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Weyl asymptotics for Poincaré–Steklov eigenvalues
in a domain with Lipschitz boundary

Grigori Rozenblum

Abstract. We justify the Weyl asymptotic formula for the eigenvalues of the Poincaré–Steklov
spectral problem for a domain bounded by a Lipschitz surface.

In the memory of Mikhail Birman and Mikhail Solomyak, my teachers

1. Introduction

1.1. The Poincaré–Steklov problem

Let� � RdC1 be a connected bounded open set. We suppose that the boundary † D
@� is connected. The classical Poincaré–Steklov (P-S) eigenvalue problem consists in
the study of the spectral properties for the Laplacian in � with the spectral parameter
entering in the boundary condition,

��u.x/ D 0; x 2 �I @�u.x/ � �
�1u.x/ D 0; x 2 †; (1.1)

where @� is the derivative in the direction of the exterior normal �.x/ at x 2 †:
Further on, we assume that the boundary † is Lipschitz and we equip † with the
surface measure induced by the Lebesgue measure in RdC1; which coincides with
the d -dimensional Hausdorff measure.

This problem, often attributed to and named after V. A. Steklov, [37, 38], was, in
fact, first considered by H. Poincaré in 1896, see [30], in relation to the analysis of
tidal waves. Another early application, dealing with liquid waves in an open container
was studied by D. Hilbert in [21].

The P-S spectral problem and its numerous generalizations found a lot of appli-
cations in physics and technology (see, e.g., [7] and the quite recent review [17], for
a, far from complete, bibliography on this topic.) Studies dealing with this problem
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continue up to now. The Steklov eigenvalue problem appears in quite a few physical
fields, such as fluid mechanics, electromagnetism, elasticity, etc. It has applications for
the study of various kinds of wave phenomena (see, e.g. [40]), as well as in the seis-
mology and tomography. Mathematically, this problem keeps being in the center of
interest in spectral geometry and approximations. MathSciNet shows more than 600
publications where various facets of Steklov-type spectral problems are dealt with.

One of traditional topics in this field is the study of the behavior of eigenval-
ues of the P-S problem. In the earliest paper by L. Sandgren on the asymptotics
of these eigenvalues (see [36]), inspired by Lars Gårding and Åke Plejel, with co-
operation of Lars Hörmander, the author considered a moderately smooth domain
� in a Riemannian manifold. The boundary of the domain was supposed be of the
class C 2, but the coefficients of the main operator were set to belong to C 1: Under
these conditions, the asymptotic formula of H. Weyl type was obtained. Further on,
the conditions imposed on the domain and coefficients were being gradually relaxed.
Finally, in 2006, M. S. Agranovich [4] established the Weyl-type formula for the
case of a Lipschitz boundary, being, however, ‘almost smooth’ in the sense that this
boundary should be at least C 1 outside a closed set of zero surface measure; the
symmetric second order elliptic operator L replacing the Laplacian in (1.1) is sup-
posed to be of divergence form with continuous coefficients. Even earlier, probably,
since [6], Agranovich started popularizing the problem of extending the eigenvalue
asymptotics results to domains with Lipschitz boundary, without additional assump-
tions. This question was morally supported by a flow of impressive results on various
properties of elliptic boundary problems in Lipschitz domains by A. P. Calderón,
B. Dahlberg, C. Kenig, S. Hoffman, M. Taylor, M. Mitrea, E. Fabes, G. Verchota,
Agranovich himself, and many others. It turned out that the setting of Lipschitz bound-
ary problems and the typical results are usually more or less the same as for a more
smooth boundary, while the methods used in analysis need to be essentially new –
and often quite complicated. This latter circumstance is, partially, caused by the fact
that certain important results in potential theory break down when passing from C 1

to Lipschitz surfaces.
Meanwhile, the study of the P-S problem continued. We address the Readers to

[8–10, 43], and references therein, where various aspects of this problem were inves-
tigated. Important results were obtained even for boundaries considerably less regular
than the Lipschitz ones, see, e.g., [42]. Quite extensive became studies in the spec-
tral geometry relating the geometric properties of the boundary to spectral properties.
Especially rich were the results in the two-dimensional case. Here, it was known since
long ago, see [32], that in the infinitely smooth case, the Steklov eigenvalues are, faster
than any negative power of their sequential number, close to those for the disk with
the same perimeter. Quite a lot of further results in the two-dimensional case were
obtained since then. A description and huge bibliography can be found in [17,19,28].
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We just mention here that in a series of papers, starting with [29], for the case of a
piecewise smooth Lipschitz boundary, the authors succeeded in describing how the
corners influence the deviation of the eigenvalues from their behavior in the smooth
case. Meanwhile, in the Lipschitz case, many important properties of the P-S (or the
Neumann-to-Dirichlet, N-to-D, operator) were established, see, e.g., [8–10, 18]; a
number of important Steklov-type problems arising in hydrodynamics were consid-
ered recently in [40].

Finally, after all these years, the essential progress in the eigenvalue asymptotics
for a Lipschitz boundary was made in [25], where, in the two-dimensional case, the
Weyl eigenvalue asymptotics for the problem (1.1) was proved. Moreover, in [25],
the boundary of the domain may be even somewhat more rough than Lipschitz. The
method in [25] is based upon some deep results in the theory of conformal mappings,
therefore, seemingly, it cannot be extended to higher dimensions. Thus, the eigen-
value asymptotics problem for Lipschitz boundary remained unresolved. In the recent
fundamental review [17] and in [18], this problem is listed among unsolved and chal-
lenging.

The author of the present paper, together with Grigory Tashchiyan, spent quite a
lot of time attacking this problem, being initially inspired by M. S. Agranovich. Our
hope was based upon our result in [34], where, for integral operators of the type of sin-
gle layer potential on a Lipschitz surface, a Weyl-type eigenvalue asymptotic formula
was proved. Since the P-S operator can be expressed in a simple way via the single
layer and double layer potentials (see, e.g. [3,5], and in a very general setting, [42]), it
would be sufficient, for example, to know that the double layer potential is a compact
operator. Unfortunately, for a Lipschitz surface, one should not expect this property of
the double layer potential to hold; in fact, the opposite is known. Our efforts to circum-
vent this obstacle led to some partial results (see a mentioning in [40]); we, however,
did not consider these partial results deserving being published (a brief description
of our efforts here is given in Appendices A and B, in hope that someone might be
interested and more lucky – if successful, such proof will, probably, be more esthetic
than the present one).

A different approach is used in this paper, not based directly upon the results
in [34] but rather on the idea in [34], a quite natural one, of approximating the
Lipschitz surface by smooth surfaces and tracing how the corresponding compact
Neumann-to-Dirichlet operators converge. In the study of solvability of elliptic bound-
ary problems in Lipschitz domains, such approximation was, probably, first used by
G. Verchota in [44]. In fact, a somewhat different realization of this approximation
idea is implemented here. By a change of variables, the P-S problem in a Lipschitz
domain for an elliptic operator in divergence form with coefficients continuous at
the boundary, is relocated to the problem for another elliptic operator, this time in
a smooth domain. Unfortunately, under such transformation, the coefficients of the
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operator cease to be continuous even at the boundary, but stay only bounded. Func-
tions in L1 cannot be approximated by smooth functions in L1 norm. We, however,
construct an approximation of the coefficients in a certain Lp-related norm, p <1;
and after a series of further transformations, we succeed in establishing a sufficiently
strong convergence of operators describing the P-S spectrum, which enables us to
perform the passage to the limit in eigenvalue asymptotic formulas.

The reasoning in the paper is, to a large extent, based upon the ideas the author
absorbed many years ago while being a student of M. Š. Birman and M. Z. Solomyak;
the paper is dedicated to their memory. The author thanks Prof. Tatiana Suslina for
useful discussions and Prof. Jean Lagacé who acquainted him with an early version
of the paper [25], which encouraged our efforts. Permanent discussions with Prof.
Grigory Tashchiyan for at least 15 years contributed a lot to a better understanding
of the problem and stimulated the author, who is deeply grateful to Grigory for his
involvement.

1.2. Setting

We are going to study the distribution of eigenvalues and singular numbers of vari-
ous kinds of compact operators. By n˙.�;K/ we denote the distribution function of
positive (negative) eigenvalues of the self-adjoint operator K; for an arbitrary com-
pact operator K, n.�;K/ denotes the counting function of singular numbers of K:
In the case when the operator is described by a quadratic form BŒu� in the Hilbert
space with norm defined by means of the quadratic form AŒu�, we replace K by the
ratio of these quadratic forms in the notation n.�; :/, n˙.�; :/. For � > 0, we denote
by nsup

˙
.�;K/ the quantity lim sup�!0 �

�n˙.�;K/: Without the subscript ˙, these
notations concern the distribution of singular numbers of these operators. Without the
superscript sup, these symbols denote the limits lim�!0 �

�n˙.�;K/; provided these
limits exist. Finally, if some operator or the ratio of quadratic form is defined in the
displayed formula with tag (X.Y), the above notation is used with this tag replacing
the notation of the operator, e.g., nsup.�; .X:Y //, etc.

We consider a bounded domain��RdC1 with connected Lipschitz boundary†.
(The connectedness condition can be easily removed, at the cost of certain notational
complications.) This means that † D @� can be covered by a finite collection of co-
ordinate neighborhoods U� such that the portion of † in U� can be, in a properly
rotated Euclidean co-ordinate system, .x0; xdC1/ 2 U�, represented by the equation
xdC1D 

.�/.x0/; x0 2V �Rd with Lipschitz function .�/ (sometimes such surfaces
are called strongly Lipschitz in the literature, see, e.g., [22].) It is convenient to use a
global co-ordinate system in a neighborhood of the boundary, see Section 3.

In [4,36], and some other papers, a more general setting is considered, namely the
spectral problem (1.1), with the Laplacian in the equation replaced by some formally
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self-adjoint second order elliptic differential operator L in divergence form, with the
normal derivative @� replaced by the derivative along the conormal associated with
L and with a weight function present on the right-hand side of the eigenvalue equa-
tion. For us, it is also convenient to consider such more general, the weighted ,
Neumann-to-Dirichlet, problem. Namely, for a uniformly positive definite (elliptic)
real matrix-function a.x/ D .aj;k.x/; j; k D 1; : : : ; d C 1/, a 2 L1.�/; we denote
by L D La the formal differential operator

L � La D �

X
j;k

@jajk.x/@k : (1.2)

The weighted problem for L is the eigenvalue problem

Lu.x/D 0; x 2�I @au.x/D �
�1�.x/u.x/; x 2†I @a D

X
j;k

aj;k�k@xj ; (1.3)

with a real function �.x/: The conormal differential operator @a has symbol

{ha.x/�; �xi:

A direct setting of the problem (1.3) requires an explicit description of the space
of functions uwhere the equation is considered. Under very weak conditions imposed
here on� and a; this task is very hard. Instead of this, we follow [4,36] in considering
the problem in the variational form, where all spaces under consideration admit
explicit description, see Section 2. It is noted in [4] that such variational approach
follows the way of reasoning of H. Poincaré, V. A. Steklov, and other researchers of
that time, for whom it is the variational setting of the eigenvalue problem, based upon
considering energy balance, was the primary point of the eigenvalue analysis, while
the differential Euler–Lagrange equation appeared as a secondary object.

1.3. Asymptotic formulas. The main result

The asymptotic eigenvalue formula for the problem (1.2) can be written in the follow-
ing way (see, e.g., [4]). In a fixed orthogonal co-ordinate system, we associate with
the matrix a.x/ its sesquilinear form ax W ax.�/ D

P
j;k ajk.x/�j �k; let ax.�; �/ be

the corresponding bilinear form. For x 2 †; � 0 2 T�x† and the normal vector � at x;
we denote by ˇ.xI � 0/ the positive square root of ax.�/ax.�

0/ � ax.�
0; �/2,

ˇ.x; � 0/ D .ax.�/ax.�
0/ � ax.�

0; �/2/
1
2 I (1.4)

this is a function positively homogeneous in � 0 of order 1. Then the density ˛˙.x/ is
defined as

˛˙.x/ D vol¹� 0 2 T�x†Wˇ.xI �
0/ < �˙.x/º; (1.5)
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and the asymptotic formulas to be proved are

n˙.d; (1.3)/ D .2�/�d
Z
†

˛˙.x/d�†.x/; (1.6)

where �† is the surface measure on † generated by the embedding of † into RdC1:

For a continuous matrix-function a; such definition of the eigenvalue problem (1.3)
and the understanding of the formula (1.6) do not cause confusion, even if the matrix
a is continuous only at the boundary †: In our case, the matrix a.x/ may be discon-
tinuous. However, under the conditions imposed below, the limit values of ajk at the
boundary are well defined almost everywhere in†; and therefore formula (1.6) makes
sense.

In [4], the asymptotic formula (1.6) was justified under the following conditions,
see [4, Theorem on p. 242].

Theorem 1.1. Let � � RdC1 be a bounded domain; suppose that † D @� is a
surface of class C 1 and � 2 L1.†/: Suppose finally that the coefficients ajk are
continuous in x�. Then the asymptotics (1.6) holds. Moreover, the same conclusion is
correct if † is Lipschitz but belongs to C 1 in a neighborhood of the support of �;
outside a closed set of zero surface measure. The function � may belong to Ld .†/ for
d > 1 and any Lq.†/ with q > 1; for d D 1:

The elementary formulation of the main result of our present paper is the follow-
ing.

Theorem 1.2. Let � � RdC1 be a bounded domain with Lipschitz boundary †:
Suppose that the operator La is uniformly elliptic in �, the coefficients ajk are con-
tinuous in x�. Suppose that � 2 Ld .†/ for d > 1 and � belongs to the Orlicz class
L logL.†/ for d D 1: Then the asymptotic formula (1.6) is valid.

The continuity condition in Theorem 1.2 can be considerably relaxed. We say that
a function a.x/ 2 L1.�/ is continuous at the boundary if there exists a continuous
function ab 2 C.†/; † D @� such that for any x0 2 †,

lim
ı!0
ka.:/ � ab.x

0/kL1.B.x0;ı/\�/ D 0; (1.7)

where B.x0; ı/ is the ball in RdC1 with radius ı, centered at x0: Since the functions in
L1.�/ are defined up to a set of measure 0, we may identify in the above definition
the continuous function ab with the restriction of a to †.

Having this definition, the formulation of the more general result that we are going
to prove here, is as follows.
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Theorem 1.3. Let��RdC1 be a bounded domain with Lipschitz boundary†: Sup-
pose that the operator La is uniformly elliptic in �, the coefficients ajk are bounded
and measurable and they are continuous at the boundary in the sense of (1.7). Then
the asymptotic formula (1.6) is valid.

Remark. The conditions imposed on the coefficients of the operator L can be fur-
ther relaxed, allowing them to be unbounded in a certain sense and admitting certain
degeneration of ellipticity. We do not pursue this line here, in order to keep the ele-
mentary level of the presentation.

We describe here briefly the structure of the proof. After certain transformations,
the weighted problem in the domain with Lipschitz boundary is relocated to a
similar problem for a uniformly elliptic operator L but with bounded coefficients,
possibly, discontinuous at the boundary, in a domain with smooth boundary. This
operator is approximated by operators zL with smooth coefficients which converge to
the coefficients of L in a certain Lp-based norm, with some p <1. Then it is proved
that the compact operators describing the P-S spectrum for zL converge so strongly
that it becomes possible to pass to the limit in the formulas for coefficients n˙.d; :/
in the Steklov eigenvalue asymptotics for zL:

2. The variational representation

The setting of the eigenvalue problem under very weak regularity conditions imposed
on the coefficients and the domain, is variational. As usual, for more regular data, the
variational setting is equivalent to the classical, ‘strong’ one.

2.1. The weighted operator

Since the earliest paper on the topic by Lenart Sandgren [36] in 1955, the most com-
monly used method of the study of Steklov eigenvalues is the variational one. Its main
advantage is its robustness with respect to various perturbations of the problem. We,
too, will need a version of the variational setting of the Steklov eigenvalue problem
(see, however, Appendices A and B where we discuss a different approach).

First of all, since we are going to use the instruments of the perturbation theory for
compact operators, we will need to pass from the unbounded Dirichlet-to-Neumann
operators (which are often considered) to the N-to-D ones, ; since the latter
operators are compact (this corresponds to the placement of the spectral parameter
in (1.3)). A minor inconvenience here is that the Neumann problem for the Lapla-
cian (as well as for other second order elliptic operators without zero order terms)
has an eigenfunction with zero eigenvalue, so the Neumann operator is not invertible.
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There are several standard ways to deal with this circumstance. Say, often, the Neu-
mann operator is restricted to the codimension 1 subspace of functions orthogonal to
constants. In our considerations, it is more convenient to avoid hitting the zero eigen-
value by means of adding a non-trivial non-negative function v0.x/ to the operator L,
namely to consider the operator LC v0.x/. Such perturbation is relatively compact
with respect to self-adjoint realizations of L, and, by the usual perturbation reason-
ing, see, e.g., [12, Lemma 1.3], it does not influence the asymptotics of the spectrum.
One might have set v0 � 1; but this does not simplify the matter. For economy of
symbols, we use the notation L for the operator with v0 already absorbed, further on.
At a proper moment, we will use the freedom in choosing v0:

We denote by T � Ta the operator L with Neumann boundary conditions on †.
Namely, it corresponds to the quadratic form

a0Œu� D
Z
�

.aŒu�.x/C v0.x/ju.x/j2/dx; aŒu�.x/ WD
X
j;k

aj;k.x/@ju.x/@k Nu.x/;

(2.1)
with domain u 2 H 1.�/I this form is equivalent to the square of the standard norm
kukH1.�/ in the Sobolev space H 1.�/: Being considered in L2.�/, this quadratic
form defines the positive self-adjoint operator T satisfying

a0Œu� D .T
1
2u;T

1
2u/; u 2 H 1.�/ D D.T

1
2 /:

(This fact, which we will use systematically, that the domain of a closed positive
quadratic form coincides with the domain of the square root of the operator defined
by this quadratic form, is a standard property in the abstract spectral theory, see, e.g.,
[26, Theorem 2.23 in Section VI]. For quadratic forms which are only sectorial, the
case we do not need, this equality constitutes the famous Kato’s square root problem
which has been the topic of deep extensive studies since 1980s.)

Further on, we will sometimes use the notion of the spectrum of the ratio of
quadratic forms in the Hilbert space. Actually, the spectrum of the ratio BŒf �

AŒf �
with

f 2 X is a shorthand for the spectrum of the operator defined by the quadratic form
BŒf � in the Hilbert space X equipped with the norm defined by the quadratic form
AŒf �.

For a real function �0.x/; x 2 † we consider the quadratic form

�0Œf � D

Z
†

�0.x/jf .x/j
2d�†.x/: (2.2)

Let �0 belong toLd .†/:By Kondrashov’s trace theorem, for d > 1; the trace mapping
u 7! uj† ; defined initially on continuous functions u 2H 1.�/, extends by continuity
to the bounded mapping 
 W u 7! uj† ; 
 WH

1.�/! Lq.†/; q D
2d
d�1

: Therefore, by
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the Hölder inequality, if �0 2 Ld .†/, with d�1 C 2q�1 D 1, the quadratic form (2.2)
satisfies

�0Œ
u� � Ck�0kLd .†/a0Œu�; u 2 H 1.�/: (2.3)

For d D 1; a somewhat more complicated reasoning (see, e.g., [1]) gives

�0Œ
u� � Ck�0kL logL.†/a0Œu�; u 2 H 1.�/; (2.4)

where L logL.†/ is the Orlicz space consisting of functions u on † for which
juj.1C j log jujj/ 2 L1.†/; with the Luxemburg norm.

The following variational representation is known since [36], see, e.g., [4, 42],
and sources cited there: the Steklov spectrum is described by the ratio of quadratic
forms �0Œ
u�a0Œu�

considered on the space of L2�solutions of the equation LuD 0: Since
�0Œ
u�D 0 for u2 VH 1.�/; one can, as this is usually done, drop the condition LuD 0

in the variational setting and consider the spectrum of the ratio

�0Œ
u�

a0Œu�
; u 2 H 1.�/:

2.2. A freedom in the choice of the weight function �0

Estimates (2.3) and (2.4) mean that the quadratic form (2.2) is bounded in H 1.�/,
the equality in (2.2) can be therefore extended by continuity to all traces of func-
tions in H 1.�/ and therefore the form �0 defines a bounded operator S D SŒ�0� in
H 1.�/, with norm estimated by k�0kLd .†/; resp., k�0kL logL.†/: If the function �0
is real-valued, this operator is self-adjoint. In fact, this operator is compact and its
eigenvalues satisfy a power order estimate.

Theorem 2.1. Let� � RdC1; d > 1; be a bounded domain with Lipschitz boundary
† and let �0 2 Ld .†/. Then, for the singular numbers of S D SŒ�0�, the following
estimate holds:

n.�;SŒ�0�/ � C.�; a/��dk�0kdLd .†/: (2.5)

If the function �0 is real-valued, estimates of the form (2.5) hold, separately, for pos-
itive and negative eigenvalues,

n˙.�;SŒ�0�/ � C.�; a/��dk.�0/˙kdLd .†/: (2.6)

For d D 1 the above results hold, with Ld .†/ replaced by L logL.†/:

Proof. For d > 1; we use the estimate for the eigenvalues of Birman–Schwinger-
type operators with singular measures, obtained recently in [35]. We consider some
bounded open set�0 containing� strictly inside and apply [35, Theorem 3.3], for the
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particular choice of N D d C 1; l D 1; s D d; d > 1; � being the surface measure
on the surface †. This theorem states the following. Let �0 � RN be a bounded open
set, � be a compactly supported measure in �0 satisfying, for X 2 †; r � diam.†/,
† D supp�,

�.B.X; r// � Ars; s > N � 2.D d � 1/; � 2 L�;�; � D
s

s C 2 � N
; (2.7)

where B.X; r/ is the ball with radius r centered at X: Then, for the particular case
s D d; � D d; for the operator SD SŒ�0;�0� in VH 1.�0/ defined by the quadratic form
�0 in (2.2), the estimates (2.5), (2.6) hold.

We use this result in the following way. First, note that for a compact Lipschitz
surface † of dimension d with � being the d -dimensional Hausdorff measure on †,
the condition (2.7) is satisfied with s D d . Next, by the Calderón–Stein extension
theorem, (see, e.g., [1, Theorem 5.24]), there exists a bounded extension operator
EWH 1.�/! VH 1.�0/;

kEvk
VH1.�0/

� C.�;�0/kvkH1.�/:

Therefore, if on some subspace L � H 1.�/ of dimension n; we have

�0Œ
v�

kvk2
H1.�/

� �; v 2 L;

it follows that
�0Œ
Ev�

kEvk2
VH1.�0/

D
�0Œ
v�

kEvk2
VH1.�0/

� C.�;�0/�2�:

By the variational principle, this implies the inequality for the counting functions of
eigenvalues of operators,

nC.�;SŒ�0; ��/ � nC.C.�;�0/�2�;SŒ�0; �0�/;

which gives (2.6) with ‘+’ sign. Other estimates follow in a similar way.
For d D 1; the reasoning is the same, just we use the Orlicz estimate in [33] instead
of the eigenvalue estimate in [35].

Remark. In fact, some stronger results which, however, are not needed for our present
topic, hold. Actually, the extension theorem for the class H 1.�/, which we used, is
valid under somewhat weaker restrictions than the Lipschitz property. Namely, in [24],
the class of ." � ı/-domains has been introduced (see the definition in [24, p. 73])
called also locally uniform domains in the literature. This class contains all Lipschitz
domains, but some other, less regular ones, as well (it is mentioned in [24] that an
."� ı/-domain in RdC1 may have a fractal boundary of any Haussdorff dimension in
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Œd; d C 1/, particular examples being the Von Koch snowflakes. On the other hand, an
exterior cusp prevents the domain from being locally uniform). For an ."� ı/ domain,
a bounded extension operator E for Sobolev spaces exists. Therefore, if the d -dimen-
sional Hausdorff measure on @� satisfies (2.7) with sD d and� is an ."� ı/-domain
then for the operator SŒ�0; �� with a function �0 2 Ld .�/, which can be considered
as a natural generalization of the operator, estimates (2.5) and (2.6) are valid.

The operator S � SŒ�0� has the same eigenvalues as the operator of the P-S prob-
lem in the smooth case. In the course of our reasoning, we will introduce some more
operators with the same spectrum.

The eigenvalue estimates in Theorem 2.1, with coefficient in front of the power
term depending on the integral norm of the functional parameter, enable one to estab-
lish the property of the passage to limit in asymptotic eigenvalues formulas. This way
of reasoning, starting in the classical studies by M. Š. Birman and M. Z. Solomyak in
the 1960s and 1970s (see, e.g., [12, Lemma 1.5]), is now the standard tool in estab-
lishing the eigenvalue asymptotics for singular problems by means of approximating
by more regular ones. We reproduce here this extraordinary lemma, which we use at
least on three occasions in the course of the paper.

Lemma 2.2. Let K be a compact operator, � > 0; and for sufficiently small " one can
split K into the sum, K D K" C K0" so that for K" the singular numbers asymptotic
formula holds,

n.�;K"/ D A"; (2.8)

and the operators K0" are asymptotically small in the sense

nsup.�;K0"/! 0; (2.9)

as "! 0. Then the limit lim"!0A" D A exists and the asymptotics holds,

n.�;K/ D A: (2.10)

An analogous statement is valid for the positive/negative eigenvalues of a self-adjoint
operator K. One should replace in the above formulation n by n˙ in (2.8) and (2.10)
(but not in (2.9)).

Among most recent examples of applying this way of reasoning, one can cite
[35, Section 6] and [25]. We formulate here the particular statement concerning the
eigenvalue asymptotics for the operator SŒ�0�I it follows from estimates (2.5) and (2.6)

Corollary 2.3. Suppose that for the weights �0 in some set Y � Ld .†/, d > 1; the
asymptotic formula (1.6) is established. Then this formula is valid for all �0 2 xY; the
closure of Y in the norm of Ld .†/: The same statement is valid for the dimension
d D 1; with Ld .†/ replaced by the Orlicz space L logL.†/:
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In particular, this means that we can restrict ourselves to considering as Y, the set
of continuous, and, later, smooth functions �0, which are dense in the corresponding
space with integral norm.

We follow now [5, 34, 36, 39, 46] and other papers where the variational method
was used for the study of spectral problems containing a weight, including the P-S
type spectral problems. Namely, once order sharp eigenvalue estimates involving an
integral norm of the weight function are obtained, it is possible to restrict the further
study of eigenvalue asymptotics to considering sign-definite weight functions only.
We do not need to repeat this standard reasoning in detail, but just describe briefly
the common scheme. Starting with a non-sign-definite weight function �0, we first
approximate it in a proper integral norm by a function � which has ‘separated’ positive
and negative parts, dist.supp�C; supp��/ > 0: After this, the study of the distribution
of the positive, resp., negative spectrum of the problem is performed by cutting-away
the part of the weight with wrong sign.

Consequently, we restrict ourselves to non-negative weight functions �0 further
on.

2.3. The asymptotic coefficient

The next preparatory step consists in obtaining a convenient expression for the coef-
ficient in the asymptotic formula for the eigenvalues of the P-S problem so that it
is possible to pass to the limit in this expression as the coefficients of the operator
converge in a proper sense.

The asymptotic coefficient, known to be correct in the smooth case and aimed for
in the Lipschitz case, is given by (1.6), (1.4), and (1.5).

For our further needs, it will be more convenient to use a somewhat different
representation of the coefficient in (1.6). Namely, for a given x 2 †; we can represent
ax.�/, ax.�; �/ as matrix products

ax.�/ D �
�a.x/�; ax.�; �/ D �

�a.x/� D ��a.x/�;

(where �� denotes the row-vector, matrix-adjoint to the column-vector �.) In these
notations, we have

ˇ.x; � 0/2 D ��a.x/�� 0
�
a.x/� 0 � � 0

�
a.x/���a.x/� 0

D ��a.x/�ha.x/� 0; � 0i � hŒ.��a.x//�.��a.x//�� 0; � 0i WD h‚.x/� 0; � 0i;

(2.11)

where ‚.x/ D .��a.x/�/a.x/ � a.x/���a.x/ (note that the last matrix here has
rank 1, together with ���.). Now, let …x be the embedding of T�x† into RdC1; and
…�x be the adjoint operator, the projection of RdC1 to T�x†: Then (2.11) can be written
as

ˇ.x; � 0; �/2 D h…�x‚x…x�
0; � 0i;
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therefore,

˛˙.x/ D vol¹� 0 2 Rd W 0 < h‚0x/�
0; � 0i

1
2 < .�0/˙.x/º

D !d .�0/˙.x/
d det.‚0x/

�1=2; (2.12)

with d � d matrix‚0x D…
�
x‚x…x The meaning of the matrix‚0x can be understood

in the following way. We represent the .d C 1/ � .d C 1/ matrix ‚ in an orthogonal
frame where one of basis vectors is the normal vector �x : Next, we strike out in this
matrix the row and the column corresponding to �x . What remains is just our matrix
‚0x . Using (2.12), we can establish certain estimates for the quantity n˙.d; 1.3/; uni-
form in a class of elliptic operators.

It follows from the Cauchy–Schwarz inequality that

ax.�/ax.�
0/ � ax.�

0; �/2 D ha.x/�; �iha.x/� 0; � 0i � ha.x/� 0; �i2 � 0: (2.13)

For a positive matrix a; the exact equality in the Cauchy–Schwarz inequality (2.13)
is possible only if the vectors � 0 and � are parallel. The latter may never happen,
therefore the inequality in (2.13) is strict; by homogeneity we obtain

ax.�/ax.�
0/ � ax.�

0; �/2 � k.� 0=j� 0j/ax.� 0/; (2.14)

with some k.� 0=j� 0j/ > 0:
The sharp constant k.� 0=j� 0j/ in (2.14) depends continuously on � 0 ¤ 0I by the

compactness of the unit sphere, we have

ˇx.�
0/2 D ax.�/ax.�

0/ � ax.�
0; �/2 � k.� 0=j� 0j/ax.� 0/ � C k.x/j� 0j2; (2.15)

where k.x/ is the ellipticity constant of the matrix a.x/ at the point x 2†:We suppose
that the matrix a.x/ is uniformly elliptic, a.x/ � k0 > 0: Then (2.15) implies

˛˙.x/ � Ck�d0 !d�˙.x/
d :

In the equivalent representation, the estimate for the matrix ‚0x also follows,

det.‚0x/ � Ck�d0 :

The last estimates enable us to establish the following convergence property.

Lemma 2.4. Let as.x/, s 2 Œ0; 1/ be a family of Hermitian matrix functions on †,
such that they satisfy ellipticity estimates as.x/ � k0 uniformly in x; s; and are also
uniformly bounded, jas.x/j � k1. Suppose that the matrices as converge as s ! 0 to
a0 in Lq.†/; q <1: Denote by %s.x/ the function

%s.x/ D det.‚0s.x//
� 12 ;
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where ‚0s is the matrix ‚0 in (2.11), corresponding to the coefficient matrix as . Then

%s.x/! %0.x/

in Lq.†/:

Proof. The statement follows easily from the fact that %s.x/2 is a rational function of
the entries of the matrix as.x/ and these matrices are separated from zero.

The following result shows that the expression for the coefficient in the asymp-
totics of P-S eigenvalues endures the convergence of the coefficient matrix in the
integral metric.

Lemma 2.5. Let as.x/ be a family of matrices, as in Lemma 2.4 and �0 be a bounded
function on †: Then

R
%s;˙.x/�0.x/d†!

R
%˙.x/�0.x/d†:

The statement follows by the passage to limit, using Lemma 2.4.

2.4. D-to-N and N-to-D operators as pseudodifferential ones

It is well known that for the Laplacian, the operator equals, up to lower order terms,
.��†/

1
2 , for a smooth boundary; an interesting discussion can be found in [18]. For

general elliptic operators, in [2, 3], M. S. Agranovich presented an explanation of
the coefficient ˇ.x; � 0/ for the case of a smooth (or ‘almost smooth’) surface †: We
discuss now the latter formula. Suppose first that the coefficients matrix a.x/ does not
depend on x 2�: Consider the fundamental solutionR.x � y/ for the operator L; so
that LxR.x � y/ D ı.x � y/: With this fundamental solution the classical potential
operators are associated, namely, the single layer potential operator S,

f 7! Sf .x/ D

Z
†

R.x � y/f .y/d�.y/; x 2 †;

and the ‘direct value’ of the conormal derivative of the single layer potential (often
called the Neumann–Poincaré operator)

D0Wf 7! D0f .x/ D

Z
†

@a.x/R.x � y/f .y/d�.y/; x 2 †;

the latter integral understood in the principal value sense. The adjoint to D0
f

is the
integral operator D; called the direct value of the double layer potential,

DWf 7! Df .x/ D

Z
†

@a.y/R.x � y/f .y/d�.y/; x 2 †:
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Then the operator is, up to lower order terms, the composition

D

�1
2
CD0

��1
S D S

�1
2
CD

��1
:

For a smooth boundary†, the operators S and D are order�1 pseudodifferential oper-
ators on †: Since S is a restriction of the order �2 pseudodifferential operator to the
boundary, its symbol is calculated according to the usual rules of pseudodifferential
calculus,

s.x; � 0/ D
1

2�

1Z
�1

Œa.� 0; �dC1/�
�1d�dC1; x 2 †; (2.16)

in co-ordinates where xdC1 is directed along the normal vector �x to the tangent
plane at the point x 2 † and the corresponding co-ordinates � 0; �dC1; with � 0 in
the cotangent plane and �dC1 directed along �x , see, e.g., [3, (4.28)]. Calculations
by (2.16) give the expression for ˇ.x; � 0/D s.x; � 0/�1 in (1.4) as the principal symbol
of the operator D

�1: Similar considerations cover the case of variable smooth
coefficients, where the fundamental solution takes the form R.x; y/; LxR.x; y/ D

ı.x � y/ and in (2.16) one should change a.� 0; �dC1/
�1 to a.x0; 0; � 0; �dC1/

�1; see
[5, Section 3.4]. For a non-smooth, Lipschitz surface, the function ˇ.x; � 0/ still can
be calculated by the above formula, but it is not a symbol of a nice pseudodifferential
operator any more.

The principal symbol of the double layer operator D can be also calculated, see,
e.g., [41], but the we do not need an explicit expression here.

3. Some geometry considerations

In this section we introduce a global co-ordinate system in an interior collar neigh-
borhood of the boundary † D @�: After the passage to this co-ordinate system and a
special co-ordinates change, the Poincaré–Steklov problem in a Lipschitz domain, for
the equation with coefficients, continuous at the boundary, reduces to an equivalent
problem in a domain with smooth boundary, but for an elliptic operator with discon-
tinuous bounded measurable coefficients, fortunately, still with a certain very weak
continuity property.

3.1. A smooth surface approximating the boundary

By the Rademacher theorem, a Lipschitz function has derivatives almost everywhere
and these derivatives are bounded. Therefore, the Lipschitz surface † � RdC1 has
a tangent plane almost everywhere. This fact enables one to describe explicitly the
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surface measure on † generated by the Lebesgue measure on RdC1: Namely, on the
local Lipschitz graph xdC1 D  .x0/; x0 2 V � Rd ; the surface measure is given by

�†.E/ D

Z
�E

p
1C jr .x0/j2dx0; (3.1)

where �E is the projection of the set E � † to Rd : It is important to note that for
a Lipschitz function  ; the integrand in (3.1) is a bounded function, an algebraic
expression in the partial derivatives of  :

A detailed study of geometric properties of Lipschitz domains is presented in [22].
In particular, for a domain � � RdC1 with Lipschitz boundary, the distributional
gradient grad.��/ of the characteristic function of � is a vector measure which is
absolutely continuous with respect to the measure �† in (3.1),

grad.��/ D ��.x/�† (3.2)

with the vector-valued density �, j�.x/j D 1 coinciding with the normal at x almost
everywhere on †: (Such vector measure can be well defined for a class of domains
even somewhat less regular as well, see [22].)

Starting from [36], and then in [4, 5, 39], etc., a localization was used, reducing
the spectral analysis for operators related with the P-S problem in � to the ones in
Lipschitz cylinders. In our study, it is more convenient to define the surface † and
perform related constructions globally.

To do this, we will need the classical result on the existence of a smooth vector
field transversal to the Lipschitz surface. Namely, there exists aC1-vector field �.x/;
x 2 RdC1 such that at the points x 2 † D @�; those points where the tangent plane
exists, j�.x/j D 1 and �.x/ forms an acute angle with the normal �.x/ to † at x;
not exceeding some constant which is strictly smaller than �=2: The construction of
such field can be found, e.g., in [22, Proposition 2.3] (in fact a similar construction
was used as long ago as in 1983 by A. P. Calderón, see [16]).

For further reasoning, we need one more geometric construction. We suspect that
it might have been well known since long ago, but were not able to locate a reference
in the literature. Therefore, we describe it here.

Lemma 3.1. Let � � RdC1 be a bounded domain with Lipschitz boundary †. Let
� be the transversal smooth vector field, as above. In a neighborhood of † denote
by `x the integral curve of this vector field passing through x. Then, for a certain
interior collar neighborhood U of † there exists a smooth surface † � U, which has
exactly one intersection point with every integral curve ` of the field � in U; and this
intersection is transversal.
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Proof. In some two-sided collar neighborhood zU of†; the integral curves `x0 ; x0 2†;
of the vector field � form a one-dimensional foliation. We define the function f.x/;

x 2 zU; as the distance of the point x to the intersection point x0 2† along the integral
curve `x0 passing through x (with proper sign, positive inside †:) Then x D .x0; t /,
t D f.x/ form a new co-ordinate system in zU: In these co-ordinates the function f

is continuous in zU, differentiable almost everywhere and has derivatives of any order
in t variable, in other words, along `x0 . Moreover, f is strictly decaying in t variable,
i.e., along the curves `x0 .

We take a smooth non-negative cut-off function �".x/; diam supp �" < ";R
�".x/dx D 1; with sufficiently small ", and consider the convolution, the smooth

function f" D f � �": Sufficiently close to †, this function is smooth, growing in t
variable, and it has the same sign as f outside the "-neighborhood of †. We con-
sider the level surface† for f"; f".x/ D ı for some ı > 0: By construction, being the
level surface of a smooth function without stationary points, this surface is smooth,
has only one intersection point with each of trajectories `x0 and is uniformly non-
tangent with these trajectories. Due to the monotonicity of f; the level ı can be
chosen in such way that the surface † lies strictly inside �I we may also suppose
that dist.†;†/ > r0 > 0:

3.2. Change of variables

We introduce now new co-ordinates in � near †. Namely, for the smooth surface †,
just constructed, for a point x 2 zU; we take now x D .x0; xdC1/; where x0 2 † is
the intersection point of the curve `x with † and xdC1 is the distance from the point
x 2 U to the surface† along the integral curve `xI we set xdC1 to be positive outside
†. According to the properties of the surface†; this is a smooth co-ordinates change
from the initial Euclidean co-ordinates.

In these co-ordinates, the initial surface † is described globally by the equation
xdC1 D  .x

0/, x0 2 †; with some Lipschitz function  .x0/ > r0 > 0 for all x0 2 †
(recall that the surface † lies strictly inside x�). We denote by C0 the truncated cylin-
der with base † and top †:

C0 D ¹.x
0; xdC1/W x

0
2 †; xdC1 2 Œ0; .x

0/�º � �;

which is diffeomorphic to a collar neighborhood of † in �; and denote by �0 the
complement of this cylinder in �,

�0 D � n C0:

In this setting, the domain � can be considered as a smooth manifold with Lip-
schitz boundary †,

� D �0 [ C0
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having a truncated cylindrical exit C0 D C0Œ � with base section † and boundary †.
Our next aim now is to perform a change of variables ˆ of � to the standard

domain � D �0 [ C where C is the straight cylinder, C D Œ0; 1� �†: This change
of variables is the identity mapping, ˆ.x/ D x on �0 and an adjoining part of the
cylinder C0Œ �, xdC1 < t0, while near the Lipschitz boundary, it is glued together, by
means of proper cut-offs, with the stretching along the xdC1 variable, i.e., along the
integral curves of � namely, with the mapping

ˆ.x/ � ˆ.x0; xdC1/ D .y
0; ydC1/ �

�
x0;

xdC1

 .x0/

�
; x0 2 †; (3.3)

so, at the top,†, we have ydC1D 1. Thus, in new co-ordinates, the Lipschitz boundary
† of the domain � is transformed to the smooth boundary of the domain�: y0 2 †;
ydC1 D 1:

We denote by x D ‰.y/ the mapping inverse to ˆ (it, obviously, exists and it
is the inverse stretching along the ydC1 variable near † � ¹1º). The mapping ˆ is
a bilipschitz mapping of � to �. Its restriction to † is a bilipschitz mapping to †.
Such changes of variables leave invariant the Sobolev spaces H 1 and for the weak
derivatives the usual chain rule holds, see, e.g., [47, Theorem 2.2.2].

The observation, crucial for our further reasoning is the following.

Lemma 3.2. The following statements hold.

(1) The components of the mappingsˆ;‰ are continuous, their first order deriva-
tives in x0, resp., y0 variables and all their derivatives in xdC1; resp., ydC1
variables are bounded functions, smooth in xdC1; resp., ydC1 variable; they
are continuous as functions of these variables with values in L1.†/, resp. in
L1.†/:

(2) The Jacobian matrices of the mappings ‰ and ˆ are bounded; their entries
are continuous in ydC1; resp., xdC1; variables as functions with values in
L1.†/, resp. in L1.†/.

All these properties follow automatically from the definition of the mapping ‰
and the chain rule for derivatives, taking into account that the first order derivatives of
a Lipschitz function are bounded.

4. Transformations and approximation of the P-S operator

In the course of the proof of our main result we will often transform operators under
study while preserving their spectra, so that the initial and the approximating operator
can be comfortably compared. Our considerations take place in the domain � with
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cylindrical exit, as presented in the previous section. Having the quadratic forms �0,
a0, we find out what happens with them under the transformation ‰ :

4.1. Transformation of quadratic forms

We study here how the quadratic forms defining the spectrum of the Poincare–Steklov
problem transform under the change of variables, as described in Section 3; we set
here v.y/ D u.x/; y D ˆ.x/, x D ‰.y/, x 2 �; y 2 �:

First, we consider the quadratic form

�0Œu� D �Œv� �

Z
†

�0.‰.y//jv.y
0; 1/j2j detJ.y0; 1/jd�†.y0/;

where J.y0; 1/ is the Jacobian matrix of the mapping ‰ and �† is now the natural
measure on †; a smooth surface in RdC1. This quadratic form can be written as

�Œv� D

Z
†

�.y0/jv.y0; 1/j2d�†.y
0/;

with density �.y0/ D �0.‰.y0; 1//j detJ.y0; 1/j.
The quadratic form a0Œu�; see (2.1), is transformed to

a0Œu� � aŒv� D
Z
�

dC1X
j;kD1

Laj;k.y/@j v.y/@kv.y/dy C

Z
�

Lv.y/jv.y/j2dy; (4.1)

v 2 H 1.�/: The transformed coefficients Laj;k.y/; Lv.y/, in the quadratic forms (4.1),
can be calculated, using (3.3), but we do not need here their particular explicit expres-
sion at this point. What is important is the kind of dependence of these coefficients on
the variables yk .

Recall that the coefficients aj;k.x/ are bounded and are continuous at † in the
sense of (1.7). This property persists after the continuous change of variables x D
‰.y/, so the functions aj;k.‰.y// are continuous at the new, smooth, boundary† in
the sense of (1.7). Next, to obtain Laj;k.y/, we need to multiply aj;k.‰.y// by some
algebraic combinations of derivatives of the mapping‰ ; namely, the derivatives of‰ ,
appearing in the chain rule when passing from x-derivatives to y-derivatives and also
by the Jacobian of the mapping ‰ arising in the passage from dx in the integral
to dy. The multiplication by these derivatives which are bounded but, generally, not
continuous, destroys the continuity of the boundary values of aj;k.‰.y// for y 2 †.
However, these derivatives are still continuous in ydC1 variable as functions with
values in L1.†/. We introduce the following definition.
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Definition 4.1. Let q.y/ D q.y0; ydC1/ be a bounded measurable function in the
variables y0 2 †; ydC1 2 .1 � ı0; 1�: Let q.y0/ 2 L1.†/ be fixed. Denote by

q˘.y/ � q˘.y0; ydC1/

the continuation of q.y0/ as a function not depending on ydC1;

q˘.y0; ydC1/ WD q.y0/; y0 2 †:

If for any y0 2 †;
lim
ı!0
kq � q˘kL1.B.y0;1/;ı/ D 0; (4.2)

we say that q.y/ has L1.†/ limit q.y0/ at † in the variable ydC1 ! 1. If this is
the case, we redefine the initial function q.y/ on †; by setting q.y0; 1/ D q.y0/, thus
changing q on a set of d C 1-dimensional measure 0. After this, we say that q is
L1.†/-continuous at †:

One can easily see that the product of a function L1.†/-continuous at † and a
function continuous at † is again a function L1.†/-continuous at †: Therefore, by
Lemma 3.2, the coefficients Laj;k of the quadratic form aŒv� in (4.1) are L1.†/-con-
tinuous at †: This ‘very week’ continuity property proves to be sufficient for our
approximation construction.

We recall that the ratio of quadratic forms �0=a0 defines an operator whose spec-
trum coincides with the one of the P-S operator. The domain of the quadratic forms is
H 1.�/. Therefore, our transformations can be summarized in the following way.

Proposition 4.2. The spectrum of the variational Poincaré–Steklov problem (1.3)
coincides with the spectrum of the ratio

�Œv�

aŒv�
; v 2 H 1.�/; (4.3)

in a domain� with smooth boundary†, and where the quadratic form aŒv� is elliptic
and has bounded coefficients, which are L1.†/-continuous in ydC1 variable at the
boundary † D @�:

From now on, we may forget about the initial Lipschitz problem and study, from
scratch, the eigenvalue distribution for the ratio (4.3). To simplify notations, we drop
further on the ‘check’ over the symbols and, again, denote the main domain by� and
its, now smooth, boundary by † (D † � ¹1º in our y co-ordinates). Recall that we
have paid for the smoothness of the boundary by weakening the continuity property
of the coefficient matrix at the boundary, from continuity to L1.†/ continuity. In the
notations of the quadratic forms �0; a0 we drop the subscript ‘0’.
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4.2. An operator representation of the eigenvalue problem

We recall that we consider the case of a non-negative function �:
The quadratic form aŒv� with domain H 1.�/ defines the self-adjoint positive

‘Neumann’ operator T D Ta in L2.�/: This elliptic operator acts, formally, as

Tv � Tav D �
X
j;k

@jaj;k@kv C vv;

in the sense of distributions, but its domain is rather hard to describe due to the lack
of continuity of the coefficients. Fortunately, neither the domain nor the exact action
are needed in our reasoning. Instead, since T is a positive self-adjoint elliptic operator
with bounded coefficients, the domain of the square root T 1

2 can be described explic-
itly: it coincides with H 1.�/ and T 1

2 is an isomorphism from H 1.�/ to L2.�/.
It was already stated that we are free in the choice of the function v. Now, we fix

this choice, supposing that v 2 C10 .�/ (after the above co-ordinates change).
Since aŒv� D .T 1

2 v;T 1
2 v/; we can set f D T 1

2 v 2 L2.�/ and therefore the ratio
(4.3) transforms to

�ŒT� 12f �
kf k2

L2.�/

D

R
†
j.
T� 12f /.y0/j2�.y0/d�†.y0/

kf k2
L2.�/

; f 2 L2.�/: (4.4)

Here and further on, we denote by 
 Wf 7! 
f the trace operator acting as the restric-
tion to † of a function f defined on the domain � with cylindrical exit C having the
boundary lid † identified with † � ¹1º. We recall that the boundary † is smooth.
Therefore, this restriction is known to act as a bounded operator from H s.�/ to
H s�1=2.†/ for all positive s except the half-integer ones (s 2 N C 1

2
). In particular,

this implies that the operator 
T� 12 is bounded as acting from L2.�/ to L2.†/ (and
even to H

1
2 .†/). Following Section 2, we restrict ourselves to � � 0 and � 2 L1;

therefore, the operator �
1
2 
T� 12 WL2.�/! L2.†/ is bounded as well.

As a result, the numerator in (4.4) can be written as

�ŒT�
1
2f � D .�.y0/

1
2 
T�

1
2f; �.y0/

1
2 
T�

1
2f /L2.†/

D .Œ�
1
2 
T�

1
2 ��Œ�

1
2 
T�

1
2 �f; f /L2.�/:

In this way, we have reduced our spectral problem to the study of the spectrum of the
self-adjoint operator

Ga D Œ�
1
2 
T�

1
2 ��Œ�

1
2 
T�

1
2 �;

acting in L2.�/. Since the non-zero discrete spectrum of the product does not change
under the cyclic permutation of the factors, the non-zero eigenvalues of Ga are the
same as the ones of the self-adjoint operator

Ha � Œ�
1
2 
T�

1
2 �Œ�

1
2 
T�

1
2 ��; (4.5)

acting in L2.†/:
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It is more convenient to have a somewhat different representation of the operator
Ha:

Lemma 4.3. The following equality holds

Ha D Œ�
1
2 
T�

1
2 �Œ�

1
2 
T�

1
2 �� D �

1
2 
.
T�1/��

1
2 D �

1
2 
.�

1
2 
T�1/�: (4.6)

Proof. We start with the equality

Œ�
1
2 
T�

1
2 �T�

1
2 D �

1
2 
T�1WL2.�/! L2.†/; (4.7)

where we have the product of two bounded operators on the left. Next we take adjoint
of both parts in (4.7),

T�
1
2 Œ�

1
2 
T�

1
2 �� D .�

1
2 
T�1/�WL2.†/! L2.�/: (4.8)

This is a bounded operator acting from L2.†/ to H 1.�/, again a product of two
bounded operators. Therefore, the restriction operator 
 is well defined on the range
of the operator in (4.8) and we can apply 
 on the left, and then multiply by the
bounded function �

1
2 ; which gives us (4.6).

4.3. Smooth approximation

Our study of P-S eigenvalues will be based upon a special smooth approximation of
the coefficient matrix a:

Lemma 4.4. Let a 2 L1.�/ be a Hermitian matrix-function, continuous at † as a
function of ydC1 variable with values in L1.†/ in the sense of Definition 4.2. Then
for any " > 0 and p <1; there exist a C1.x�/-smooth matrix-function Qa.y/; y 2 x�;
such that the following conditions are satisfied:

(1) ka.:; 1/ � Qa.:; 1/kLp.†/ < ";

(2) the function a.y/ � Qa.y/ is continuous at † as a function of ydC1 variable
with values in L1.†/I

(3) kQakL1.�/ � ckakL1.�/;

(4) if the matrix a is uniformly positive in �; then, additionally, kQa�1kL1.�/ �
cka�1kL1.�/

with the constant c not depending on a:
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Condition (3) means that the L1 norm for the approximating matrix can be
arranged to be not depending on ", being controlled by the L1 norm of the initial
matrix aI by condition (4), in the elliptic case, the same can be arranged for the ellip-
ticity constant of the approximating matrix. Note that the approximation quality in
Lemma 4.4 is required only at the boundary †.

Proof. We discuss the ellipticity case, a.y/ � C > 0; first. Consider the constant
matrix a1.y/DC1I.dC1/�.dC1/, where ka�1k�1

L1.�/
�C1�kakL1.�/:Next, to con-

struct Qa.y/ near the boundary, we take ı > 0 such that for any ball B.y0; ı/; y0 2 †
the inequality ka.y/� a˘.y/kL1.B.y0;ı// < " holds (where a˘.y/ is the continuation
of a.y0; 1/ from † to the ı-neighborhood of †; a˘.y0; ydC1/ D a.y0; 1/:) Next, we
approximate the matrix a.:; 1/ by a smooth matrix Qa0 2 Lp.†/ \ L1.†/ such that
kQa0.:/ � a.:; 1/kLp.†/ < "; thus condition (1) in Lemma 4.4 is satisfied. Also, we
require that

kQa0kL1.†/ � CkakL1.�/; kQa
�1
0 kL1.†/ � C

0
ka�1kL1.�/I (4.9)

all these conditions can be satisfied, for example, by setting Qa0.:/DV.�/a.:;1/, where
V.�/ is the heat semigroup on †; since V.�/ ! 1 strongly in Lp.†/; p < 1 as
� ! C0 and V.�/ is bounded in L1; � � 0: We consider now the matrix Qa˘0 .y/;
the continuation of Qa0.y0/; namely Qa˘0 .y

0; ydC1/ D Qa0.y
0/: This smooth matrix, not

depending on ydC1 is, of course, continuous in the ydC1 variable as a function with
values in L1.†/. Therefore, the difference, a.y/ � Qa˘0 .y/ is also continuous at †
as a function of ydC1 with values in L1.†/. This grants the condition (2) in the
lemma. Conditions (3) and (4) are satisfied due to (4.9). Finally, we glue together
the matrix Qa˘0 defined in a neighborhood of † and the matrix a1.y/ defined outside
such neighborhood by means of proper cut-off functions, and this matrix satisfies all
conditions of the lemma.

In the case when the matrix a is not supposed to be uniformly positive definite,
the simplified reasoning succeeds: namely we just skip all estimates concerning a�1,
therefore, we may simply set a1.y/ D 0.

We will use Lemma 4.4 twice; first time when approximating the elliptic coeffi-
cients matrix a.y/; where the control of the ellipticity constant is important, and the
second time for the approximation of the matrix bD a� Qa when proving the required
operator convergence of HQa to Ha.

4.4. The approximating operator

Consider, for a given " > 0, the approximating coefficient matrix Qa constructed in Sec-
tion 4.3 for the elliptic coefficient matrix a and the corresponding elliptic differential
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operator zL D LQa; with the same zero order term v 2 C1.x�/: With the coefficient
matrix Qa we associate the Neumann operator zTD TQa; by means of the quadratic form
QaŒv�; v 2 H 1.�/.

Since the boundary of � is smooth, as well as the coefficients matrix Qa, some
more can be said about the properties of the operator (4.5) for this matrix. The corre-
sponding compact operator, which we denote by HQa; has, by Lemma 4.3, the form

HQa D �
1
2 
.
T�1

Qa /��
1
2 : (4.10)

First of all, for the eigenvalues of this operator, which coincide with eigenvalues of
the corresponding operator, the asymptotic formula holds, of the form (1.6), (1.4),
(1.5), with the matrix Qa replacing a; due to the existing results, see Theorem 1.1. Next,
since the coefficients of TQa are smooth, the domain and action of the operator TQa can
be described explicitly. Namely, by the standard elliptic regularity results, the domain
D.zT/ of zT is the subspace in the Sobolev space H 2.�/, consisting of functions v
satisfying the classical Neumann boundary conditions,

P
k Qaj;k�k@j vj@� D 0; where

�k are the components of the unit normal vector to † D @�:

Lemma 4.5. For a smooth matrix Qa; for any f 2 L2.†/, the function

v D .�
1
2 
 zT�1/��

1
2f

satisfies in � the elliptic equation

zLv � zL.�
1
2 
 zT�1/��

1
2f D 0 in �:

Proof. Let g 2 C10 .�/ be a smooth function with compact support in �: Consider
the sesquilinear form IŒf; g� D .zL.� 12 
 zT�1/�� 12f; g/L2.�/: The function g belongs
to the domain of the self-adjoint operator zT; therefore,

IŒf; g� D ..�
1
2 
 zT�1/��

1
2f; zTg/L2.�/ D .�

1
2f; �

1
2 
 zT�1zTg/L2.†/ D .f; �
g/L2.†/:

(4.11)
Since g D 0 on †; the last expression in (4.11) is zero. Therefore, the function
zL.�

1
2 
 zT�1/�� 12f is orthogonal to C10 .�/; and this implies that zL.�

1
2 
 zT�1/�� 12f

is zero in �:

4.5. H Qa as a pseudodifferential operator

Here we establish an important property of the approximating operator HQa; needed
further for evaluating the rate of approximation of spectra.

Proposition 4.6. For a smooth approximating matrix Qa and a smooth weight �, the
operator HQa is an order �1 pseudodifferential operator on the boundary †:



Weyl asymptotics for Poincaré–Steklov eigenvalues 779

Proof. When finding, in the smooth case, an expression for the operator HQa; we study
its component .�

1
2 
 zT�1/� first. Recall that zT�1 is the inverse of the realization of the

operator zL with Neumann boundary conditions, 
1u D 0, where 
1 is the conormal
derivative. Continue the coefficients Qa outside� in a smooth way. We denote by R the
fundamental solution for zL; so that zLR � 1; RzL � 1 are infinitely smoothing oper-
ators; R is the order �2 pseudodifferential operator with symbol r.y; �/ having the
principal term r�2.y;�/D Qay.�/�1;where Qay.�/D

P
j;k Qaj;k.y/�j�k is the principal

symbol of the operator zL. Let d > 1 first. Then the operator R acts on functions on
� as an integral operator with kernel R.y; z � y/ having leading singularity of order
1� d at the diagonal y D z. Namely, the principal term, R1�d .y; y � z/; the leading
singularity in R.y; z � y/ is the Fourier transform of the principal symbol r�2.y; �/,

R1�d .y; y � z/ D F�!y�zr�2.y; �/:

For the dimension d C 1 D 2, the kernel R.y; z � y/ has logarithmic singularity at
the diagonal.

Let f be a function in L2.�/. In order to find a representation for u D zT�1f; we
set

u0 D

Z
�

R.y; y � z/f .z/dz:

This function satisfies the equation zLu0 D f in � but not the Neumann boundary
condition 
1u D 0, where 
1 is the conormal derivative at the boundary, correspond-
ing to the elliptic operator zL. We construct the correction u1; such that zLu1 D 0;


1u1 D �
1u0. To do this, we consider the Green function G1.y; z/ for the Neu-
mann problem, in other words, the integral kernel of the solution operator G1 of the
Neumann problem for zL. This means that for a smooth function h on †,

zLG1h WD zLy

Z
†

G1.y; z/h.z/dz D 0; y 2 �;

and
lim

y!y02†

1;y

Z
†

G1.y; z/h.z/dz D h.y0/: (4.12)

The operator
G1WC

1.†/! C1.�/

is a Poisson operator in the Boutet de Monvel algebra. By (4.12), it satisfies


1G1WC
1.†/! C1.†/ D 1;
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i.e., it gives the identity operator. Therefore, the solution of the boundary problem
zLu D f in �; 
1u D 0 on † can be expressed as

u.y/ D u0.y/C u1.y/

D

Z
�

R.y; y � z/f .z/dz �

Z
†

G1.y; z/
1

�Z
�

R.y; y � z/f .z/dz

�
D .Rf /.y/ � .G1
1Rf /.y/:

As a result, the operator zT�1 can be represented as

zT�1 D R �G1
1R D .1 �G1
1/RI

such representation, in a somewhat different setting, can be found, e.g., in [20, The-
orem 9.20]. There, after the standard straightening of the boundary, the operator R is
treated as a truncated pseudodifferential operator,

R D ��Re�;

where e� is the operator of extension by zero of a function in� to the whole RdC1, R

is a pseudodifferential operator in RdC1 with symbol r.y; �/ and �� is the restriction
of functions in RdC1 to �:

We also need an expression for the operator zT�10 , the resolvent of the Dirichlet
problem for the equation zLu D f in �: In a similar way,

zT�10 D R �G0
R D .1 �G0
/R;

where G0 is the Poisson operator (the Green function) solving the non-homogeneous
Dirichlet boundary problem for zL in �: zLu D 0; 
u D hI this means that 
G0 D 1:

We pass now to 
 zT�1: Since 
 zT�10 D 0; we can write


 zT�1 D 
.zT�1 � zT�10 / D 
.G0
R �G1
1R/ (4.13)

D 
G0
R � 
G1
1R D .
G0
 � 
G1
1/R:

We recall now that 
G0 D 1: Further on, the function u1 D G1
1Rf satisfies the
equation zLu1 D 0 in �, therefore 
u1 and 
1u1 are connected by the Neumann-to-
Dirichlet operator , 
u1 D 
1u1. We set all this into (4.13) and obtain


 zT�1 D .
 � 
1/R: (4.14)

Consequently,
.
 zT�1/� D .
R/� � . 
1R/�:
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Finally, we have

.
 zT�1/� D 
.
R/� � 
. 
1R/�: (4.15)

Both terms on the right in (4.15) belong to the Boutet de Monvel algebra, see e.g., [20],
where the composition rules are described in detail. In this setting, R is a truncated
pseudodifferential operator of order �2, 
 is a trace operator of zero order, further,
.
R/� is a Poisson operator, and as a result, 
.
R/� is a pseudodifferential operator
of order �1: Similarly, 
1 is a trace operator of order 1, the Neumann-to-Dirichlet
operator is an order �1 pseudodifferential operator on the boundary, therefore, the
second term in (4.15) is a pseudodifferential operator of order�1 as well. Its principal
symbol can be expressed in a standard way, algebraically, via the principal symbols
of R and , as we will see in Section 7. Finally, the multiplication by the smooth
function �

1
2 produces, again, a pseudodifferential operator.

5. Operator perturbations

Our approach to establishing the asymptotic formula for Steklov eigenvalues, simi-
larly to [34], is based upon the operator approximation. This approximation idea was
successfully used by M. S. Agranovich in [4] on the base of the variational setting
of the problem. In fact, for more smooth boundaries, the ones of class C 1;1, a sim-
ilar perturbational approach was even used in [36], the earliest paper on the Steklov
eigenvalue asymptotics.

Namely, if the coefficients matrix a.y/ is continuous, it can be approximated in
C.�/, both from above and from below, by smooth elliptic matrices Qa˙.y/, and the
required closeness of spectra of operators T and zT follows in [4,36] from rather simple
monotonicity estimates. The weakening of conditions imposed on the boundary in this
paper, actually, the passage from the continuous derivatives of the function  defining
the boundary to the function having only bounded derivatives, seemingly, a minor one,
is, in fact, rather essential, the resulting coefficients aj;k are not continuous anymore
and they cannot be approximated in the C metric by smooth ones. Instead, we use
an approximation in a weaker, Lp sense, as in Lemma 4.4, which turns out to be
sufficient.

5.1. Approximation of the operator

In this section, we find the expression for the difference of operators describing the
eigenvalues of the N-to-D operators. Let a; Qa be the matrices of coefficients of the
operators L; zL, described in Section 4, so that a; Qa�1 belong to L1.�/, Qa; Qa�1 2
C1.x�/ and Qaj† � aj† is small in the sense of Lemma 4.4.

Consider the operators T; zT, the Neumann operators for L; zL.
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Lemma 5.1. Under the above conditions, the following factorization is valid:

T�1 � zT�1 D X�Y; (5.1)

where X;Y are bounded operators acting from L2.�/ to L2.�/˝CdC1.

X D rT�1;Y D b.y/rzT�1; (5.2)

with b D . Qa � a/:

Proof. Essentially, our Lemma 5.1 is an analogy of [12, Lemma 8.1]. For the sake of
completeness, we present the detailed proof of (5.1) in our setting.

The equality (5.1) is equivalent to

.T�1f; g/L2.�/ � .zT
�1f; g/L2.�/

D

Z
�

h. Qa � a/rzT�1f;rT�1gidy; f; g 2 L2.�/; (5.3)

where the angle brackets denote the scalar product in CdC1:

In our conditions, the domains of the operators T 1
2 ; zT 1

2 coincide, both are equal to
the Sobolev space H 1.�/: It follows, in particular, that D.zT/ � H 2.�/ � D.T 1

2 /:

Let u; v be arbitrary functions in D.T 1
2 / DD.zT 1

2 / D H 1.�/: Consider the equality

.zT
1
2u; zT

1
2 v/L2.�/ � .T

1
2u;T

1
2 v/L2.�/ D QaŒu; v� � aŒu; v�

D

Z
�

hQaru;rvidy �

Z
�

haru;rvidy

D

Z
�

h. Qa � a/ru;rvidy: (5.4)

We set here uD zT�1f; v D T�1g; where f;g are arbitrary elements in L2.�/. These
functions u; v belong to H 1.�/, therefore (5.4) is satisfied. Such substitution leads
to (5.3):

.zT
1
2u; zT

1
2 v/L2.�/ D .

zT
1
2 zT�1f; zT

1
2T�1g/L2.�/

D .f;T�1g/L2.�/ D .T
�1f; g/L2.�/;

and, similarly, for .T 1
2u;T 1

2 v/;

.T
1
2u;T

1
2 v/L2.�/ D .T

1
2 zT�1f;T

1
2T�1g/L2.�/

D .T
1
2 zT�1f;T�

1
2g/L2.�/ D .

zT�1f; g/L2.�/:
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Using (5.2), we arrive at the representation of the difference of the operators Ha

and HQa, see (4.5) and (4.10):

Ha �HQa � �
1
2 
.
.T�1 � zT�1//��

1
2 D �

1
2 
Œ
X�Y���

1
2 : (5.5)

We need a somewhat different representation for the operator in (5.5).

Lemma 5.2. The following equality is valid:

Ha �HQa D �
1
2 .
Y�/.
X�/��

1
2 : (5.6)

Proof. The operator 
X�YD .
X�/.Y/ is a product of two bounded operators, there-
fore, .
X�Y/� D Y�.
X�/�: We apply the operator 
 from the left, multiply by the
bounded function �

1
2 ; and obtain (5.6).

We will use expression (5.6) to evaluate the singular numbers of the difference
Ha �HQa: Since the function � is bounded, the multiplication by �

1
2 preserves spectral

estimates, therefore, it suffices to drop this weight in further estimates.

5.2. Spectral estimates for the operator 
X�

We represent the operator X D rT�1 in the following way as a product of two
bounded operators,

X D .rT�
1
2 /T�

1
2 ; X� D T�

1
2 .rT�

1
2 /�:

This gives

X� D .
T�

1
2 /.rT�

1
2 /�:

The operator .rT� 12 / is bounded in L2.�/ since T� 12 WL2.�/! H 1.�/ and r is
bounded as acting from H 1.�/ to L2.�/: The norm of rT� 12 is controlled by the
ellipticity constant of L and does not depend on the approximation Qa. Therefore, s-
numbers of the operator 
X� are majorated by s-numbers of 
T� 12 ;

nsup.2d; 
X�/ � Cnsup.2d; 
T�
1
2 /:

Next, we have

n.�; 
T�
1
2 / D n.�2; .
T�

1
2 /�.
T�

1
2 //:

Therefore,

nsup.2d; 
T�
1
2 / D nsup.d; .
T�

1
2 /�.
T�

1
2 //: (5.7)
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The expression on the right-hand side in (5.7) characterizes the counting function for
the eigenvalues of the ratio

k
T� 12f k2
L2.†/

kf k2
L2.�/

; f 2 L2.�/: (5.8)

We set f D T 1
2u, u 2 H 1.�/ in (5.8) and obtain the ratio

k
uk2
L2.†/

kT 1
2ukL2.�/

D

R
†
ju.y0; 1/j2d�†.y

0/

aŒu�

�
C�1

R
†
ju.y0; 1/j2d�†.y

0/

kuk2
H1.�/

; u 2 H 1.�/; (5.9)

since aŒu� � Ckuk2
H1.�/

, with constant determined by ellipticity constant of L; the
ratio (5.9) is majorated by the spectral problem considered in Theorem 2.1. From this
theorem, taking into account (5.7), we obtain

nsup.2d; 
T�
1
2 / � C;

with constant C depending only on the L1 norm of the matrix a�1; therefore, return-
ing to the original problem, only on the ellipticity constant of the initial operator and
the Lipshitz norm of the function  :

6. Spectral estimates for the operator 
Y�. Rough estimates

In the study of the second term in the factorization (5.5), (5.6), namely, 
YŒb��,
where we set YŒb� D brzT�1; we will need to obtain an asymptotic singular numbers
estimate for nsup.2d; 
Y�/ D lim sup�!0 �

2dn.�; 
Y�/: This will be done in two
steps. First, in this section, for an arbitrary matrix function b, L1.†/-continuous
at † � ¹1º; we find an estimate of nsup.2d; 
Y�/ in terms of certain integral norm
of b.:; 1/: The constant in this estimate will, unfortunately, depend, in an uncontrol-
lable manner, on the approximating matrix Qa. However, this estimate enables us to
restrict ourselves to smooth matrices b, using Lemma 2.2. Then, in the next section,
for a, now smooth, matrix b, we can use the pseudodifferential calculus to establish
the asymptotic estimate for singular numbers of 
Y�; containing the integral norm of
b but depending now only on the ellipticity constant and some algebraic norm of the
approximating matrix Qa and its inverse, or, what is the same, on these bounds for the
initial matrix a. Finally, we collect our estimates and establish the asymptotic singular
numbers bound for b D a � Qa:
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The important point here that we have already got rid of the non-smoothness of
the coefficients of the operator, the latter stayed behind in the operator X; therefore
our reasoning uses essentially the smoothness of the coefficients Qa.y/:

As a preparation, we note that we can suppose that b D 0 outside an (arbitrarily
small) neighborhood of the boundary † of the domain �: This observation has been
used many times in papers on our topic, including [4,36,39]. A simple explanation is
that if dist.supp b; @�/ > 0, then the integral kernel of zT�1 is a smooth function on
the set supp b �† (which is separated from the diagonal) and the eigenvalues of the
corresponding operator decay faster than any power,

nsup.�; 
.brzT�1/�/ D 0 for any � > 0; supp b \† D ¿:

Therefore, we may suppose that b is supported in a conveniently small neighborhood
of † where it possesses the properties discussed in Section 3.

Proposition 6.1. Let Qa.y/; y 2 �; be a smooth elliptic matrix function and b.y/ 2

L1.�/: Suppose that b is L1.†/- continuous at † � ¹1º and b is zero outside some
neighborhood of † � ¹1º. Then

nsup.2d; 
YŒb��/ � C. Qa/kb.:; 1/k
d
2

2dC2
kb.:; 1/k

d
2
1: (6.1)

Proof. We consider the operator ZŒb� D 
Y�, where Y D YŒb� D brzT�1. Since we
are studying the singular numbers of ZŒb�WL2.�/ ! L2.†/, we can consider the
adjoint operator ZŒb��WL2.†/! L2.�/ instead. This operator admits a convenient
representation, namely,

ZŒb�� D .
Y�/� D Œ
.brzT�1/��� D .br/.
 zT�1/�: (6.2)

In fact, starting with the identity

brzT�1 D .brzT�
1
2 /zT�

1
2 ;

we obtain

.brzT�1/� D zT�
1
2 .brzT�

1
2 /�I

further, we have


.brzT�1/� D .
 zT�
1
2 /.brzT�

1
2 /�:

And now we take adjoints,

Z.b/� � Œ
.brzT�1/��� D .brzT�
1
2 /��.
 zT�

1
2 /�

D brzT�
1
2 .
 zT�

1
2 /� D br.
 zT�1/�;
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since b is a bounded function. We consider now the function w.y/ D .
 zT�1/�g 2
L2.�/ for g 2 L2.†/: By Lemma 4.5, this function satisfies the second order ellip-
tic equation zLw D 0 in �: Its restriction to † is 
w D 
.
 zT�1/�g, and, since by
Proposition 4.6 the operator 
.
 zT�1/� is an order �1 pseudodifferential operator, the
inequality holds

k
wkH1.†/ � CkgkL2.†/: (6.3)

By the elliptic regularity property, for the solution w of the second order elliptic
equation zLw D 0 in� with the Dirichlet boundary condition 
w, the Sobolev spaces
estimate holds:

kwk
H
sC 1

2 .�/
� k
wkH s.†/; (6.4)

now for all s 2 R1: Note here that the constants concealed in the ‘�’ symbol in (6.4)
depend on the particular value of s and, what is important, on the operator zL, and may
deteriorate when zL is changing, while the derivatives of the coefficients of zL grow in
the process of approximation, even with the ellipticity constant preserved.

Now, we pass to estimating the singular numbers of the operator .
Y�/�, whose
squares, by (6.2), are described by the ratioR

�
jb.y/r.
 zT�1/�gj2dy
kgk2

L2.†/

D

R
�
jb.y/rw.y/j2dy

kgk2
L2.†/

; (6.5)

where, recall, w D .
 zT�1/�g, g 2 L2.†/: We use the relations (6.4) (with s D 1)
and (6.3). As a result, the eigenvalues of the ratio (6.5) are majorized by the eigenval-
ues of the ratio R

�
jb.y/rw.y/j2dy

kwk2
H3=2.�/

; zLw D 0 in �: (6.6)

On the next step, while evaluating the eigenvalues of the ratio (6.6), we use the fol-
lowing weighted estimate for solutions of elliptic equations, see [39, Lemma 3.3].

Lemma 6.2. Let a function w 2 H s.�/; s > 0; be a solution of an elliptic equation
zLw D 0 with smooth coefficients in a bounded domain� and let r.y/ be the distance
from the point y 2 � to the boundary of �: Then, for any number � � 0 such that
s C � is an integer, Z

�

r.y/2� jrsC�w.y/j
2dy � Ckwk2H s.�/; (6.7)

for a constant C D C.s; �;�/ not depending on w:

The constant in (6.7) depends, of course, on the operator zL as well, but this depen-
dence is not mentioned in [39] – although this fact is of no importance at the moment,
as long as the operator is fixed.
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We also have the obvious inequalityZ
�

r.y/2� jrw.y/j2dy � Ckwk2H s.�/;

for s � 1:
We consider the case d > 1 first, thus excluding temporarily the case of a

two-dimensional domain �: We apply Lemma 6.2 for the particular values s D 3
2
;

� D 1
2
; s C � D 2; and thus reduce our task to estimating the eigenvalues of the ratioR

�
jb.y/rw.y/j2dyR

�
r.y/.jr2wj2 C jrwj2/dy

; zLw D 0; (6.8)

where, in our case, r.y/ D 1 � ydC1 If we drop the condition zLw D 0 in (6.8), the
eigenvalue counting function may only increase and the result will give us an upper
eigenvalue estimate for the ratio (6.8).

The denominator in equation (6.8) is the quadratic form of a degenerate elliptic
operator. Such kind of spectral problems was considered in the series of papers of
M. Z. Solomyak and I. L. Vulis in the 1970s, see, especially, [46], where order sharp
eigenvalue estimates and formulas for asymptotics have been proved. We need only
estimates; we might have cited the paper [39], where the eigenvalue estimates for
problems of the type (6.8) were established in an even more general setting, namely,
for a domain with piecewise smooth boundary, see [39, Lemma 4.1]. However, for our,
more simple, case, since the boundary is smooth, we refer to a more easily accessible
and more elementary paper [46]. In order to do this, we make some more transfor-
mations of our spectral problem. Namely, we majorize the matrix b.y/ by its matrix
norm b.y/ D jb.y/j D .

P
jbj;k.y/j

2/
1
2 : After this, we replace the gradient of w,

rw D .@1w; : : : ; @dC1w/ by an arbitrary vector function with d C 1 components w�.
This widens the set of functions where the variational ratio is considered, therefore,
we arrive at the ratio P

�

R
�
b.y/2jw�.y/j2dyP

�

R
�
r.y/.jrw�.y/j2 C jw�j2/dy

:

In this way, the spectral problem (6.8) splits into the direct sum of d C 1 identical
scalar spectral problems, R

�
b.y/2jw.y/j2dyR

�
r.y/.jrw.y/j2 C jwj2/dy

; (6.9)

exactly of the form, considered in [46]. The result which we are going to use here is
the combination of [46, Lemma 5.1 and Lemma 5.4].
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We cite and further discuss these results, tailored for our special case. Recall that
the boundary † corresponds to ydC1 D 1; r.y/ D 1 � ydC1; and the corresponding
change is made in the formulation.

Set m D d C 1: Let bŒw� be the quadratic form in the cylinder C � � � Rm:

bŒw� D
Z
C

r.y/ˇb.y/2jw.y/j2dy; (6.10)

and
a.˛/Œw� D

Z
�

r.y/˛.jrwj2 C jwj2/dy:

Lemma 6.3 ([46, Lemma 5.1 a]). Let the coefficient b.y0; ym/; 1 � ı � ym � 1; not
depend on ym, namely, b.y0; ym/ D Lb.y0/; y0 2 †; Lb 2 L1.†/: Suppose that k WD
2 � ˛ C ˇ > 2

m
(this case is called the strong degeneration case in [46]). Set � D

m�1
k .D d

k /. Then for the spectrum of the ratio

bŒw�
a.˛/Œw�

; w 2 H 1.�/; (6.11)

the estimate holds

nsup.�; 6.11/ � Ck Lbk
m�1
2

L2m.†/
k Lbk

��m�12
L1.†/

: (6.12)

The crucial importance of this estimate is that it involves the integral norm of Lb:
The proof of this lemma in [46] is based upon the separation of variables in

the cylinder, thorough bookkeeping of the eigenvalues of the separated problem and
finally using the result on the asymptotics of eigenvalues of an elliptic boundary prob-
lem with singular weight.

Note that in [46] the weight function in the form b is denoted by b.y/, while it is
b.y/2 in (6.10); the corresponding change is made in the formulation of Lemma 6.3.

The second lemma relaxes the condition b.y0; ym/ D Lb.y0/ used in Lemma 6.3.
We formulate it in our terms.

Lemma 6.4 ([46, Lemma 5.4]). Let all conditions of Lemma 6.3, except b D Lb.y0/,
be fulfilled, the latter being replaced by

b.y0; ym/ isL1.†/ -continuous at† � ¹1º: (6.13)

Then the asymptotic estimate (6.12) holds, with Lb D b.:; 1/.

In fact, a stronger statement is formulated in [46, Lemma 5.4], namely, that the
asymptotic bounds for n˙ for the functions b and Lb coincide, but we need only the
upper estimate (6.12).
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In [46], only a short sketch of the proof of Lemma 5.4 is given, with reference
to ‘standard tools of the variational method’ (which might, in fact, have been con-
sidered standard at that glory period of the variational method, but are, probably, not
that standard nowadays). In more detail, and in much more generality, the reasoning,
explaining the passage from ym-independent coefficient b to the one satisfying (6.13),
is given in [39], however, formally, the condition b 2C.�/was imposed there. In fact,
only the condition (6.13) was actually used in [39]. A short but, hopefully, sufficient
explanation is the following.

By the Ky Fan inequality, it suffices to prove that if (6.13) holds and b.:; 1/ D 0
then nsup.�; (6.11)/ D 0. Fix some " > 0 and find l > 0 such that jb.y/j < " for
ym � 1 � l: The quadratic form bŒw� splits into the sum of two forms,

bŒw� D
Z

ym�1�l

b.y/2jw.y/j2dy C
Z

ym<1�l

b.y/2jw.y/j2dy

� C

�
"2
Z
�

jw.y/j2dy C l�ı
Z
�

jym � 1j
ı
jw.y/j2dy

�
� b"Œw�C bl Œw�; ı > 0: (6.14)

For the first term in the second line in (6.14), Lemma 6.3 with Lb D " applies by
monotonicity, which gives the estimate nsup

˙
.�;b"=a/ � C"2� : For the eigenvalues of

the operator described by the second term, bl Œw�; we apply Lemma 6.3 with some
ˇ D ı > 0; this means, with a different order in the weight in the numerator (6.10).
As a result, Lemma 6.3 gives for this term a faster eigenvalues decay: (6.12) takes
the form nsup

˙
.� 0;bı;L=a/ <1; � 0 D m�1

1Cı
< �; and therefore, n.�;bı;l=a/D 0: After

this, the required equality nsup
˙
.�; (6.11)/ D 0 follows due to the arbitrariness of ":

We apply Lemma 6.4 formD d C 1, ˛D 1, ˇD 0; kD 2� ˛C ˇD 1, � D d , to
the ratio (6.9) and this gives us the desired estimate for the singular numbers of 
Y�

The above reasoning breaks down in the two-dimensional case, m D d C 1 D 2;
since here k D 1 and we have the equality k D 2

m
instead of the required inequality

k > 2
m
: In this case, called in [46] ‘the intermediate degeneration,’ the above scheme

produces a non-sharp order in the singular numbers estimate. This kind of compli-
cation was handled in [39, Section 4], in the following way which we adapt to our
situation. The idea is in using (6.7) for a different, larger, value of �, so that the
resulting spectral problem becomes the one with strong degeneration. The order of
eigenvalue estimates obtained in this way does not depend on the chosen value of �.
(Note that the dimension of the enveloping space, denoted bym in [46], is denoted by
mC 1 in [39], therefore we change notations correspondingly when citing the latter
paper.)
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FormD 2;d D 1;we choose the number � in (6.7) to be not 1
2

but 3
2
; so, sC �D 3,

and the weighted inequality (6.7) takes the formZ
�

r.y/3jr3wj
2dy � Ckwk2

H
3
2 .�/

; zLw D 0:

Following the reasoning above, we arrive at estimating the singular numbers of the
ratio R

�
jb.y/j2jrwj2dyR

�
r.y/3.jr3w.y/j2 C jw.y/j2/dy

(6.15)

instead of (6.9). With this set of parameters, the problem (6.15) in dimension m D 2
is of a strong degeneration type, The result in [45] gives in this case the estimate, see
also [39, Lemma 4.1] or [40].

nsup.1; 6.15/ � C.a/kb.:; 1/k1=3
L4.†/

kb.:; 1/k
2=3

L1.†/
:

Formally, the proof of [39, Lemma 4.1] requires b to be continuous, however the
passage to the discontinuous b which is L1.†/- continuous at† as function of ydC1
variable is made identically with the above case of the dimension d > 1: A more
simple treatment of this case, for a smooth boundary, can be found in [45].

Finally, we recall that the eigenvalues of the ratio (6.5) are squares of the singular
numbers of the operator ZŒb�; therefore, the spectral estimate of order d for (6.5)
produces the singular numbers estimate of order 2d for 
Y�

7. Sharp estimates for Z D 
Y�

We recall that the constant C. Qa/ in (6.1) depends in a non-controllable way on the
approximating matrix Qa (although, in an analogous situation, in [39] it was found that
the constants in this kind of eigenvalue estimates depend only on the bounds for some
finite collection of derivatives of Qa:) Now, for the case of a smooth matrix b.y/; we
establish an estimate for nsup.2d; 
Y�/ in terms of the norm of b in an integral metric
and the bounds for the principal symbol of the operator zL:

In this section we establish asymptotic bounds for singular numbers of the opera-
tor Z with smooth matrix b 2 C1.x�/, which depend only on the ellipticity constant
of the matrix Qa (in other words, on the ellipticity constant of the operator L), its norm
and certain integral norm of the matrix b.:; 1/.
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7.1. The structure of Z�Z

The squares of singular numbers of Z are eigenvalues of the self-adjoint operator Z�Z
acting in L2.†/. We discuss its structure in more detail now. We have

Z�Z D Œ.b.y/r/.
 zT�1/���Œb.y/r.
 zT�1/��

D 
 zT�1Œ.b.y/r/�.b.y/r/�.
 zT�1/�: (7.1)

Since all coefficient functions entering in Z are smooth, operators composing (7.1)
belong to the Boutet de Monvel algebra of pseudodifferential operators (see, e.g.,
[20]). We consider separate terms more closely.

The operator 
 zT�1 and its adjoint were described in detail in Sections 4.4 and 4.5.
Since R is an integral operator with Hermitian kernel R.y; z/ the operator in (4.14) is
an integral operator acting from � to † with kernel

R.1/.y; z/ D 
yR.y; z/ � y
1;yR.y; z/; y 2 †; z 2 �;

where y , 
y ; 
1;y denote the N-to-D operator ; the trace 
 and the conormal
derivative 
1 acting upon the y variable at y 2 †; 
1;y D 
y@� Qa.y/: Recall that
is an order �1 pseudodifferential operator at the boundary with symbol ˇ.y0; �0/;
see (1.4).

The adjoint operator .
 zT�1/� is, therefore, an integral operator acting from † to
� with the adjoint kernel,

R.1/�.y; z/ D R.1/.z; y/ D 
zR.y; z/ � z
1;zR.y; z/; y 2 �; z 2 †:

Now, we can describe how the operator Z D b.y/r.
 zT�1/� acts. By (7.1), Z D
b.y/r.
 zT�1/� is an integral operator acting from † to � with integral kernel

Z.y; z/ D b.y/ry
zR.y; z/ � b.y/ry z
1;zR.y; z/; y 2 �; z 2 †: (7.2)

Similarly, Z� is an integral operator acting from � to † with the integral kernel

Z�.y; z/ D Z.z; y/: (7.3)

7.2. Composition

Now, we collect the description of the entries in the operator W D Z�Z: By (7.2)
and (7.3), Z�Z is the composition

Z�Z D ..br/..
 � 
1/R/�/�.br/..
 � 
1/R/� (7.4)
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is the integral operator with kernel

W.y; z/ D

Z
�

Z.y; &/Z.&; z/d&;

with kernel Z given by (7.2), acting on †:
As elements in the Boutet de Monvel algebra, .
 � 
1/R is a trace operator

acting from � to †; its adjoint ..
 � 
1/R/� is a Poisson operator acting from †

to �, and the whole composition, W, has integral kernel of the form

W.y; z/ D

Z
�

Z.y; �/Z.�; z/d�

D

Z
�

.
y� y.
1/y/.b.�/r� /
�R.y; �/b.�/r� .
z� z.
1/z/R.�; z/d�:

(7.5)

By the Boutet de Monvel calculus, W is a pseudodifferential operator of order �1
on †:

We need to find the dependence of the principal symbol of this operator on the
matrices b.y/ and a.y/; y 2 †: In this evaluation, we may ignore terms of lower
order, in particular, those appearing when we commute the factors in the product
in (7.5).

We start by considering the term .b.�/r� /
�.b.�/r� /: This is a pseudodifferential

operator of order 2 in � with principal symbol satisfying

X.�; &/ D hb.�/&;b.�/&i D jb.�/& j2 � jb.�/j2j& j2:

Further on, the truncated self-adjoint pseudodifferential operator

Mb D .brR/�.brR/

of order �2 has principal symbol

Mb.�; &/ D r�2.�; &/
2
jb.�/& j2;

where, recall, r�2.�; &/ D hQa.�/&; &i
�1 is the principal symbol of the fundamental

solution R, so Mb is an operator of order �2. Next, we need to make the restriction
of Mb to the boundary, y 2 †:

The trace operators 
 � 
1 acting from both sides upon M � Mb produce an
order �1 pseudodifferential operator on the boundary with principal symbol, again,
containing the matrix b�b and a homogeneous symbol depending algebraically on
the matrix Qa and its inverse Qa�1: Its principal symbol can be calculated following
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the Boutet de Monvel calculus rules, which involve only algebraic operations with
principal symbols. We however do not need to calculate this symbol or write down
its explicit expression. For our needs it is sufficient to describe its properties, espe-
cially, on what data of our operator it depends. We demonstrate it on one of the terms,
M.
/

b WD 
.
Mb/
�, which is the restriction of Mb to the boundary. Its symbol can be

evaluated as

M
 .y; �0/ D
1

2�

1Z
�1

Mb.y; �
0; �dC1/d�dC1

D
1

2�

1Z
�1

jb.y/�j2. Qa.y/�; �/�4d�dC1

� jb.y/j2j Qa.y/j�2
1

2�

1Z
�1

.j�0j2 C j�dC1j
2/�1d�dC1

� C j Qa.y/�2jjb.y/j2j�0j�1; y 2 †; (7.6)

the expression (7.6) is calculated in local co-ordinates at the point y 2†, where ydC1
axis is directed along the normal to †:

In a similar way, other terms in the symbol of Z�Z can be estimated, using the
representation (7.4), following the composition rules in the Boutet de Monvel algebra,
see, e.g., [20, Sections 9.5 and 10.4]. Here we use the expression for the symbol of the
conormal derivative, {hQa.y/�; �i and the symbol ˇ.y;�0/ of the operator, see (1.4).
All these terms are majorated by jb.y/j2; with bounded dependence on j Qa.y/�1j and
j Qa.y/j; y 2 †: Singular Green operators arising in the process of composition of
truncated pseudodifferential operators give no contribution to the principal symbol of
the composition

As a result we have the following.

Proposition 7.1. The principal symbol W.y;�0/, .y;�0/ 2 T �† of the order�1 pseu-
dodifferential operator W D Z�Z admits the estimate

jW.y; �0/j � C jb.y/j2A.j Qa.y/�1j; j Qa.y/j/j�0j�1;

with a function A.s1; s2/ bounded on bounded intervals separated from zero.

Now, we apply the asymptotic estimate for singular numbers of negative order
pseudodifferential operators. This formula was obtained by M. Š. Birman and
M. Solomyak in [15, Theorem 1], for operators in a domain in the Euclidean space and
then carried over to manifolds in [14]. The proof in [15], a very technical one, having
been published in the, now quite obscure, Russian journal, was almost inaccessible
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to Western researchers, although the result was rather widely cited. Fortunately, quite
recently, R. Ponge in [31, Section 6] proposed a rather soft proof of a special case of
the main results in [13,15], concerning operators with smooth symbols, which fits our
needs. We arrive at the following asymptotic estimate for the singular numbers of the
operator Z:

Proposition 7.2. Let zL be an elliptic operator with leading coefficients matrix Qa.y/ 2
C1.x�/: Suppose that for all y 2 x�;

j Qa.y/�1j; j Qa.y/j � Ca:

Let b.y/ be a smooth symmetric matrix in C1.x�/: Then for the singular numbers of
the operator Z D br.
 zT �1/� the following estimate holds:

nsup.2d;Z/ D nsup.d;Z�Z/ � A.Ca/

Z
†

jb.y0/j2dd�†.y
0/

� CA.Ca/kbk
d
L2dC2.†/

kbkdL1.†/; (7.7)

with constant A.Ca/ depending only on the L1 norms of Qa�1 and Qa.

Proof. As we just found, the operator Z�Z is an order �1 pseudodifferential operator
on the boundary †; with leading symbol W.y0; �0/; .y0; �0/ 2 T�† majorated by
Cajb.y/j

2j�0j�1: By [13, (23)], for the eigenvalue counting function n.�;Z�Z/ the
asymptotics holds (in our notations)

n.2d;Z/ D n.d;Z�Z/ D d�1.2�/�d
Z
†

Z
S�†

W.y; �0/dd�†!.�
0/; (7.8)

and ! is the standard volume form on the unit sphere Sd�1: Thus, our estimate for
the principal symbol W of the operator Z�Z, substituted in (7.8), gives (7.7). The last
inequality in (7.7) follows from the fact that theL1 norm of b majorates itsLp norm,
for any p <1:

7.3. Final estimates for 
Y�

We combine the results of the last two subsections in order to obtain the final singular
numbers estimate for Z D 
Y�:

Proposition 7.3. Let b.y/ be a matrix function satisfying the conditions of Proposi-
tion 6.1 and Qa.y/ be a smooth matrix satisfying j Qa�1.y/j; j Qa.y/j � CQa: Then, for the
singular numbers of the operator 
.YŒb�/� D 
.br.zT�1//�, the singular numbers
estimate holds

n.2d; 
YŒb��/ � A.CQa/kb.:; 1/kdL2dC2.†/: (7.9)
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Note that, from the first glance, the statement of Proposition 7.3 coincides with
the one of Proposition 6.1. There is, however a critical improvement. While the con-
stant in (6.1) may depend, in an uncontrollable way, on the matrix Qa.y/; the constant
in (7.9) depends only on the ellipticity constant ja�1j and the norm j Qa.y/j; but not on
the matrix Qa itself or its derivatives.

Proof. For a given ";we construct, following the procedure in Lemma 4.4, the approx-
imating smooth matrix b" 2 C

1.x�/ such that kb"kL1.†/ � C0kb"kL1.�/ and

kb.:; 1/ � b".:; 1/kL2dC2.†/ < ":

By the Ky Fan inequality, n.�1 C �2;K1 CK2/ � n.�1;K1/C n.�2;K2/; it follows
in the usual way (see, e.g., [12, Section 5]), that

nsup.2d; 
YŒb��/.1C2d/
�1

� nsup.2d; 
YŒb"��/.1C2d/
�1

C nsup.2d; 
YŒb � b"�
�/.1C2d/

�1

: (7.10)

The last term in (7.10) tends to zero as "! 0 by Proposition 6.1, applied to b� b" in
place of b. Therefore, passing to the limit in (7.10), we obtain

nsup.2d; 
YŒb��/ � lim sup
"!0

nsup.2d; 
YŒb"��/:

Now, we remember the estimate (7.7), which is valid, since b" is smooth now.
By the construction of the approximating matrix b" in Lemma 4.4, the norm
kb".:; 1/kL2dC2.†/ is controlled by the same norm of b. Therefore, we can pass to
limit as "! 0 in the inequality

nsup.2d; 
YŒb��/ � C lim sup
"!0

kb".:; 1/k
d
L2dC2.†/

� Ckb.:; 1/k
d
2

L2dC2.†/
;

which gives the required estimate, since the norm kb.:; 1/kL1 � CkakL1 can be
absorbed in the coefficient C:

8. Conclusion of the proof

The uniformity property of the estimate in (7.9) enables us to establish the crucial
approximation result for the operators HQa:

Theorem 8.1. Let a be a matrix satisfying the conditions of Lemma 4.4, and for a
given " > 0, Qa D Qa" be the approximating smooth matrix constructed in the lemma.
Then

nsup.2d; 
.YŒa � Qa�/�/ � C.a/"d ; (8.1)

and
lim
"!0

nsup.d;Ha �HQa/! 0: (8.2)
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Proof. We recall the representation Ha � HQa D .
.YŒa � Qa�/�/�.
X�/: Therefore,
the second estimate will follow in the usual way, compare, e.g., [12], from the first
one, by the Ky Fan inequality for the product of operators,

n.�1�2;K1K2/ � n.�1;K1/C n.�2;K2/; (8.3)

where K1 D 
X�; K2 D .
.YŒa� Qa�/�/�; since for K1 we already know the estimate
nsup.2d; 
X�/ <1. Namely, for a given � > 0; we set �1 D "�d=4�; �2 D "d=4�
in (8.3), �2 D �1�2; then both terms on the right in (8.3) get a small factor as "! 0:

To prove (8.1), we apply Proposition 7.3 with b D a � Qa:

Finally, using the basic asymptotic perturbation lemma, Lemma 2.2, we establish
our main result.

Proof of Theorem 1.2. Let a be the coefficient matrix in our P-S problem in a smooth
domain. Consider its smooth approximation Qa constructed according to Lemma 4.4,
with p D 2d C 2. For the operator HQa the asymptotic formula (1.6) is known. For the
difference, Ha �HQa we have the estimate (8.2). In these conditions, Lemma 2.2 grants
that for the limit operator Ha the eigenvalue asymptotics is valid and the coefficient
in the asymptotics is given by the limit in the formula (1.6), using Lemma 2.5.

A. Potential theory approach

We consider here the Poincaré–Steklov problem for the Laplacian, first, in dimension
d C 1 � 3: Consider the single and double layer potential operators on the Lipschitz
boundary †;

SWL2.†/! L2.†/; SWf .x/ 7!

Z
†

R.x � y/f .y/d�†.y/;

and

DWL2.†/! L2.†/; DWf .x/ 7!

Z
†

@�.y/R.x � y/d�†.y/;

where R is the fundamental solution for the Laplacian in RdC1: The N-to-D operator
is expressed via these operators as

D S
�1
2
CD

��1
;

see, e.g., [2,3,20]. To be more exact, the operator is considered here on functions,
orthogonal in L2.†/ to constants. For a smooth surface †; both potential opera-
tors are order �1 pseudodifferential operators on †: Being considered on functions
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orthogonal to constants, the operator .1
2
CD/ is invertible and�1

2
CD

��1
D 2 � 2D

�1
2
CD

��1
:

This means that
D 2S � 2SD

�1
2
CD

��1
; (A.1)

Therefore, the difference between the N-to-D operator and twice the single layer
potential 2S is an order �2 pseudodifferential operator, and, by standard perturba-
tional arguments, the eigenvalue asymptotics of is the same in the leading term as
the asymptotics for the single layer potential 2S; finding the latter is a simple exercise
for a smooth surface.

If † is not infinitely smooth, for example, belongs to C 1C˛ , ˛ > 0 (such surfaces
are often called Lyapunov ones), the above scheme still works. First of all, discarding
the pseudodifferential approach, one should return to considering the operators S and
D as integral operators with kernel having singularity at the diagonal. Here, on the one
hand, the eigenvalue asymptotics of the operator S is known since the results of M.
Š. Birman and M. Z. Solomyak on general weakly polar integral operators, see [11],
where such eigenvalue asymptotics was found under rather weak regularity condi-
tions. At the same time, the operator D is now a singular integral operator, but for a
surface of class C 1C˛ , it is still compact. Thus, the operator becomes, by (A.1),
a relatively compactly perturbed single layer operator, and, again, by standard meth-
ods (say, using the Keldysh perturbation theorem) we arrive at the Weyl asymptotics
for the operator.

So, it looks like this is not that long way remains to Lipschitz surfaces. However,
some serious obstacles appear. First of all, for a Lipschitz surface, the double layer
integral operator D is not obviously bounded. In fact, it required a hard work to prove
that it is bounded in L2.†/ and, moreover, that the operator 1

2
C D is invertible.

Further on, it turned out that D is not necessarily compact; even in the two-dimen-
sional case, in the presence of a corner point of a piece-wise smooth boundary, it has
a fragment of essential spectrum near zero. As for the single layer potential S; the
results of [11] are, by themselves, not sufficient to establish eigenvalue asymptotics.
However, in [6], M. S. Agranovich and B. A. Amosov succeeded in proving order
sharp two-sided eigenvalue estimates for potential type operators on Lipschitz sur-
faces, which, in their turn, produce two-sided eigenvalue estimates for : Moreover,
a localization technique was developed in [6]. It turned out that if the non-smooth sin-
gularities of the surface† are localized in the sense that the surface is smooth outside
a closed set of zero measure, then the contribution of these singularities of † both to
the behavior of eigenvalues of S and to the non-compactness of D is negligible, and
the Weyl asymptotic formula for the P-S problem was proved in this setting.
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In that period, after M. S. Agranovich started popularizing the problem on Steklov
eigenvalue asymptotics for Lipschitz surfaces without additional restrictions,
Prof. Grigory Tashchiyan and the author of this paper managed in 2006 to dispose
of one of complications. Namely, in [34], we used the approximation of Lipschitz
surfaces by smooth ones, in the sense of a certain integral norm, to prove that the
corresponding potential type integral operators, properly relocated, so that they act
on one and the same surface, can be compared, their difference becomes small in
the spectral sense (see Lemma 6.3), and the passage to limit in formulas for spec-
tral asymptotics becomes possible. Although this result did not solve the Lipschitz
Steklov eigenvalue asymptotics problem, it solved a closely related one. Namely, in
the interface spectral problem, where the spectral parameter is placed, for solutions
of the (Laplace, in the simplest case) equation at the jump of the normal derivative
across the Lipschitz surface S � �,

� D �1 [�2 [ S; S D �1 \�2; �u D 0 in �1 [�2;

�
h @u
@�.x/

i
x
D u.x/; x 2 S;

the solution involves only the single layer potential operator S and the Weyl asymp-
totics for the Lipschitz surface is justified. Rather optimistically, we hoped that the
Steklov problem will succumb as well.

One of the approaches we tried to explore was the following. Although we know
that the double layer operator D is not expected to be compact, probably, the compo-
sition DS can be shown to be weaker than S itself. The notion ‘weaker’ should imply
that the singular numbers of DS decay faster than the ones of S,

sn.DS/ D o.sn.S// D o.n
� 1
d /: (A.2)

In the eigenvalue studies, there are a lot of occasions when the multiplication by a
non-compact operator nevertheless improves the rate of decay of the eigenvalues of
the product.

Hypothesis. Consider the composition DS of single and double layer potentials.
Recall that S is the integral operator with kernel C jx � yj1�d over a Lipschitz surface
of dimension d > 1: Let T .x; y/ be the integral kernel of the composition SD,

T .x; y/ D

Z
†

jx � zj1�d@�.z/jz � yj
1�ddz:

Suppose, hopefully, that

T .x; y/jx � yjd�1 D o.1/ as y ! x; uniformly in x 2 †: (A.3)
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Proposition A.1. Suppose that d � 3 and (A.3) is satisfied. Then �j .SD/D o.�j .S//:

Proof. For a fixed ", we find a neighborhood U" �†�† of the diagonal x D y such
that jT .x; y/j < "jx � yj1�d for .x; y/ 2 U". Take a cut-off function �".x; y/ which
equals zero outside U" and equals 1 inside, this means, in a neighborhood of the diag-
onal x D y: The operator T D SD splits into the sum of two operators, T";with kernel
T .x;y/�".x;y/ and T0" with kernel T .x;y/.1� �".x;y//: The second operator has a
bounded kernel, therefore, in particular, belongs to the Hilbert-Schmidt class, and its
singular values decay at least as �j .T0"/DO.j

� 12 /; i.e., faster than the eigenvalues of
S: As for the first operator, T"; we can apply the result by G. Kostometov, [27, Theo-
rem 1] (see also [6, Theorem 4.1]). According to this theorem, for an integral operator
T in a bounded domain in Rd with kernel having form T .x; y/ D �.x; y/jx � yj�k;

d=2 < k < d; with a bounded function �, the following eigenvalue estimate holds:

nsup.�;T/ � Ck�k�L1 ; � D
d

d � k
: (A.4)

In our case, in local co-ordinates, for T".x; y/ D T .x; y/�".x; y/; k D d � 1 and
�.x;y/D T .x;y/�.x;y/jx � yj1�d , k�kL1 � ". So, (A.4) gives nsup.�;T"/�C"

� ;

and by the arbitrariness of "; we arrive at the required estimate.

This estimate leads to the justification of the Weyl asymptotics, provided (A.3).
Using somewhat finer estimates, one covers the case of d D 2 (excluded in the esti-
mates in [6, 27], since here the condition d=2 < k is not met). The hypothesis itself,
meanwhile, stays unresolved, although for some particular non-regular surfaces we
were able to justify it.

B. Relaxing the smoothness conditions

Another possible approach consists in finding the conditions on the surface †, just a
little bit more restrictive than Lipschitz ones, but still granting the compactness of the
double layer operator D, restricted to the complement of some small set, containing
major singularities. Here, the results of [23] proved to be useful. Let � � RdC1: The
domain � is called VMO1-domain if (3.2) holds and the almost everywhere existing
normal vector field �.x/ belongs to the space VMO.†/, the closure of the space of
continuous vector fields on † in the VMO metric. Of course, the class of VMO1
domains contains all C 1 domains, but does not contain all Lipschitz domains. By
[23, Theorem 4.35], singular integral operators of the type of double layer potential
D; are compact in L2.†/: By a localization of this property, as it was done, e.g.,
[2, 4, 6], we arrive at the following result.
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Proposition B.1. Let the � be a Lipschitz domain and let the boundary † belong to
VMO1 outside a closed set E of the surface measure zero. Then for the operator
the Weyl asymptotic formula holds.

The proof, leading, again, to (A.2), consists in splitting the Steklov problem @�uD

��1u on † into two weighted ones,

@�u D ��"u; and @�u D �.1 � �"/u;

where �e is the characteristic function of a small neighborhood of the set E, having
surface measure less than ". This leads to the corresponding splitting of the operator
H in (4.5) into H D H�" C H1��" : For the first of these operators, the smallness for
nsup.d;H�"/ can be proved on the base of Theorem 2.1. For the remaining operator,
H1��" ; it follows from the VMO1 compactness property for the double layer potential
that it does not contribute to the eigenvalue asymptotics of H1��" and the reasoning
in Appendix A applies.

One may hope that the approximation of a Lipschitz surface by VMO1 one may
lead to a more straightforward proof of the Weyl asymptotics for the P-S eigenvalues.
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