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Dirichlet fractional Laplacian in multi-tubes

Fedor L. Bakharev and Alexander I. Nazarov

Abstract. We describe the spectrum structure for the restricted Dirichlet fractional Laplacian
in multi-tubes, i.e., domains with cylindrical outlets to infinity. Some new effects in comparison
with the local case are discovered.

Dedicated to Sergei A. Nazarov on the occasion of his jubilee

1. Introduction

The goal of this paper is obtaining a better understanding of spectral properties of
some non-local operators in domains with cylindrical outlets to infinity. This study
has various motivations.

The standard positive Laplacian �� in a domain � � Rn corresponds, up to a
multiplicative constant, to the quantization of the kinetic energy p2

2m
of a free parti-

cle with momentum p and mass m, confined in �. This is because the quantization
procedure maps the classical momentum p to the operator �ir. The Dirichlet con-
dition in this case means the hard walls of the domain. However, the relativity theory
tells that the choice of kinetic energy as above is not appropriate for high energies
and for a massive relativistic particle it should be replaced by

p
p2 Cm2. Thus,

the corresponding quantum Hamiltonian should be chosen as
p
��Cm2 (see, e.g.,

[8, 16, 28] for further details). This gives an inspiration to study fractional powers of
the Helmholtz operator, especially their spectral properties. Notice that such powers
are non-local operators, which significantly complicates the problem.

We discuss mainly the fractional Laplacian though our results can be transferred
to the fractional Helmholtz operator.

As in case of a non-relativistic particle, the important complication to the state-
ment of the problem is brought by the boundary condition. In contrast to the local
case, we have a non-unique procedure to impose the Dirichlet condition. The first
choice is to take the spectral power .���/s of the conventional Dirichlet Laplacian
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in �. In this case the analysis of spectrum of such a problem reduces to the analysis
of the standard Dirichlet Laplacian.

The second way is to consider the so-called restricted Dirichlet fractional Lapla-
cian A�

s . It is defined by the quadratic form

a�s Œu� D .A
�
s u; u/ WD

Z
Rn

j�j2sjFnu.�/j
2 d�;

where Fn stands for the n-dimensional Fourier transform

Fnu.�/ D
1

.2�/
n
2

Z
Rn

e�i��xu.x/ dx:

The domain of the quadratic form a�s is defined as follows:

Dom.a�s / D zH
s.�/ WD ¹u 2 H s.Rn/W suppu � x�º;

where H s.Rn/ is the classical Sobolev–Slobodetskii space (see, for instance, [34,
Section 2.3.3])

H s.Rn/ D ¹u 2 L2.R
n/W j�jsFnu.�/ 2 L2.R

n/º:

In what follows, we assume s 2 .0; 1/. This case has a strong connection to the
theory of stochastic processes. While the Laplacian � in Rn can be considered as a
generator of the standard Brownian semigroup exp.t�/, the fractional Laplacian, or
more exactly the operator �.��/s for s 2 .0; 1/, stands for the generator of the Lévi-
stable motion semigroup. In both cases, restricting to the domain � and posing the
Dirichlet conditions means posing the killing or absorbing boundary condition for the
original random process (see, e.g., [8, 14, 28]).

The study of spectral problems for the conventional Dirichlet Laplacian in domains
with cylindrical outlets to infinity has a long history. Typically, the spectra of such
problems consist of continuous spectra covering the ray Œ��;C1/ with some positive
threshold �� and a number of eigenvalues (bound states) below the threshold which
may appear because of the geometrical structure of the domain in a finite region (the
junction). Usually, this takes place if it is possible to inscribe a sufficiently large body
into the junction (see, e.g., [2, 31–33]) or if the cylinder is bent or broken (see, e.g.,
[9, 13, 15]). Typically, a finite number of eigenvalues may appear under the threshold
of the continuous spectrum. In some special cases, it is possible to prove the unique-
ness of such an eigenvalue (see, e.g., [3, 31, 32]).

For the relativistic case, we know only two recent works [11] and [6] which dis-
cuss a similar problem for the Dirac operator�ir. However, we stress that in contrast
to A�

s , this operator is local.
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The structure of the paper is the following. In Section 2 we recall some well-
known facts about the Caffarelli–Silvestre extension and prove an important auxiliary
lemma. Section 3 is devoted to the spectrum of A�

s in a (straight) tube.
In Section 4 we study the spectral properties of A�

s in a perturbed multi-tube. This
means that outside some compact set K , the domain � coincides with a finite union
of non-intersecting congruent semi-tubes, cf. [21]. We prove that, like in the local
case s D 1, the essential spectrum coincides with that in one semi-tube. However, in
comparison with the local case, this result holds only under the following additional
assumption: the axes of semi-tubes are not co-directional.

In Section 5 we study the influence of a local widening of a tube on the spectrum
of the operator A�

s . It is well known (see, e.g., [12] and references therein) that in the
local case, arbitrary such widening produces points of the discrete spectrum under the
threshold (in other words, the threshold is a virtual level for the Dirichlet Laplacian).
This effect obviously holds for the spectral fractional Laplacian. The same statement
turns out to be true for the restricted fractional Laplacian. A bit unexpectedly, the
proof for n D 2, s � 1

2
is essentially more complicated than in other cases.

We use letters C and c (with or without indices) to denote various positive con-
stants. To indicate that C depends on some parameters, we list them in the parenthe-
ses: C.: : : /.

2. Caffarelli–Silvestre extensions

The relation between fractional differential operators and generalized harmonic exten-
sions was discovered more than fifty years ago [22] and became popular thanks to the
celebrated work [7]. Namely, given u 2 zH s.�/, the function

Us.x; y/ D

Z
Rn

Ps.x � Qx; y/u. Qx/ d Qx; x 2 Rn; y 2 RC; (1)

with the generalized Poisson kernel

Ps.x; y/ D
�.nC2s

2
/

�
n
2�.s/

y2s

.jxj2 C y2/
n
2Cs

;

minimizes the weighted Dirichlet integral

E�s .W / D

1Z
0

Z
Rn

y1�2sjrW.x; y/j2 dx dy
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over the set

W.u/ D ¹W D W.x; y/WE�s .W / <1; W jyD0 D uº

and solves the boundary value problem

� div.y1�2srW / D 0 in Rn �RCI W jyD0 D u:

Moreover, the following relations hold:

A�
s u D �C.s/ lim

y!0C
y1�2s @yUs.�; y/; a�s Œu� D C.s/E�s .Us/; (2)

where C.s/D 4s�.sC1/
2s�.1�s/

(the limit is understood in the sense of functionals on zH s.�/

and pointwise at every point of smoothness of u).
The function Us is usually called the Caffarelli–Silvestre extension of u. The set

W.u/ is also called the set of admissible extensions of u.

The following statement will be used in Section 5.

Lemma 1. Let n > 2 � 2s.1 Assume that � is bounded. Then for any function u 2
zH s.�/, its Caffarelli–Silvestre extension belongs toL2.Rn �RC/with weight y1�2s .

Proof. Using formula (1) and the Fourier transform in x we obtain

I WD

1Z
0

Z
Rn

y1�2sjUs.x; y/j
2 dx dy

D

1Z
0

y1�2s
Z

Rn

jFnUs.�; y/j
2 d� dy

D .2�/
n
2

Z
Rn

jFnu.�/j
2

1Z
0

y1�2sjFnPs.�; y/j
2 dy d�:

Notice that the function Ps is spherically symmetric in x and homogeneous:

Ps.x; y/ D y
�nPs.y

�1x; 1/:

This implies
FnPs.�; y/ D FnPs.y�; 1/ DW Ops.yj�j/:

1This is a restriction only for n D 1.
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Therefore, we can change the variable in the last integral and obtain

I D .2�/
n
2

Z
Rn

j�j2s�2jFnu.�/j
2 d�

1Z
0

t1�2sj Ops.t/j
2 dt:

Since Ps is smooth in x, Ops is rapidly (in fact, exponentially) decaying at infinity, and
the second integral evidently converges. Since u is compactly supported, its Fourier
transform is smooth, and the first integral converges for 2 � 2s < n. This concludes
the proof.

3. Spectral problem in a straight tube

Let ! be a bounded domain (connected open set) in Rn�1, and letQ be a tube (cylin-
der)

Q D ! �R D ¹x D .x0; z/W x0 2 !; z 2 Rº: (3)

Recall that the space zH s.!/ is compactly embedded intoL2.!/ and thus the spec-
trum of the operator A!

s is purely discrete and consists of a sequence of eigenvalues

0 < �1.A
!
s / < �2.A

!
s / � �3.A

!
s / � � � � � �k.A

!
s / � � � � ! C1:

The corresponding sequence of eigenfunctions 'k.A!
s / can be chosen orthonormal in

L2.!/.
The following assertion is more or less standard. We provide its proof for com-

pleteness.

Lemma 2. The first eigenvalue �1.A!
s / (in what follows we denote it byƒs) is simple

and the corresponding eigenfunction '1.A!
s / can be chosen positive in !.

Proof. By [24, Theorem 3], for any u2 zH s.!/we have juj 2 zH s.!/, and the inequal-
ity a!s Œjuj�� a

!
s Œu� holds. Therefore, without loss of generality we can assume '1.A!

s /

non-negative. Then the strong maximum principle [17, Theorem 2.5] (see also [25])
shows that '1.A!

s / > 0 in !. Finally, if ƒs was multiple eigenvalue, we could find a
sign-changing eigenfunction, a contradiction.

The max-min principle (see, e.g., [5, §10.2]) easily implies that the eigenvalues of
the operator A!

s decrease when the domain ! expands.

Remark 1. The inequality between restricted and spectral fractional Laplacians ([23,
Theorem 2], see also the survey [29]) implies that

�k.A
!
s / < .�k.��!//

s; k 2 N:
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Exact values of �k.��!/ are well known for several domains. For �k.A!
s /, up to our

knowledge, no exact values are known, and sufficiently sharp estimates are obtained
only in the ball, see [10] and references therein. We also mention the paper [20],
where, besides two-sided estimates for �k.AI

s / on the interval I D .�1; 1/, the two-
term asymptotics was derived:

�k.A
I
s / D

�k�
2
�
.1 � s/�

4

�2s
CO

� 1
k

�
; k !1

(recall that �k.��I / � .k�2 /
2).

In this section we relate the spectra of A
Q
s and A!

s .

Theorem 1. The spectrum of A
Q
s coincides with the ray

�.AQ
s / D �ess.A

Q
s / D Œƒs;C1/; (4)

where ƒs is the smallest eigenvalue of A!
s .

Proof. First of all, we recall that, for any semi-bounded self-adjoint operator, the min-
imum of its spectrum coincides with the minimum of the corresponding Rayleigh
quotient. In particular,

inf
v2 zH s.!/

a!s Œv�

kvIL2.!/k2
D ƒs:

For any u 2 zH s.Q/ and z 2 R let us define uz 2 zH s.!/ by the formula

uz.x
0/ D u.x0; z/;

and denote Uz;s its Caffarelli–Silvestre extension. Then we have

aQs Œu� D C.s/

1Z
0

Z
Rn�1

Z
R

y1�2s.jr 0Us.x
0; z; y/j2 C j@zUs.x

0; z; y/j2/ dz dx0 dy

� C.s/

Z
R

1Z
0

Z
Rn�1

y1�2sjr 0Uz;s.x
0; y/j2 dx0 dy dz

�

Z
R

ƒskuzIL2.!/k
2 dz D ƒskuIL2.Q/k

2;

where r 0 is the gradient with respect to .x0; y/. Thus,

inf �.AQ
s / D inf

u2 zH s.Q/

a
Q
s Œu�

kuIL2.Q/k2
� ƒs:
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To prove (4), we introduce the Dirichlet fractional Helmholtz operator in a domain
� � Rn

A�
s;� D .��� C �

2/s:

It is defined by its quadratic form

a�s;� Œu� D .A
�
s;�u; u/ WD

Z
Rn

.j�j2 C �2/sjFnu.�/j
2 d�; u 2 zH s.�/:

In the case of a bounded domain !, we denote byƒs;� the first eigenvalue of the oper-
ator A!

s;� and by 's;� the corresponding eigenfunction, which can be chosen positive
and normalized in L2.!/.

Obviously, for any � � Rn

a�s;�1 � a
�
s;�2

for �1 � �2:

Therefore, the function f .�/Dƒs;� is increasing. Moreover, it is continuous, f .0/D
ƒs , and f .�/!C1 as � !C1, so

¹ƒs;� W � 2 Œ0;C1/º D Œƒs;C1/:

First, we give an informal explanation of (4). We claim that the function
's;�.x

0/ei�z is an “eigenfunction of continuous spectrum” for A
Q
s corresponding to

the “eigenvalue” ƒs;� . Indeed, we have

FnŒ's;�.x
0/ei�z�.�/ D Fn�1Œ's;� �.�

0/ı.� � �/;

where � D .� 0; �/ is the dual variable to x D .x0; z/, and thus

FnŒA
Q
s 's;�.x

0/ei�z�.�/ D j�j2sFn�1Œ's;� �.�
0/ı.� � �/

D .j� 0j2 C �2/sFn�1Œ's;� �.�
0/ı.� � �/

D Fn�1ŒA
!
s;�'s;� �.�

0/ı.� � �/

D ƒs;�Fn�1Œ's;� �.�
0/ı.� � �/

D ƒs;�FnŒ's;�.x
0/ei�z�.� 0; �/;

and the claim follows.
To be more formal, we construct for any ƒs;� with � � 0 a Weyl sequence for the

operator A
Q
s . We put

vm.x/ D 's;�.x
0/�m.z/; m 2 N;

where

�m.z/ D e
i�z�

�z � 2m2
m

�
;
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and � is a smooth cutoff function such that �.z/ D 1 for jzj � 1 and �.z/ D 0 for
jzj � 2. One can easily check that �m1.z/�m2.z/ � 0 if m1 ¤ m2, so it is enough to
prove that

kA
Q
s vm �ƒs;�vmIL2.Q/k

kvmIL2.Q/k
! 0 as m!C1:

We have

FnŒA
Q
s vm �ƒs;�vm�.�/ D FnŒA

Q
s vm�.�/ � Fn�1ŒA

!
s 's;� �.�

0/F1Œ�m�.�/

D .j�j2s � .j� 0j2 C �2/s/Fn�1Œ's;� �.�
0/F1Œ�m�.�/;

so, by the Parseval theorem we obtain that

kAQ
s vm �ƒs;�vmIL2.Q/k

2

D

Z
Rn

..j� 0j2 C j�j2/s � .j� 0j2 C �2/s/2jFn�1Œ's;� �.�
0/j2jF1Œ�m�.�/j

2 d � 0d�:

We use the relation jF1Œ�m�.�/j D m jF1Œ��.m.� � �//j, change the variable and
arrive at

kAQ
s vm �ƒs;�vmIL2.Q/k

2

D m

Z
Rn

��
j� 0j2 C

ˇ̌̌ �
m
C �

ˇ̌̌2�s
� .j� 0j2 C �2/s

�2
jFn�1Œ's;� �.�

0/j2jF1Œ��.�/j
2 d� 0d�

� m

Z
Rn

D

�ˇ̌̌ �
m
C �

ˇ̌̌2s
� �2s

�2
jFn�1Œ's;� �.�

0/j2jF1Œ��.�/j
2 d� 0 d�

� m

Z
R

�� �
m

�2
C 2�

ˇ̌̌ �
m

ˇ̌̌�2s
jF1�.�/j

2 d�

Z
Rn�1

jFn�1's;�.�
0/j2 d� 0

�
C1.s; �/

m2s�1
:

Since 's;� are normalized, we get

kvmIL2.Q/k
2
D

Z
R

ˇ̌̌
�
�z � 2m2

m

�ˇ̌̌2
dz D mk�IL2.R/k

2
D C2m;

and finally

kA
Q
s vm �ƒs;�vmIL2.Q/k

kvmIL2.Q/k
�
C.s; �/

ms
! 0; m!C1;

as desired.



Dirichlet fractional Laplacian in multi-tubes 715

Qj

K

Figure 1. Perturbed multi-tube.

Corollary 1. Let Q D ! � RC be a semi-tube. Then the spectrum of AQ
s coincides

with the ray Œƒs;C1/, where ƒs is the smallest eigenvalue of A!
s .

Indeed, Theorem 1 and monotonicity of the spectra on domain imply the relation
�.AQ

s / � Œƒs;C1/, whereas the relation Œƒs;C1/ � �ess.A
Q
s / holds due to the

same Weyl sequence.

4. Problem in a perturbed multi-tube

Let� be a perturbed multi-tube, that is, outside of some compact set K ,� coincides
with a finite union of non-intersecting semi-tubes Qj , j D 1; : : : ; N . We assume that

• all Qj are congruent to Q D ! �RC (recall that ! is connected);

• the axes of Qj , j D 1; : : : ; N , are not co-directional, see Figure 1.

Remark 2. We stress that the latter assumption is not needed in the local case s D 1.

First, we prove an auxiliary statement.

Theorem 2. For any R > 0 and for arbitrary u 2 zH s.�/, the following inequality
holds:

a�s Œu� � .ƒs � CR
�2s/kuIL2.�/k

2
� CkuIL2.BR/k

2; (5)

where BR D ¹x 2 RnW jxj < Rº is the ball, and C does not depend on u and R.

Proof. Here we partly follow the line of the proof of [4, Lemma 1] (see also [18])
but essentially modify it for the non-local case, cf. [30, Lemma 3.1]. For the sake of
brevity we denote by U.x; y/ D Us.x; y/ the Caffarelli–Silvestre extension of u.
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We choose r0 > 0 such that the ball Br0 contains the compact set K , and the trun-
cated cylinders Qj n Br0 can be covered by disjoint conical domains Cj ,
j D 1; : : : ; N , with the common vertex at the origin. Without loss of generality, we
assume that R > 2.r0 C 2/.

Let �1 and �2 be smooth cutoff functions of r D
p
jxj2 C y2 such that

�1.r/ D 0 for r > r0 C 2I �2.r/ D 0 for r < r0 C 1I �21 C �
2
2 D 1:

Then, we have

jrU j2 D
X
kD1;2

.jr.U�k/j
2
� 2UrU � �kr�k � U

2
jr�kj

2/:

Since 2UrU D r.U 2/, integration by parts gives
1Z
0

Z
Rn

y1�2sjrU.x; y/j2 dx dy D
X
kD1;2

� 1Z
0

Z
Rn

y1�2sjr.U�k/j
2 dx dy

C

1Z
0

Z
Rn

U 2�k div.y1�2sr�k/ dx dy

�

Z
Rn

U 2y1�2s�k@y�k dx

ˇ̌̌̌
yD0

�
DW

X
kD1;2

.Ik1 C Ik2 � Ik3/: (6)

The surface integrals Ik3 (k D 1; 2) disappear since �k depends only on r and

@y�k.x; y/ D O.y/ as y !C0; x 2 Rn.

To estimate terms Ik2 we split the representation (1) as follows:

U.x; y/ D U1.x; y/C U2.x; y/ WD

� Z
BR

C

Z
RnnBR

�
Ps.x � Qx; y/u. Qx/ d Qx:

and note that

j�k div.y1�2sr�k/j D jy1�2s�k��k C .1 � 2s/y�2s�k@y�kj

� Cy1�2s�Œr0C1;r0C2�.r/;

where �G stands for the characteristic function of the set G. This gives

jIk2j � C

1Z
0

Z
Rn

y1�2s.U 21 .x; y/C U
2
2 .x; y//�Œr0C1;r0C2�.r/ dx dy DW J1 C J2:
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The estimate of J1 follows from the fact that the Poisson kernel Ps.�; y/ has L1-norm
equal to one, see, e.g., [7] or [27]. So, the Young inequality yields

J1 � C

r0C2Z
0

y1�2skU1.�; y/IL2.R
n/k2 dy � C

r0C2Z
0

y1�2skuIL2.BR/k
2 dy:

To estimate J2 we notice that the inequalities j Qxj �R and jxj � r0C 2 imply jx � Qxj �
j Qxj=2. Using the Bunyakovsky–Cauchy–Schwarz inequality we obtain

J2 � C

1Z
0

Z
Rn

y1�2s�Œr0C1;r0C2�.r/

� Z
RnnBR

ju. Qx/j
y2s

.j Qxj2=4C y2/
n
2Cs

d Qx

�2
dx dy

� C.r0/kuIL2.�/k
2

1Z
0

Z
RnnBR

y1�2s
y4s

.j Qxj2=4C y2/nC2s
d Qx dy

D C.r0/kuIL2.�/k
2

1Z
0

�1�2s
�4s

.�2 C 1=4/nC2s
d�

Z
RnnBR

j Qxj2�2s�2n d Qx

� C.r0/kuIL2.�/k
2R2�n�2s:

We substitute these estimates into (6) and arrive at

a�s Œu� D C.s/

1Z
0

Z
Rn

y1�2sjrU j2 dx dy

� C.s/

1Z
0

Z
Rn

y1�2sjr.U�2/j
2 dx dy

� C.r0/R
2�n�2s

kuIL2.�/k
2
� C.r0/kuIL2.BR/k

2: (7)

Denote by V the Caffarelli–Silvestre extension of the function u�2. Since U�2 is
an admissible extension of u�2, we have

1Z
0

Z
Rn

y1�2sjr.U�2/j
2 dx dy �

1Z
0

Z
Rn

y1�2sjrV j2 dx dy:

Now, we introduce a partition of unity on the unit sphere in Rn � R, that is a set
of smooth, non-negative, zero order positively homogeneous functions }j .x; y/ �
}j .

x
r
; y
r
/, j D 1; : : : ; N , such that

}j .x; y/ D }j .x;�y/I }j .x; 0/ � 1 for x 2 Cj I

NX
jD1

}2j .x; y/ � 1:
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Similarly to (6), we derive

1Z
0

Z
Rn

y1�2sjrV j2 dxdy D

NX
jD1

� 1Z
0

Z
Rn

y1�2sjr.V}j /j
2 dx dy

C

1Z
0

Z
Rn

V 2}j div.y1�2sr}j / dx dy

�

Z
Rn

V 2y1�2s}j @y}j dx

ˇ̌̌̌
yD0

�
: (8)

It is easy to see that

jrx}j j �
C

r
I j@y}j j �

Cy

r2
I j�}j j �

C

r2
I

on the other hand, we have

V.x; y/ D

Z
RnnBr0C1

Ps.x � Qx; y/.u�2/. Qx/ d Qx;

that gives V.x; y/ D O.y2s/ as y !C0, x 2 B r0
2

.
Therefore, the last term in (8) vanishes, and we obtain

1Z
0

Z
Rn

y1�2sjrV j2 dx dy

�

NX
jD1

1Z
0

Z
Rn

y1�2sjr.V}j /j
2 dx dy � C

1Z
0

Z
Rn

V 2
y1�2s

jxj2 C y2
dx dy:

Since V}j is an admissible extension for the function u�2}j supported in Cj ,
Corollary 1 gives

C.s/

1Z
0

Z
Rn

y1�2sjr.V}j /j
2 dxdy � a

Qj
s Œu�2}j � � ƒsku�2}j IL2.Cj /k

2;

whereas [26, Lemma 2.1] provides the estimate

1Z
0

Z
Rn

V 2
y1�2s

jxj2 C y2
dxdy � Ckjxj�su�2IL2.�/k

2:
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Substituting all estimates into (7), we arrive at

a�s Œu� �ƒs

NX
jD1

ku�2IL2.Cj /k
2
� Ckjxj�su�2IL2.�/k

2

� C.r0/R
2�n�2s

kuIL2.�/k
2
� C.r0/kuIL2.BR/k

2;

and (5) follows.

Theorem 3. Under the above assumptions, the essential spectrum of A�
s coincides

with the ray Œƒs;C1/, where ƒs is the smallest eigenvalue of A!
s .

Proof. The Weyl sequence constructed in the proof of Theorem 1 shows that

Œƒs;C1/ � �ess.A
�
s /:

To prove the opposite inclusion we need to check that if � D ƒs � 2ı with some
positive ı then � does not belong to the essential spectrum of A�

s . Assume the con-
trary and consider the corresponding Weyl sequence that is a sequence ¹ukºC1kD1 �
zH s.�/ orthonormal in L2.�/ such that

a�s Œuk�! � as k !C1: (9)

However, choosing R so large that CR�2s � ı, we obtain by Theorem 2

a�s Œuk� � .ƒs � CR
�2s/ � CkukIL2.BR/k

2
� �C ı � CkukIL2.BR/k

2:

By (9), the sequence ¹ukº is bounded in H s.BR/. By the Rellich theorem, it is pre-
compact in L2.BR/. Since it is orthonormal, we obtain

kukIL2.BR/k ! 0 H) lim inf a�s Œuk� � �C ı;

that contradicts (9).

Remark 3. If the cross-sections of the outlets to infinity differ, then a similar argu-
ment proves the relation �ess.A

�
s / D Œƒs;C1/, where ƒs is the minimal of the

smallest eigenvalues for the Dirichlet fractional Laplacians on the cross-sections.

5. Widening of the tube

The simplest multi-tube is a locally expanded cylinder (3) (see Figure 2). Namely, we
introduce the layer

…` D ¹x D .x
0; z/ � RnW jzj < `º; ` > 0;
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` `

Figure 2. Locally expanded cylinder.

and assume that a domain Q0 ¥ Q coincides with Q outside …`, whereas the set
Q0 \…` is bounded. Denote for the brevity

Q` D Q \…`I Q0` D Q
0
\…`:

By Theorem 3, we have

�ess.A
Q
s / D �ess.A

Q0

s / D Œƒs;C1/;

where ƒs is the smallest eigenvalue of the operator A!
s . Denote the corresponding

positive eigenfunction by 's.x0/.
The main result of this section is the following.

Theorem 4. The discrete spectrum of A
Q0

s is not empty. Namely, there is at least one
eigenvalue in the interval .0;ƒs/.

Proof. To prove this theorem we show that

inf �.AQ0

s / < ƒs:

This can be done via the max-min principle by construction of a function u 2 zH s.Q0/

that satisfies the inequality

aQ
0

s Œu� �ƒskuIL2.Q
0/k2 < 0:

According to (2), it is sufficient to construct a function W D W.x; y/ such that

C.s/EQ
0

s ŒW � �ƒskW.�; 0/IL2.Q
0/k2 < 0: (10)

To that end, we introduce a family of functions W", " > 0, in the following way:

W".x; y/ D U.x
0; y/�".z; y/C w".x; y/:
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Here U is the Caffarelli–Silvestre extension of 's , the correction term w" will be
chosen later, whereas �" is a cutoff function:

�".z; y/ WD

´
�."jzj/; if either n � 3 or n D 2 and s 2 .1

2
; 1/;

�."
p
y2 C z2/; if n D 2 and s 2 .0; 1

2
�;

where � is a smooth function on RC, �.r/ � 1 for r � 1 and �.r/ � 0 for r � 2, and
�0.r/ � 0.

Inserting W" into (10), we obtain

C.s/EQ
0

s ŒW"� �ƒskW".�; 0/IL2.Q
0/k2 D 	1 C 	2 C 	3 C 	4; (11)

where

	1 DC.s/

1Z
0

Z
Rn

y1�2sjrU.x0; y/j2�2" .z; y/ dx dy �ƒs

Z
Q

'2s .x
0/�2" .z; 0/ dx;

	2 DC.s/

1Z
0

Z
Rn

y1�2s.2UrU � �"r�" C U
2
jr�"j

2/ dxdy;

	3 D 2C.s/

1Z
0

Z
Rn

y1�2sr.U�"/ � rw" dx dy � 2ƒs

Z
Q

's.x
0/�".jzj/w".x; 0/ dx;

	4 DC.s/

1Z
0

Z
Rn

y1�2sjrw".x; y/j
2 dxdy �ƒs

Z
Q

w2" .x; 0/ dx:

It is easy to see that

	1�

Z
R

�
C.s/

1Z
0

Z
Rn�1

y1�2sjrU.x0;y/j2 dx0 dy �ƒs

Z
!

'2s .x
0/ dx0

�
�2."jzj/ dzD 0:

Let us estimate 	2. Notice that if either n � 3 or n D 2 and s 2 .1
2
; 1/, then the

first term disappears, and we have

	2 D C.s/

1Z
0

Z
Rn�1

y1�2sU 2 dx0 dy

Z
R

.�0".jzj//
2 dz

.�/
� C"

2Z
1

.�0.r//2 dr D O."/

(the inequality (�) is due to Lemma 1).
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The second case, n D 2 and s 2 .0; 1
2
�, is more tricky. We integrate by parts the

first term. Similarly to (6), the surface integral disappears, and thus

	2 D C.s/

1Z
0

Z
R2

U 2
�
y1�2s.@z�"/

2
� �"@y.y

1�2s@y�"/
�
dx dy:

As in the proof of Lemma 1, we use the Fourier transform in x0 and writeZ
R

U.x0; y/2 dx0 D .2�/
1
2

Z
R

jF1's.�
0/j2j Op.y� 0/j2 d� 0;

where
Op.t/ D F1Ps.t; 1/:

By the coordinate transform y D "�1r sin.�/, z D "�1r cos.�/ we arrive at

j	2j � C

2Z
1

�
r.�0.r//2 C r j�00.r/j C j�0.r/j

� �
2Z
0

."�1r sin.�//1�2s

�

Z
R

jF1's.�
0/j2j Op."�1r sin.�/� 0/j2 d� 0 d� dr

� C

Z
R

jF1's.�
0/j2

2Z
1

�
2Z
0

."�1r sin.�//1�2sj Op."�1r sin.�/� 0/j2 d� dr d� 0:

We recall that Op decays exponentially and estimate the interior double integral as
follows:

2Z
1

�=2Z
0

."�1r sin.�//1�2sj Op."�1r sin.�/� 0/j2 d� dr

� C

2Z
1

�=2Z
0

."�1r sin.�//1�2s exp.�c"�1r sin.�/j� 0j/ d� dr

� C

�=2Z
0

"2s�1 exp.�c"�1� j� 0j/ d� D C"2s
1 � exp.�c"�1j� 0j/

j� 0j
:

Thus,

j	2j � C"
2s

� Z
j�0j�"

C

Z
"�j�0j�1

C

Z
j�0j�1

�
jF1's.�

0/j2
1 � exp.�c"�1j� 0j/

j� 0j
d� 0

DW 	21 C 	22 C 	23:
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Now, we recall that F1's is smooth, and, therefore,

	21 � C"
2s

1Z
0

1 � exp.�ct/
t

dt � C"2sI

	22 � C"
2s

1Z
"

d� 0

� 0
� C"2s log."�1/I

	21 � C"
2s

Z
R

jF1's.�
0/j2 d� 0 � C"2s:

Summing up, we obtain that in any case

	2 D O.ı/; where ı D max¹"; "2s log."�1/º:

Now, we choose w".x; y/ D ı
1
2w.x; y/, where w is a smooth function supported

in .Q0
`
n xQ`/ � Œ0; 1/. Then, easily, the last term in 	3 vanishes, and 	4 D O.ı/.

Further, if " is small enough then we can drop �" in 	3 and recall that U satisfies the
equation

div.y1�2srU/ D 0 in Rn �RC: (12)

Therefore, the integration by parts yields

	3 D �2C.s/ı
1
2

Z
Q0
`
n xQ`

lim
y!0C

.y1�2s @yU.x
0; y//w.x; 0/ dx:

We claim that 	3 D �Cı
1
2 < 0 provided w � 0, w.�; 0/ 6� 0. Indeed, changing

the variable � D y2s , we rewrite the equation (12) as follows:

�xU.x
0; �

1
2s /C 4s2�

2s�1
s @2��U.x

0; �
1
2s / D 0 in Rn �RC; (13)

and

	3 D �2C.s/ı
1
2

Z
Q0
`
n xQ`

2s lim
�!0C

U.x0; �
1
2s /

�
w.x; 0/ dx:

By the strong maximum principle, U > 0 in Rn �RC. Since U.�; 0/D 0 inQ0
`
n xQ`,

the differential operator in (13) satisfies the assumptions of the generalized boundary
point lemma [19] (see also [1, p. 201]). Namely, we have

lim inf
�!0C

U.x0; �
1
2s /

�
> 0; x 2 Q0` n

xQ`;

and the claim follows.
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Finally, we substitute all obtained estimates into (11). This gives

C.s/EQ
0

s ŒW"� �ƒskW".�; 0/IL2.Q
0/k2 � �Cı

1
2 CO.ı/:

This, in turn, gives (10) provided ı (and therefore ") is small enough, and completes
the proof.

Remark 4. Notice that �1.A
Q0

s / < .�1.��Q0//
s , cf. Remark 1.

Funding. The results of Section 3 were obtained the under support of the Russian
Foundation for Basic Research (RFBR) grant 20-51-12004. The results of Sections 4
and 5 were obtained under the support of the Russian Science Foundation (RSF) grant
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