
J. Spectr. Theory 13 (2023), 727–754
DOI 10.4171/JST/459

© 2023 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

A probabilistic Weyl-law
for perturbed Berezin–Toeplitz operators

Izak Oltman

Abstract. This paper proves a probabilistic Weyl-law for the spectrum of randomly perturbed
Berezin–Toeplitz operators, generalizing a result proven by Martin Vogel (2020). This is done
following Vogel’s strategy using the exotic symbol calculus developed by the author (2022).

1. Introduction

This paper generalizes a result of Martin Vogel in [22] which proves a probabilistic
Weyl-law for quantizations of functions on tori. Here we do the same, but with the
tori replaced by arbitrary Kähler manifolds equipped with positive line bundles.

In [22], Vogel considers Toeplitz quantizations of smooth functions on a real
2d -dimensional torus, which associates every smooth function f on the torus to a
family of N d � N d matrices, fN , for all N 2 N (here N�1 is the semi-classical
parameter). A recent physical motivation for such constructions is written by Dele-
porte in [6, Section 1]. Next, a random matrix with sufficiently small norm is added to
fN , and the spectrum is shown to obey an almost-sure Weyl-law asN goes to infinity.
This was conjectured by Christiansen and Zworski in [4] and is a major extension of
their work.

This result is most striking when the unperturbed matrix is non-self-adjoint. For
example, if f .x/ D cos.2�x/C i cos.2��/, then the quantization is

fN D

0BBBB@
cos.2�=N/ i=2 0 0 ��� i=2

i=2 cos.4�=N/ i=2 0 ��� 0

0 i=2 cos.6�=N/ i=2
::: 0

:::
:::

:::
:::

:::
:::

0 ��� 0 i=2 cos.2.N�1/�=N/ i=2
i=2 0 ��� 0 i=2 cos.2�/
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Figure 1. Left: Eigenvalues of the Scottish flag operator with N D 50. Right: Eigenvalues of
the Scottish flag operator with a small random perturbation with N D 1000.

which numerically has spectrum contained on two crossing lines in the complex plane.
This operator is aptly named the Scottish flag operator and is further described by
Embree and Trefethen in [21]. Interestingly, (as far as we are aware) it is unknown
analytically where the spectrum of fN lives. However, if randomly perturbed, the
spectrum spreads out with density given by the push-forward of the Lebesgue measure
on the torus by f . Figure 1 plots the spectrum of fN with no perturbation, and with a
small perturbation.

The spectral properties of randomly perturbed non-self-adjoint operators were
pioneered by Hager in [10], in which the operator hDx C g.x/WL2.S1/! L2.S1/

was studied. This result, and numerous subsequent results are discussed by Sjöstrand
in [15]. There are related results describing spectral properties of randomly perturbed
Toeplitz matrices, which can be defined as quantizations of symbols on T2 with sym-
bol independent of x. See Davies and Hager [5], Guionnet, Wood and Zeitouni [9],
Sjöstrand and Vogel [16, 17], and references given there.

This paper is the natural generalization of Vogel’s result in [22]. Here we prove
a similar result for quantizations of functions on Kähler manifolds (with sufficient
structure, as discussed in Section 2). These quantizations, called Berezin–Toeplitz
operators (or just Toeplitz operators) were first described by Berezin in [2] as a par-
ticular type of quantization of symplectic manifolds. Following [2], for every smooth
function f on a quantizable Kähler manifold X , we get a family of finite rank opera-
tors, TNf , indexed byN 2N (see [13] for a connection between these quantizations,
and quantizations on the torus) which have physical interpretations. Deleporte in [6,
Appendix A] relates this quantization to spin systems in the large spin limit, and Dou-
glas and Klevtsov in [7] use path integrals for particles in a magnetic field to derive
the Bergman kernel (a key ingredient in constructing TNf ).
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Next, if we add a small Gaussian-type random perturbation G! to these operators
(see Definition 2.3), the empirical measures weakly converge almost surely (see The-
orem 2 in Section 2 for a precise statement). Theorem 3 states a result about more
general random perturbations W! (see Definition 2.3) but with a more restrictive cou-
pling constant. A consequence of Theorem 3 is the following probabilistic Weyl-law.

Theorem 1 (A probabilistic Weyl-law). Given a quantizable Kähler manifoldX , f 2
C1.X IC/ such that there exists � 2 .0; 1� so that

�d .¹x 2 X W jf .x/ � zj
2
� tº/ D O.t�/

as t ! 0 uniformly for z 2 C (where �d is the Liouville volume form on X ), W! a
random matrix (see Definition 2.3), and ƒ � C, then almost surely�2�

N

�d
#¹Spec.TNf CN�dW!/ \ƒº

N!1
����! �d .x 2 X Wf .x/ 2 ƒ/:

Finer results are expected for describing the spectrum of randomly perturbed
Toeplitz operators. In [22], precise statements about the number of eigenvalues are
obtained using counting functions of holomorphic functions. Here we only show weak
convergence of the empirical measures, but achieve this in a relatively simple way
using logarithmic potentials as presented in [17].

Here we present numerical examples to motivate the main result of this paper.
Consider the Kähler manifold CP1 (complex protective space of dimension 1) which
can be identified with the real 2-sphere with coordinates .x1; x2; x3/. In Figure 2,
we compute the spectrum of the quantization of the function f D x1 C 2x22 C ix2.
Before perturbation, the spectrum lies on several lines in the complex plane, some-
what analogous to the Scottish flag operator. However, as a perturbation is added, the
spectrum fills in. This paper describes the structure of the spectrum of this perturbed
operator in the semiclassical limit, as N !1.

Numerical verification of this paper’s result can be seen if f D ix1 C x2 (still on
CP1). Figure 3 computes the spectrum of TNf with a random perturbation added,
and plots the number of eigenvalues in circles of increasing radii versus the predicted
number of such eigenvalues by Theorem 1. More animations can be found on my
website.1

Outline of paper. Section 2 reviews background material and states the main result
of this paper (Theorem 2). In Section 3, a series of preliminary results about Toeplitz
operators are presented. Section 4 reviews logarithmic potentials and reduces Theo-
rem 2 to proving a probabilistic bound involving logarithmic derivatives of Toeplitz

1httpsW//math.berkeley.edu/~izak/research/toeplitz/movies.html

https://math.berkeley.edu/~izak/research/toeplitz/movies.html
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Figure 2. Left: Eigenvalues of the Toeplitz operator on CP1 identified with the real 2-sphere
with symbol x1 C 2x21 C ix2 and N D 50. Right: Eigenvalues of the same operator but with a
small random perturbation and N D 1000.
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Figure 3. Left: Eigenvalues of the randomly perturbed Toeplitz operator on CP1 identified with
the real 2-sphere with symbol ix1C x2 anN D 2000. Right: The number of eigenvalues within
circles in the complex plane centered at zero with radii ranging from 0 to 1, plotted against the
predicted distribution of eigenvalues from Theorem 1.

operators. Section 5 sets up a Grushin problem to further reduce the problem to prove
probabilistic bounds on spectral properties of self-adjoint operators. Section 6 proves
a deterministic bound involving the logarithmic derivative of Toeplitz operators. The
technique involves scaling the symbol by a power of N , and therefore relies on the
exotic calculus presented in Section 3. Finally, Section 7 chooses constants to estab-
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lish the required probabilistic bound for the almost sure convergence in Theorem 2.
In Section 8, we describe how to extend this result to the more general random per-
turbations as stated in Theorem 3.

Notation. We will use the following notation in this paper for functions f and g
depending on N . We write f D O.g/ if there exists C > 0 independent of N such
that jf j � Cg. We write f D O.N�1/ if for every M 2 N, f D O.N�M /. Any
subscript in the big-O will denote dependence of C of what is in the subscript. We
will write f . g if there exists a C > 0 independent of N such that f � Cg. We
write f � g to mean that Cf � g for some sufficiently large C > 0 independent of
N . For a u; v; w elements of a Hilbert space, denote u˝ v the map that sends w to
uhw; vi.

2. Main result

Let .X; �/ be a compact, connected, d -dimensional Kähler manifold with a holomor-
phic line bundle L with positively curved Hermitian metric locally given by hD e�' .
That is, over each fiber x 2 X , kvkh WD e�'.x/jvj. Given this, the globally defined
symplectic form, � , is related to the Hermitian metric by i@N@' D � . Fixing local
trivializations, ' can be described as a strictly plurisubharmonic smooth real-valued
function (called the Kähler potential). This is further outlined by Le Floch in [11].

Let LN be the N th tensor power of L, which has Hermitian metric hN WD e�N' .
Let �d D �^d=dŠ be the Liouville volume form on X . This provides an L2 structure
on sections of LN . Indeed, if u and v are smooth sections on LN , then define

hu; viLN WD

Z
X

hN .u; v/ d�d :

Define L2.X; LN / to be the space of smooth sections of LN with finite L2 norm. In
this L2 space, let H 0.X;LN / be the space of holomorphic sections.

Proposition 2.1. The dimension of H 0.X;LN / is finite, and is asymptotically� N
2�

�d
vol.X/CO.N d�1/:

Proof. See [3, Corollary 2].

For the remainder of this paper, denote dim.H 0; .X; LN // by N D N .N /. The
orthogonal projection from L2.X;LN / to H 0.X;LN / is called the Bergman projec-
tor and is denoted by…N . Finally, given f 2 C1.X IC/, the Toeplitz operators asso-
ciated to f , written TNf , are defined for eachN 2N as TNf .u/D…N .f u/, where
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u 2 H 0.X;LN /. In this way, TNf are finite rank operators mapping H 0.X;LN / to
itself. For the remainder of this paper, we will fix a basis forH 0.X;LN / so that TNf
(and similar operators) can be considered as matrices.

The class of functions to quantize will often depend on N . To define this symbol
class requires local control of functions. Fix a finite atlas of neighborhoods .Ui ; �i /i2	

for the Kähler manifold X .

Definition 2.2 (S.1/). S.1/ is the set of all smooth functions f on X taking complex
values which can be written asymptotically f �

P
N�jfj , where fj 2 C1.X IC/

do not depend on N . This tilde means that, for all ˛ 2 N,

@˛x

�
f ı �i .x/ �

MX
jD0

N�jfj ı �i .x/
�
D O˛.N

�j�1/

for all i 2 	, and all ˛ 2Nd . By Borel’s theorem, given any fj 2 S.1/ not depending
on N , there exists f 2 S.1/ such that f �

P
N�jfj .

If f �
P
N�jfj , we call f0 the principal symbol of f , which is unique modulo

O.N�1/.
We next add a random perturbation to these Toeplitz operators. For this, we must

fix a probability space � with probability measure P .

Definition 2.3 (G! and W!). For each N , let ¹ei W i D 1; : : : ;N º be an orthonormal
basis of H 0.X;LN /. Define

G! D

NX
i;jD1

j̨;kei ˝ ej WH
0.X;LN /! H 0.X;LN /

where j̨;k are independent identically distributed complex Gaussian random vari-
ables with mean zero and variance 1.

Similarly define

W! D

NX
i;jD1

Q̨j;kei ˝ ej ;

with Q̨j;k independent identically distributed copies of a complex random variable
with mean zero and bounded second moment.

The ! in the subscript of these objects is to emphasize that these objects are ran-
dom. That is, for each ! 2 �, G! is a finite rank operator. The majority of this article
describes perturbations by G! (the Gaussian case), while a brief note at the end con-
cerns the more general perturbations by W! .
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This paper will prove almost sure weak convergence of the empirical distribution
of eigenvalues of randomly perturbed Toeplitz operators. The principal symbol of f
must also satisfy the property that there exists � 2 .0; 1� such that

�d .¹x 2 X W jf0.x/ � zj
2
� tº/ D O.t�/ (2.1)

as t ! 0 uniformly for all z 2 C. It is observed in [4] that if f is real analytic,
then (2.1) holds. See [4], and references presented there, for further discussion of (2.1).

Theorem 2 (Main theorem). Given f 2 S.1/ which satisfies (2.1) and G! , a family
of random operators on H 0.X;LN /, as defined in Definition 2.3, then for each " > 0
there exists ˇ D ˇ."/ 2 .0; 1/ and C > 0 such that if ı D ı.N / satisfies

Ce�N
ˇ

< ı < C�1N�d=2�"; (2.2)

then we have almost sure weak convergence of the empirical measures of TNf C ıG!
to vol.X/�1.f0/��d .

More precisely, if �i D �i .N; !/ are the (random) eigenvalues of TNf C ıG! ,
then for all ' 2 C10 .C/

1

N

NX
iD1

'.�i /
N!1
����!

1

vol.X/

Z
C

'.z/Œ.f0/��d �.d z/

almost surely, where .f0/��d is the push-forward of the volume form �d on X by f0.
Moreover, for each " > 0, the constant ˇ."/ in (2.2) can be chosen at most strictly

less than ´
2"� if " < 1

2.�C1/
;

�
�C1

if " � 1
2.�C1/

;

where � is defined in (2.1).

We expect Theorem 2 to hold for a much larger class of random perturbations than
described in Definition 2.3. Indeed, the only properties of G! we use is a norm bound
(Lemma 4.6) and an anti-concentration bound (Proposition 5.7). See [23] where Vogel
and Zeitouni establish similar logarithmic determinant estimates with these classes
of random perturbations, and [1, Remark 1.3] where Basak, Paquette, and Zeitouni
describe random perturbations satisfying these properties.

Here we present a version of Theorem 2 for the more general random perturba-
tions W! as described in Definition 2.3.

Theorem 3 (General perturbations). For W! defined in Definition 2.3, f 2 S.1/ sat-
isfying (2.1), ı DN�d , then the empirical measures of TNf C ıW! converge almost
surely to .vol.X//�1.f0/��d .
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A proof of this result is presented in Section 8.

Remark 2.1. We expect a wider range of ı’s and more general random perturbations
in Theorem 3 should lead to the same conclusion.

3. Review of an exotic calculus of Toeplitz operators

In proving Theorem 2, non-negative symbols are scaled by powers of N�1. These
functions belong to a more exotic symbol class than smooth functions uniformly
bounded in N . Toeplitz operators of functions in this symbol class still have natu-
ral composition formulas. A summary of these results is contained in this section. For
proofs see [12].

Definition 3.1 (Order function). For � 2 Œ0; 1=2/, a �-order function m on X is a
function m 2 C1.X IR>0/, depending on N , such that there exists M0 2 N such
that, for all x; y 2 X ,

m.x/=m.y/ . .1C dist.x; y/N �/M0 ;

where dist.x; y/ is the distance between x and y with respect to the Riemannian
metric on X induced by the symplectic form � .

Definition 3.2 (S�.m/). Given � 2 Œ0; 1=2/ and a �-order function m on X . S�.m/ is
defined as the set of smooth functions on X depending on N such that, for all i 2 	,
˛ 2 Nd ,

j@˛.f ı ��1i .x//j .˛ N ıj�jm ı ��1i .x/

for all x 2 �i .Ui / (recall ¹.Ui ; �i /W i 2 	º is a finite atlas on X ).

Proposition 3.3 (Composition). Given � 2 Œ0; 1=2/, �-order functions m1; m2 on X ,
f 2 S�.m1/ and g 2 S�.m2/, then there exists h 2 S�.m1m2/ such that

TNf ı TNg D TNhCO.N�1/;

where O is in terms of the norm from L2.X;LN /! L2.X;LN /. Moreover, the prin-
cipal symbol of h is f0g0.

Claim 3.1. Given f 2 S.1/ with f0 � 0, if � 2 Œ0; 1=2/, then m.x/ D f0N 2� C 1 is
a �-order function on X and fN 2� 2 S�.m/.

Proposition 3.4 (Parametrix construction). Given � 2 Œ0; 1=2/, a �-order function m
on X , � 2 Œ0; 1=2/, and f 2 S�.m/ such that there exists C > 0 so that f > Cm,
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then there exists g 2 S�.m�1/ such that

TNf ı TNg D 1CO.N�1/; TNg ı TNf D 1CO.N�1/:

Proposition 3.5 (Functional calculus). Given a �-order function m � 1 on X (for
a fixed � 2 Œ0; 1=2/), a family of operators ¹RN ºN2N mapping H 0.X; LN / to itself
such that kRN kDO.N�1/ and TNf CRN is self-adjoint for allN , and f 2 S�.m/
taking real non-negative values such that there exists C > 0 with jf j � mC�1 � C ,
then for any � 2 C1.RIC/, there exists g 2 S�.m�1/ such that

�.TNf CRN / D TNg CO.N�1/

and g has principal symbol �.f0/.

Typically, Proposition 3.5 will be applied with RN D 0 for all N .

Proposition 3.6 (Trace formula). If m is a �-order function on X (for fixed � 2
Œ0; 1=2/), and f 2 S�.m/, then

TrTNf D
� N
2�

�d Z
X

f .x/ d�d .x/CO.N d�.1�2�//max
x2X

m.x/

D

� N
2�

�d Z
X

f0.x/ d�d .x/CO.N d�.1�2�//max
x2X

m.x/;

where f0 is the principal symbol of f .

Note that if f D 1, then Tr TN 1 D Tr.…N / D dim.H 0.X; LN // D N which is
an alternative way of proving that N D vol.X/.N=2�/d CO.N d�1/.

4. Probabilistic preliminaries

This paper uses the probabilistic machinery of logarithmic potentials. An overview is
presented in this section.

Definition 4.1 (P .C/). Let P .C/ be the collection of probability measures � on C

such that
R

log.1C jzj/ d�.z/ <1.

Definition 4.2 (Logarithmic potential). For � 2 P .C/, define the logarithmic poten-
tial as U�.z/ WD

R
C log jz � wj d �.w/.

Using the fact that log jzj is the fundamental solution of the Laplacian, it can be
shown that, in the sense of distributions, �U� D 2��, which is the key ingredient in
proving the following theorem.
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Proposition 4.3 (Convergence of random measures by logarithmic potentials). Given
¹�N º�P .C/ random measures such that almost surely supp�N �ƒ forN � 1 (with
ƒb Nƒbƒ0 b C) and for almost all z 2ƒ0, one has U�N .z/! U�.z/ almost surely
for some � 2 P .C / with supp � � ƒ, then almost surely �N ! � weakly.

Proof. See [17, Theorem 7.1].

We wish to use Proposition 4.3 to prove almost sure weak convergence of the
empirical measures of TNf C ıG! .

Definition 4.4 (�N ). Let �N be the spectrum of TNf C ıG! . Let

�N D N �1
X
�2�N

Oı�

where ı > 0 depends on N , and Oı� is the Dirac distribution centered at �. The loga-
rithmic potentials for these random measures are

U�N .z/ D
1

N

X
�2�N

log jz � �j D
1

N
logjdet.TNf C ıG! � z/j:

Definition 4.5 (�). Let � D vol.X/�1.f0/��d (recall �d is the volume measure
on X ) which has logarithmic potential

U�.z/ D

−
X

log jz � f0.x/j d�d .x/:

Where
¬
X
f d�d is defined as vol.X/�1

R
f d�d .

Claim 4.1. For all N , �N ; � 2 P .C/.

Proof. For each N 2 NZ
C

log.1C jzj/ d �N .z/ D
1

N

X
�2�N

log.1C j�j/ � max
�2�N

log.1C j�j/

� log.1C kTNf C ıG!k/ <1:

And similarly,Z
C

log.1C jzj/ d �.z/ D
1

vol.X/

Z
C

log.1C jzj/Œ.f0/��d �.d z/

� max
x2X

log.1C jf .x/j/ <1:



A probabilistic Weyl-law for perturbed Berezin–Toeplitz operators 737

Let ƒ be a neighborhood of f .X/. Clearly, supp � � ƒ, the same is true with
probability 1 for �N , for sufficiently large N . A standard random matrix lemma is
required to show this.

Lemma 4.6 (Norm of Gaussian matrix). There exists C > 0 such that

P .kG!k � CN 1=2/ � 1 � exp.�N /:

If an event has this lower bound of probability, it is said to occur with overwhelming
probability.

Proof. See [19, Exercise 2.3.3].

For a fixed " > 0, we will choose ı D ı.N / such that

0 < ı D O.N �1=2�"/: (4.1)

Lemma 4.7 (Borel–Cantelli). If An are events such that
P1
1 P .An/ <1, then the

probability that An occurs infinitely often is 0.

Proof. See [8].

Lemma 4.8 (Bound of TNf ). Given f 2 S.1/, then kTNf kLN!LN � sup jf j.

Proof. This follows immediately by writing TNf D …N ıMf ı…N and recalling
that …N is unitary.

Claim 4.2. Almost surely, supp �N � ƒ for N � 1.

Proof. First note that kTNf C ıG!k � kTNf k C ıkG!k � supf CN �" with over-
whelming probability (by Lemma 4.6, (4.1), and Lemma 4.8). Let �N be the spectrum
of TNf C ıG! . In this event, for sufficiently large N , �N � ƒ. So, if AcN is the
event that �N � ƒ, then P .AcN / � 1 � e

�N . Therefore,
P

P .AN / <1 and so by
Lemma 4.7, almost surely P.AcN / D 1 for N � 1.

Lemma 4.9 (Almost sure convergence). If ¹YN ºN2N and Y are random variables
on a probability space .�;P / and "N is a sequence of numbers converging to 0 such
that

1X
ND1

P .jYN � Y j > "N / <1;

then YN ! Y almost surely.

Proof. See [8].
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Therefore, �N and � satisfy the conditions of Proposition 4.3. So, it suffices
to show that U�N .z/ ! U�.z/ for almost all z in the bounded set containing ƒ.
To prove this almost sure convergence, it suffices to apply Lemma 4.9 with YN D
N �1 logjdet.TNf C ıG! � z/j and Y D

¬
log jz � f0.x/j d�d .x/ for suitably cho-

sen "N .

5. Setting up a Grushin problem

To control logjdet.TNf C ıG! � z/j we follow the now standard method of setting
up a Grushin problem. This approach was used in [10, 22], and is comprehensively
reviewed in [18].

Let P D TNf and HN DH
0.X;LN /. Define the z-dependent self-adjoint oper-

ators Q D .P � z/�.P � z/ and zQ D .P � z/.P � z/�. These operators share the
same eigenvalues 0 � t21 � � � � � t

2
N

. We can find an orthonormal basis of eigenvec-
tors of Q for these eigenvalues, denoted by ei , and similarly, an orthonormal basis of
eigenvectors of zQ denoted by fi . These eigenvectors can be chosen such that

.P � z/�fi D tiei ; .P � z/ei D tifi ; i D 1; : : : ; N :

Next we fix � 2 .0;min.1=2; "//, and define

˛ WD N�2�; A WD max¹i 2 ZW t2i � ˛º:

Definition 5.1 (P ı ). Let ıj be the standard basis of CA, and define the operators
RC.z/ D

PA
1 ıi ˝ ei WHN ! CA and R�.z/ D

PA
1 fi ˝ ıi WC

A ! HN , where we
use the notation .u˝ v/.w/ D hw; viu. For each z 2 C and ı � 0, define

P ı.z/ WD

�
P C ıG! � z R�.z/

RC.z/ 0

�
W

�
HN

CA

�
!

�
HN

CA

�
: (5.1)

Lemma 5.2. If ı D 0, then P ı , as defined in (5.1), is bijective with inverse

E0.z/ D

�PN
AC1

1
ti
ei ˝ fi

PA
1 ei ˝ ıiPA

1 ıi ˝ fi �
PA
1 tiıi ˝ ıi

�
WD

�
E0.z/ E0C.z/

E0�.z/ E0�C.z/

�
: (5.2)

Proof. See [22, Section 5.1].

To ease notation, the z in the argument for these operators will often be dropped.
Unless specified, all estimates are uniform in z.
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Claim 5.1 (Invertibility of P ı ). P ı is invertible if ıkG!E0k � 1.

Proof. By computation,

P ıE0 D 1C

�
ıG!E

0 ıG!E
0
C

0 0

�
WD 1CK:

If kKk < 1 (which is true given the hypothesis), then .I CK/�1 exists as a Neumann
series, and we get P ıE0.I C K/�1 D I (a similar argument shows this is a left
inverse as well).

Lemma 5.3 (Norm of E0). In the notation of (5.2), kE0k � ˛�1=2.

Proof. By construction, E0 D
PN
MC1.ti /

�1ei ˝ fi , so that

kE0k D kE0fMC1k D .tMC1/
�1
� ˛�1=2:

Lemma 5.4 (Norm of E0C). In the notation of (5.2), kE0Ck D 1.

Proof. By construction E0C.z/ D
PM
1 ei ˝ ıi which has norm 1.

These lemmas, along with Lemma 4.6, guarantee that if ı D O.˛1=2N �1=2/, then
P ı is invertible with overwhelming probability. Denote the inverse of P ı by Eı with
the same notation for its components as in (5.2).

Define P ı D P C ıG! . By Schur’s complement formula, if P ı � z is invertible,

det
�
P ı � z R�

RC 0

�
D det.P ı � z/ det.�RC.P ı � z/�1R�/:

Writing P ıEı D 1, we get that�R�D .P ı � z/EıC.E
ı
�C/

�1 andRCEıCD 1. There-
fore, �RC.P ı � z/�1R� D .Eı�C/

�1, so that

logjdet.P ı � z/j D log j det P ı.z/j C logjdetEı�C.z/j: (5.3)

Note that P ı � z is invertible if and only if Eı�C is invertible. Therefore, (5.3) holds
even when P ı � z is not invertible.

Therefore, to prove Theorem 2, it suffices to show summability of the probability
of the events:

AN WD

²ˇ̌̌̌
.N /�1.log j det P ı

j C logjdetEı�C.z/j/ �
−
X

log jz � f0.x/j d�„ ƒ‚ …
WDB

ˇ̌̌̌
>"N

³
:

We let "N D N�
 for a suitably chosen 
 D 
.d; �/ > 0. Expand

B D B1 C B2 C B3;
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where

B1 D N �1 logjdet P 0
j�

−
X

log jz � f0.x/j d�.x/; (5.4)

B2 D N �1.logjdet P ı
j�logjdet P 0

j/; (5.5)

B3 D N �1 log j detEı�Cj: (5.6)

Controlling B1 requires the most work as it requires utilizing the calculus of
Toeplitz operators. However, it is completely deterministic, and remains true for
unperturbed operators. B2 will be easily shown to be negligible. Proving a lower
bound on B3 is the key ingredient in proving Theorem 2, as it will force the events
AN to sufficiently small probability. Without a perturbation, B3 will have no lower
bound.

Proving bounds on B2 and B3 closely follows [22].

Lemma 5.5 (Bound on E�C). In the notation of (5.2), kE0�Ck �
p
˛.

Proof. By construction, E0�C D �
PA
1 tj ıj ˝ ıj , so

kE0�Ck D jE
0
�C.ıA/j D tA �

p
˛:

Lemma 5.6 (Bound onEı ). In the notation of (5.2), kEık� 2˛�1=2 with overwhelm-
ing probability.

Proof. By the Neumann construction, kEık D kE0.1C ıG!E0/�1k � 2kE0kwhich
is bounded by 2˛�1=2 by Lemma 5.3.

Claim 5.2 (Bound on B2). In the notation of (5.5), B2 D O.ı˛�1=2N 1=2/ with over-
whelming probability.

Proof. Using Jacobi’s formula, .log detA/0 D Tr.A�1A0/, we have that

NB2 D logjdet P ı
j � logjdet P j

D

ıZ
0

d

d�
logjdet P �

j d �

D

ıZ
0

Re.Tr.E�
d

d�
P � // d �

D

ıZ
0

Re.Tr.E�G!// d �:
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Taking absolute values and using properties of trace norms,

j logjdet P ı
j � logjdet P 0

jj � ı sup
�2Œ0;ı�

kE�kkG!ktr

� O.ı˛�1=2N kG!k/; (5.7)

where we used Lemma 5.6, and Hölder’s inequality for the Schatten norm. Recalling
the bound on G! , (5.7) is O.ı˛�1=2N 3=2/ with overwhelming probability.

The following theorem about singular values of randomly perturbed matrices is
required for proving a lower bound of B3. Given a matrix B , let s1.B/ � s2.B/ �
� � � � sN .B/ be its singular values.

Proposition 5.7. If B is an N � N complex matrix and G! is a random matrix with
independent identically distributed complex Gaussian entries of mean 0 and vari-
ance 1, then there exists C > 0 such that, for all ı > 0, t > 0,

P .sN .B C ıG!/ < ıt/ � CNt
2:

Proof. See [22, Theorem 23], which is a complex version proven by Sankar, Spiel-
man, and Teng in [14, Lemma 3.2].

Claim 5.3 (Bound on B3). In the notation of (5.6), B3 obeys the probabilistic upper
bound

P .N �1 logjdetEı�Cj < 0/ > 1 � e
�N ; (5.8)

for N � 1. And B3 obeys the probabilistic lower bound: there exists there exists
C > 0 such that for all ı > 0

P .N �1 logjdetEı�Cj � AN �1 log.ıt// > 1 � CN t2 � e�N :

Proof. First, by the Neumann series construction and choice of ı, with overwhelming
probability,

kEı�Ck � kE
ı
�C �E

0
�Ck C kE

0
�Ck

D kE0�.1 � ıG!E
0/�1ıG!E

0
Ck C kE

0
�Ck

� 2kıG!k C ˛
1=2
� C˛1=2:

So, in this event, kEı�Ck � C˛
1=2 < 1 forN � 1, and therefore logjdetEı�Cj< 0

proving (5.8).
For the lower bound, first note that

logjdetEı�Cj D
AX
1

log sj .Eı�C/ � A log sA.Eı�C/:
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For a matrixB , let t1.B/ be the smallest eigenvalue of
p
B�B , so one has sA.Eı�C/D

t1.E
ı
�C/. Assume that P � z is invertible. Using that .E0�C/

�1 D�RC.P � z/
�1R�

and properties of singular values of sums and products of trace class operators, we get

.t1.E
0
�C//

�1
D s1..E

0
�C/

�1/

� s1.R�/s1.RC/s1..P � z/
�1/

D kRCkkR�ks1..P � z/
�1/

D s1..P � z/
�1/ D .t1.P � z//

�1

D sN ..P � z/
�1/:

For ı D O.N �1=2˛1=2/, this holds for Eı�C (the event of a singular matrix has prob-
ability zero and the singular values depend continuously on ı) so

sA.E
ı
�C/ D t1.E

ı
�C/ � sN .P C ıG! � z/

with overwhelming probability.
Using Proposition 5.7, in the event that kG!k � CN 1=2 (overwhelming proba-

bility) and sN .P � z C ıG!/ > ıt (probability at least 1 � CN t2), we have that
sA.E

ı
�C/ > ıt with probability greater than 1 � CN t2 � e�N . Therefore

logjdetEı�Cj � A log sA.Eı�C/ � A log.ıt/

with probability � 1 � e�N � CN t2.

6. Bound on B1

This section is devoted to estimating B1 (as in (5.4)) which involves computing the
trace of a function of a Toeplitz operator belonging to an exotic symbol class. This
closely follows [22], however several simplifications arise partially due to requir-
ing weaker bounds, and several modifications are required as we are working with
Toeplitz operators.

Claim 6.1 (Bound on B1). For P defined in (5.1),

logjdet P 0
j D N d

−
X

log jf0.x/ � zj2 d�CO.N d�min.2��;.1�2�// log.N //:

Proof. Let us first consider some preliminary reductions in computing logjdet P 0j.
By Schur’s complement formula, jdet P 0j2 D jdet.P � z/j2jdetE0�Cj

�2. The first
term is

jdet.P � z/j2 D detQ D
NY
iD1

t2i :
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Because E0�C D �
PA
1 tj ıj ˝ ıj (recall A is the largest integer such that t2A � ˛), the

second term is

jdetE0�Cj
�2
D

� AY
iD1

t2i

��2
;

therefore

jdet P 0
j
2
D

NY
iDAC1

t2i D ˛
�A

NY
iD1

1˛.t
2
i / D ˛

�A det 1˛.Q/

where 1˛ D max.x; ˛/. If � is a cut-off function identically 1 on Œ0; 1�, and supported
in Œ�1=2; 2�, then x C .˛=4/�.4x=˛/ � 1˛.x/ � x C ˛�.x=˛/ for x � 0. Therefore,

det.QC 4�1˛�.Q=.4�1˛/// � det.1˛.Q// � det.QC ˛�.Q=˛//: (6.1)

Now, fix 1� ˛1 > ˛, so that log det.QC ˛�.Q=˛// can be written

�

˛1Z
˛

d

dt
log det.QC t�.Q=t// d t C log det.QC ˛1�.Q=˛1//: (6.2)

First, the integrand is estimated. Let

 .t/ D .t � t�0.t//.1C �.t//�1

so that

d

dt
log.x C t�.x=t// D t�1 .x=t/

for t > 0 and  2 C10 .R�0/. Therefore, by Jacobi’s identity,

d

dt
log det.QC t�.Q=t// D Tr.t�1 .Q=t//:

While morally the same, here we diverge from Vogel’s proof [22] to handle this trace
term, and must rely on Section 3. The main issues are that Q is the composition
of Toeplitz operators, which may no longer be a Toeplitz operator (but is modulo
O.N�1/ error), Q=t belongs to an exotic symbol class so to compute  .Q=t/
requires an exotic calculus, and the trace formula (Proposition 3.6) has weaker remain-
der than for quantizations of tori.

Let �t be such that t DN�2�t . By Proposition 3.3, one hasQD TN qCO.N�1/,
where the principal symbol of q is jf0 � zj2. For each t , Q=t is (modulo O.N�1/)
a Toeplitz operator with symbol in S�t .mt / where mt D q0=t C 1, by Claim 3.1.
And so, by Proposition 3.5, there exists qt 2 S�t .m

�1
t /, such that one has
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 .Q=t/ D TN .qt /C EN .t/. Where qt has principal symbol  .q=t/ and EN .t/ D
O.N�1/ (with estimates uniform over t ). Therefore,

˛1Z
˛

d

dt
log det.QC t�.Q=t// d t D

˛1Z
˛

Tr.t�1 .Q=t// d t

D

˛1Z
˛

t�1 Tr.TN .qt /CEN .t// d t:

The error term is
˛1Z
˛

t�1 Tr.EN .t//dt D O.N�1/

because EN .t/ is uniformly O.N�1/. While for each t , Proposition 3.6 shows that

Tr.TN .qt // D
� N
2�

�d Z
X

 .q0=t/ d�d .x/C t�1O.N d�1/

because m�1 is bounded. Therefore,

˛1Z
˛

d

dt
log det.QC t�.Q=t// d t

D

˛1Z
˛

�Z
X

� N
2�

�d
t�1 .q0=t/ d�d .x/C t�2O.N d�1/

�
d t

D

� N
2�

�d Z
X

log.q0 C t�.q0=t//
ˇ̌̌tD˛1
tD˛

d�.x/CO.N d�1˛/:

Next, the second term of (6.2) is computed. Because ˛1 is fixed,Q=˛1 has symbol
in S.1/. Therefore, by Proposition 3.5,QC ˛1�.Q=˛1/D TN r CEN (with kEN kD
O.N�1/) where r 2 S.1/ with principal symbol q0 C ˛1�.q0=˛1/. Let r t D t r C
.1 � t / 2 S.1/, so that

log det.QC ˛1�.Q=˛1// D

1Z
0

d

dt
log det.TN r t C tEN / d t

D

1Z
0

Tr
�
.TN r

t
C tEN /

�1
� d
dt
TN r

t
CEN

��
d t:
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The principal symbol of r t is r10 D t .q0 C ˛1�.q0=˛1//C .1 � t /. Note that when
x � 0, then x C ˛1�.x=˛1/ � ˛1 > 0. Therefore, .r t0/ � ˛1 .

Lemma 6.1. There exists s.t/ 2 S.1/ (with bounds uniform in t ) such that

.TN r
t
C tEN /

�1
D TN s.t/CO.N�1/;

and the principal symbol of s.t/ is .r t0/
�1.

Proof. By Proposition 3.4, there exists a symbol `D `.t/ 2 S.1/ which inverts (mod-
ulo O.N�1/ error) TN r t , and has principal symbol .r t0/

�1. But then

.TN r
t
C tEN /TN ` D 1CK

with K D O.N�1/, using that tEN D O.N�1/ and TN ` has norm bounded inde-
pendent of N . By Neumann series, for N � 1, .1CK/ is invertible, so that

.TN r
t
C tEN /.TN `/.1CK/

�1
D 1:

.TN `/.1CK/
�1 will be a Toeplitz operator, modulo a O.N�1/ term, with symbol

` which has principal symbol .r t0/
�1. By repeating this argument, but left-composing

by TN `, we get the lemma.

Clearly, d
dt
TN r

t D TN .r � 1/ so using Lemma 6.1, we get that

.TN r
t
C tEN /

�1
� d
dt
TN r

t
CEN

�
is (modulo O.N�1/) a Toeplitz operator with principal symbol .r t0/

�1. d
dt
r t0/. So, by

Proposition 3.6,

Tr
�
.TN r

t
C tEN /

�1
� d
dt
TN r

t
CEN

��
D

� N
2�

�d Z
X

.r t0/
�1
� d
dt
r t0

�
d�d .x/CO.N d�1/;

which when integrated from t D 0 to t D 1 becomes� N
2�

�dZ
X

log.r10 /dx CO.N d�1/

D

� N
2�

�d Z
X

log.q0 C ˛1�.q0=˛1// d�d .x/CO.N d�1/:
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Therefore, (6.2) becomes� N
2�

�d Z
X

log.q0 C ˛�.q0=˛// d�d CO.N d�1˛�1/:

A calculus lemma is required to estimate
R
X

log.q0 C ˛�.q0=˛// d x.

Lemma 6.2. Given q 2 C1.X IR�0/ such that �d .¹x 2 X W q.x/ � tº/ D O.t�/ as
t ! 0 for � 2 .0; 1�, and � 2 C10 ..�1=2; 2/I Œ0; 1�/ identically 1 on Œ0; 1�, thenZ

X

log.q C ˛�.q=˛// d�d D
Z
X

log.q/ d�d CO.˛�/:

Proof. Let g.t/D log.t C ˛�.t=˛// andm.t/D�d .¹x 2X Wq.x/� tº/. Then, letting
q1 D max q C 2˛,Z

X

log.q C ˛�.q=˛// � log.˛/ d�d

D

Z
X

g.q.x// � g.0/ d�d D
Z
X

q.x/Z
0

g0.t/ d t d�d

D

q1Z
0

g0.t/

Z
q.x/>t

d�d d t

D

q1Z
0

g0.t/.vol.X/ �m.t// d t

D vol.X/.g.q1/ � log.˛// �

q1Z
0

g0.t/m.t/ d t:

So, that Z
X

log.q C ˛�.q=˛// d�d D vol.X/g.q1/ �

q1Z
0

g0.t/m.t/ d t: (6.3)

Similarly, if Qg.t/ D log.t/, we get an analogous expression as (6.3), that is,Z
X

log.q/ d�d D vol.X/ Qg.q1/ �

q1Z
0

Qg0.t/m.t/ d t:
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Note that g.q1/ D Qg.q1/. Therefore,ˇ̌̌̌ Z
X

log.q C ˛�.q=˛// � log.q/ d�d

ˇ̌̌̌
D

ˇ̌̌̌ q1Z
0

. Qg0.t/ � g0.t//m.t/ d t
ˇ̌̌̌

D

ˇ̌̌̌ q1Z
0

�1
t
�
1C �0.t=˛/

t C ˛�.t=˛/

�
m.t/ d t

ˇ̌̌̌

D

ˇ̌̌̌ q1=˛Z
0

�1
s
�
1C �0.s/

s C �.s/

�
m.s˛/ d s

ˇ̌̌̌

.
2Z
0

s�1m.s˛/ d s

. ˛�
2Z
0

s��1 d s . ˛� :

Here we use that �.0/ D 1 to get a lower bound on js C �.s/j, and the fact that
�.s/ � s�0.s/ is supported in .0; 2/.

Applying this lemma, we get

log det.QC ˛�.Q=˛// D
� N
2�

�d Z
X

log.q/ d�d .x/CO.˛�/CO.N d�.1�2�//:

Recalling that .N=2�/dN �1 D vol.X/�1 CO.N�1/, we get that

log det.QC ˛�.Q=˛//

D .N CO.N�1//

−
log.q/ d�d CO.N d�.1�2�//: (6.4)R

X
log.q/ d �d can be uniformly bounded in z, so that the O.N�1/ term can be

absorbed into O.N d�.1�2�//. By (6.1), we get the following lower bound by replacing
˛ by ˛=4:

log det.QC ˛�.Q=˛// � N

−
log.q/ d�d CO.N d�.1�2�//: (6.5)

Lemma 6.3 (Bound on A). The number of eigenvalues of Q that are less than ˛ is
O.N dN�min.2��;.1�2�///.
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Proof. Let  2 C10 .Œ�1=2; 3=2�I Œ0; 1�/ be identically 1 on Œ0; 1�. It then suffices
to estimate Tr. .Q=˛//. By Proposition 3.5,  .Q=˛/ D TN;q2 C O.N�1/, where
q2 2 S�.1/ with principal symbol  .q=˛/. Then, by Proposition 3.6,

Tr. .Q=˛// D Tr.TN;q2 CO.N�1//

D .N=2�/d
Z
X

 .q=˛/ d�d .x/CO.N d�.1�2�//

. N d˛� CN d�.1�2�/

D O.N dN�min.2��;1�2�//:

Therefore, putting everything together, we get that

logjdet P 0
j D

1

2
log.j det P 0

j
2/

D
1

2
log.˛�A det 1˛.Q//

D
A

2
log.1=˛/C

1

2
log det.1˛Q//:

Formulas (6.4) and (6.5) provide upper and lower bounds of 2�1 log det.1˛.Q//.
Then, using that 2�1 log q0 D jf0 � zj and Lemma 6.3, we get

j logjdet P 0
j �N

−
X

log jf0 � zjd�d j

. A log.1=˛/C ˛� CN d�.1�2�/

. N d�min.2��;.1�2�// log.N /CN�2�� CN d�.1�2�/

. N d�min.2��;.1�2�// log.N /:

Recall NB1 D logjdet P 0j �N
¬

log jz � f0.x/j d�d , so that

B1 D O.N�min.2��;.1�2�// log.N //:

7. Summability of AN

Recall that AN D ¹jB.N/j > "N º, where B.N/ D B1 C B2 C B3 with

B1 D N �1 logjdet P 0
j �

−
log jz � f0.x/j d�d .x/;

B2 D N �1.logjdet P ı
j � logjdet P 0

j/;

B3 D N �1 log j detEı�Cj:
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The following table summarizes the bounds on B1; B2; and B3:

Bound Probability of Bound Reference
B1 D O.N�min.2��;.1�2�// log.N // 1 Claim 6.1
B2 D O.ı˛�1=2N 1=2/ > 1 � exp.�N / Claim 5.2
B3 � N �1A log.tı/ > 1 � CN t2 � exp.�N / Claim 5.3
B3 < 0 > 1 � exp.�N / Claim 5.3

Recall that � 2 .0;min.1=2; "// and that ˛ D N�2�. Theorem 2 will follow ifP
P .AN / <1 for "N D N�
 . Recall that ı D O.N�d=2�"/D O.N�d=2˛1=2/. Fix

0 < 
 < min." � �; 2��; 1 � 2�/. Then P .AN / D P .B > N�
 /C P .B < �N�
 /.
The first term is

P .B > N�
 / D P .B3 > N
�

� B2 � B1/:

Because 
 < "� � and B2 D O.N ��"/ (with overwhelming probability), we see that
B2 D O.N�
 / (with overwhelming probability). Similarly, because of the bound on
B1 and the choice of 
 , B1 D O.N�
 /. So, if N is sufficiently large, N�
 � B2 �
B1 � CN

�
 > 0. But then by Claim 5.3, P .B > N�
 / � e�N
d

for N � 1.
Similarly, for N sufficiently large, there exists C0 2 .0; 1=2/ such that, jB1j C

jB2j < C0N
�
 , so

P .B < �N�
 / � P .B3 < �.1 � C0/N
�
 /

D 1 � P .B3 � �.1 � C0/N
�
 /:

By the choice of 
 , bound on A from Lemma 6.3, and selecting t D N �2=d�1=2, we
get, for large enough N , �.1 � C0/N�
 � N �1A log.ıt/ as long as

�N�
 .1 � C0/ � N �1A log.ı/:

This requires that ı � e�N
ˇ

for ˇ D min.2��; 1 � 2�/ � 
 2 .0; 1/. In this case, by
Claim 5.3,

P .B3 > �N
�
 / � P .B3 > AN �1 log.ıt//

� 1 � CN t2 � e�N

D 1 � CN �2=d C e�N :

Therefore, P .B < �N�
 / � CN�2 C e�N
d

for N � 1.
With this,

1X
ND1

P .AN / D C C
X
N�1

P .AN / � C C
X
N�1

.N�2 C 2e�N
d

/ <1;

which proves Theorem 2.
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Note that if " > .2.� C 1//�1, then we can select � D .2.� C 1//�1 and choose

 arbitrarily small, so that ˇ D �.� C 1/�1 � 
 . While if " < .2.� C 1//�1, then the
maximum ˇ can be is 2"�. Therefore, we have

ˇ <

´
2"� if " < 1

2.�C1/
;

�
�C1

if " � 1
2.�C1/

:

8. General random perturbations

In this section we provide a discussion about how to modify the proof of Theorem 2
(Gaussian random perturbations) to prove Theorem 3 (more general random pertur-
bations). We also deduce Theorem 1 (stated in the introduction) from Theorem 3.

Proof. Under the assumptions of W! (see Definition 2.3), we have the following
probabilistic norm bound:

EŒkW!k
2� D

NX
i;jD1

EŒj.W!/i;j j
2� D O.N 2/; (8.1)

as well as the following anti-concentration bound (from [20, Theorem 3.2]): for 
0 �
1=2, A0 � 0, there exists a c > 0 such that ifM is a deterministic matrix with kMk �
N 
0 then

P .sN .M CW!/ � N �.2A0C1/
0/

� c.N �A0Co.1/ C P .kW!k � N 
0//: (8.2)

Recall, for an N �N matrix A, we denote s1 � s2 � � � � � sN .A/ the singular values
of A.

From (8.1), and Markov’s inequality, we get

P .kW!k � N
d�1/ D O.N�2/

therefore if ı D N�d then ıkW!k D O.N�1/ with probability at least 1 � CN�2.
From this, Claim 4.2 (the supports of the random empirical measures being contained
in a bounded set for N � 1) will follow by an identical argument.

Next, with probability at least 1 � CN�2, we have ıkW!kĹ˛
1=2 � 1. In this

event, we can build our perturbed Grushin problem the same way as in Section 5.
Next, we have to modify the estimate of B2 which was estimated in Claim 5.2.

For this, we simply modify (5.7) with a weaker estimate on the probability kW!k is
small. Specifically, we see there exists C > 0 such that

P .B2 D O.˛�1=2N�1// > 1 � CN�2:
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The final modification is in estimating B3 D N �1 logjdetEı�Cj. We see, by the
same argument presented in Section 5, that

P .B3 < 0/ � 1 � CN
�2:

To prove a lower bound, we go through the same argument, to get that

logjdetEı�Cj � A log jsN .TNf � z C ıW!/j:

Next, let

K0 WD sup
z2ƒ

kTNf � zk D O.1/

(recall ƒ is a neighborhood of f .X/). By (8.2) (with 
0 D 1 and A0 D 2), we have
(for N � 1)

P .sN .TNf � z C ıW!/ � N
�7d /

D P
�
sN .ı

�1K�10 .TNf � z/CK
�1
0 W!/ � .N

d /�.2A0C1/
0
�

� c
�
N�2dCo.1/ C P .kK�10 W!k � N

�d /
�

� cN�2:

Here we use that kı�1K�10 .TNf � z/k � N
d . With this, we can proceed as in Sec-

tion 7, with weaker probabilistic estimates. We choose � 2 .0; 1=2/, and 0 < 
 <

min.2��; 1 � 2�/. Writing P .AN / D P .B > N�
 /C P .B < �N�
 /, we see that

P .B > N�
 / � CN�2

for N � 1. Similarly, in the event sN .TNf � z C ıW!/ � N
�7d , we have (for

N � 1)

A log jsN .TNf � z C ıW!/j � N
d�


so that

P .B3 > �N
�
 / � P .B3 > AN �1 log jsN .TNf � z C ıW!/j/ � 1 � CN

�2:

Therefore, P .B < �N�
 / � CN�2 for N � 1. With this,
P1
1 P .AN / <1, and

we have almost sure weak convergence of the empirical measures of TNf C ıW! to
vol.X/�1.f0/��d .

Proposition 8.1. Theorem 3 implies the probabilistic Weyl law (Theorem 1) stated in
the introduction.
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Proof. For ƒ � C given in the hypothesis, let

AN D .vol.X/=N /#¹Spec.TNf CN�dW!/ \ƒº:

It suffices to show that for each " > 0

P .lim sup
N!1

jAN � �d .f 2 ƒ/j > "/ D 0:

We may assume ƒ is bounded. If not, let zƒ be an open, bounded neighborhood of
f .X/. Recall that almost surely Spec.TNf C ıW!/ � zƒ for N � 1. Therefore, if

zAN D .vol.X/=N /#¹Spec.TNf CN�dW!/ \ƒ \ zƒº;

then

P .lim sup
N!1

jAN � �d .f 2 ƒ/j > "/ D P .lim sup
N!1

j zAN � �d .f 2 ƒ/j > "/:

Now, relabelƒ\ zƒ asƒ. Let '; 2C10 .CI Œ0;1�/ be such that supp' �ƒ, '.x/� 1
for dist.x; @ƒ/ > ",  .x/ � 1 for x 2 ƒ, and  .x/ D 0 for dist.x; @ƒ/ > " (here @ƒ
is the boundary of ƒ). Therefore, we have

vol.X/
N

NX
jD1

'.�i / � AN �
vol.X/

N

NX
jD1

 .�i /: (8.3)

By Theorem 3, the lower bound of (8.3) convergences almost surely toZ
C

'.z/.f��d /.d z/ D �d .f 2 ƒ/CO."�/:

And similarly the upper bound of (8.3) converges almost surely to �d .f 2 ƒ/ C
O."�/ (where the constant in O."�/ is deterministic). Therefore, there exists C > 0

such that

P .lim sup
N!1

jAN � �d .f 2 ƒ/j > C"
�/ D 0:

Because " > 0 is arbitrary, this implies AN converges almost surely to �d .f 2 ƒ/.
Then, because N D vol.X/.N=2�/d C O.N d�1/, .N=2�/d vol.X/N �1AN con-
verges almost surely to �d .f 2 ƒ/.
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