.�; �/k2HS D

Z
R2

ˇ̌̌
Ou
�
x1;

�

�
� �

�2

2
;���;��

�ˇ̌̌2
d x1 d �;

hence Z
R�R�

kF.u/.�; �/k2HS d � d� D
Z

R3�R�

j Ou.x1; �2; �3; �4/j
2 d x1 d �2 d �3 d �4

where we have performed the change of variables .�; �; �/ 7! .�1; �2; �3/, with unit
Jacobian

�2 D
�

�
� �

�2

2
; �3 D ���; �4 D ��: (4.7)

The result follows from the Fourier–Plancherel formula on R3.

The inversion formula requires introducing the trace class on a separable Hilbert
space H (in the applications here, H D L2.R/). We recall that T 2 L.H/ is a trace
class if

kT kTr
def
D tr.jT j/ def

D

X
n2N

.en j jT jen/H <1

for some (and hence for any) Hilbert basis .en/n2N of H (see [66, Section VI.6]),
where jT j def

D
p
T �T . We denote by Tr.H/ the space of trace class operators onH . If

T 2 Tr.H/, then the trace of T is defined by

tr.T / def
D

X
n2N

.en j Ten/H ;

where the sum converges absolutely in C and does not depend on the Hilbert basis
.en/n2N , according to [66, Theorem VI.24]. For later purposes, we give here a suffi-
cient condition for an operator to be trace class.
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Lemma 4.5. LetH be a separable Hilbert space. Assume that there is a Hilbert basis
.en/n2N such that

P
n2N kTenkH <1. Then T 2 Tr.H/ and we have

0 � j tr.T /j � tr.jT j/ D kT kTr �
X
n2N

kTenkH : (4.8)

Proof. We start by proving the right-most inequality in (4.8) and the fact that T 2
Tr.H/. We first have from the Cauchy–Schwarz inequality

tr.jT j/ D
X
n2N

.en j jT jen/H �
X
n2N

kjT jenkH :

The last inequality in (4.8) then follows from

kjT jvk2H D .jT jv; jT jv/H D .jT j
2v; v/H D .T

�T v; v/H

D .T v; T v/H D kT vk
2
H for all v 2 H:

Finally, that j tr.T /j � tr.jT j/ is for instance proved in [55, Chapter 30, Theorem 4].

We may now introduce the “inverse Fourier transform” as a map

F�1WL1.R �R�ITr.L2.R///! L1.G/;

..�; �/ 7! T .�; �// 7! F�1.T /;
(4.9)

defined by

F�1.T /.x/
def
D .2�/�3

Z
R�R�

tr.R�;�

x�1
T .�; �// d � d�;

and satisfying

kF�1.T /kL1.G/ � .2�/
�3

Z
R�R�

kT .�; �/kTr d � d�;

where we used that R
�;�

x�1
is unitary together with the fact that

jUT j D
p
T �U �UT D jT j

for U unitary and T trace class. According to Lemma 4.5, if there is a .�; �/-depend-
ent Hilbert basis .e�;�m /m2N such that .�; �/ 7! e

�;�
m is measurable R �R� ! L2.R/

and X
m2N

Z
R�R�

kT .�; �/e�;�m kL2.R/ d � d� <1;

then T 2 L1.R �R�ITr.L2.R/// and F�1.T / is well defined.
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Let us now discuss the Fourier inversion formula. Again, the following result is
classical (see [23, Theorem 4.3.9]) but we give a proof for the convenience of the
reader.

Proposition 4.6. If u 2L1.G/ is such that F.u/ 2L1.R�R�ITr.L2.R///, then one
has

u.x/ D .2�/�3
Z

R�R�

tr.R�;�

x�1
F.u/.�; �// d � d� for all x 2 G: (4.10)

Proof. As in the proof of Proposition 4.4 we use the fact that for all .�; �/ 2 R �R�

and � in L2.R/

.F.u/.�; �/�/.�/ D

Z
R

Ou
�
x1;

�

�
� �

�2

2
;���;��

�
�.� C x1/ d x1

D

Z
R

Ou
�
x1 � �;

�

�
� �

�2

2
;���;��

�
�.x1/ d x1;

where Ou denotes the Euclidean Fourier transform with respect to .x2; x3; x4/. It fol-
lows that

tr.F.u/.�; �// D
Z
R

Ou
�
0;
�

�
� �

x21
2
;��x1;��

�
d x1;

and Z
R�R�

tr.F.u/.�; �// d � d� D
Z

R2�R�

Ou
�
0;
�

�
� �

x21
2
;��x1;��

�
d x1 d � d�;

hence performing the change of variables .x1; �; �/ 7! .�1; �2; �3/ as in (4.7) we findZ
R�R�

tr.F.u/.�; �// d � d� D
Z

R2�R�

Ou.0; �2; �3; �4/ d �2 d �3 d �4

D .2�/3u.0/

by the inversion formula on R3. The proposition then follows from Remark 4.3.

As a particular case of Lemma 4.5, we find that if u 2 L1.G/ is such thatX
m2N

Z
R�R�

kF.u/.�; �/e�;�m kL2.R/ d � d� <1; (4.11)
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then the operator R
�;�

x�1
F.u/.�; �/ is of trace-class, and (4.10) holds and rewrites

u.x/ D .2�/�3
Z

R�R�

X
m2N

.e�;�m j R
�;�

x�1
F.u/.�; �/e�;�m / d � d�

D .2�/�3
X
m2N

Z
R�R�

.e�;�m j R
�;�

x�1
F.u/.�; �/e�;�m / d � d�;

where the last interversion is justified by absolute convergence in the sum, see [66,
Theorem VI.24]. Again, this holds for any .�; �/-dependent Hilbert basis .e�;�m /m2N

such that .�; �/ 7! e
�;�
m is measurable R �R� ! L2.R/.

Let us emphasize that the hypothesis (4.11) is satisfied in the Schwartz space �.G/

(see Proposition 4.14 below).

4.1.3. Action on the sublaplacian. A key point in the analysis of the Engel group
consists in studying the action of the Fourier transform on the sublaplacian�G defined
by (3.12). Actually, we check that, for any C 2 function � on R; for any .�; �/ 2
R �R� and any x in G, there holds

��GR�;�
x .�/ D R�;�

x P�;�� and � z�GR�;�
x .�/ D P�;�R�;�

x �; (4.12)

with1

P�;�
def
D �

d2

d �2
C

��
2
�2 �

�

�

�2
: (4.13)

This shows, as explained in the introduction of this paper, that the Fourier transform
on the Engel group is strongly tied to the spectral analysis of the quartic oscillator. To
obtain (4.12) we take advantage of (4.1) to gather that

X1R
�;�
x .�/DR�;�

x

d�

d �
and X2R

�;�
x .�/D i

��
2
.� C x1/

2
�
�

�

�
R�;�
x .�/; (4.14)

which implies that ��GR
�;�
x .�/ D R

�;�
x P�;��. Along the same lines, one gets

zX1R
�;�
x .�/ D

d

d �
.R�;�

x .�// and zX2R
�;�
x .�/ D i

��
2
�2 �

�

�

�
R�;�
x .�/;

which completes the proof of (4.12). Note also that

X3R
�;�
x .�/ D i�R�;�

x .��/; X4R
�;�
x .�/ D i�R�;�

x .�/ (4.15)

and
zX3R

�;�
x .�/ D i��R�;�

x .�/; zX4R
�;�
x .�/ D i�R�;�

x .�/:

1As will be seen later, the operators P�;� and P� are, up to the factor j�j2=3, unitarily
equivalent.
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Remark 4.7. Let us give some insight on the parameters .�; �/ 2 R � R� involved
in the definition of the Fourier transform (4.2). By definition, � belongs to the dual
of the center of G, which in accordance with the structure of the Lie algebra of G is
associated to a homogeneous operator of order 3. On the other hand, the parameter � is
associated to the operator X4X2 � 1

2
X23 which is a homogeneous operator of order 4.

This can be illustrated through the relations (4.14) and (4.15) which give�
X4X2 �

1

2
X23

�
R�;�
x .�/ D �R�;�

x .�/: (4.16)

4.2. The Fourier transform seen as a function: Proof of Theorem 1.2

This section is dedicated to introducing an alternative definition of the Fourier trans-
form on G introduced in Section 4.1. This will provide the construction of the set MG,
the operator U and the function a satisfying (1.6) of Theorem 1.2.

4.2.1. The frequency set. This new approach, initiated by H. Bahouri, J.-Y. Chemin,
and R. Danchin in the setting of the Heisenberg group [4], is based on the spectral
analysis of P�;� conducted in Appendix B.1, where it is in particular established that
the operator P�;� is selfadjoint on its domain, in L2.R/, with compact resolvent (for
any choice of the parameters). Thus, it can be associated with an orthonormal basis
of eigenfunctions  �;�m associated to the eigenvalues Em.�; �/ 2 R�C (see Proposi-
tion B.1 for further details)

P�;� 
�;�
m D Em.�; �/ 

�;�
m : (4.17)

Then by projecting F.u/.�; �/ on the basis . �;�m /m2N , one can see the Fourier trans-
form of u as the mean value of u modulated by some oscillatory function in the
following way: for all Mx def

D .n;m; �; �/ in MG def
D N2 �R �R�;

F .u/.n;m; �; �/
def
D .F.u/.�; �/ �;�m j 

�;�
n /L2.R/:

Now, computing the right-hand side of the above formula, we discover that

F .u/.n;m; �; �/ D

Z
G

W..n;m; �; �/; x/u.x/ d x; (4.18)

with

W..n;m; �; �/; x/
def
D .R�;�

x  �;�m j 
�;�
n /L2.R/

D ei.�x4�
�
�
x2/

Z
R

ei�.�x3C
�2

2 x2/ �;�m .� C x1/ 
�;�
n .�/ d �:

(4.19)
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It readily stems from (4.18) (and the Cauchy–Schwarz inequality in (4.19) and the
fact that . �;�m /m2N is an orthonormal basis) that the following continuous mapping
holds:

F WL1.G/! L1. MG/: (4.20)

In the following MG will be called the frequency set of G.

4.2.2. Proof of Theorem 1.2. With this point of view, the Fourier–Plancherel and
inversion formulae (4.6)–(4.10) may be expressed in a similar way as in the Euclidean
case, namely

kuk2
L2.G/

D .2�/�3kF .u/k2
L2. MG/

; (4.21)

.u; v/L2.G/ D .2�/
�3.F .u/; F .v//L2. MG/; (4.22)

u.x/ D .2�/�3
Z
MG

W..n;m; �; �/; x�1/F .u/. Mx/ d Mx; (4.23)

where the measure d Mx is defined byZ
MG

�. Mx/ d Mx def
D

Z
R�R�

X
.n;m/2N2

�.n;m; �; �/ d � d�; (4.24)

and where x�1 is given by (3.4). Finally, for any function u in the Schwartz class �.G/

and any Mx 2 MG, combining (4.12) together with (4.18)–(4.19) along with an integration
by parts, we get according to (4.17)

F .��Gu/.n;m; �; �/ D Em.�; �/F .u/.n;m; �; �/ (4.25a)

and

F .�z�Gu/.n;m; �; �/ D En.�; �/F .u/.n;m; �; �/: (4.25b)

This construction proves Theorem 1.2.

4.2.3. Additional properties. First, observe that the relations (4.25) lead in particu-
lar to the definition of the homogeneous Sobolev semi-norms as in the Euclidean case
by means of the Fourier transform

kuk PH s.G/
def
D k.��G/

s
2ukL2.G/ D .2�/

�3=2

�Z
MG

Esm.�; �/jF .u/. Mx/j
2 d Mx

� 1
2

;

(4.26)
and, along the same lines, in the non-homogeneous framework,

kukH s.G/
def
Dk.Id��G/

s
2ukL2.G/D .2�/

�3=2

�Z
MG

.1CEm.�;�//
s
jF .u/. Mx/j2 d Mx

� 1
2

:

(4.27)
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Second, note that in this new setting, the convolution identity (4.5) rewrites as follows,
for all integrable functions u and v and all Mx D .n;m; �; �/ 2 MG:

F .u ? v/. Mx/D .F .u/ �F .v//. Mx/
def
D

X
p2N

F .u/.n; p; �; �/F .v/.p;m; �; �/: (4.28)

Before going further, let us list some useful properties of the function W .

Proposition 4.8. For any Mx D .n;m; �; �/ in MG and x in G, we have

W..n;m; �; �/; 0/ D ın;m and jW..n;m; �; �/; x/j � 1; (4.29)

W..n;m; �; �/; x/ D W..n;m; �;��/; x/; (4.30)

W..n;m; �; �/; x�1/ D W..m; n; �; �/; x/; (4.31)X
n2N

jW..n;m; �; �/; x/j2 D 1; (4.32)

W..n;m; �; �/; ır.x// D W..n;m; r4�; r3�/; x/; for all r > 0: (4.33)

Proof. The first property follows from the fact that . �;�m /m2N is an orthonormal
basis and the Cauchy–Schwarz inequality in (4.19). The second one is an immediate
consequence of the fact that, for all m 2 N, thanks to the symmetry invariance2 of
P�;� with respect to �,

 �;�m D  �;��m :

Identity (4.31) follows from (3.4), while (4.32) stems from the fact that R
�;�
x are

unitary operators and thus kR�;�
x  

�;�
m kL2.R/ D 1, which implies that for all m 2 NX

n2N

j.R�;�
x  �;�m j 

�;�
n /L2.R/j

2
D

X
n2N

jW..n;m; �; �/; x/j2 D 1:

In order to prove (4.33), we first observe that in view of (4.19), there holds

W..n;m; �; �/; ır.x//

D ei.�r
3x4�

�
�
rx2/

Z
R

ei�.�r
2x3C

�2

2 rx2/ �;�m .� C rx1/ 
�;�
n .�/ d �:

Then performing the change of variable � D rz, we deduce that

W..n;m; �; �/; ır.x//

D e
i.r3�x4�

r4�

r3�
x2/

Z
R

eir
3�.zy3C

z2

2 y2/Tr 
�;�
m .z C y1/Tr 

�;�
n .z/ d z;

2One has P�;� D P�;��.
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where Tr is the unitary operator in L2.R/ defined by (2.2).
Recalling that, by (B.2), we have Tr 

�;�
m .�/ D  

r4�;r3�
m .�/, this completes the

proof of (4.33), hence of the proposition.

Remark 4.9. Note that introducing, for all r > 0,

Mır.n;m; �; �/
def
D .n;m; r4�; r3�/; (4.34)

it readily follows from (4.33) that

F .u ı ır/ D r
�QF .u/ ı Mır�1 : (4.35)

We deduce that the frequency set MG has the same homogeneous dimension Q as G.
Indeed, according to (4.24), we get for any integrable function � on MG,Z

MG

.� ı Mır/. Mx/ d Mx D
Z

R�R�

X
.n;m/2N2

�.n;m; r4�; r3�/ d � d�

D r�Q
Z

R�R�

X
.n;m/2N2

�.n;m; �; �/ d � d�:

In contrast with the Euclidean situation, when adopting the function point of view
for the Engel Fourier transform one has to take into account that somehow, we deal
with infinite matrices associated to bounded operators in L2.R/. To better exploit
the relation between the definitions (4.2) and (4.18), let us introduce the following
definition.

Definition 4.10. For p 2 Œ1;1�, we define L
p;2

F
. MG/ as the set of functions � on MG

equipped with the norm

k�k
L
p;2

F
. MG/

def
D k�kLp

�;�;m
.R�R��NI`2n.N//

:

The following two statements are the analogues of the Hausdorff–Young inequal-
ity in Rd , which we here have both for F and F �1. Recall that F �1.�/ is defined by
(cf. also (4.23))

F �1.�/.x/ D .2�/�3
Z
MG

W..n;m; �; �/; x�1/�. Mx/ d Mx:

Proposition 4.11. For all 1�p � 2, the following inequality holds: for all u in �.G/,

kF .u/k
L
p0;2

F
. MG/
� kukLp.G/; (4.36)

where p0 is the dual exponent of p, and thus F extends as a continuous linear map
F WLp.G/! L

p0;2

F
. MG/.
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For all � in L
1;2
F
. MG/, its inverse Fourier transform F �1.�/ belongs to L1.G/ \

C 0.G/ and the map F �1WL
1;2
F
. MG/! L1.G/ \ C 0.G/ is continuous.

For all 1 � p � 2, there is a positive constant C such that for any � in L
p;2

F
. MG/,

its inverse Fourier transform F �1.�/ belongs to Lp
0

.G/ and

kF �1.�/kLp0 .G/ � Ck�kLp;2
F
. MG/
: (4.37)

Proof. Let us start by proving that if u 2 L1.G/ then F .u/ 2 L
1;2
F

. MG/ and

kF .u/k
L
1;2
F

. MG/
� kukL1.G/: (4.38)

Note that (4.38) is more accurate than (4.20). By definition (4.18) followed by the
Cauchy–Schwarz inequality, there holds

jF .u/. Mx/j2 D

ˇ̌̌̌ Z
G

W..n;m; �; �/; x/u.x/ d x
ˇ̌̌̌2

�

Z
G

jW..n;m; �; �/; x/j2ju.x/j d x
Z
G

ju.x/j d x

so according to identity (4.32),X
n2N

jF .u/.n;m; �; �/j2 � kuk2
L1.G/

;

which proves (4.38). Combining the Fourier–Plancherel formula (4.21) together with
complex interpolation, we deduce (4.36).

In light of (4.10)–(4.11), all functions � 2L
1;2
F
. MG/ admit an inverse Fourier trans-

form given by

F �1.�/.x/ D .2�/�3
Z
MG

W..n;m; �; �/; x�1/�. Mx/ d Mx:

Invoking the continuity of the function W with respect to x together with the smooth-
ness of the group operations of multiplication and inversion onG, we infer that for all
.n;m; �; �/ 2 MG, the function x 7! W..n;m; �; �/; x�1/�.n;m; �; �/ is continuous.
Since, in view of (4.32), there holdsˇ̌̌ X

n2N

W..n;m; �; �/; x�1/�.n;m; �; �/
ˇ̌̌
� k�.�; m; �; �/k`2n.N/;

applying the Lebesgue dominated convergence theorem, we deduce that F �1.�/

belongs to L1.G/ \ C 0.G/ and satisfies

kF �1.�/kL1.G/ � .2�/
�3
k�k

L
1;2
F
. MG/
;
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which implies (4.37) by combining the Fourier–Plancherel formula (4.21) together
with a complex interpolation argument.

Remark 4.12. Let us emphasize that the action on left translations (4.3) translates
into the following property: if u 2L1.G/, then for all x 2G and MxD .n;m;�;�/ 2 MG,
there holds

F .Lxu/.n;m; �; �/ D
X
p2N

W..p; n; �; �/; x/F .u/.p;m; �; �/; (4.39)

the latter sum being finite according to (4.32) and (4.36). Indeed, since for all .�; �/ 2
R � R� and all y 2 G, R

�;�
y is a unitary operator of L2.R/, it follows from (4.19)

that for any integer n

R�;�
y  �;�n D

X
p2N

W..p; n; �; �/; y/ �;�p with
X
p2N

jW..p; n; �; �/; y/j2 D 1:

(4.40)
Then, invoking (4.3) together with (4.18)–(4.19), we infer that

F .Lxu/.n;m; �; �/ D .F.Lxu/.�; �/ 
�;�
m j 

�;�
n /L2.R/

D .R
�;�

x�1
F.u/.�; �/j �;�n /L2.R/

D .F.u/.�; �/jR�;�
x  �;�n /L2.R/;

which thanks to (4.40) leads to (4.39).

Remark 4.13. It will be useful later to note that, for all F 2 O1;5=2.RC/, the oper-
ator F.��G/ acting on �.G/ is invariant by left translation. This can be proved
by means of functional calculus (see for instance [70, Section 5.3]), but can also
be obtained easily from the above remark which ensures according to (1.7) that, for
all u 2 �.G/, F 2 O1;5=2.RC/, x 2 G and Mx D .n;m; �; �/ 2 MG, there holds

F .F.��G/.Lxu//.n;m; �; �/

D F.Em.�; �//
X
p2N

W..p; n; �; �/; x/F .u/.p;m; �; �/;

and
F .Lx.F.��G/u//.n;m; �; �/

D

X
p2N

W..p; n; �; �/; x/F .F.��G/u/.p;m; �; �/

D F.Em.�; �//
X
p2N

W..p; n; �; �/; x/F .u/.p;m; �; �/:
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Let us end this section by establishing that if u belongs to the Schwartz space
�.G/, then F .u/ belongs to L

1;2
F
. MG/, which according to Proposition 4.11 is a natural

class to define the inverse Fourier transform, hence to write

u.x/ D .2�/�3
Z
MG

W..n;m; �; �/; x�1/F .u/. Mx/ d Mx:

Proposition 4.14. For any � > 7
2

, there exists a positive constant C such that the fol-
lowing result holds. For all u in �.G/, its Fourier transform F .u/ belongs to L

1;2
F
. MG/

and
kF .u/k

L
1;2
F
. MG/
� C.kukL1.G/ C k.��G/

�ukL1.G//:

Proof. The proof is inspired from the proof of the corresponding result on the Heisen-
berg group which can be found in [9]. In order to establish the result, let us consider u
in �.G/ and split kF .u/k

L
1;2
F
. MG/

into two parts I1 C I2 where

I1
def
D

X
m2N

Z
Em.�;�/�1

kF .u/.�; m; �; �/k`2 d � d�:

Since by (4.36) (with p D 1), one has

kF .u/k
L
1;2
F

. MG/
� kukL1.G/;

we deduce that
I1 � kukL1.G/

X
m2N

Z
Em.�;�/�1

d � d�:

Then, performing the change of variables �D �

j�j4=3
(for fixed �), and recalling (1.5),

we infer that

I1 � kukL1.G/

X
m2N

Z
R

Z
j�j� 1

Em.�/3=2

j�j4=3 d� d�

. kukL1.G/
X
m2N

Z
R

d�

Em.�/7=2
;

which according to (1.9) ensures that

I1 . kukL1.G/:

On the other hand, thanks to (4.25), and again (4.36) with p D 1, there holds

kF .u/.�; m; �; �/k`2 � E
�k
m .�; �/k.��G/

kukL1.G/



Spectral summability for the quartic oscillator with applications to the Engel group 663

for any integer k 2 Z, and thanks to complex interpolation, we find that for all � 2 R,

kF .u/.�; m; �; �/k`2 � E
��
m .�; �/k.��G/

�ukL1.G/:

We deduce that

I2 � k.��G/
�ukL1.G/

X
m2N

Z
Em.�;�/�1

E��m .�; �/ d � d�:

Considering again the change of variables � D �

j�j4=3
(for fixed �), this leads to the

following estimate:

I2 � k.��G/
�ukL1.G/

X
m2N

Z
R

Em.�/��
Z

j�j� 1

Em.�/3=2

j�j4=3�2=3� d� d�

. k.��G/�ukL1.G/
X
m2N

Z
R

d�

Em.�/7=2

as soon as � > 7=2, which achieves the proof of the proposition.

4.3. The spectral measure of ��G

Let us start by recalling that the spectral measure of a selfadjoint operator A on
L2.Rd / is characterized for any continuous bounded function F by

h�u;v; F i
def
D .F.A/u; v/L2.Rd /; u; v 2 L2.Rd /;

and thus in particular whenAD��, we get thanks to the Fourier–Plancherel formula

h�u;v; F i D .2�/
�d

Z
Rd

F.j�j2/ Ou.�/ NOv.�/ d �:

Using spherical coordinates in Rd , we readily gather that

.��u; v/L2.Rd / D .2�/
�d

1Z
0

R2
Z

Sd�1

Ou.R!/ NOv.R!/Rd�1d! dR

D .2�/�d
1Z
0

R2
Z

Sd�1.R/

Ou.�/ NOv.�/ d Sd�1.R/ dR: (4.41)

Then setting  D R2, we infer that

.��u; v/L2.Rd / D

1Z
0

.A./ujv/d;
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with

.A./ujv/
def
D .2�/�d

Z
Sd�1

Ou.
p
!/ NOv.

p
!/.
p
/d�1

1

2
p


d!

D .2�/�d
1

2
p


Z
Sd�1.

p
/

Ou.�/ NOv.�/dSd�1.
p
/:

The above formula can be interpreted as the spectral decomposition of ��

��u D

1Z
0

dPu

and one has

.��u; v/L2.Rd / D

1Z
0

.dPujv/ with .dPujv/
def
D .A./ujv/d:

We deduce that for any continuous bounded function F

.F.��/v; v/L2.Rd / D

Z
RC

F./.dPvjv/

D .2�/�d
Z

Rd

F.j�j2/j Ov.�/j2 d �:

Arguing similarly for the Engel group, we infer that the spectral measure of the sel-
fadjoint operator ��G is given, thanks to (4.22), by

h�u;v; F i

def
D .F.��G/u; v/L2.G/

D .2�/�3
Z

R�R�

X
n;m2N

F.Em.�; �//F .u/.n;m; �; �/F .v/.n;m; �; �/ d � d�;

(4.42)

for any continuous bounded function F and all u; v in L2.G/. Then, performing the
change of variable � D �

j�j4=3
(for fixed �), we deduce that

.��Gu; v/L2.G/

D .2�/�3
X
m2N

Z
R�R�

X
n2N

F .u/.n;m;�j�j4=3; �/F .v/.n;m;�j�j4=3; �/

� j�j2=3Em.�/ d�j�j4=3 d�:
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Recalling that Em.�; �/ D j�j2=3Em.�/ plays the same role as j�j2 in the Euclidean
framework, we now consider the change of variables R2 D j�j2=3Em.�/, which gives
rise to

.��Gu; v/L2.G/

D .2�/�3
1Z
0

R2
X
m2N

X
˙

Z
R

3 d�

Em.�/
Q
2

X
n2N

F .u/
�
n;m;

�R4

Em.�/2
;
˙R3

Em.�/
3
2

�
� F .v/

�
n;m;

�R4

Em.�/2
;
˙R3

Em.�/
3
2

�
R6 dR:

Analogously to (4.41), the above formula can be reinterpreted as follows:

.��u; v/L2.G/ D .2�/
�3

1Z
0

R2
Z

S MG.R/

F .u/. Mx/F .v/. Mx/ d �S MG.R/
dR;

where S MG.R/
def
D ¹.n;m; �; �/ 2 MG=Em.�; �/ D R

2º andZ
S MG.R/

j�. Mx/j2 d �S MG.R/

def
D 3

X
m2N

X
˙

Z
R

d�

Em.�/
Q
2

X
n2N

ˇ̌̌
�
�
n;m;

�R4

Em.�/2
;
˙R3

Em.�/
3
2

�ˇ̌̌2
R6 dR: (4.43)

This definition is justified by the following proposition which is the analogue of the
classical integration formula in spherical coordinates.

Proposition 4.15. For any function � 2 L2. MG/, we haveZ
MG

j�. Mx/j2 d Mx D

1Z
0

� Z
S MG.R/

j�. Mx/j2 d �S MG.R/

�
dR;

where
R

S MG.R/
j�. Mx/j2 d �S MG.R/

is given by (4.43).

Proof. By definition of the measure on MG, we haveZ
MG

j�. Mx/j2 d Mx D
Z

R�R�

X
n;m2N

j�.n;m; �; �/j2 d � d�:
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Then performing successively the change of variables�D �

j�j4=3
(for fixed �) andRD

j�j1=3
p
Em.�/ (for fixed �), we infer thatZ

MG

j�. Mx/j2 d Mx

D

1Z
0

3
X
m2N

X
˙

Z
R

d�

Em.�/
Q
2

X
n2N

ˇ̌̌
�
�
n;m;

�R4

Em.�/2
;
˙R3

Em.�/
3
2

�ˇ̌̌2
R6 dR;

which proves the proposition.

Finally, setting  D R2, we deduce that

.��Gu; v/L2.G/ D

1Z
0

.A./ujv/d

with

.A./ujv/ D
.2�/�3

2
p


Z
S MG.
p
/

X
n2N

F .u/.n; �/F .v/.n; �/dS MG.
p
/:

This shows that the spectral decomposition of ��G takes the following form:

��Gu D

1Z
0

dPu where d.Pujv/
def
D .A./ujv/d:

Along the same lines, starting from (4.42) and performing successively the change of
variables�D �

j�j4=3
andR2D j�j2=3Em.�/, we readily gather that, for any continuous

bounded function F and all functions v in L2.G/, there holds

.F.��G/v; v/L2.G/

D .2�/�3
1Z
0

F.R2/
X
m2N

X
˙

Z
R

3 d�

Em.�/
Q
2

X
n2N

F .v/
�
n;m;

�R4

Em.�/2
;
˙R3

Em.�/
3
2

�
� F .v/

�
n;m;

�R4

Em.�/2
;
˙R3

Em.�/
3
2

�
R6 dR:

With the previous notations, setting  D R2, we deduce that

.F.��G/v; v/L2.G/ D

Z
RC

F./.dPvjv/ d  D .2�/�3
Z
zG

F.a. Mx//jF v. Mx/j2 d Mx;

where a denotes the function on MG introduced in Theorem 1.2.
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4.4. End of the proof of Theorems 1.3, 1.6, 1.8 and proof of Propositions 1.5
and 1.10

Proof of Theorem 1.3. Recall that (1.9) has been proved in Section 2. Let us start by
proving the following identity: for F 2 C 0c .R

�
C/,X

m2N

Z
R�R�

F.Em.�;�//d� d�D 3
� Z

RC

r5=2F.r/d r
� X
m2N

Z
R

1

Em.�/7=2
d�: (4.44)

Recalling that P�;� D P�;�� D P�;j�j, we have Em.�; �/D Em.�;��/D Em.�; j�j/,
so it suffices to prove thatX

m2N

Z
R�R�

C

F.Em.�; �// d � d� D
3

2

� Z
RC

r5=2F.r/ d r
� X
m2N

Z
R

1

Em.�/7=2
d�:

Invoking Corollary B.4, and using changes of variables, the integral on � > 0 rewritesX
m2N

Z
R�R�

C

F.Em.�; �// d � d� D
X
m2N

Z
R�R�

C

F
�
�2=3Em

� �

�4=3
; 1
��

d � d�

so setting � D �

�4=3
(for fixed �) and then r D �2=3Em.�/ (for fixed �) we findX

m2N

Z
R�R�

C

F.Em.�; �// d � d� D
X
m2N

Z
R�R�

C

F.�2=3Em.�//�4=3 d� d�

D

� Z
R�
C

3

2
r5=2F.r/ d r

� X
m2N

Z
R

1

Em.�/7=2
d�:

This concludes the proof of the identity (4.44). The latter remains true (with equality
in Œ0;C1�) for all nonnegative measurable functions F . Applied to jF j instead of F ,
this implies that F ı a belongs toL1. MG;ın;m d Mx/ if and only if F 2L1.RC; r5=2 d r/,
and, if so, then (1.8) (which is nothing but (4.44)) holds.

We now prove Theorem 1.6. Note that the Schwartz kernel theorem [48,
Theorem 5.2.1] or [77, equation (51.7), p. 531] states that any continuous map
�.G/! � 0.G/ has a distribution kernel. Here, left translation invariance of the oper-
ator F.��G/ further implies that the operator is a right convolution operator. Our
proof of Theorem 1.6 is inspired by [46, Proof of Theorem 1.2, p. 98] and does not
rely on the kernel theorem.

Proof of Theorem 1.6. To prove that, for any function u 2 �.G/, one can define the
inverse Fourier transform of the function .n;m;�;�/ 7!F.Em.�;�//F .u/.n;m;�;�/,
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it suffices according to Proposition 4.11 to check that this function belongs to L
1;2
F

,
that is to say

J
def
D kF.Em.�; �//F .u/.n;m; �; �/kL1;2

F

D

X
m2N

Z
R�R�

jF.Em.�; �//jkF .u/.�; m; �; �/k`2 d � d� <1:

For this we reproduce the proof of Proposition 4.14, writing J D J1 C J2 with

J1
def
D

X
m2N

Z
Em.�;�/�1

jF.Em.�; �//jkF .u/.�; m; �; �/k`2 d � d�:

As in the estimate of I1 in the proof of Proposition 4.14, and thanks to (4.44), we find

J1 � kukL1.G/

X
m2N

Z
R

Z
j�j� 1

E
3=2
m .�/

jF.�2=3Em.�//jj�j4=3 d� d�

. kukL1.G/

1Z
0

r5=2jF.r/j d r

. kukL1.G/kF k
O
1; 5
2

0
.RC/

:

On the other hand, and again as in the estimate of I2 in the proof of Proposition 4.14,

J2 � k.Id��G/`ukL1.G/

1Z
1

hri�`r5=2jF.r/j d r

. k.Id��G/`ukL1.G/kF k
O
1; 5
2

`
.RC/

:

This implies that, for F 2 O
1;5=2

`
.RC/ and u 2 �.G/,

J D kF.Em.�; �//F .u/.n;m; �; �/kL1;2
F

. kukL1.G/kF k
O
1; 5
2

0
.RC/
C k.Id��G/`ukL1.G/kF k

O
1; 5
2

`
.RC/

:

We have thus obtained that .n; m; �; �/ 7! F.Em.�; �//F .u/.n;m; �; �/ belongs to
L
1;2
F

. According to Proposition 4.11, its inverse Fourier transform

F.��G/u
def
D F �1.F.Em.�; �//F .u/.n;m; �; �//
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thus satisfies F.��G/u 2 C 0.G/ \ L1.G/ together with

kF.��G/ukL1.G/ . kukL1.G/kF k
O
1; 5
2

0
.RC/
C k.Id��G/`ukL1.G/kF k

O
1; 5
2

`
.RC/

:

In particular, the bilinear map

O
1; 52
`
.RC/ � �.G/! C; .F; u/ 7! .F.��G/u/.0/; (4.45)

is linear, continuous for the topology of O
1; 52
`
.RC/ � �.G/. As a consequence, for

a fixed F 2 O
1; 52
`
.RC/, the partial map �.G/ ! C given by u 7! .F.��G/u/.0/

belongs to � 0.G/. That is to say, there is T 2 � 0.G/ such that

.F.��G/u/.0/ D hT; ui� 0.G/;�.G/; for all u 2 �.G/:

Now, there is {T 2 � 0.G/ such that, with Lu.y/ D u.y�1/, we have

hT; ui� 0.G/;�.G/ D h {T; Lui� 0.G/;�.G/; for all u 2 �.G/:

Recalling the definition of the convolution in (3.10), and noticing that Lu D Lu0 D Lu0,
the above two lines rewrite

.F.��G/u/.0/ D h {T; Lui� 0.G/;�.G/ D .u ? {T /.0/; for all u 2 �.G/:

Invoking Remark 4.13, we infer that, for all x 2 G and u 2 �.G/,

.F.��G/u/.x/ D .LxF.��G/u/.0/ D .F.��G/Lxu/.0/

D ..Lxu/ ? {T /.0/ D .u ? {T /.x/ (4.46)

where, in the last equality, we have used again the definition of the convolution
in (3.10). This concludes the proof of Theorem 1.6 with kF

def
D {T . The continuity

statement of the map F 7! {T D kF follows from (4.45), (4.46), and the continuity of
Lx as a map �.G/! �.G/.

Notice that (4.46), joint with (4.23) and (4.25), imply the following useful identit-
ies:

F .kF /. Mx/ D F.Em.�; �//ım;n; (4.47)

and

kF .x/ D .2�/
�3

Z
MG

W..n;m; �; �/; x�1/F.Em.�; �//ım;n d Mx: (4.48)
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Indeed, (4.22) and (4.23) provide

.u ? kF ; v/L2.G/

D .2�/�3.F .u ? kF /;F .v//L2. MG/

D .2�/�3
X

.n;m;p/2N3

Z
R�R�

F .u/.n; p; �; �/F .kF /.p;m; �; �/

� F .u/.n;m; �; �/ d � d�;

so, using (4.46), we find (4.47) while the inversion formula provides (4.48).
For the sake of completeness, we also give here a proof of Proposition 1.5, which

follows that of Theorem 1.6 with a different starting point (the general functional
calculus for selfadjoint operators instead of the Fourier transform F ), and would hold
in any Carnot group.

Proof of Proposition 1.5. As it was emphasized in Section 4.3, spectral theory asso-
ciates with ��G a spectral measure that we denoted by dP , and it is well known
(see for instance [66, Theorem VIII.6] or [70, Section 5.3]) that if F is a locally
bounded Borel function on RC, one can define on the Hilbert space L2.G/ the oper-
ator F.��G/ by

D.F.��G//
def
D

²
u 2 L2.G/;

Z
R

jF./j2d.Puju/ <1

³
;

F .��G/u
def
D

Z
R

F./dPu; for u 2 D.F.��G//:

Now, if F is a function in O1m .RC/ for some nonnegative real number m, then we
have, for u 2 �.G/,

kF.��G/uk
2
L2.G/

D

Z
R

jF./j2d.Puju/ � C

Z
R

hi2md.Puju/

D Ck.Id��G/muk2L2.G/:

Therefore, D..Id��G/m/ is embedded continuously in D.F.��G//. Next, since
�G is a differential operator with polynomial coefficients, we have .Id��G/ku 2
�.G/ for any u 2 �.G/ and k 2 N, together with

k.Id��G/kF.��G/uk2L2.G/ � Ck.Id��G/
mCkuk2

L2.G/
; for all u 2 �.G/:

As a consequence, we obtain

u 2 �.G/ H) F.��G/u 2
\
k2N

D..Id��G/k/ D
\
k2N

D.�kG/: (4.49)
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Now, local hypoellipticity of the operator �G proved in [47] (see also [69] for the
expression of ") implies the existence of " > 0 such that D.��G/ � H "

loc.G/ with
continuous embedding, where H "

loc.G/
def
D H "

loc.R
4/ denotes the usual local Sobolev

space defined by v 2H "
loc.R

4/ if h�i"F.�v/.�/ 2 L2.R4/ for all � 2 C1c .R
4/, where

F denotes the usual Euclidean Fourier transform. A classical induction argument (see,
e.g., [54, Corollary B.2]) shows thatD.��kG/ �H

k"
loc .G/ for all k 2N with continu-

ous embedding. We thus deduce from (4.49) (and the usual rough Sobolev embed-
dings in R4) that if u 2 �.G/, then F.��G/u 2

T
k2N H

k"
loc .G/D C

1.G/ (and this
map is continuous). In particular, F.��G/ maps continuously �.G/ in C 0.G/ and,
from this point forward, we may follow the end of the proof of Theorem 1.6 line by
line.

Let us turn to the proof of Theorem 1.8.

Proof of Theorem 1.8. First assume that F 2 L1.RC; r5=2 d r/. We have by (4.48)
that

jkF .x/j D .2�/
�3

ˇ̌̌̌ Z
MG

W..n;m; �; �/; x�1/F.Em.�; �//ım;n d Mx
ˇ̌̌̌
:

Since, by (4.29), we have, for any .n;m; �; �/ in MG and y in G,

jW..n;m; �; �/; y/j � 1;

it follows that
jkF .x/j � .2�/

�3

Z
MG

jF.Em.�; �//jım;n d Mx:

By (4.44), we deduce that

jkF .x/j � .2�/
�3

� Z
R�
C

3

2
r5=2jF.r/j d r

� X
m2N

Z
R

1

Em.�/7=2
d�:

The continuity of kF under the hypothesis of Theorem 1.8, as well as its L1 bound,
readily follows from the continuity of W with respect to x, (4.29) and the Lebesgue
dominated convergence theorem. Finally, the formula for kF .0/ simply comes from
(4.48) and the fact that, for all .n;m; �; �/ in MG, W..n;m; �; �/; 0/ D ın;m.

Proof of Proposition 1.10. Assume F belongs to O1;5=2.RC/. Then, according to
Theorem 1.6, kF is well defined, and (4.21) implies that kF belongs to L2.G/ if
and only if F .kF / belongs to L2. MG/, and

kkF k
2
L2.G/

D .2�/�3kF .kF /k
2

L2. MG/
:
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But, using (4.47),

kF .kF /k
2

L2. MG/
D

X
.n;m/2N2

Z
R�R�

jF .kF /.n;m; �; �/j
2 d � d�

D

X
m2N

Z
R�R�

F 2.Em.�; �// d � d�:

Reproducing the computations leading to the proof of Theorem 1.3, we find

kF .kF /k
2

L2. MG/
D

X
m2N

Z
R�R�

C

F 2.�2=3Em.�//�4=3 d� d�

D

� Z
R�
C

3

2
r5=2F 2.r/ d r

� X
m2N

Z
R

1

Em.�/7=2
d�:

The result follows.

5. Applications

5.1. Functional embeddings

Combining the Engel Fourier transform together with (1.8), we recover in this section
many functional inequalities, whose original proofs may be found in [31].

Let us start with the following result concerning Sobolev embeddings in Lebesgue
spaces. Such embeddings are known to hold in a variety of contexts (see for instance
[7,17,18,24,30,50]). The proof conducted here is inspired from the paper of Chemin
and Xu [20], and adapted previously in other contexts (see for instance [8, 10] for the
Heisenberg group).

Theorem 5.1. For any real number s in Œ0;Q=2Œ ; there exists a constant Cs such that
the following inequality holds:

kukLp.G/ � Cskuk PH s.G/ with p D
2Q

Q � 2s
; for all u 2 PH s.G/:

Proof. Let us assume that kuk PH s.G/ D 1, and compute the Lp norm according to the
Cavalieri principle:

kuk
p

Lp.G/
D p

1Z
0

ˇp�1j.juj > ˇ/j dˇ:
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In order to go further, we shall use the technique of decomposition into low and high
frequencies, namely we shall decompose, for all A > 0; the function u into two parts
as follows:

u D u`;A C uh;A (5.1)

with
F .u`;A/.n;m; �; �/

def
D F .u/.n;m; �; �/1Em.�;�/�A2 :

From the inversion formula (4.23), the definition of the Sobolev norm (4.26) and the
Cauchy–Schwarz inequality, we get

ku`;AkL1.G/

� Cku`;Ak PH s.G/

� Z
Em.�;�/�A

2

jW..n;m; �; �/; x�1/j2.Em.�; �//
�s d Mx

� 1
2

:

In view of (4.32), we haveZ
Em.�;�/�A

2

jW..n;m; �; �/; x�1/j2.Em.�; �//
�s d Mx

D

X
m2N

Z
Em.�;�/�A

2

.Em.�; �//
�s d � d�:

Then, applying (1.8) with F.r/ D r�s1�0;A2�.r/, we deduce that

ku`;AkL1.G/ � CA
Q
2 �s:

Thus, choosingADAˇ D cˇ
p
Q for some small enough positive real number c ensures

that

j.juj > ˇ/j � j.ju`;Aˇ j > ˇ=2/j C j.juh;Aˇ j > ˇ=2/j D j.juh;Aˇ j > ˇ=2/j;

which thanks to Bienaymé–Tchebitchev inequality yields

kuk
p

Lp.G/
.
1Z
0

ˇp�3kuh;Aˇk
2
L2.G/

dˇ:

Hence, by virtue of Fourier–Plancherel formula (4.21),

kuk
p

Lp.G/
. C

1Z
0

ˇp�3
Z

Em.�;�/�A
2
ˇ

jF .u/. Mx/j2 d Mx dˇ;

which completes the proof thanks to the Fubini theorem.
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Notice that refined versions of Sobolev embeddings (see [33,34]) can be obtained
by slightly adapting the above proof. We shall not pursue this further here.

The following theorem is to be compared with the Poincaré inequality.

Theorem 5.2. Let s be a nonnegative real number and K a subset of G with finite
measure. There exists a positive constant C.s;K/ such that for all functions u in the
subspace H s

K.G/ of functions in H s.G/ with support in K; we have

kuk PH s.G/ � kukH s.G/ � C.s;K/kuk PH s.G/:

Proof. The first inequality is obvious, and in view of Fourier–Plancherel formula
(4.21) the second one amounts to prove that

kF .u/kL2. MG/ � .C jKj/
2s
Q kuk PH s.G/:

To this end, let us again decompose u into low and high frequencies as in (5.1). We
thus set " > 0 and write

kF .u/k2
L2. MG/

D kF .uh;"/k
2

L2. MG/
C kF .u`;"/k

2

L2. MG/

D

Z
Em.�;�/�"

2

Em.�; �/
�2sEm.�; �/

2s
jF .u/.n;m; �; �/j2 d Mx C kF .u`;"/k2L2. MG/:

The first integral may be bounded by "�4skuk2
PH s.G/

: To handle the second one, we
first take advantage of (4.38) which since u is compactly supported gives rise toX
n2N

jF .u/.n;m; �; �/j2 � kuk2
L1.G/

� jKjkuk2
L2.G/

D .2�/�3jKjkF .u/k2
L2. MG/

:

Thanks to identity (1.8) with F.x/ D 1�0;"2�.x/, this implies that

kF .u`;"/k
2

L2. MG/
� .2�/�3jKjkF .u/k2

L2. MG/
"Q:

We deduce that

kF .u/k2
L2. MG/

�
1

"4s
kuk2

PH s.G/
C C jKj"QkF .u/k2

L2. MG/
;

which achieves the proof of the result choosing "Q D 1=.2C jKj/.

Decomposing functions into low and high frequencies is a key tool to establish
functional inequalities, but also to investigate nonlinear partial differential equations.
Let us showcase again the efficiency of this method by establishing the Sobolev
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embedding corresponding to the critical exponent s D Q=2: To this end, we intro-
duce the space BMO.G/ of locally integrable functions u on G with bounded mean
oscillations:

kukBMO.G/
def
D sup

B

1

jBj

Z
B

j.u � uB/.x/j d x <1 with uB
def
D

1

jBj

Z
B

u.x/ d x;

where the supremum is taken over all balls B of G, and where jBj denotes the
Lebesgue measure of the ball B .

Theorem 5.3. The space L1loc.G/ \
PH
Q
2 .G/ is included in BMO.G/. Moreover,

there exists a constant C > 0 such that

kukBMO.G/ � Ckuk
PH
Q
2 .G/

;

for all functions u in L1loc.G/ \
PH
Q
2 .G/.

Proof. As previously, we use the decomposition (5.1). Then applying the Cauchy–
Schwarz inequality, we infer that for any ball B in G, we haveZ

B

j.u � uB/.x/j
d x
jBj
� ku`;A � .u`;A/BkL2.B; dx

jBj
/ C

2

jBj
1
2

kuh;AkL2.G/:

In order to estimate the low frequency part, we shall use the metric structure of the
Engel group: recall that for any .x; x0/ of G � G, there exists a horizontal curve
of�x;x0 joining x to x0. Using the Carnot–Carathéodory distance dG defined in (3.5),
we infer that, for any ball BR of G of radius R, there holds

ku`;A � .u`;A/BRkL2.BR; dx
jBR j

/ . RAkuk
PH
Q
2 .G/

: (5.2)

Indeed, by definition of .u`;A/BR ; we have

.u`;A � .u`;A/BR/.x/ D
1

jBRj

Z
BR

.u`;A.x/ � u`;A.x
0// d x0:

Since for any curve  D
SpDJ
pD1 p where pW Œ0;Tp�!G belongs to�xp ;xpC1 , namely

@tp.t/ D ˙Xi .p.t//; p.0/ D xp; p.Tp/ D xpC1;

1.0/ D x; J .TJ / D x
0 for p D 1; : : : ; J � 1 and i 2 ¹1; 2º;

there holds

u`;A.xpC1/ � u`;A.xp/ D

TpZ
0

@t .u`;A.p.t/// d t;
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we readily gather that

ju`;A.x/ � u`;A.x
0/j . dG.x; x

0/ sup
i2¹1;2º

kXiu`;AkL1.G/: (5.3)

We deduce that

ku`;A � .u`;A/BRkL2.BR; dx
jBR j

/ . R sup
i2¹1;2º

kXiu`;AkL1.G/:

By the inversion formula (4.23), we have

kXiu`;AkL1.G/ .
Z

Em.�;�/�A
2

jW..n;m; �; �/; x�1/jjF .Xiu/. Mx/j d Mx:

Then, combining the Cauchy–Schwarz inequality together with (1.8) and (4.32), we
get

kXiu`;AkL1.G/ . Akuk
PH
Q
2 .G/

;

which ensures that

ku`;A � .u`;A/BRkL2.BR; dx
jBR j

/ . RAkuk
PH
Q
2 .G/

:

To bound uh;A; we combine identity (4.21) with formula (1.8), which gives rise to

kuh;Ak
2
L2.G/

� CA�Qkuk2
PH
Q
2 .G/

:

We know by (3.11) that jBRj D CRQ. Then, the latter estimate implies that

2

jBRj
1
2

kuh;AkL2.G/ . .AR/�
Q
2 kuk

PH
Q
2 .G/

: (5.4)

Gathering the estimates (5.2) and (5.4) and choosing A D R�1 completes the proof
of the result.

One can also prove, by a similar high-low decomposition technique, embeddings
between Hölder spaces and Sobolev spaces. To ease the notations, we denote in what
follows X D .X1; X2/ the family of horizontal left-invariant vector fields on G, and
we set, for any multi-index ˛ in ¹1; 2ºk ,

X˛
D

kY
jD1

X
j̨
:
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Then we denote by C k;�.G/, (for .k; �/ in N� �0; 1�) the Hölder space on the Engel
group, consisting in functions u on G such that

kukCk;�.G/
def
D sup
j˛j�k

�
kX˛ukL1 C sup

x 6Dy

jX˛u.x/ �X˛u.y/j

Qd.x; y/�

�
<1:

We have the following result.

Proposition 5.4. If s > Q
2

and s � Q
2

is not an integer, then the space H s.G/ is
included in the Hölder space of index

.k; �/ D
�h
s �

Q

2

i
; s �

Q

2
�

h
s �

Q

2

i�
and we have for all u 2 H s.G/;

kukCk;�.G/ � CskukH s.G/:

Proof. We prove the result only in the case when the integer part of s �Q=2 is 0,
namely the case when s D Q

2
C �, with 0 < � < 1. Using again Decomposition (5.1),

we infer, according to (5.3), that the low frequency part of u satisfies

ju`;A.x/ � u`;A.x
0/j . dG.x; y/ sup

i2¹1;2º

kXiu`;AkL1.G/:

In view of (1.8), one gets

kXiu`;AkL1.G/ � kuk PH s.G/

� X
m2N

Z
Em.�;�/�A

2

Em.�; �/
�sC1 d � d�

� 1
2

. A1�.s�
Q
2 /kuk PH s.G/;

which implies that

ju`;A.x/ � u`;A.x
0/j . dG.x; y/A

1�.s�Q2 /kuk PH s.G/:

Along the same lines, we obtain

kuh;AkL1.G/ � kukH s.G/

� X
m2N

Z
Em.�;�/�A

2

Em.�; �/
�s d � d�

� 1
2

. A
Q
2 �skukH s.G/:

Consequently,

ju.x/ � u.y/j . .dG.x; y/A
1��
C A��/kuk PH s.G/:

Choosing A D dG.x; y/�1, we conclude the proof of the result.
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5.2. Bernstein inequalities

Similarly to the Euclidean case, (4.25) allows to give a definition of a function whose
Fourier transform is compactly supported, in the following way.

Definition 5.5. We say that a function u inL2.G/ is frequency localized in a ball Bƒ

centered at 0 of radius ƒ > 0 if

Supp F .u/ � ¹ Mx D .n;m; �; �/ 2 MG=Em.�; �/ � ƒ
2
º:

Similarly, we say that a function u on G is frequency localized in a ring Cƒ centered
at 0 of small radius ƒ=2 and large radius ƒ if

Supp F .u/ �
°
Mx D .n;m; �; �/ 2 MG=

ƒ2

4
� Em.�; �/ � ƒ

2
±
:

Remark 5.6. Equivalently, u in L2.G/ is frequency localized in Bƒ if there exists
a function  in D.R/ supported in B1, valued in the interval Œ0; 1� and equal to 1
near 0 such that for any Mx D .n;m; �; �/ in MG,

F .u/.n;m; �; �/ D F .u/.n;m; �; �/ .ƒ�2Em.�; �//: (5.5)

Similarly, u is frequency localized in Cƒ if there exists a function � in D.R/ n ¹0º

valued in the interval Œ0; 1� and supported in C1 such that for any Mx D .n; m; �; �/

in MG,
F .u/.n;m; �; �/ D F .u/.n;m; �; �/�.ƒ�2Em.�; �//: (5.6)

This definition allows classically to recover equivalent definitions of Sobolev and
Hölder spaces via the well-known Littlewood–Paley decomposition, and to define
generalizations of those spaces known as Besov spaces; these turn out to be very
important tools, namely to refine Sobolev inequalities, and to study nonlinear PDEs.
For an introduction to this topic, we refer the reader for instance to [3]. We shall not
pursue further this line of investigation here, but only prove the following proposition,
known as the Bernstein inequalities. The proof of this result is inspired by the corres-
ponding result on the Heisenberg group in the monograph by Bahouri, Chemin, and
Danchin [5] – we refer also to [8] for the easier case (5.7).

Proposition 5.7. With the above notation,

• if u is frequency localized in Bƒ, then for all 1 � p � q �1, k 2N and ˇ 2N2

with jˇj D k; there exists a constant Ck depending only on k such that

kXˇukLq.G/ � Ckƒ
kCQ. 1p�

1
q /kukLp.G/; (5.7)
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• if u is frequency localized in Cƒ, then for all p � 1, k 2 N and ˇ 2 N2 with
jˇj D k; there exists a constant Ck depending only on k such that

kukLp.G/ � Ckƒ
�k sup
jˇ jDk

kXˇukLp.G/:

Remark 5.8. Spectral truncations are convenient means of approximating functions.
Indeed, Proposition 5.7 shows that for any u 2 L2.G/ for instance,  .�ƒ�2�G/u
belongs to H s.G/ for any s � 0, and, as a consequence of the Plancherel formula,
 .�ƒ�2�G/u converges to u in L2.G/.

Proof of Proposition 5.7. By density and to make sense of the next computations, we
assume that u belongs to �.G/. First, we notice that (5.5) and (5.6) can be restated
respectively as

u D  .�ƒ�2�G/u and u D �.�ƒ�2�G/u:

In view of Hulanicki’s result [49], there exist functions h and h� in �.G/ such that,
for all u in �.G/, there holds

 .�ƒ�2�G/u D u ? ƒ
Q.h ı ıƒ/ and �.�ƒ�2�G/u D u ? ƒ

Q.h� ı ıƒ/:

(5.8)
Let us prove that the functions h� and h are even, that is to say, for all x 2 G,

h .x/ D h .x
�1/ and h�.x/ D h�.x

�1/:

Since the analysis of h� is similar to that of h , we limit here ourselves to the case
of h . By definition

F .h /.n;m; �; �/ D  .Em.�; �//ım;n;

which in view of the inversion Fourier formula (4.23) implies that

h .x/ D .2�/
�3
X
m2N

Z
R�R�

W..m;m; �; �/; x�1/ .Em.�; �// d � d�:

Also,

h .x
�1/ D .2�/�3

X
m2N

Z
R�R�

W..m;m; �; �/; x/ .Em.�; �// d � d�:

But, in view of (4.30)–(4.31), we have

W..m;m; �; �/; x�1/ D W..m;m; �;��/; x/;

which gives the result since Em.�;��/ D Em.�; �/.
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Let us return to the proof of the proposition. We observe that by scale invariance,
it is enough to prove the proposition for ƒ D 1. In order to establish (5.7), we first
combine Definition 5.5 with identity (5.8) which implies that

u D u ? h ;

with h 2 �.G/. Invoking (3.8), we infer that

Xˇu D u ?Xˇh ;

which leads to the result, thanks to Young’s inequalities (3.7).
Let us turn to the case when u is frequency localized in a unit ring: we use (5.8)

again, and notice that
�Gh� D z�Gh� :

Moreover, since h� is frequency localized away from the origin, for any integer k,
one has

u D u ? h� D u ? .��G/
khk� D u ? .�

z�G/
khk� ; (5.9)

where hk� is the even Schwartz class function defined by

F .hk�/.n;m; �; �/
def
D .Em.�; �//

�k�.Em.�; �//ın;m:

We claim that for any u; v 2 �.G/ and all i 2 ¹1; 2º, one has

Xiu ? v D u ? zXiv: (5.10)

Indeed, by definition, one has

.X1u/ ? v.x/ D

Z
G

.@y1u/.y/v.y
�1
� x/dy D �

Z
G

u.y/@y1.v.y
�1
� x//dy

by integration by parts, and since

y�1 � x D
�
� y1 C x1;�y2 C x2;�y3 C x3 � y1.�y2 C x2/;

� y4 C x4 � y1.�y3 C x3/C
1

2
y21.�y2 C x2/

�
;

and by Remark 3.1
zX1 D @x1 C x2@x3 C x3@x4

then we obtain
.X1u/ ? v.x/ D

Z
G

u.y/. zX1v/.y
�1
� x/dy
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whence (5.10) for i D 1. Along the same lines, since

.X2u/ ? v.x/ D

Z
G

��
@y2 C y1@y3 C

y21
2
@y4

�
u
�
.y/v.y�1 � x/dy;

performing an integration by parts, we get

.X2u/ ? v.x/ D

Z
G

u.y/. zX2v/.y
�1
� x/dy;

from which (5.10) also follows for i D 2. Then invoking (5.9), we deduce that

u D u ? .�z�G/
khk� D

2X
iD1

Xiu ? zXi .�z�G/
k�1hk� :

By induction, we obtain
u D

X
jˇ jDk

Xˇu ? ˆˇ;k;

for some functions ˆˇ;k in �.G/. This completes the proof of the proposition thanks
to Young’s inequalities (3.7).

5.3. Application to the heat equation

The heat kernel of the sub-Riemannian Laplacian has been the object of several invest-
igations in the last decades, both from the analytic and geometric viewpoints. We refer
the reader to [11, 12, 15, 71] and references therein for a complete discussion. In this
paragraph we show the efficiency of (1.8) by analyzing the heat kernel on the Engel
group.

It is well known that this kernel is a Schwartz class function; see for instance [22]
and the references therein. Here we show in an elementary way, thanks to (1.8), that
it belongs to H s.G/ for any s � 0. As already mentioned in the introduction, the
Fourier transform U given by Theorem 1.2 allows to compute explicitly the solutions
of evolution equations associated with ��G . For instance, if we consider the heat
equation on G

.HG/

´
@tu ��Gu D 0;

ujtD0 D u0;

applying the Engel Fourier transform and taking advantage of the identities (4.25),
then integrating in time the resulting ODE, we deduce that, for all Mx D .n; m; �; �/
in MG,

F .u.t//.n;m; �; �/ D e�tEm.�;�/F .u0/.n;m; �; �/:
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Invoking the Fourier inversion formula (4.23) along with the convolution identity
(4.28), we infer that

u.t; �/ D u0 ? ht with F .ht /.n;m; �; �/ D e
�tEm.�;�/ın;m: (5.11)

Then, according to the scaling property (4.35), the heat kernel ht is given, for all t > 0,
by

ht D
1

t
Q
2

.h ı ı 1
t
/ with h.x/ D .2�/�3

Z
MG

e�Em.�;�/W..n;m; �; �/; x�1/ım;n d Mx:

(5.12)
Thanks to (1.8), we deduce that the heat kernel on G belongs to

T
s H

s.G/.
Indeed, combining (4.27) together with (5.12), we infer that for all s 2 R,

khk2H s.G/ D .2�/
�3
X
m2N

Z
R�R�

Fs.Em.�; �// d � d�;

where Fs.r/
def
D .1C r/se�2r which ensures the result.

6. Metric structure on the frequency set MG

The aim of this section is to endow the frequency set MG D N2 � R � R� with a
distance. To do so, we have to keep in mind that, as in the Euclidean setting, we
expect the Fourier transform to transform the regularity of functions on G into decay
of the Fourier transform on MG. So, first let us start by observing that in view of the
relations (4.15), (4.16), and (4.25), one has

F .��Gu/.n;m; �; �/ D Em.�; �/F .u/.n;m; �; �/;

F .�z�Gu/.n;m; �; �/ D En.�; �/F .u/.n;m; �; �/;

F .X4u/.n;m; �; �/ D �i�F .u/.n;m; �; �/;

F
��
X4X2 �

1

2
X23

�
u
�
.n;m; �; �/ D �F .u/.n;m; �; �/:

Our aim now is to endow MG with a distance Md in accordance with the above rela-
tions and which is moreover homogeneous of degree one with respect to the dilation
Mıa defined by (4.34). This motivates our definition of the distance Md between two
elements Mx D .n;m; �; �/ and Mx0 D .n0; m0; �0; �0/ of the set MG as follows:

Md. Mx; Mx0/
def
D jEm.�; �/ �Em0.�

0; �0/j
1
2

C j.Em �En/.�; �/ � .Em0 �En0/.�
0; �0/j

1
2

C j� � �0j
1
4 C j� � �0j

1
3 : (6.1)
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To check that Md is a distance on MG, the main point consists in proving that

Md. Mx; Mx0/ D 0) Mx D Mx0:

In view of (6.1), this amounts to showing that if for some integers k; k0, we have
Ek.�;�/DEk0.�;�/, then k D k0. This follows from the first item of Proposition B.1
which asserts that the energy levels do not intersect. Now, the fact that Md is homogen-
eous of degree one with respect to the dilation Mıa, namely for all a > 0

Md. Mıa Mx; Mıa Mx
0/ D a Md. Mx; Mx0/;

follows from the scaling property Ek.�; �/ D j�j2=3Ek. �

j�j4=3
/ (see (B.3)).

Since � belongs to R�, the set . MG; Md/ is not complete. Its completion is described
by the following proposition.

Proposition 6.1. The completion of the set MG for the distance Md is the set

MG [ MG0

with

MG0
def
D .RC �R � ¹0R2º/ [ ¹..2mC 1/

p
2�; 2.m � n/

p
2�; �; 0/;

.n;m; �/ 2 N2
�R�Cº:

Proof. We denote by S the completion of the set MG for the distance Md , that is to say
the set of all limits of Cauchy sequences .np; mp; �p; �p/p2N in . MG; Md/, and our goal
is to prove that

S D MG [ MG0;

with

MG0 D MG0;0 t MG0;1;

MG0;0 D RC �R � ¹0R2º;

MG0;1 D ¹..2mC 1/
p
2�; 2.m � n/

p
2�; �; 0/; .n;m; �/ 2 N2

�R�Cº:

We first prove that S � MG [ MG0. Let .np; mp; �p; �p/p2N be a Cauchy sequence
in . MG; Md/. Then .�p/p2N and .�p/p2N are Cauchy sequences of real numbers, and thus
they converge respectively to some � and � in R:Moreover,Emp .�p;�p/;Enp .�p;�p/
are Cauchy sequences in RC and thus converge in RC: there exist Px 2RC and Py 2RC
such that

Emp .�p; �p/
p!1
����! Px; Enp .�p; �p/

p!1
����! Py: (6.2)
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Recalling the scaling relation (B.3), this reads

j�pj
2=3Emp .�p/

p!1
����! Px

and

j�pj
2=3Enp .�p/

p!1
����! Py;

with �p D
�p

j�p j4=3
:

If � ¤ 0, we have
�p

p!1
����!

�

j�j4=3
2 R

and
j�pj

2=3Emp .�p/
p!1
����! Px; j�pj

2=3Enp .�p/
p!1
����! Py:

As a consequence,

Emp .�p/! Pxj�j
�2=3; Enp .�p/! Pyj�j

�2=3;

and, according to Proposition 2.1 (1), we infer that the sequences .mp/p2N and
.np/p2N are constant after a certain index. Therefore, there exist m and n in N such
that

Md..np; mp; �p; �p/; .n;m; �; �//
p!1
����! 0:

Consequently, (in that case) the limit of the sequence .np; mp; �p; �p/p2N in . MG; Md/
belongs to MG.

We now consider the case �D 0, that is to say �p! 0, and recall that �p! � 2R.
If � < 0, recalling that by (2.4), for any k and any � < 0, one has Ek.�/ � j�j2, we
deduce that

j�pj
2=3Emp

� �p

j�pj4=3

�
�

�2p

j�pj2
p!1
����! C1;

j�pj
2=3Enp

� �p

j�pj4=3

�
�

�2p

j�pj2
p!1
����! C1;

which contradicts (6.2). In the case � D 0, we thus necessarily have � � 0 and we
distinguish the two cases � D 0 and � > 0.

(i) Firstly, if � D 0, then according to (6.2),

.Emp .�p; �p/; Emp .�p; �p/ �Enp .�p; �p/; �p; �p/
p!1
����! . Px; Px � Py; 0; 0/ 2 MG0;0:

(ii) Secondly, if � > 0, then �p > 0, for p large, and according to the scaling
relation (B.3) and (6.2),

Emp .�p; �p/ D �
1=2
p ��1=2p Emp .�p/

p!1
����! Px;
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with �p D
�p

j�p j4=3
! C1. As a consequence, ��1=2p Emp .�p/ ! ��1=2 Px. Setting

hp D�
�3=2
p ! 0 and performing the change of scales (2.7), it follows thatEmp .hp/D

��2p Emp .�p/ is an eigenvalue of the semiclassical Schrödinger operator in (2.8). Since

h�1p Emp .hp/ D �
�1=2
p Emp .�p/

p!1
����! ��1=2 Px; (6.3)

there exists ˇ > 0 such that h�1p Emp .hp/ � ˇ for all p 2 N. Lemma 2.8 implies first
the existence ofNˇ > 0 such thatmp �Nˇ for all p 2N, and second that there exists
m 2 N with m � Nˇ such that

h�1p Emp .hp/!
p
2.2mC 1/; as h! 0C: (6.4)

Combining (6.4) and (6.3) yields Px D
p
2�.2mC 1/.

The same method applies to the sequenceEnp .�p;�p/ yielding existence of n 2N

such that Py D
p
2�.2nC 1/, and we finally obtain

.Emp .�p; �p/; Emp .�p; �p/ �Enp .�p; �p/; �p; �p/

p!1
����! .

p
2�.2mC 1/; 2.m � n/

p
2�; �; 0/ 2 MG0;1:

This concludes the proof of S � MG [ MG0;0 [ MG0;1.
We now prove the converse statement, i.e., S � MG [ MG0;0 [ MG0;1. If .n;m; �;�/ 2

MG, that is to say with � ¤ 0, then the constant sequence .n; m; �; �/ converges to
.n;m; �; �/ in MG.

If . Px; Py; 0; 0/ 2 MG0;0, then we claim that there exists a Cauchy sequence .np; mp;
�p; �p/ 2 MG such that

�p ! 0; �p ! 0; Emp .�p; �p/! Px; Enp .�p; �p/! Py: (6.5)

Indeed, if Px D 0 and Py D 0, then, choose �p D 0, mp D np D 1 and any sequence
�p ! 0. We then have

Emp .�p; �p/ D j�pj
2=3E1.0/! 0; Enp .�p; �p/ D j�pj

2=3E1.0/! 0:

Otherwise, either Px ¤ 0 or Py ¤ 0. Assume for instance Px ¤ 0, and recall that by virtue
of Lemma 2.2 one has Ek.0/ � . 2�Vol1

k/4=3 as k ! C1. Then, applying Lemma 6.2
below to the sequence uk D Ek.0/, we infer that there exist sequences .mp/p2N ;

.np/p2N 2 NN such that Enp .0/
Emp .0/

!
Py
Px
. Setting then �p D 0 and �p D . Px

Emp .0/
/3=2, we

have

Emp .�p; �p/ D j�pj
2=3Emp .0/ D Px;

Enp .�p; �p/ D j�pj
2=3Enp .0/ D j�pj

2=3Emp .0/
Enp .0/
Emp .0/

p!1
����! Px

Py

Px
D Py;
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which proves the existence of a Cauchy sequence satisfying (6.5), and thus MG0;0 � S .
Finally, let .

p
2�.2mC 1/; 2.m � n/

p
2�; �; 0/ 2 MG0;1, that is to say � > 0 and

m; n 2 N. First, choosing ˇ > 2
p
2.2max¹m; nº C 1/, Lemma 2.8 implies that

h�1E2m.h/!
p
2.2mC 1/; h�1E2n.h/!

p
2.2nC 1/; as h! 0:

Second, we fix any sequence �p ! 0 and notice that

�p
def
D

�

j�pj4=3
!C1:

As already noticed in (6.3), we have with hp
def
D �

�3=2
p ! 0

Em.�; �p/ D
p
���1=2p Em.�p/ D

p
�h�1p Em.hp/

p!1
����!

p
2�.2mC 1/;

and similarly En.�; �p/ !
p
2�.2n C 1/. This proves the existence of a Cauchy

sequence satisfying

�p ! 0; �p ! �;

Emp .�p; �p/!
p
2�.2mC 1/; Enp .�p; �p/!

p
2�.2nC 1/;

and thus MG0;1 � S . This concludes the proof of the proposition.

Lemma 6.2. Assume that .un/n2N in .0;1/N is such that un!C1 and unC1
un
! 1,

as n!1. Then, the set ¹um
un
; .n;m/ 2 N2º is dense in RC.

Proof. Our purpose is to prove that for all `� 0 and all " > 0, there exists .n;m/ 2N2

such that jum
un
� `j � ". We shall argue according to the value of `.

(i) The result is true when `D 0 (respectively `D 1) since by hypothesis u0
un

tends
to 0 (respectively unC1

un
tends to 1), as n goes to infinity.

(ii) Assume now that ` > 1. Since the sequence .un/n2N is such that unC1
un
! 1,

there exists n0 2 N such that for all n � n0, one has junC1
un
� 1j � "

`
: Then, using that

un !C1, one can define

m0 D min
m�n0
¹um > `un0º

which clearly satisfies
um0�1

un0
� `. We deduce that

` <
um0
un0

<
�
1C

"

`

�um0�1
un0

<
�
1C

"

`

�
` D `C ";

that is to say jum0
un0
� `j � ", which completes the proof of the claim in that case.

(iii) The case when ` < 1 can be dealt by inverting m and n in the proof of the
case ` > 1.
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Invoking (4.25) together with (6.1), we readily gather that, as in the Euclidean
case, the regularity of a function implies the decay of its Fourier transform in . MG; Md/.
In the next statement we have used the notation

kukN;�.G/
def
D sup

x2G

.1C dG.x; 0//
N
j.Id��NG /u.x/j

for the semi-norms on �.G/.

Proposition 6.3. Denoting by M0 the point in MG0 corresponding to . Px D 0; Py D 0;

� D 0; � D 0/, for any k in N, an integer Nk and a constant Ck exist such that for
all u 2 �.G/

.1C Md. Mx; M0//kjF .u/. Mx/j � CkkukNk ;�.G/:

Proof. Taking advantage of (4.25), we get that

Ekm.�; �/F .u/. Mx/ D F ..��G/
ku/. Mx/:

Hence, invoking (4.20), we infer that

Ekm.�; �/jF .u/. Mx/j � k.��G/
kukL1.G/ � CkkukNk ;�.G/:

Similarly, one has

Ekn .�; �/F .u/. Mx/ D F ..�z�G/
ku/. Mx/;

which implies that
Ekn .�; �/jF .u/. Mx/j � CkkukNk ;�.G/:

Finally, using that

�F .u/. Mx/ D F
��
X4X2 �

1

2
X23

�
u
�
. Mx/ and i�F .u/. Mx/ D �F .X4u/. Mx/;

we end up with the result.

A. Irreducible representations

In this section we briefly summarize the Kirillov theory which permits computing
explicitly the irreducible unitary representations for nilpotent groups and in particular
to recover those of the Engel group described in Section 4.1. For a comprehensive
description we refer the reader to [23, 52]. See also [43, Section 2] for another deriv-
ation.
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A.1. Induced representations

LetG be a nilpotent Lie group andH be a subgroup. Given a representation XWH !

U.V / of H onto the space U.V / of unitary operators on a vector space V one can
define an induced representation RWG! U.W / on a Hilbert spaceW which we now
define. Consider functions f WG! V such that X.h/f D f ıLh, where Lh denotes
the left translation, or

f .hg/ D X.h/f .g/; h 2 H; g 2 G: (A.1)

Notice that for such a function, since X.h/ is unitary, we have that kf .hg/k is inde-
pendent of h and hence the norm of kf .Hg/k is well defined, where Hg denotes the
left coset of g in HnG. We also require thatZ

HnG

kf .Hg/k2 d� <1; (A.2)

where d � is an invariant measure on HnG. This means that the function f is in
L2.HnG; d�/. Then we set

W
def
D ¹f WG ! V j f satisfies (A.1)–(A.2)º:

Finally, one defines RWG ! U.W / as follows

R.g/f
def
D f ıRg ;

i.e.,
.R.g/f /.g0/ D f .g0g/;

where the Rg is the right translation. One can check that R is unitary and strongly
continuous.

Remark A.1. In order to compute explicitly the induced representation one can use
the following observation. Consider the natural projection � WG!HnG of the group
onto its quotient. Given any section3 sWHnG ! G we can consider its image K def

D

s.HnG/ and write elements of G as products H �K. If g0g D hk, where h 2 H and
k 2 K (both depending on g0g), we can write

.R.g/f /.g0/ D f .g0g/ D f .hk/ D X.h/f .k/:

3recall that a section is a map sWHnG ! G such that � ı s D idHnG .
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In what follows we apply this construction when X is a character of the group. Thus,
in the induced representation, X represents the exponential part while the component
f .k/ is a “shift.” The crucial step in the computations will be to solve the equation

g0g D h.g0g/k.g0g/: (A.3)

Since f satisfies (A.1), it is enough to solve (A.3) for g0 2 K. (In a compact form,
one has to solve K �G D H �K.)

A.2. Coadjoint orbits and Poisson structure

Given a Lie group G and its Lie algebra g one can consider the so-called coadjoint
action for g 2 G

Ad�g Wg
�
! g�; hAd�g �; vi

def
D h�; .Adg�1/�vi;

where Adg is the usual adjoint map. Notice that Ad� can be seen as an action of G
on g�. Given � 2 g� the coadjoint orbit of � is by definition the set

O�
def
D ¹Ad�g � j g 2 Gº:

The dual of the Lie algebra g� has the natural structure of Poisson manifold with the
bracket

¹a; bº.�/
def
D h�; Œda; db�i;

where a; bW g� ! R are smooth functions and da; db are their differentials thought
as elements of .g�/� ' g (hence the Lie bracket Œda; db� is a well-defined element
of g). Given a smooth function aW g� ! R we can define its Poisson vector field by
setting for every smooth bWg� ! R

Ea.b/
def
D ¹a; bº:

The computation of the coadjoint orbits can be done in a coordinate independent
way using the Poisson structure. The set of all Poisson vectors at a point defines a
distribution

D�
def
D ¹Ea.�/ j a 2 C1.g�/º;

which does not have in general constant rank (notice indeed that we always have
D0 D ¹0º). We can define also the Poisson orbit of � 2 g�, in the sense of dynamical
systems, as follows:

OP
�

def
D ¹et1 Ea1 ı � � � ı et` Ea`.�/ j ` 2 N; ti 2 R; ai 2 C

1.g�/º:

Notice that both OP
� and O� are subsets of g� containing �.

Proposition A.2 ([52]). For every � 2 g� we have the equality OP
� D O� . Each orbit

is an even-dimensional symplectic manifold.
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A.3. Computation of coadjoint orbits

To compute explicitly coadjoint orbits on a nilpotent Lie group G, one can use the
following method (cf. for instance [2, Chapter 18]). Consider a basis of the Lie algebra
X1; : : : ; Xn such that

ŒXi ; Xj � D

nX
kD1

ckijXk;

Thanks to the fact that the vector fields are left-invariant, the functions ckij are constant.
Define the corresponding coordinates on the fibers of T �G given by hi .p; x/ D p �
Xi .x/. Notice that hi are functions which are linear on fibers. These functions, due to
left-invariance, can be thought as smooth functions on g� and satisfy the relations

¹hi ; hj º D

nX
kD1

ckijhk :

We recall that a Casimir is a smooth function f 2 C1.g�/ such that

¹a; f º D 0; for all a 2 C1.g�/:

If we consider an arbitrary function f 2 C1.g�/ as a function of the coordinates just
introduced f D f .h1; : : : ; hn/, then f is a Casimir if and only if ¹f; hj º D 0 for all
j D 1; : : : ; n, which means

nX
iD1

@f

@hi
ckij D 0; j; k D 1; : : : ; n:

With similar computations, the Poisson vector field associated to a function f is given
by

Ef D

nX
i;j;kD1

@f

@hi
ckijhk

@

@hj
: (A.4)

We stress that the Poisson vector field associated to a Casimir is the zero vector field.
Moreover, for coordinate functions h1; : : : ; hn we have

Ehi D

nX
j;kD1

ckijhk
@

@hj
:

Clearly, to compute Poisson orbits OP
� , it is sufficient to consider the flow of the

vector fields from the family Eh1; : : : ; Ehn.
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A.4. Kirillov theory

The Kirillov theory gives a way to describe all irreducible unitary representations of
G in terms of coadjoint orbits of the group. The Kirillov theorem can be described as
the following three-steps algorithm.

(1) Fix an element � 2 g� and any maximal (with respect to inclusion) Lie subal-
gebra h of g in such a way that �.Œh; h�/ D 0.

(2) Consider the one-dimensional representation X�;hWH ! S1 D U.C/ defined
by

X�;h.e
X / D eih�;Xi; X 2 h;

where, as usual, h�;Xi denotes the duality product g� and g.

(3) Compute the induced representation R�;hWG ! U.W /.

Notice that, due to the previous discussion, the space W of functions f WG ! V

satisfying (A.1) and are inL2.HnG/ can be identified withL2.Rd /with d D dimg�

dim h.
The Kirillov theorem states that the map which assigns to � 2 g�=G to R�;h in MG

is a bijection. This is formalized in the following statement.

Theorem A.3 ([52]). We have the following properties:

(a) every irreducible unitary representation of a nilpotent Lie group G is of the
form R�;h for some � 2 g�=G and h maximal subalgebra of g such that
�.Œh; h�/ D 0;

(b) two representations R�;h and R�0;h0 are equivalent if and only if � and �0

belong to the same coadjoint orbit.

Here two irreducible unitary representations

R1WG ! U.W1/ and R2WG ! U.W2/

are equivalent if there exists an isometry T WW1 ! W2 between the corresponding
Hilbert spaces such that T ıR1.g/ ı T �1 D R2.g/ for every g 2 G.

Notation. In what follows we write R�
def
D R�;h by removing the Lie algebra from

the parameters to simplify the notation.

A.5. The irreducible representations on the Engel group

Recall that the Engel group is a nilpotent Lie group of dimension 4 with a basis of the
Lie algebra satisfying

ŒX1; X2� D X3; ŒX1; X3� D X4:
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Following the discussion in Section A.3, to find a basis of the Poisson vector fields it
is enough to compute Ehi for every i D 1; 2; : : : ; 5. Using formula (A.4), we have that

Eh1 D h3@h2 C h4@h3 ;
Eh2 D �h3@h1 ;

Eh3 D �h4@h1 ;
Eh4 D 0: (A.5)

Notice that h4 is a Casimir since the corresponding vector field X4 is in the center of
the Lie algebra. The Lie algebra admits a second independent Casimir.

Lemma A.4. The function f D 1
2
h23 � h2h4 is a Casimir. In particular, all coadjoint

orbits are contained in the level sets L�;� defined by´
h4 D �;

1
2
h23 � �h2 D �:

(A.6)

Proof. This is a consequence of an explicit calculation. Indeed, we have ¹f; hj º D 0
for j D 2; 3; 4; since ¹hi ; hj º.p; x/ D p � ŒXi ; Xj �.x/ which vanishes identically if i
and j are both different from 1. Moreover,

¹f; h1º D ¹h3; h1ºh3 � ¹h2; h1ºh4 D �h4h3 C h3h4 D 0:

This proves the lemma.

Coadjoint orbits are given by the flow of the Poisson vector fields restricted to the
level sets of the Casimirs. One gets the following description.

Proposition A.5. In coordinates .h1; h2; h3; h4/ on g�, the coadjoint orbits are
described as follows:

(i) if � D � D 0, then every point .h1; h2; 0; 0/ is an orbit,

(ii) if � D 0 and � ¤ 0, then orbits are planes ¹h3 D cº for c 2 R,

(iii) if �¤ 0, then the orbit coincides with the set defined by the equations (A.6).

Proof. Case (i) is easy. By assumption, �D � D 0, then h3D h4D 0 by (A.6). Hence,
coadjoint orbits are contained in the set L0;0 D ¹.h1; h2; 0; 0/ j h1; h2 2 Rº but since
all Poisson vector fields vanish on this 2-dimensional set thanks to (A.5), all points in
L0;0 are orbits.

Case (ii) is similar. By assumption, �D 0, �¤ 0, then h4D 0 and h3¤ 0 by (A.6).
Hence, coadjoint orbits are contained in the set L�;0 D ¹.h1; h2; h3; 0/ j h1; h2 2 R;

h3 ¤ 0º. When restricted to L�;0 the only non-zero Poisson vector fields are

Eh1 D h3@h2 ;
Eh2 D �h3@h1 ;

so that if h3 ¤ 0 orbits are planes ¹h3 D cº for c 2 R.
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Case (iii). Here � ¤ 0 hence each orbit is contained in the level set L�;� defined
by equations h4 D � and 1

2
h23 � �h2 D � as in (A.6). On the other hand, the non-zero

vector fields (A.5) restricted to the level set have the form

Eh1 D �@h2 C �@h3 ;
Eh2 D ��@h1 ;

Eh3 D ��@h1 ;

Since � ¤ 0, it is not difficult to check that the orbit in this case coincides with the
level set itself.

Let us now compute all irreducible representations corresponding to the case (iii),
i.e., � ¤ 0. In this case, the orbit is the set L�;� described by (A.6) and on this set we
fix the element � D .0;��=�; 0; �/. Then we choose the subalgebra

h D span¹X2; X3; X4º; Œh; h� D 0;

which clearly satisfies �.Œh; h�/ D 0 and is maximal with respect to inclusion since �
is not zero. The corresponding 1-dim representation acts on H D exp.h/ as follows:

X�;�.e
x2X2Cx3X3Cx4X4/ D ei.��x2=�C�x4/:

Let us write points on G as

g D ex2X2Cx3X3Cx4X4ex1X1 : (A.7)

Following the discussion in Remark A.1, we consider the complementKD exp.RX1/
and we have to solve the equation K � G D H � K. Thanks to Lemma A.7 below
(applied in the form eAeB D eC.A;B/eA), we have the identity

e�X1ex2X2Cx3X3Cx4X4ex1X1 D ex2X2C.x3C�x2/X3C.x4C�x3C
�2

2 x2/X4e.�Cx1/X1 :

We deduce that

R�;�f .e
�X1/ D X�;�.e

x2X2C.x3C�x2/X3C.x4C�x3C
�2

2 x2/X4/f .e.�Cx1/X1/:

Introducing the notation Qf .�/ def
D f .e�X1/, we can summarize the above result as fol-

lows.

Proposition A.6. All unitary irreducible representations on the Engel group corres-
ponding to coadjoint orbits of case (iii) are parametrized by � ¤ 0 and � 2 R, acting
on L2.R/ as follows:

R�;�
Qf .�/ D exp

h
i
�
�
�

�
x2 C �

�
x4 C �x3 C

�2

2
x2

��i
Qf .� C x1/; (A.8)

where .x1; x2; x3; x4/ are coordinates on G defined by (A.7).
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We state here without proof the following algebraic lemma.

Lemma A.7. Assume that the Lie algebra generated by A; B is nilpotent. Then we
have that eAeBe�A D eC.A;B/ with

C.A;B/ D eAd.A/B D

s�1X
kD0

Adk.A/
kŠ

B;

where s is the nilpotency step of the structure. In particular, in the case of the Engel
group we have

C.A;B/ D B C ŒA; B�C
1

2
ŒA; ŒA;B��:

Remark A.8. Formula (A.8) gives the representations of the element of the group
G parametrized by coordinates .x1; x2; x3; x4/, where .0; 0; 0; 0/ is the origin of the
group (which corresponds indeed to the identical representation).

Hence, differentiating (A.8) with respect to the variables xi at x D 0, we get also
the representations of the element of the Lie algebra as follows:

X1 Qf D
d

d �
Qf; X2 Qf D i

�
�
�

�
C �

�2

2

�
Qf; X3 Qf D i�� Qf; X4 Qf D i� Qf;

which indeed satisfy ŒX1; X2� D X3 and ŒX1; X3� D X4 as differential operators.
Notice that the Laplacian in this form is written as

X21 CX
2
2 D

d2

d �2
�

��
2
�2 �

�

�

�2
:

Remark A.9. Notice that in the explicit computations of Section 4 only the repres-
entations corresponding to the case (iii) of Proposition A.5 are involved, since in the
Fourier transform the representations are integrated with respect to the Plancherel
measure, which in these coordinates is written as dP D d� d �. Computing the rep-
resentations corresponding to the case (i) and (ii) reduces to the representations of the
Euclidean plane and the Heisenberg group, respectively. See [27, 52] for more details
on the Plancherel measure and [51] for an explicit formula on nilpotent Lie groups.

B. Spectral theory

B.1. Spectral analysis of the quartic oscillator P�;�

We first collect general properties of the operator P�;� defined in (4.13) for .�; �/ 2
R �R�, and endowed with the domain

D.P�;�/ D
°
u 2 L2.R/;

d2

d �2
uC

��
2
�2 �

�

�

�2
u 2 L2.R/

±
:
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Proposition B.1. For any .�; �/ 2 R � R�, the following statements hold true.
The operator .P�;�; D.P�;�// is selfadjoint on L2.R/, with compact resolvents. Its
spectrum consists of countably many real eigenvalues, accumulating only at C1.
Moreover,

(1) all eigenvalues are simple and positive, and we may thus write

Sp.P�;�/ D ¹Em.�; �/;m 2 Nº

with

0 < E0.�; �/ < E1.�; �/ < � � � < Em.�; �/ < EmC1.�; �/!C1;

dim ker.P�;� �Em.�; �// D 1;

(2) all eigenfunctions are real-analytic and belong to �.R/;

(3) for all m 2 N, functions in ker.P�;� �Em.�; �// have the parity of m;

(4) for all m 2 N, there is a unique function  �;�m in ker.P�;� � Em.�; �// such
that

•  
�;�
m is real-valued;

• k 
�;�
m kL2.R/ D 1;

•  
�;�
m .0/ > 0 if m is even;

• d
d � 

�;�
m .0/ > 0 if m is odd;

(5) the family . �;�m /m2N forms a Hilbert basis of L2.R/.

This proposition serves as a definition for the eigenvalue Em.�; �/ and the associ-
ated eigenfunction  �;�m for m 2 N. Note that for  �;�m , we made a particular choice.

Proof. If  2 D.P�;�/, the inner product of P�;� with  implies in particular that
 2 H 1.R/ and .�

2
�2 � �

�
/ 2 L2.R/, whence the compactness of the embedding

D.P�;�/ ,! L2.R/ and that of the resolvent of P�;�. The structure of the spectrum
is a direct consequence of the first stated facts. Then we notice that the coefficients
of P�;� are real and one may thus choose real-valued eigenfunctions. The fact that
the eigenvalues are simple follows from the classical Sturm–Liouville argument, see,
e.g., [67]. The latter also yields that any real-valued eigenfunction  associated toEm
has exactly m zeroes.

The property .�1; 0� \ Sp.P�;�/ D ; follows from the fact that P�;� D E 
for  2 D.P�;�/ n ¹0º implies

0 � k 0k2
L2.R/ C

��
2
�2 �

�

�

�
 
2
L2.R/

D Ek kL2.R/:
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Hence, E � 0. If E D 0, then the left-hand side yields  0 D 0 in D 0.R/, thus  D 0
(since  2 L2.R/), which is a contradiction.

In (2), real-analyticity of the eigenfunctions follows from the analytic Cauchy–
Lipschitz theorem. That eigenfunctions belong to �.R/ follows from Agmon estim-
ates, see [26,38,45]. (3) is a consequence of the fact that .�

2
�2 � �

�
/2 is even. Hence, if

 m is an eigenfunction associated to Em, then x 7!  m.�x/ is also an eigenfunction.
Simplicity of the spectrum implies that x 7!  m.�x/ is proportional to  m. Since we
choose  m real-valued andL2-normalized, we necessarily have m.�x/D˙ m.x/.
That  m has the parity of m follows from the fact that  m has m zeroes.

Concerning (4), since dim ker.P�;� � Em.�; �// D 1, there are only two normal-
ized eigenvalues, say  and � . In case m is even (resp. odd), these eigenvalues are
even (resp. odd) from (3) and hence one has  .0/ ¤ 0 (resp.  0.0/ ¤ 0), and we
choose among˙ the one having positive value (resp. positive derivative) at zero.

Finally, the last item is a consequence of the spectral theorem for compact selfad-
joint operators.

We now explain how the study of the two parameter family of operators P�;�
reduces to that of P�. We start with the following scaling argument, referring to the
scaling operator T˛ defined in (2.2).

Lemma B.2 (Scaling). For all ˛ > 0 and .�; �/ 2 R�R�, the operators ˛2P�;� and
P˛4�;˛3� are unitarily equivalent: we have

P˛4�;˛3� D ˛
2T˛P�;�T˛�1 :

In particular, we have for all ˛ > 0 and .�; �/ 2 R �R�, and all m 2 N,

Em.˛
4�; ˛3�/ D ˛2Em.�; �/; (B.1)

 ˛
4�;˛3�

m .�/ D T˛ 
�;�
m .�/: (B.2)

This scaling property will later allow us to get rid of one of the two parameters.
Note that the last property can also be written, if needed: for all a > 0, we have

a1=4 
a�2�;a�3=2�
k

.a1=2�/ D  
�;�
k
.�/:

Proof of Lemma B.2. The first statement simply follows from the following compu-
tation:

T˛P�;�T˛�1 D �
1

˛2
d2

d �2
C

�
�˛2

�2

2
�
�

�

�2
D

1

˛2

h
�

d2

d �2
C

�
�˛3

�2

2
� ˛

�

�

�2i
D

1

˛2

h
�

d2

d �2
C

�
.�˛3/

�2

2
�
.�˛4/

.�˛3/

�2i
D

1

˛2
P˛4�;˛3�:
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Concerning the second statement, we deduce from the first one that

P˛4�;˛3�T˛ 
�;�
m D ˛2T˛P�;�T˛�1T˛ 

�;�
m D ˛2T˛P�;� 

�;�
m D ˛2Em.�; �/T˛ 

�;�
m :

Hence, T˛ 
�;�
m is an eigenfunction associated to the eigenvalue ˛2Em.�; �/. From

Proposition B.1 (1), we deduce that ˛2Em.�; �/ is the m-th eigenvalue of P˛4�;˛3�,
whence (B.1). From the uniqueness of the eigenvalue in Proposition B.1 (1) and the
fact that  7! T˛ preserves the sign of  .0/ and  0.0/, we deduce (B.2).

We also notice that P�;� D P�;�� D P�;j�j. Now, we choose a particular value of
˛ with so that to reduce to a one-parameter problem, namely ˛ D j�j�1=3 > 0.

Definition B.3 (Reference operator). For � 2 R, and m 2 N, we set

P�
def
D P�;1 D �

d2

d �2
C

��2
2
� �

�2
; Em.�/

def
D Em.�; 1/; '�m

def
D  �;1m :

Note that Proposition B.1 applies to P�; Em.�/; '
�
m and we use it implicitly. In

particular, Em.�/ is the m-th eigenvalue of P� and '�m is the (with the appropriate
choice) associated eigenfunction.

According to Lemma B.2 taken for ˛ D j�j�1=3 > 0, we have the following state-
ment.

Corollary B.4 (Scaling and reference operator). For all .�; �/ 2 R � R�, and all
m 2 N, we have

P�;� D j�j
2=3Tj�j1=3P�Tj�j�1=3 ; � D

�

j�j4=3
2 R;

Em.�; �/ D j�j
2=3Em.�/; � D

�

j�j4=3
2 R; (B.3)

 �;�m D Tj�j1=3'
�
m; � D

�

j�j4=3
2 R:

As a consequence, we are left with the study of the family of operators P�, depend-
ing on a single parameter � 2 R.

B.2. Spectral theory for semiclassical Schrödinger operators

In this section, we collect several results of spectral theory, that are used in the main
part of the paper to study the operator P� (or equivalently P�;�).

We refer, e.g., to [79, Section 6.4] for the following very classical Weyl law.

Theorem B.5 (Weyl’s law in dimension 1). Assume that V 2 C1.RIR/ is real val-
ued and satisfies j@˛V.�/j � h�ik for all ˛ and all � 2 R, and V.�/ � ch�ik for
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j� j � R > 0. Then, for all h > 0, the operator

P.h/ D �h2
d2

d �2
C V.�/;

D.P.h// D
°
u 2 L2.R/;�h2

d2

d �2
uC V u 2 L2.R/

±
;

(B.4)

acting onL2.R/ is selfadjoint, has compact resolvent, has discrete real spectrum, and
an orthonormal basis of eigenfunctions. Moreover, for any a < b,

].Sp.P.h// \ Œa; b�/

D .2�h/�1.Vol¹.�; �/ 2 R2; a � �2 C V.�/ � bº C o.1//; (B.5)

as h! 0C.

Note that the phase space volume (taken according to the symplectic volume form
d � d �) is given by

Vol¹.�; �/ 2 R2; a � �2 C V.�/ � bº D

Z
¹a��2CV.�/�bº

d � d �:

In the 1-dimensional context, it can often be computed more simply, see, for instance,
Remark B.8 below.

We shall also make use of the following lemma, which is a simple consequence
of the minimax and maximin formulae (see [40, Chapter 11 and discussion top of
p. 148]).

Lemma B.6. Let H be a Hilbert space. Assume that .A;D.A// and .B;D.B// are
two selfadjoint operators, with compact resolvents, that are bounded from below
and such that D.B/ � D.A/. Denote for j 2 N by Ej .A/ (resp. Ej .B/) the j -th
eigenvalue of the operator A (resp. B), defined by the minimax formula, so that in
particular E0.A/ � E1.A/ � � � � � Ej .A/ � EjC1.A/ � � � � ! C1.

Assume further that .Au; u/H � .Bu; u/H for all u in a dense set of D.B/. Then
we have

Ej .A/ � Ej .B/; for all j 2 N:

We now consider the operator

P.h/ D �h2
d2

d �2
C

��2
2
� ".h/

�2
;

D.P.h// D
°
u 2 L2.R/;�h2

d2

d �2
uC

��2
2
� ".h/

�2
u 2 L2.R/

±
:
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Note that

P.h/ D �h2
d2

d �2
C
�4

4
� ".h/�2 C ".h/2: (B.6)

Since �".h/�2 C ".h/2 is a relatively compact perturbation of �h2 d2

d �2
C

�4

4
, we

notice that

D.P.h// D
°
u 2 L2.R/;�h2

d2

d �2
uC

�4

4
u 2 L2.R/

±
does not depend on ".h/.

Proposition B.7. For any L > 0, there are two continuous nondecreasing functions
�˙WRC! RC such that �˙."0/ > 0 for "0 > 0 and �˙.0/D 0 satisfying the follow-
ing statement. For all "0 > 0 and all j".h/j � "0, we have

VolL���."0/C o.1/ � .2�h/].Sp.P.h// \ Œ0; L�/ � VolLC�C."0/C o.1/

as h! 0C, where

VolL
def
D Vol

°
.�; �/ 2 R �R; �2 C

�4

4
� L

±
D

Z
¹�2C �

4

4 �Lº

d � d �:

In particular, if ".h/! 0 as h! 0C, we have

.2�h/].Sp.P.h// \ Œ0; L�/ D VolLCo.1/ as h! 0C:

Remark B.8. Notice that we can take advantage of the homogeneity of the symbol
�2 C �4

4
to prove that VolL D L3=4 Vol1. Indeed, we have explicitly

VolL D

xC.L/Z
x�.L/

r
L �

x4

4
d x; where

x˙.L/
4

4
D L; ˙x˙.L/ > 0

D

.4L/1=4Z
�.4L/1=4

r
L �

x4

4
d x; and thus, setting y def

D x=L1=4;

D

41=4Z
�41=4

r
L � L

y4

4
L1=4dy D L3=4

41=4Z
�41=4

r
1 �

y4

4
dy D L3=4 Vol1 :

The proof of the proposition relies on a comparison argument using Theorem B.5
and Lemma B.6.
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Proof of Proposition B.7. For j".h/j � "0, we define

P�.h/ D �h2
d2

d �2
C
�4

4
� "0�

2;

PC.h/ D �h2
d2

d �2
C
�4

4
C "0�

2
C "20 D �h

2 d2

d �2
C

��2
2
C "0

�2
;

with respective domains defined as in (B.4). According to the same remarks as above,
we have D.P˙.h// D D.P.h//. According to (B.6), we further notice that

.P�.h/u; u/L2.R/ � .P.h/u; u/L2.R/ � .P
C.h/u; u/L2.R/ for all u 2 �.R/;

where �.R/ is dense in D.P.h//.
For j 2 N, we now denote by E˙j (resp. Ej ) the j -th eigenvalue of the oper-

ator P˙.h/ (resp. P.h/), defined by the minimax formula. Lemma B.6 yields for all
j 2 N and h > 0

E�j � Ej � E
C

j :

As a consequence, for any L; h > 0,

]¹j 2N;ECj �Lº � ].Sp.P.h//\ Œ0;L�/D ]¹j 2N;Ej �Lº � ]¹j 2N;E�j �Lº:

Theorem B.5 then implies that for any "0; L > 0 we have in the limit h! 0C;Z
¹�2C. �

2

2 C"0/
2�Lº

d � d � C o.1/ � .2�h/].Sp.P.h// \ Œ0; L�/ �
Z

¹�2C �
4

4 �"0�
2�Lº

d � d � C o.1/:

The sought result follows by taking �."0/ D max¹�C."0/; ��."0/º with

�C."0/
def
D

Z
¹�2C �

4

4 �"0�
2�Lº

d � d � �

Z
¹�2C �

4

4 �Lº

d � d �;

��."0/
def
D

Z
¹�2C �

4

4 �Lº

d � d � �

Z
¹�2C. �

2

2 C"0/
2�Lº

d � d �:

and noticing that � has the desired properties.
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