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Spectral minimal partitions of unbounded metric graphs

Matthias Hofmann, James B. Kennedy, and Andrea Serio

Abstract. We investigate the existence or non-existence of spectral minimal partitions of
unbounded metric graphs, where the operator applied to each of the partition elements is a
Schrödinger operator of the form ��C V with suitable (electric) potential V , which is taken
as a fixed, underlying function on the whole graph.

We show that there is a strong link between spectral minimal partitions and infimal partition
energies on the one hand, and the infimum † of the essential spectrum of the corresponding
Schrödinger operator on the whole graph on the other. Namely, we show that for any k 2 N,
the infimal energy among all admissible k-partitions is bounded from above by †, and if it
is strictly below †, then a spectral minimal k-partition exists. We illustrate our results with
several examples of existence and non-existence of minimal partitions of unbounded and infinite
graphs, with and without potentials.

The nature of the proofs, a key ingredient of which is a version of the characterization of
the infimum of the essential spectrum known as Persson’s theorem for quantum graphs, strongly
suggests that corresponding results should hold for Schrödinger operator-based partitions of
unbounded domains in Euclidean space.

1. Introduction

Our goal is to investigate the existence and non-existence of spectral minimal parti-
tions (SMPs) of infinite graphs, and the behavior of the corresponding infimal spectral
energies.

For a given k � 1, the problem of finding a spectral minimal k-partition typically
involves minimizing, over all k-partitions of a given object such as a bounded domain,
manifold or compact graph, a functional based on a Laplacian-type eigenvalue of each
of the partition elements. They were introduced on domains around 20 years ago (see
the seminal paper [12]), and have been intensively studied in that setting ever since,
often as a counterpart to the nodal partitions of the domain induced by its Laplacian
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eigenfunctions; the sequence of energies of the optimal partitions (i.e., the value of
the corresponding functional on them) may then be compared with the sequence of
eigenvalues of the domain. We refer to the survey [10] for more details and references.

On metric graphs the study of SMPs is more recent; they were probably first intro-
duced in [4] in order to give insight into nodal partitions of Laplace eigenfunctions
of the whole graph. The related study of the nodal deficit (and nodal statistics) of
an eigenfunction, that is, the extent to which an eigenfunction of the kth eigenvalue
fails to have k nodal domains, has proved to be a rich and fruitful line of investigation
[2, 3, 5, 6]. It has also started to yield insights into domains; see in particular [7, 8].
A general existence theory of SMPs of compact graphs was laid out only very recently
in [21]; further properties of SMPs and the associated minimal energies in this setting
were subsequently studied in [18, 19].

The principal goal of the current work is to investigate the case of unbounded
metric graphs; to the best of our knowledge this is the first time that SMPs have been
studied in an unbounded setting. The usual self-adjoint realizations of the Laplacian
may have essential spectrum on the whole graph, and the same may be true of the
elements of a graph partition. Indeed, the presence or absence of essential spectrum,
as well as eigenvalues below it, can depend intricately on metric and topological fea-
tures of the graph [23, 30]. The first question thus becomes exactly how to define the
energy functionals; but the presence of essential spectrum also fundamentally alters
the nature of SMPs and their corresponding minimal energies, as we shall see shortly.

Partially for this reason, we will also enlarge the class of operators we consider
to include general Schrödinger operators of the form ��C V , where the potential V
is locally integrable. On the other hand, we will restrict ourselves to the model case
of Dirichlet conditions at the boundary between partition elements, as is usual in the
case of domains but less general than the theory developed for compact metric graphs,
together with standard (Neumann–Kirchhoff) conditions at all other vertices.

To formulate our results, we first need to introduce some notation and definitions;
for more details see Section 2. Throughout, G D .V ;E/will be a metric graph consist-
ing of a countable (possibly finite) vertex set V and a countable (possibly finite) edge
set E , each edge e being identified either with a compact interval Œ0; `e� or a half-line
Œ0;1/; for our graph constructions we will take the formalism of [25] and [21]. We
consider a fixed potential V 2 L1loc.G /, for simplicity assumed nonnegative, and take
the following standing assumptions.

Assumption 1.1. The metric graph G is connected and satisfies the finite ball con-
dition: every ball of finite radius in G intersects a finite number of edges of G . The
potential V WG ! R is in L1loc.G / with V � 0 almost everywhere.
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This includes as a special case all graphs whose edge lengths are uniformly
bounded away from zero, and in particular all finite graphs in the sense of [9, Defini-
tion 1.3.4]; such graphs were considered for instance in [16, 22, 23].

For any subgraph H � G , we define @H to be its topological boundary in the
metric space G (and not the set of its degree one vertices). By a k-partition
P D .G1; : : : ; Gk/ of G , we understand a collection of k 2 N connected subgraphs
G1;G2; : : : ; Gk , such that, for all i; j , Gi \ Gj � @Gi \ @Gj . The partition elements,
that is, the subgraphs Gi , which as in [21] we also call clusters, may be bounded or
unbounded, and we do not require that their union equal G .

Given a subgraph H � G , which may be equal to G , we define the spaces L2.H /

and C. xH / of square integrable and continuous functions in the usual way. Since V
will be fixed throughout, the Sobolev spaceH 1.H / � C. xH / will denote the space of
functions for which the norm

kf k2
H1.H/

WD kf 0k2
L2.H/

C k.V jH C 1/
1=2f k2

L2.H/

is finite, and H 1
0 .H / is the space of H 1.H /-functions vanishing at all points in @H .

For H connected, or at most a finite union of closed connected subgraphs of G , we
will consider the model Schrödinger operatorAH WD.AH /�L

2.H /!L2.H / given
by �� C V jH and satisfying Dirichlet conditions on @H and standard (continuity
and Kirchhoff) conditions at all vertices in the interior of H . Equivalently, this is the
operator on L2.H / associated with the form

aH .f; g/ D

Z
H

f 0 � Ng0 C Vf Ng d x; f; g 2 H 1
0 .H /:

(In practice we will write V in place of V jH .)
Treating the underlying potential V as fixed and the subgraph H as variable, we

denote by �.H / � C the spectrum of this operator, by �.H / the infimum of its spec-
trum, and by†.H / 2R[ ¹1º the infimum of its essential spectrum,†.H / � �.H /

(see Section 2.3).
Given k 2 N, we will always consider the 1-energy functional associated with

AH acting on k-partitions, ƒk WP 7! R; that is, if P D .G1; : : : ;Gk/, then we set

ƒk.P / WD max¹�.G1/; : : : ; �.Gk/º 2 Œ0;1/:

For k 2 N, the corresponding spectral minimization problem involves studying the
quantity

LD
k .G / D inf¹ƒk.P /WP is a k-partition of G º;

as was studied on compact graphs in [21], and as has been done on domains very
extensively over the last two decades [10].
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Our main results link this optimal energy LD
k
.G /, the existence of a minimizer,

and the infimum of the essential spectrum of the operator �� C V on the whole
graph G .

Theorem 1.2. For any k � 1, we have

LD
k .G / � †.G /:

Theorem 1.3. For any k � 1, if

LD
k .G / < †.G /;

then there exists a k-partition P D .G1; : : : ;Gk/ realizing LD
k
.G /. Moreover, for any

i D 1; : : : ; k, �.Gi / is an isolated eigenvalue with a corresponding ground state, i.e.,
positive eigenfunction, on Gi .

The next corollary follows immediately from the preceding two theorems.

Corollary 1.4. For any k � 1, there exists a k-partition realizing LD
k
.G / if and only

if there exists a k-partition P of G such that

ƒk.P / � †.G /:

Remark 1.5. Examples show that if LD
k
.G /D†.G /, then minimizing partitions may

or may not exist, and even if they do, then their clusters may or may not have ground
states (Section 5).

These principles strongly recall the minimax theorem for the eigenvalues of a self-
adjoint operator A on an unbounded domain � � Rd (see [31, Theorem 4.14]), i.e.,
if there exist k linearly independent test functions with energy below the infimum of
its essential spectrum †, then there must be k eigenvalues below †.

The basic principle behind Theorem 1.2 is a characterization of the infimum of the
essential spectrum†.G / of a graph (or any subgraph thereof) in terms of the infimum
of the spectrum of the exterior of expanding balls: if we fix any root point 0 2 G in
the graph, then

†.G / D lim
r!1

�.G n Br.0//; (1.1)

where Br.0/D ¹x 2 G WdistG .x; 0/� rº. This result is valid for a wide class of opera-
tors including Schrödinger operators with magnetic potential; its version in Euclidean
space is often called Persson’s theorem in the mathematical physics literature (see [15,
§14.4] or [27]). Our version, Theorem 2.6, is based on [17] (see also [1]). Together
with domain monotonicity results, it implies that for any � > †.G / we can find an
infinite sequence of nested annuli

ARn;RnC1
.0/ WD ¹x 2 G WRn � distG .x; 0/ � RnC1º; n 2 N;
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R1<R2<R3< � � � , such that �.ARn;RnC1
/��. Their existence immediately implies

Theorem 1.2, since for any � > †.G / and any k 2 N we can exhibit a k-partition
based on these annuli whose spectral energy is no larger than �.

The existence result of Theorem 1.3, on the other hand, requires (among other
things) a very careful diagonal argument, together with existence results for compact
graphs, to extract a convergent subsequence in a suitable sense from a minimizing
sequence of partitions. It is here that we will make heavy use of the metric graph
setting.

Nevertheless, since the characterization (1.1) is certainly valid for Schrö
dinger operators in the Euclidean setting, the main results should continue to hold
on domains.

Conjecture 1.6. Let � � Rd , d � 2, be a domain, possibly equal to Rd , and let
V W�! R be a sufficiently smooth potential, bounded from below. Denote the infi-
mum of the essential spectrum of the Schrödinger operator ��C V , with Dirichlet
conditions on @� if � ¤ Rd , by †.�/. Given a k-partition .�i /kiD1 of � into open,
connected and pairwise disjoint sets�i , denote by �.�i / the infimum of the spectrum
of ��C V on �i with Dirichlet boundary conditions, and set

LD
k .�/ D inf max

iD1;:::;k
�.�i /;

where the infimum is taken over all such k-partitions (see [10, Section 10.1]). Then

(1) LD
k
.�/ � †.�/ for all k � 1;

(2) if LD
k
.�/ < †.�/ for some k � 1, then there exists a k-partition realizing

LD
k
.�/;

(3) in particular, if there exists a k-partition whose spectral energy is less than or
equal to †.�/, then there exists a k-partition realizing LD

k
.�/.

This paper is organized as follows. In Section 2 we will discuss our assumptions
and notation around metric graphs in more detail, construct the operators of interest
via the associated sesquilinear forms, and discuss a number of basic spectral proper-
ties. Section 3 is devoted to the behavior of the spectral quantities �.H / and†.H / in
dependence on the subgraph H ; in particular, we will formulate auxiliary results on
continuity and monotonicity with respect to the subgraph. The proofs of Theorems 1.2
and 1.3 will then be given in Section 4.

In Section 5 we will conclude with a number of examples which illustrate what can
happen when LD

k
.G / D †.G /, as mentioned in Remark 1.5: both existence and non-

existence of a spectral minimal k-partition is possible (Example 5.1); it is possible
that LD

k
.G / D †.G / > 0 even if V D 0 (Example 5.2); and if a spectral minimal
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k-partition exists then the partition elements may or may not admit ground states
(Example 5.3).

A number of the proofs from Section 3 will be deferred to an appendix. There,
we study spectral convergence, for our type of Schrödinger operators, of a sequence
of (possibly unbounded) subgraphs Hn � G to a limit subgraph H . This includes
lower semicontinuity of �.ARn;RnC1

/with respect to the radiiRn andRnC1, although
the results we formulate are a bit more general. To the best of our knowledge such
convergence results are new in the setting of non-compact graphs, and may be of
some independent interest.

2. Infinite graphs and Schrödinger operators

2.1. On metric graphs

Throughout, we will assume G D .V ;E/ to be a fixed metric graph satisfying Assump-
tion 1.1 without further comment. Where necessary we will use the formalism of [25]
for metric graphs. We assume without loss of generality that every edge e 2 E may
be identified with a compact interval Œ0; `e�; this can always be arranged by insert-
ing degree two (“dummy”) vertices as necessary on a priori unbounded edges. As
always for Schrödinger-type operators, the resulting implicit choice of orientation of
the edges will be irrelevant for our purposes. We do not assume the set of edge lengths
¹`eW e 2 Eº to be bounded from above, or from below away from zero.

For any subset H of G , we denote by @H its topological boundary in G , which
without loss of generality we assume to consist purely of (possibly dummy) vertices
of G , and by xH its closure. Since G is a complete metric space, any closed subset
of G is also a complete metric space for the induced metric. We identify any closed
subset H of G having a finite number of connected components as a subgraph of G ;
in particular, for us subgraphs are closed. In this context, we denote by E.H / the
corresponding edge set of H and V.H / the corresponding vertex set of H .

We call a subgraph H of G compact if it is compact as a metric space for the
induced metric. For our definition of subgraph, this is equivalent to H intersecting a
finite number of edges of G . In particular, G is itself compact if and only if it has a
finite number of edges, each of finite length; cf. [9, Definition 1.3.4].

Definition 2.1. Fix x 2 G , and denote by distG .x;y/ the canonical Euclidean distance
in G between x; y 2 G .

(1) For r > 0, we denote by

Br.x/ WD ¹y 2 G W distG .x; y/ � rº

the closed ball of radius r centered at x.



Spectral minimal partitions of unbounded metric graphs 599

(2) For r2 � r1 > 0, we denote by

Ar1;r2.x/ WD acc¹y 2 G W r1 � distG .x; y/ � r2º

the closed annulus of inner radius r1 and outer radius r2, with any isolated
points removed.

Note that Br.x/ is necessarily always connected, but Ar1;r2.x/ in general will
not be.

When considering subgraphs H of G , we will always take dist D distG to be the
distance function on G restricted to H , and not the intrinsic distance function on H

as a graph.

2.2. Function spaces, sesquilinear forms and associated operators

Throughout, we fix a subgraph ; ¤H � G . This subgraph H may be equal to G . We
also fix a potential V WG ! R satisfying Assumption 1.1.

We define the function spaces Lp.H /, p 2 Œ1;1/, in the usual way, as the set of
all edgewise Lp-functions such that the p-series of all edgewise Lp-norms is finite:
f 2 Lp.H /, if

kf kp WD

� X
e2E.H/

Z
e

jf jej
p d x

�1=p
<1I

when p D 1 we require kf k1 WD supe2E.H/ kf jek1 to be finite. We say f 2
L
p
loc.H / is a locally finite Lp-function if f jBr .x/\H 2 L

p.Br.x/ \H / for all r > 0
and x 2H . The space of continuous functions C.H / is defined in the usual way, with
respect to the natural metric on H .

Define the Sobolev space

H 1.G / WD

²
u 2 L2.G /W

Z
G

ju0j2 C V juj2 d x <1
³
: (2.1)

We similarly define

H 1
0 .H / WD ¹u 2 H 1.G /; suppu � Hº (2.2)

for a subgraph H of G ; in a slight abuse of notation, we will not distinguish between
functions on H which vanish on @H and their extension by zero to functions on G .
The space H 1.H / is equipped with the inner product

hf; giH1 D

Z
H

f 0 � Ng0 C .V jH C 1/f Ng d�:
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We then define the sesquilinear form aH WH
1
0 .H / �H 1

0 .H /! R by

aH .f; g/ D

Z
H

f 0 � Ng0 C V jHf Ng d�; f; g 2 H 1
0 .H /;

so that
kf k2

H1 D aH .f; f /C kf k
2
2: (2.3)

We will write aH .f / in place of aH .f; f /, and we will often write V in place of
V jH .

Lemma 2.2. Under Assumption 1.1,H 1.G / is complete andH 1
0 .H / is a closed sub-

space of H 1.G /.

Proof. Consider a Cauchy sequence in .un/ 2 H 1.G /, then .un/; .V 1=2un/ are also
Cauchy in L2.G /, and .u0n/ is Cauchy in L2.G /. Since these spaces are complete,
there exist u2L2.G / and v 2L2.G / such that un! u, V 1=2un! V 1=2u and u0n! v

in L2.G /. Moreover, for all e 2 E , unje admits some limit ue 2 H 1.e/ on that edge.
The only possibility is that v D u0, and un ! u in H 1.G /.

Now, suppose H is a subgraph of G and un ! u is a convergent sequence of
un 2H

1
0 .H / inH 1.G /. Then for every edge there exists a subsequence such that the

sequence converges pointwise almost everywhere to u. It follows that supp u � H .
Hence, u 2 H 1

0 .H /.

Lemma 2.3. Let H be a subgraph of G . Under Assumption 1.1, H 1
0 .H / equipped

with the norm (2.3) is a Hilbert space which is densely imbedded inL2.H /. Moreover,
aH is a continuous, symmetric quadratic form on H 1

0 .H /, and aH C h�; �iL2.H/ is
coercive on H 1

0 .H /.

Due to the symmetry of the form, we will henceforth only work with real-valued
functions and not complex extensions.

Proof. The form is closed due to Lemma 2.2. For the density, consider the set

¹f 2 C.H /Wf je 2 C
1.e/ for all e 2 E.H /; suppf is compactly contained in H ;

and f � 0 in a neighborhood of each vertex v 2 V.H /º

contained in H 1
0 .H /. Since on any open interval 	 the space of smooth functions

compactly supported in 	 is dense in L2.	/, and L2.H / is a direct sum of spaces of
the form L2.	/, an elementary approximation argument yields the density ofH 1

0 .H /

inL2.H /. That aH is continuous and aH C h�; �iL2.H/ is coercive is immediate, since
aH .f / C kf k

2
L2.H/

coincides with the square of the norm, and aH is obviously
symmetric.
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It follows that the associated operator, which we will denote by AH WD �� C

V jH , is self-adjoint and bounded from below on L2.H /; a routine calculation shows
that AH satisfies a Dirichlet condition at all vertices of @H and standard (continuity
plus Kirchhoff) conditions at all other vertices. Whenever G is complete as a metric
space and V � 0, the corresponding operator is the Laplace operator as considered in
[14, 23], and the self-adjointness is due to [14, Corollary 4.9]. This is the case for the
regular tree graphs considered in [29, 30], which we will revisit in Section 5.

Theorem 2.4. The self-adjoint operator A associated with the closed, semibounded
symmetric form aH .�; �/ on H 1

0 .H / can be characterized via

D.AH / D
°
f 2 H 1

0 .H /W �f 00 C Vf 2 L2.H /;X
e�v

@

@�
fe.v/ D 0 for all v 2 V.H/ n @H

±
;

AHf je D .�f
00
C Vf /je for all e 2 :E.H /

Proof. One easily verifies thatAH �A. Indeed, suppose f 2D.AH / and g 2H 1.G /

with compact support, then by definition of D.AH /,

aH .f; g/ D

Z
H

�f 00g C Vfg d� D hAHf; giL2 ;

and due to the density of compactly supported functions as shown in Lemma 2.3
we infer D.AH / � D.A/ and AjH D AH . For the other direction, by restricting to
edgewise supported test functions, one sees that edgewise Af satisfies

Af D �f 00 C Vf:

Taking test functions g locally supported in a neighborhood of a single vertex v leads
to �X

e�v

�
@

@�
fe.v/

�
g.v/ D hAf; gi � hAg; f i D 0

for all v 2 V.H / n @H . This establishes that A � AH , and so there is equality.

2.3. Spectral properties of infinite quantum graphs

Denote by RH the Rayleigh quotient

RH Œf � D

R
H
jf 0j2 C V jf j2 d xR

H
jf j2 d x

; 0 ¤ f 2 H 1
0 .H /;



M. Hofmann, J. B. Kennedy, and A. Serio 602

associated with the operator AH . We consider the infimum of the spectrum of AH ,
given by

�.H / D inf
0¤f 2H1

0
.H/

RH Œf � 2 Œ0;1/; (2.4)

as well as the infimum of the essential spectrum,†.H / 2 Œ�.H /;1�. If there are any
isolated eigenvalues below †.H /, we will denote them by

0 � �.H / � �1.H / � �2.H / � � � � < †.H /;

repeated according to their necessarily finite multiplicities; these are given by the
usual min-max and max-min characterizations.

We finish with the characterization, mentioned in the introduction, of†.�/ in terms
of Persson theory, inspired by [17, Theorem 2.4.22] (but see also [1]). This is moti-
vated by a well-established theory on domains in Rd ; see [27] or [15, §14.4]. To this
end we first need a kind of cut-off formula for the form aH (sometimes called the IMS
localization formula, named after Ismigilov, Morgan, and Simon and also I. M. Sigal
as explained in [28, §2]). This formula will also play a key role in the appendix.

Lemma 2.5. Given a subgraph H of G , the sesquilinear form aH .u; v/ satisfies

aH .�f; �g/ D
1

2
ŒaH .�

2f; g/C aH .f; �
2g/�C hj�0j2f; giL2.H/ (2.5)

for all f; g 2 H 1
0 .H / and all � 2 C.H / \ L1.H / with �0 2 L1.H /.

Proof. Suppose � is a continuous function satisfying �;�02L1.H / and f 2H 1
0 .H /.

Then supp.�f / � H and
.�f /0 D �0f C �f 0

edgewise. This relation implies that �f 2 H 1
0 .H /. That aH satisfies (2.5) is now

reduced to a formal (and standard) calculation, which can be found in [28, Proposi-
tion 2.8].

Theorem 2.6 (Persson’s theorem). Suppose G and V satisfy Assumption 1.1 and H

is a subgraph of G . Then AH satisfies

†.H / D sup
K��H

inf
0¤f 2H1

0
.H/

suppf \KD;

RH Œf �:

Proof. Due to the compact imbedding of H 1.H / into L2loc.H / and the continuous
imbedding of D.AH / into L2.H /, we infer that D.AH / locally compactly imbeds
into L2.H /. The statement then follows immediately from [17, Theorem 2.4.22],
using Lemma 2.5.
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3. Continuity and monotonicity properties of the infimum of the
spectrum

In this section we will prove the background continuity and monotonicity properties
of �.�/, as well as related properties of †.�/, with respect to expanding or contracting
balls. Throughout, we will continue to suppose that G and V satisfy Assumption 1.1.

Lemma 3.1. Suppose that G2 � G1 are any nested subgraphs of G (where we explic-
itly allow G1 D G ). Then

(1) �.G2/ � �.G1/;

(2) if G1 has discrete spectrum, then so too does G2, and �k.G2/ � �k.G1/ for all
k � 1;

(3) if G2 has essential spectrum, then so too does G1, and †.G2/ � †.G1/.

Proof. For (1) we use that any element u 2H 1
0 .G2/may be extended by zero to obtain

an element of H 1
0 .G1/ with the same Rayleigh quotient; for (2) we additionally use

that Gi has discrete spectrum if and only if the imbedding of H 1
0 .Gi / into L2.Gi / is

compact. (3) is a direct consequence of the same argument as in (1) together with
Theorem 2.6.

We fix any subgraph H of G and any point x 2 G , not necessarily in H . For each
R > 0, we consider the subgraphs H \ BR.x/ and H n BR.x/. As subgraphs, these
are always taken to be closed, but we define them so as not to have isolated points;
thus, for example, if distG .v; x/ D R but distG .y; x/ > R for all y 2 H n ¹vº, then
we take H \ BR.x/ to be the empty set instead of ¹vº.

Lemma 3.2. Under the above assumptions, let x 2 G be fixed but arbitrary, and let
R0 � 0 be such that H \ BR.x/ has positive volume if and only if R > R0. Then the
operator AH\BR.x/ has discrete spectrum, and the mapping

R 7! �.H \ BR.x// 2 R [ ¹1º (3.1)

is a lower semicontinuous and monotonically decreasing function of R 2 .R0;1/,
which satisfies

lim
R!R0

�.H \ BR.x// D1 and lim
R!1

�.H \ BR.x// D �.H /:

Proof. First note that H \ BR.x/ is always compact, for all R > 0 and all x 2 G ,
as the intersection of a closed and a compact set; in particular, since V jH\BR.x/ 2

L1.H \ BR.x//, AH\BR.x/
has discrete spectrum (see [20, Section 2]).
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Monotonicity follows directly from Lemma 3.1(1); semicontinuity will be proved
in Appendix A (see Lemma A.9). For the first limit, we note that, since R 7! jH \
BR.x/j is clearly a continuous function, in particular

jH \ BR.x/j ! 0

as R ! R0. Since V � 0, a direct comparison of Rayleigh quotients together with
Nicaise’s inequality [26, Théorème 3.1] applied to the compact graph H \ BR.x/

implies that

�.H \ BR.x// �
�2

4jH \ BR.x/j2
!1:

For the second limit, there is nothing to prove if H is bounded, so we assume it is
unbounded. It clearly suffices to prove that �.H / � lim supR!1 �.H \ BR.x//; to
this end, by the variational characterization (2.4) and monotonicity, we only have to
prove that for any u 2H 1

0 .H / there exist un 2H 1
0 .H \Bn.x// such that un! u in

H 1 and hence R.un/! R.u/.
But this, in turn, follows immediately from the density of

H 1
c .H / WD ¹f 2 H 1

0 .H /W suppf is boundedº

in H 1
0 .H /. This was previously shown in [16, Lemma 3.9], but for the sake of com-

pleteness we reproduce the argument here: we let u 2 H 1
0 .H / and define

 n.y/ D
1

n
.n �min¹n; distG .x; y/º/;

then  n is continuous and piecewise smooth, with supp n � Bn.x/. Hence,

. nu/
0
D  0nuC  nu

0

and  nu 2 H 1
c .H /. We estimate

ku �  nukH1 � ku0 � . nu/
0
kL2 C k.1C V /1=2.u �  nu/kL2

� k 0nukL2 C k.1 �  n/u
0
kL2 C k.1C V /1=2.u �  nu/kL2

� k 0nk1kukL2 C

� Z
HnBn.x/

ju0j2 d x
�1=2

C

� Z
HnBn.x/

.1C V /juj2 d x
�1=2

�
1

n
kukL2 C

� Z
HnBn.x/

ju0j2 d x
�1=2

C

� Z
HnBn.x/

.1C V /juj2 d x
�1=2

;

which converges to 0 as n!1 since u 2 H 1
0 .H /.
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Example 3.3. Note that the function in (3.1) may not be continuous if H has cycles
or degree one vertices which are not boundary vertices. In the simplest case where
G D H is a cycle, say of length one, then, fixing any x 2 G , since BR.x/ is a Dirich-
let interval of length 2R for all R < 1=2, and BR.x/ D G for R � 1=2, we have
�.BR.x// D

�2

4R2 for R < 1=2 and �.BR.x// D 0 for R � 1=2.

Lemma 3.4. Under our standing assumptions, the mapping

R 7! �.H n BR.x//

is a continuous and monotonically increasing function of R 2 .0;1/, which satisfies

lim
R!1

�.H n BR.x// D †.H /: (3.2)

In particular, †.H n BR.x// D †.H / for all R > 0.

Proof. Monotonicity again follows from Lemma 3.1(1), while continuity will be
proved in Lemma A.9. Since the monotonicity of Lemma 3.1(1) in particular implies
that for any compact K �� H and any x 2 H ,

�.H n BR.x// � inf
0¤f 2H1

0
.H/

suppf \KD;

RŒf �

for all sufficiently large R > 0, the limit (3.2) now follows from Theorem 2.6 and
Lemma 2.5.

Corollary 3.5. Suppose in addition to Assumption 1.1 that †.G / <1, let x 2 G be
fixed but arbitrary, and let � > †.G /. Then for any R1 > 0 there exist R3 > R2 � R1
such that

�.AR1;R3
/ � � and �.AR2;R3

/ D �:

Proof. We first consider H WD G n BR1
.x/. By Lemma 3.4 and assumption,

�.H / D �.G n BR1
.x// � lim

R!1
�.G n BR.x// D †.G / < �:

We now apply Lemma 3.2 to H : since AR1;R3
.x/ D H \ BR3

.x/, it is immediate
that �.AR1;R3

.x// is a monotonically decreasing function of R3 2 .R1;1/, which
satisfies �.AR1;R3

.x// ! 1 as R3 ! R1 and �.AR1;R2
.x// ! �.H / < � as

R3 !1. We can thus find some R3 > R1 such that �.AR1;R3
.x// � �.

If there is no R3 which guarantees equality, then, having fixed R3 for which the
inequality is strict, we finally apply Lemma 3.4 to H D AR1;R3

and BR2
.0/ for R2 2

ŒR1; R3/. Now, �.AR2;R3
/ is a continuous function of R2, which converges to

�.AR1;R3
.x// < �
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as R2 ! R1. We also claim it diverges to 1 as R2 ! R3; indeed, in this case
jAR2;R3

j ! 0, whence by Nicaise’ inequality [26, Théorème 3.1] applied to the com-
pact graph AR2;R3

�.AR2;R3
/ �

�2c2

4jAR2;R3
j
! 1;

where we have estimated V from below by 0 and used that AR2;R3
always has at least

one boundary point and thus Dirichlet vertex. The existence of some R2 2 .R1; R3/
such that �.AR2;R3

/ D � follows.

4. Proof of the main theorems

Proof of Theorem 1.2. We may obviously suppose that †.G / < 1. Fix k 2 N and
� > †.G /; we will find a k-partition P D .G1; : : : ;Gk/ such that

ƒk.P / � �I

the conclusion of the theorem then follows immediately.
Fix any point 0 2 G , without loss of generality a vertex. Now, since � > †.G / �

�.G /, by the monotonicity and limit properties from Lemma 3.2 applied to H D G

there exists R1 > 0 such that
�.BR1

.0// � �I

we then set G1 WDBR1
.0/ and observe that G1 is necessarily connected. We next apply

Corollary 3.5 successively to find radii R1 < R2 < � � � < Rk such that

�.ARi�1;Ri
.0// � �

for all i D 2; : : : ; k. Noting that ARi�1;Ri
.0/ is compact but may not be connected,

we deduce that there exists a connected component, call it Gi , on which the ground
state of ARi�1;Ri

.0/ is supported, that is, such that �.Gi / D �.ARi�1;Ri
.0// � �. We

choose .G1; : : : ;Gk/, thus defined, to be our partition.

Proof of Theorem 1.3. Let Pn D .G1;n; : : : ;Gk;n/ be a sequence of k-partitions whose
energy approaches the infimum LD

k
; we may assume the existence of some � <†.G /

such thatƒk.Pn/� � for all n� 1. We fix an arbitrary point 0 2 G . The proof of exis-
tence is divided into three steps; the finite ball property contained in Assumption 1.1
will enter explicitly in Steps 2 and 3.
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Step 1: for any sufficiently large r > 0, Gi;n has nontrivial intersection with Br.0/ for
all i and n. Indeed, by Lemma 3.4, for any r > 0 sufficiently large, �.G nBr.0// > �.
Fix any such r > 0. If, for some i D 1; : : : ; k and n � 1, we should have Gi;n �

G n Br.0/, then by domain monotonicity, Lemma 3.1(1),

� < �.G n Br.0// � �.Gi;n/ � ƒk.Pn/ � �;

a contradiction.

Step 2: up to a subsequence there exists a limit partition P . More precisely, we will
show that there exists a k-partition P D .G1; : : : ;Gk/ such that, up to a subsequence,
on every precompact set K of G , Gi;k \K ! Gi \K in the sense of [21, Section 3].

For each n � 1, Bn.0/ is a compact, connected subset of G , which as a subgraph
contains a finite number of edges by the finite ball property; hence there are only
finitely many configuration classes inside Bn.0/ in the sense of [21, Definition 3.3].
Thus, as in the proof of [21, Theorem 3.13], up to a subsequence the restricted parti-
tions Pn;n WD .G1;n \Bn.0/; : : : ;Gk;n \Bn.0// admit a limit P �n D .G

�
1;n; : : : ;G

�
k;n
/;

by Step 1, for n � 1 sufficiently large P �n is a k-partition. (Note that this argument is
purely topological and does not involve the partition energies or the underlying oper-
ators; thus the proof of [21, Theorem 3.13] may be repeated verbatim in our case.)

By a diagonal argument, we can ensure that wheneverm > n, for all i D 1; : : : ; k,
G �i;m \ Bn.0/ and G �i;n coincide. In particular, the limit Gi is well-defined as

Gi D
[
m�1

lim
n!1

Gi;n \ Bm.0/

(where for each m 2 N the limit is again understood in the sense of [21, Section 3],
inside the fixed compact graph Bm.0/). We then set P WD .G1; : : : ;Gk/; by construc-
tion, this partition is the limit in the sense claimed above.

Step 3: lower semicontinuity with respect to partition convergence. We show that up
to a further subsequence

�.Gi / � lim sup
n!1

�.Gi;n/ (4.1)

for all i D 1; : : : ;k, from which the conclusion of the theorem will follow immediately
since

LD
k .G / � ƒk.P / D max

iD1;:::;k
�.Gi / � lim

n!1
max

iD1;:::;k
�.Gi / D LD

k .G /:

Fix i D 1; : : : ; k. We first observe that, for each fixed n� 1, by Lemma 3.2 applied
to H D Gi;n, we have �.Gi;n \ Br.0//! �.Gi;n/ as r !1; a corresponding state-
ment is true for Gi .
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At the same time, for each fixed r > 0 large enough the nature of the convergence
Gi;n \Br.0/! Gi \Br.0/ implies that each boundary vertex in Gi \Br.0/ admits a
sequence of boundary vertices of Gi;n \ Br.0/ that converge towards it in the metric
space G . Then by Corollary A.7 we infer

�.Gi \ Br.0// � lim sup
n!1

�.Gi;n \ Br.0//

as n!1 for each r > 0 large enough.
Finally, we may assume without loss of generality (after passing to a further subse-

quence if necessary) that �.Gi;n/ forms a Cauchy sequence in n � 1, since its values
are bounded in the interval ŒLD

k
.G /; ��. In particular, up to a further subsequence,

�.Gi;n \ Bn.0// is also Cauchy and has the same limit. Using monotonicity in r ,
which implies (possibly up to a further subsequence) that

lim
r!1

lim sup
n!1

�.Gi;n \ Br.0// D lim
n!1

�.Gi;n \ Bn.0// D lim
n!1

�.Gi;n/;

we thus finally obtain, for this subsequence,

�.Gi / D lim
n!1

�.Gi \ Bn.0// � lim
n!1

�.Gi;n \ Bn.0// D lim
n!1

�.Gi;n/

for all i D 1; : : : ; k, as claimed, from which (4.1) follows. This completes the proof
that LD

k
.G / D ƒk.P /, and hence that P is a k-partition such that

ƒk.P / D lim
n!1

ƒk.Pn/ D LD
k .G /:

Now, by Lemma 3.1(3) and by assumption, for each i we have †.Gi / � †.G / >
�.Gi /. It now follows immediately from standard theory for Schrödinger operators
that �.Gi / is an isolated eigenvalue with a positive eigenfunction (see, e.g., [24]).

5. Examples

From our main results we know that only two scenarios are possible. Either LD
k
.G / <

†.G / and spectral minimal k-partitions exist, or else LD
k
.G / D †.G /. Here we will

discuss three examples which showcase what can happen when there is equality.
The first is a simple one which shows that spectral minimal k-partitions may exist

for some k, but not for others. The second and third are based on so-called rooted
equilateral tree graphs, which have been considered in many works, including [13,
17, 22, 23, 29, 30], among others. The second, which admits a minimal k-partition for
any k � 1, also illustrates that on graphs LD

k
.G /D†.G / > 0 is possible for all k � 1

even if V � 0. The third shows that if a minimal k-partition exists, then the clusters
may or may not admit ground states.
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Example 5.1. Take G D R and V � 0; then for all k � 1 we clearly have

LD
k .R/ D †.R/ D 0:

When k D 2, for any x 2 R the 2-partition P x
2 WD ..�1; x�; Œx;1// is minimal,

although in this case the infimum of the spectrum is not an eigenvalue. However, for
k � 3 there are no partitions whose spectral energy is 0 since necessarily at least one
partition element needs to be bounded and hence has a strictly positive associated
ground state energy.

More generally, if �m denotes them-star graph consisting ofm semi-axes, or rays,
joined at a common vertex, then we still have

LD
k .�m/ D †.�m/ D 0 (5.1)

for all k 2 N; there exists a minimizing k-partition if and only if k � m. Any graph
satisfying Assumption 1.1 which has at least m � 1 such rays satisfy (5.1) for all
k 2 N, and admits a minimizing k-partition for all k � m (this includes the graphs
sometimes called starlike, as in [11]).

Example 5.2. Fix k � 2. We start by considering a homogeneous rooted tree T ,
i.e., a regular tree with constant branching number b and constant edge length 1 (see
Figure 5.1), with Neumann condition at the root, and equipped with the Laplacian,
i.e. V � 0.

b times

b times

b timesb times b times

b times

b times

b times

Figure 5.1. Left: a rooted tree T with branching number b. Right: a sketch of how to find an
infinite spectral minimal partition by “cutting branches”.
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Then it is known (see [29, Theorem 3.3]) that the spectrum of T is purely essential
with �.T / D †.T / D �2 > 0, where

� D arccos
� 2

b1=2 C b�1=2

�
;

and there are no eigenfunctions corresponding to this value.
It follows from Lemma 3.1 that �.H / � �.T / D †.T / > 0 for any subgraph

H � T , and thus LD
k
.T / D †.T / for all k � 1. However, for any fixed k, we can

find k copies T1; : : : ; Tk of T as imbedded subgraphs of T (cf. Figure 5.1) with a
Dirichlet rather than a Neumann condition at their root vertex (which is their only
boundary vertex as subgraphs). This does not affect the essential spectrum, and thus
†.T / D †.Ti / D �.Ti / � �.Ti / D †.T / for all i . In particular, together they form
a k-minimal partition.

Example 5.3. We take T as in the previous example and continue to assume V � 0;
however, we impose a Dirichlet condition at the root, which clearly does not affect
either the value or the nature of � . Given k � 2, we will modify T to create a graph
Gk by attaching k intervals to T at the root (see Figure 5.2).

b times

b times

b timesk times

Figure 5.2. The graph Gk formed by gluing a rooted tree T with intervals with equal ground
state energy at the root vertex.

More precisely, we consider intervals 	j ; j D 1; : : : ;k, each of length `D�=.2�/,
and each equipped with the Laplacian with a Dirichlet at one endpoint and a Neumann
condition at the other. We let zGk WD T [

S
j 	j be the disjoint union of the tree and

these intervals.
Now, the spectrum of 	j is purely discrete; indeed, �.	j / D ¹n2�2W n 2 Nº. So,

the Laplacian on zGk has spectrum �.T [
S
j 	j /D �ess.T /[

Sk
jD1 �.	j / where the
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eigenvalues are counted with multiplicities. We now glue together all k C 1 Dirichlet
points at the root of the tree, which we consider to be equipped with standard condi-
tions in the resulting graph Gk . The common gluing vertex will be called the central
vertex. The operation of gluing is a rank one perturbation of the standard Laplacian
which pushes down the eigenvalues according to a standard interlacing inequality (see
[9, Theorems 3.1.10 and 3.1.11]), thus

�1.Gk/ � �
2
D �2.Gk/ D � � � D �k.Gk/:

We claim that any partition Pk of Gk whose clusters are any k of the k C 1 con-
nected components of zGk is a minimal k-partition of Gk . Combining this with the
cutting principle in Example 5.2, for any j D 0; : : : ; k we can thus find a minimal
k-partition P such that exactly j clusters of P admit a ground state.

We now prove the claim. By construction, each interval graph 	j ; j D 1; : : : ; k

with Kirchhoff-Neumann conditions at the endpoints shares the same ground state
energy �2, which is also the infimum of the spectrum of T . We need to show that Pk
is minimal, i.e., ƒk.Pk/ D LD

k
.Gk/. Suppose zPk is a k-partition with a set of cut

points different than the central vertex; then at least one of the cut points must belong
to one of the connected components of zGk . Then either one of the partition elements
would be an interval smaller than �=.2�/ or one partition element would be contained
in T . Hence, ƒk.P / � ƒk.Pk/ D � and Pk is a spectral minimal partition.

A. Continuity of the infimum of the spectrum with respect to graph
perturbation

Here we will show how the infimum of the spectrum of a Schrödinger operator on a
subgraph H of a given graph G , depends continuously, or semicontinuously, on H ,
in particular to complete the proofs of Lemma 3.2 and Lemma 3.4: more precisely,
for a given metric graph G satisfying the finite ball condition of Assumption 1.1, a
fixed subgraph H of G , and any x 2 G , the map R 7! �.H \ BR.x// is a lower
semicontinuous function of R 2 .0;1/, while R 7! �.H n BR.x// is continuous.
(We recall that BR.x/ is the closed ball of Definition 2.1, and that as subgraphs H \

BR.x/ and H n BR.x/ are assumed to contain no isolated points.) To this end we fix
a graph G and a potential V satisfying Assumption 1.1.

We start by formalizing a natural notion of convergence of subgraphs, in terms of
the behavior of their boundaries. We first need to distinguish subsets of a sequence
of non-connected subgraphs which might disappear in the limit (as happened to the
complement of BR.x/ in Example 3.3), and which are thus irrelevant for spectral
purposes as their ground state energy diverges. This leads to the following notion. We
recall that the boundary of a subgraph is always its topological boundary as a subset
of G .
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Definition A.1. Let Hn be any sequence of subgraphs of a fixed graph G . We will
say that a sequence of boundary points vn 2 @Hn is vanishing if, for any r > 0,

jHn \ Br.vn/j ! 0;

and non-vanishing otherwise.

This will only be of interest when vn forms a Cauchy sequence in G .
We can now give a topological notion of convergence.

Definition A.2. Let Hn, H be subgraphs of a fixed graph G . Then we will say that
Hn ! H topologically if the following two conditions are satisfied:

(1) for all v 2 @H there exist vn 2 @Hn such that vn ! v in the metric space G ;

(2) whenever vn 2 @Hn is a bounded sequence of non-vanishing boundary points
of Hn in G , there exists some v 2 @H such that, up to a subsequence, vn! v.

Example A.3. Consider a tadpole (a loop attached to a pendant interval) and suppose
Hn is a sequence of three-stars whose boundary points approach each other as n!
1 (see Figure A.1), then the sequence of boundary points is non-vanishing, but the
sequence of subgraphs does not converge towards the original graph in the topological
sense. While property (1) holds, property (2) is not satisfied.

G

Hn

Hn

Figure A.1. Tadpole (left) with sequences of subgraphs Hn (top and bottom right). The
sequence of subgraphs top right does not converge topologically towards the original graph,
since in the limit graph G the boundary points disappear and condition (2) is not satisfied. The
sequence of subgraphs bottom right does converge topologically towards the interval (solid blue
line).
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To this we now add a suitable notion of form convergence. This will be a ver-
sion of Mosco convergence for the spaces H 1

0 .Hn/ and H 1
0 .H / (as defined in (2.2),

cf. (2.1)). As customary, we will regard all these spaces as being subspaces ofH 1.G /

via extension by zero of the functions. We will show below that many nested sub-
graphs Hn and H satisfy Mosco convergence in this sense (see Lemma A.6); this
will, in particular, allow us to treat balls and exteriors of balls.

Definition A.4. Given subgraphs Hn and H of G , we say that Hn! H in the sense
of Mosco if the following two conditions are satisfied:

(1) for all u 2 H 1
0 .H / there exist un 2 H 1

0 .H / such that un ! u in H 1.G /;

(2) for all un 2 H 1
0 .Hn/ such that un * u for some u 2 H 1.H /, we have u 2

H 1
0 .H /.

Our first result states that convergence in the sense of Mosco, as just defined,
implies convergence of the infimum of the spectrum.

Lemma A.5. Let H and Hn be subgraphs of a given graph G which agree outside a
compact set, i.e., we assume there exists some bounded set K � G such that one has
H nK D Hn nK . Suppose that Hn and H satisfy condition (1) (respectively, (2))
of Definition A.4. Then

�.H / � lim sup
n!1

�.Hn/

(respectively, �.H / � lim infn!1 �.Hn/). In particular, if Hn ! H in the sense of
Mosco, then

�.Hn/! �.H /:

The condition that H and Hn coincide outside a compact set will only be used in
case (2).

Proof. Assuming (1), fix " > 0 and u 2H 1
0 .H / such that R.u/� �.H /C ". Then we

can find un 2 H 1
0 .Hn/ such that we have un! u in H 1.G /; in particular, R.un/!

R.u/. It follows immediately that lim supn!1 �.Hn/ � �.H /C ".
In case (2), suppose lim supn!1 �.Hn/ <1 since there is nothing to show oth-

erwise. Fix " > 0 and for each n let un 2 H 1
0 .Hn/ such that R.un/ � �.Hn/C " for

all n. Hence, by our assumption on �.Hn/, .un/ is a bounded sequence in H 1.G /; in
particular, up to a subsequence it admits a weak limit u 2H 1.G /; by (2), u 2H 1

0 .H /.
Fix an arbitrary root vertex 0 2 H and let

 n D

1
n

max¹distG .G n B2n.0/; x/; nº
N

;

Q n D
1 � 1

n
max¹distG .G n B2n.0/; x/; nº

N
;
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where

N D
h�1
n

max¹distG .G n B2n.0/; x/; nº
�2

C

�
1 �

1

n
max¹distG .G n B2n.0/; x/; nº

�2i1=2
:

Then  n; Q n are continuous, piecewise smooth cut-off functions  n; Q n such that
0 �  n; Q n � 1,  2n C Q 

2
n � 1, supp n � H n Bn.0/ and supp Q n � H \ B2n.0/.

Passing to a subsequence in un still denoted by un we haveZ
H

j nunj
2 d x !

Z
H

juj2 d x: (A.1)

We also have
k 0nk1 �

C

n
; k Q 0nk1 �

C

n
:

As a consequence of (2.5),

a.un/ D a. nun/C a. Q nun/ � k 
0
nunk

2
L2.H/

� k Q 0nunk
2
L2.H/

D a. nun/C a. Q nun/CO
� 1
n2

�
.n!1/:

We distinguish between two cases: (i) there exists a bounded subset K such that
kunkL2.Hn\K/ 6! 0, and (ii) kunkL2.Hn\K/ ! 0 for all bounded subsets K .

In case (i), either kuk2
L2.H/

D 1, and from the weak lower semicontinuity a.u/ �
lim infn!1 a.un/ and (A.1) we infer

�.H / � R.u/ � lim inf
n!1

R.un/ D �.H /;

or else 0 < kukL2 < 1 and, from (2.5) and the asymptotic minimizing property of the
un,

min
° a. nun/
k nunk

2
L2

;
a. Q nun/

k Q nunk
2
L2

±
. a.un/ . min

° a. nun/
k nunk

2
L2

;
a. Q nun/

k Q nunk
2
L2

±
(where “.” means that “�” holds between the respective limits). In particular,

lim
n!1

Œ�.Hn/ �min¹R. nun/;R. Q nun/º� D 0:

Then due to weak lower semicontinuity, a.u/ � lim infn!1 a. nun/, and so

�.H / � R.u/ � lim inf
n!1

R. nun/:
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On the other hand, since Hn H coincide outside a compact subset Q nun 2 H 1
0 .Hn/

for sufficiently large n and hence �.H / � R. Q nun/. We infer

�.H / � lim inf
n!1

R.un/ � lim inf
n!1

min¹R. nun/;R. Q nun/º D lim inf
n!1

�.Hn/:

In case (ii), consider  n; Q n as in case (i). Similarly, we find a subsequence of un
still denoted by un such that Z

H

j nunj
2 d x ! 0

and hence Z
H

j Q nunj
2 d x ! 1:

Hence, as a consequence of (2.5) we have

R. Q nun/ . �.Hn/ . R. Q nun/

and since Hn;H coincide outside a compact subset

�.H / � lim inf
n!1

R. Q nun/ D lim inf
n!1

�.Hn/:

We next give natural conditions under which Hn ! H in the sense of Mosco.

Lemma A.6. Suppose that Hn, H are subgraphs of G such that

(a) @Hn and @H coincide except for a finite set; and

(b) either Hn � HnC1 � H or H � HnC1 � Hn for all n.

Then

(i) if Hn ! H topologically, then H 1
0 .Hn/ and H 1

0 .H / satisfy condition (1)
of Definition A.4;

(ii) if Hn and H satisfy condition (1) of Definition A.2, then H 1
0 .Hn/ and

H 1
0 .H / satisfy condition (2) of Definition A.4.

In particular, if under conditions (a) and (b) Hn ! H topologically, then Hn ! H

in the sense of Mosco.

Proof. For condition (1) of Mosco convergence, there is nothing to prove if H �

HnC1 � Hn for all n. So, suppose Hn � HnC1 � H , which in particular means by
condition (1) of Definition A.2 that H D

S
n2N Hn. Denote by VH the finite boundary

set of vertices of H which are not also boundary points of Hn for all n 2 N, and fix
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f 2 H 1
0 .H / arbitrary. Take a sequence of cutoff functions �m continuous, edgewise

smooth such that �m; �0m 2 L
1.H /, 0 � �m � 1, supp�m � H , and

�m.x/ D

´
1 if distG .x;VH / �

2
m
;

0 if distG .x;VH / �
1
m
:

Then f �m 2H 1.G / for allm 2N and, by our assumptions on Hn, for any n 2N we
claim that supp �m � Hn for all m D m.n/ large enough. Indeed, suppose for some
m (sufficiently large) and we have �m.x/ > 0 for some x which is outside Hn for
all n 2 N; then in fact x must be an interior point of H , and �m.x/ D 1 for all m
large enough. Since Hn ! H , there must exist a sequence of points xn 2 Hn such
that xn ! x in G ; since x 62 Hn there will exist some vn 2 @Hn in between x and
xn (i.e. on a shortest path between the two points), so that also vn ! x. But vn is
clearly non-vanishing, since H D

S
n Hn and x 2 int H ; thus, by condition (2) of

Definition A.2 and the uniqueness of limits we have x 2 @H , a contradiction. This
proves the claim.

Finally, given that f �m and f disagree on a finite number of edges, a standard
argument shows that f �m ! f in H 1.G /.

For condition (2), there is nothing to prove if Hn �HnC1 �H . In the other case,
taking a sequence un 2H 1

0 .Hn/ weakly convergent inH 1.G / to u 2H 1.G /, we first
observe that compactness of the imbedding H 1.zG / ,! C.zG / on any bounded sub-
graph zG � G implies that un! u locally uniformly. We next observe that necessarily
suppu � H D

S
n Hn, and that, for any v 2 @H , by condition (1) of Definition A.2

there exist vn 2 @Hn such that vn! v. Since un.vn/D 0 for all n 2N, the local uni-
form convergence implies u.v/ D 0. Since v 2 @H was arbitrary, we conclude that
u 2 H 1

0 .H /.

Corollary A.7. Suppose that Hn, H are subgraphs of G which agree outside a com-
pact set, i.e., we assume there exists some bounded set K � G such that H nK D

Hn nK. Suppose that Hn and H satisfy condition (1) of Definition A.2, then

�.H / � lim sup
n!1

�.Hn/

If additionally H ;Hn satisfy condition (2) of Definition A.2, that is, Hn ! H topo-
logically, then Hn ! H in the sense of Mosco, and

�.Hn/! �.H /:

Proof. Let

HCn D
°
x 2 G W distG .x;H / �

1

n

±
;

H�n D
°
x 2 H W distG .x;G nH / �

1

n

±
I
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then due to condition (1) every subsequence admits a further subsequence still denoted
by Hn, such that Hn � HCn . Now, HCn ! H in the topological sense; by hypothesis
condition (a) of Lemma A.6 is satisfied, and (b) is satisfied by construction. Thus,
HCn ! Hn in the sense of Mosco. Due domain monotonicity (cf. Lemma 3.1(1)),

�.H / D lim
n!1

�.HCn / � lim
n!1

�.Hn/ (A.2)

If additionally condition (2) is satisfied, then every subsequence admits a further sub-
sequence still denoted by Hn, such that H�n � Hn. A similar argument as above
shows that H�n ! H in the sense of Mosco, and so, by domain monotonicity,

lim
n!1

�.Hn/ � lim
n!1

�.HCn / D �.H /: (A.3)

From (A.2) and (A.3), we obtain �.Hn/! �.H /.

We now focus on the particular case of balls and exteriors of balls. That is, we
imagine H to be a fixed subgraph of G , x 2 G an arbitrary root vertex (not necessarily
belonging to H ), and look at subgraphs of the form H \ BR.x/ and H n BR.x/ as
functions of R. In order to apply Lemma A.6 and Corollary A.7, we need to show
topological convergence. This is treated in the following lemma.

Lemma A.8. Fix any subgraph H of G and any x 2 G , as well as Rn! R > 0 such
that H \BR.x/ and H nBR.x/ have postive volume. Then the symmetric difference
of the sets @.H \BRn

.x// and @.H \BR.x// is finite, as is the symmetric difference
of @.H n BRn

.x// and @.H n BR.x//. Moreover,

H n BRn
.x/! H n BR.x/

topologically as n!1, while H \BRn
.x/ and H \BR.x/ satisfy condition (1) of

Definition A.2.

(Note that, since H is a subgraph of the graph G , which may have infinitely many
edges, @H , and therefore also @.H \ BR.x//, need not be finite.)

Proof. First, for the finiteness of the symmetric differences: we treat the exterior
case; the interior case is analogous. We may assume without loss of generality that
R � Rn < R C 1 for all n. Then clearly @.H \ BRn

.x// and @.H \ BR.x// agree
outside BRC1.x/, where both boundaries coincide with @H outside BRC1.x/. Inside
BRC1.x/, our finiteness assumptions on G , and the fact that H is connected, imply
that @H is finite, as are the sets

H \ @BR.x/ D ¹v 2 H W distG .v; x/ D Rº;

H \ @BRn
.x/ D ¹v 2 H W distG .v; x/ D Rnº:

This proves that the symmetric difference is always finite.



M. Hofmann, J. B. Kennedy, and A. Serio 618

To prove topological convergence, we first show that both sets satisfy condition
(1) of Definition A.2. Fix R > 0; we will consider three cases:

(i) v 62 @H , so that distG .v; x/ D R;

(ii) v 2 @H but distG .v; x/ D R;

(iii) v 2 @H and distG .v; x/ ¤ R.

Note in case (iii) that v 2 @.H \ Br.x// for all r in a neighborhood of R, so that in
this case we may simply take vn D v.

For case (i), note that B".v/ � H for " > 0 small enough; we assume without
loss of generality that B".v/ is a star, intersecting a finite number of edges of G , each
of which has v as a vertex (in the case of loops we suppose that " is less than half
the length of the shortest loop at v). Since v is a boundary vertex between BR.x/
and G n BR.x/, there will be at least one “incoming” edge on which the distance to
x is � R, and at least one “outgoing” edge on which the distance is � R. Then it is
immediate that for any r 2 .R � "; R C "/ there exists a point vr 2 B".v/ such that
distG .vr ;x/DR� " and distG .vr ; v/D ". This point is necessarily in H \ @BR�".x/;
the claim of the lemma in this case follows.

We finally consider case (ii). Here v 2 @H � H will remain a boundary point
of H \ Br.x/ for r > R (as a boundary point of @H contained in H \ Br.x/), and
of H n Br.x/ for r < R. Consider the case of H \ BRn

.x/ where Rn < R, so that
v 62BRn

.x/. Since v is not a degree zero vertex of H \BR.x/, in any "-neighborhood
of v there exist points y 2 H \ BR.x/; in particular, for " > 0 small enough we can
find y" 2H such that distG .y";x/ <R and distG .y"; v/D ". We claim that y" lies on a
shortest path from x to v: indeed, any edge incident to v for on which the distance to x
is always less than R (i.e. an “incoming” edge) must have this property. In particular,
if we choose "D R �Rn and set vn WD yR�Rn

, then vn 2H and distG .vn; x/D Rn.
Moreover, vn is clearly not a degree zero vertex for n large enough. In the other case,
H n BRn

.x/ for Rn > R, the argument is entirely analogous.
We now show condition (2) of topological convergence for H nBR.x/. LetRn!

R and take any sequence of non-vanishing boundary points vn 2 @.H n BRn
.x//.

Suppose first that distG .vn; x/ > Rn for infinitely many n; then for this subsequence
we necessarily have vn 2 @H . Since by assumption the sequence is vn is bounded and
@H is finite in every bounded subset of G , a subsubsequence of vn must necessarily
be constant, hence convergent to some v 2 @H at distance � R from x. The non-
vanishing condition on the vn implies that v is not an isolated point of H n BR.x/.

So, we may suppose that distG .vn; x/ D Rn for all n, and suppose without loss
of generality that Rn � R C 1 for all n, so that vn 2 H \ BRC1.x/. Again, note
that ¹y 2 H W distG .y; x/ D Rnº is not only a finite set for all n, but its cardinality
is uniformly bounded in n (e.g., by twice the number of edges of G which inter-
sect BRC1.x/). Moreover, since H \ BRC1.x/ is compact, up to a subsequence
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vn converges to some v 2 H \ BRC1.x/. Since distG .vn; x/ D Rn ! R, clearly
distG .v; x/ D R. Finally, we claim that v 2 @BR.x/. If Rn > R, then this follows
immediately from vn 62 BR.x/; if Rn < R, then we need to use that the vn are non-
vanishing: indeed, it follows that for any " > 0,

jB".v/ \ .H n BRn
.x//j 6! 0:

This shows that v is not in the interior of BR.x/, that is, v 2 H \ @BR.x/, and thus
equally v 2 H n BR.x/ � @.H n BR.x//.

We can finally prove the continuity statements of Lemmata 3.2 and 3.4.

Lemma A.9. Under the assumptions of Lemma A.8, R 7! �.H n BR.x// is a con-
tinuous mapping for all R > 0 such that H nBR.x/¤ ;, while R 7! �.H \BR.x//

is lower semicontinuous.

Proof. First note that conditions (a) and (b) of Lemma A.6 are satisfied for sets of the
form H \ BRn

.x/ and H n BRn
.x/ under the assumptions of Lemma A.8, as long

as either Rn " R, or Rn # R; moreover, H \ BR.x/ and H \ BRn
.x/ clearly agree

outside a compact subset of G .
By Lemma A.8, H nBRn

.x/!H nBR.x/ topologically, while H \BR.x/ and
H \ BRn

.x/ satisfy condition (1) of Definition A.2. We now apply Lemma A.6, if
necessary dividing into subsequences for which Rn " R and Rn # R, respectively, to
obtain H n BRn

.x/! H n BR.x/ in the sense of Mosco, while H 1
0 .H \ BR.x//

and H 1
0 .H \ BRn

.x// satisfy condition (2) of Definition A.4.
Hence, Lemma A.5 implies that �.H nBRn

.x//! �.H nBR.x//, while �.H \
BR.x// � lim infn!1 �.H \ BRn

.x//, that is, R 7! �.H \ BR.x// is lower semi-
continuous.
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