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Lipschitz continuity of spectra of pseudodifferential operators
in a weighted Sjöstrand class and Gabor frame bounds

Karlheinz Gröchenig, José Luis Romero, and Michael Speckbacher

Abstract. We study one-parameter families of pseudodifferential operators whose Weyl sym-
bols are obtained by dilation and a smooth deformation of a symbol in a weighted Sjöstrand
class. We show that their spectral edges are Lipschitz continuous functions of the dilation or
deformation parameter. Suitably local estimates hold also for the edges of every spectral gap.
These statements extend Bellissard’s seminal results on the Lipschitz continuity of spectral
edges for families of operators with periodic symbols to a large class of symbols with only mild
regularity assumptions.

The abstract results are used to prove that the frame bounds of a family of Gabor systems
G .g; ˛ƒ/, whereƒ is a set of non-uniform time-frequency shifts, ˛ > 0, and g 2M 1

2
.Rd /, are

Lipschitz continuous functions in ˛. This settles a question about the precise blow-up rate of
the condition number of Gabor frames near the critical density.

1. Introduction

We consider a one-parameter family of operators Tı that depend smoothly on ı.
A basic problem of spectral theory is to understand how the spectrum �.Tı/ depends
on the parameter. For self-adjoint operators at least, one would expect that the spec-
trum depends continuously, e.g., in the Hausdorff metric, on ı. This has been shown in
several general settings [2,3,18]. As to more quantitative results, one may investigate
the behavior of the extreme spectral values, or more generally of spectral edges, and
try to understand their smoothness as a function of ı. This is an interesting problem in
mathematical physics where ı may be the magnitude of a magnetic field or the value
of Planck’s constant [2, 5–8, 14, 16, 17].

In this paper we study a general class of pseudodifferential operators with symbols
in a weighted Sjöstrand class and ı amounts roughly to a dilation of the symbol. We
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will prove that the spectral edges are Lipschitz continuous in ı. Moreover, we will
show the Lipschitz continuity of the spectral gaps.

In our study, we use the Weyl calculus (though other calculi work as well without
essential changes). Given a symbol � 2 � 0.R2d /, its Weyl transform is the operator

�wf .y/ D

Z
R2d

�
�x C y

2
; !
�
e2�i.y�x/�!f .x/dxd!; (1.1)

for f 2 �.Rd / and a suitable interpretation of the integral. LetDa denote the dilation
Da�.z/ D �.az/. Throughout, we will study a one-parameter family of symbols �ı
that arises by a dilation and a smooth variation of a basic symbol as follows. We will
assume that the symbol depends on a parameter ı 2 .�ı0; ı0/ like

�ı D D
p
1CıGı ;

and write Tı WD �w
ı

for the corresponding operators. While Gı is allowed to vary
with ı, we shall assume that this dependence is moderate, so that �ı is roughly a
dilation. For the question of spectral perturbation to be meaningful, we will assume
that �ı is real-valued and that the corresponding operator is bounded on L2.Rd /,
whence Tı is always self-adjoint.

Our questions are thus the following. How does the spectrum of Tı depend on ı?
Consider in particular the spectral extreme values ��.A/ WD inf¹� 2 RW � 2 �.A/º

and �C.A/ WD sup¹� 2 RW � 2 �.A/º of a self-adjoint operator. How does �˙.Tı/
depend on ı? Or more generally, how do the spectral edges – that is, the endpoints of
the connected components of R n �.Tı/ – depend on ı? What are suitable conditions
on the symbols �ı so that the spectral edges are Lipschitz continuous?

Our main inspiration comes from J. Bellissard’s fundamental paper [8] on the
almost-Matthieu operator or Harper operator in a non-commutative torus. He showed
that, for certain families of Harper-like operators on the square lattice with con-
stant magnetic field, the spectral edges and in particular the spectral gap bound-
aries depend Lipschitz continuously on the parameter, improving previous results on
(Hölder-)continuity of spectral gaps [18] and spectral edges [3]. Bellissard’s work has
inspired many authors to extend his results. In [29], for example, Lipschitz continu-
ity for Harper-like operators on crystal lattices is shown, while [14–17] considered
continuous magnetic Schrödinger operators with weak magnetic field perturbation,
[2] showed spectral continuity of pseudodifferential operators with elliptic symbols in
the Hörmander class, and [7] studied dynamically-defined operator families on groups
of polynomial growth, and the Lipschitz continuity of their spectra. The methods
from [8] have also proved useful to investigate fine properties of rotation algebras [22].
Most notably, Beckus and Bellissard [5] have distilled part of the argument of [8] into
a set of powerful abstract principles (see Section 1.3).
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1.1. Results

To formulate our results, we use the language and methods of phase-space analysis
(time-frequency analysis in applied mathematics) and employ a class of symbols that
is tailored to time-frequency analysis. Let z D .x;!/ 2R2d be a point in phase-space
(time-frequency space), and

�.z/f .t/ DM!=2TxM!=2f .t/ D e
�i�x�!e2�i!�tf .t � x/

denote the (symmetric) time-frequency shift by z. The associated transform is the
short-time Fourier transform

Vgf .z/ D e
�i�x�!

hf; �.z/gi D

Z
Rd

f .t/g.t � x/e�2�i!�t dt:

Let '.t/D 2d=4e��jt j
2

denote the standard Gaussian in Rd . The mixed-norm weighted
modulation space Mp;q

s;t .R
d /, 1 � p; q � 1; s; t � 0; contains all the elements in

� 0.Rd / for which the norm

kf kMp;q
s;t
WD

� Z
Rd

� Z
Rd

jV'f .x;!/j
p.1C jxj/spdx

�q=p
.1C j!j/tqd!

�1=q
(1.2)

is finite, with the usual modification when p D 1 or q D 1. If p D q, we write
M
p
s;t .R

d /, and if s D t , we writeMp;q
s .Rd /. We omit the subscripts, when s D t D 0

and write Mp;q for Mp;q
0;0 . The use of any nonzero function g 2 �.Rd / instead of the

Gaussian in (1.2) gives an equivalent norm, i.e., kf kMp;q
s;t
� kVgf kLp;qs;t

. See, e.g.,
[23] for more details.

Our main result reads as follows.

Theorem 1.1. Let 0 < ı0 < 1. For ı 2 .�ı0; ı0/, letGı 2M
1;1
0;2 .R

2d / be real-valued
and ı 7! Gı differentiable1 such that @ıGı 2M1;1.R2d /. Let Tı D �wı be the pseu-
dodifferential operator with Weyl symbol �ı DDp1CıGı . Then, for ı1; ı2 2 .�ı0; ı0/,

j�˙.Tı1/ � �˙.Tı2/j

� Cd � jı1 � ı2j � .1 � ı0/
�.dC1/

� sup
jt j<ı0

.kGtkM1;1
0;2

C k@tGtkM1;1/;

where Cd is a constant that only depends on d .

1Here we mean that the partial derivative of .z; ı/ 7! Gı.z/ with respect to ı exists.
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To put this result in perspective, let us compare it with that in [8]. Bellissard stud-
ied operators that are linear combinations of phase-space shifts over a lattice, i.e.,
operators of the form

Tı D
X
k2Z2

ak.ı/�.
p
1C ık/: (1.3)

Then the Weyl symbol of Tı is periodic and given by

�ı.z/ D
X
k2Z2

ak.ı/e
2�i
p
1CıŒk;z�;

where Œz; z0�D x0 � ! � x � !0 denotes the standard symplectic form. Bellissard’s con-
dition on the coefficients ak.ı/ explicitly reads

sup
jt j<ı0

� X
k2Z2

jak.t/j
2.1C jkj/6C2" C

X
k2Z2

j@tak.t/j
2.1C jkj/2C2"

�
<1;

for some " > 0: Since


 X
k2Z2

bke
2�iŒk;��




2
M
1;1
0;s

.
X
k2Z2

jbkj
2.1C jkj/2.1CsC"/;

it follows that our result extends Bellissard’s original conditions.
An important point is that operators of the form (1.3) belong to the non-commuta-

tive torus based on
p
1C ıZ2, and thus C �-algebraic arguments may be applied.

By contrast, Theorem 1.1 uses non-periodic symbols within the class M1;10;2 .R
2d /,

which roughly corresponds to requiring two bounded derivatives, although the pre-
cise membership condition is slightly more subtle. In particular, the classM1;10;2 .R

2d /

contains the Hörmander class S00;0 of infinitely smooth symbols. The Sjöstrand class
M
1;1
0;2 .R

2d / is perhaps not as known as the Hörmander classes, but it has become
a common and very natural class of symbols whenever operators are defined via
phase-space shifts. Indeed, since every pseudodifferential operator �w can be for-
mally represented as a superposition of phase-space shifts via

�w D

Z
R2d

U O�.z/�.z/ dz;

where UF.x; !/ D F.!; �x/, the appearance of the Sjöstrand class is almost
inevitable. The Sjöstrand class was studied by Sjöstrand in [31], the time-frequency
analysis of M1;1s;t .R2d / has its origins in [25]. As it turns out, M1;1s;t .R2d / is part of
a larger family of function spaces, the modulation spaces [19], which have become an
indispensable tool in time-frequency analysis and the analysis of pseudodifferential
operators. For a survey of this active field we refer, to the recent monographs [9, 13].
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To match Bellissard’s results for the case of pseudodifferential operators, we will
also derive a variant concerning the Lipschitz continuity of spectral gaps. If g is a gap
of the spectrum of A, that is, a connected component of the resolvent set R n �.A/,
we write �gC.A/ and �g�.A/ to denote the edges of g.

Theorem 1.2. Under the assumptions of Theorem 1.1, let g be a gap of the spec-
trum of T0 with length L.g/. Then there exist " D ".g/ > 0 and functions EgC; E

g
� W

.�"; "/! R such that, for jıj < ",

(i) E
g
C.0/ D �

g
C.T0/, and Eg�.0/ D �

g
�.T0/,

(ii) E
g
C.ı/ (resp. Eg�.ı/) is the right (resp. left) edge of a gap of �.Tı/, and

(iii) the Lipschitz continuity of spectral edges holds:

jE
g
˙
.ı/ �E

g
˙
.0/j

� Cd � jıj � L.g/
�1
� sup
jt j<ı0

.kGtkM1;1k@tGtkM1;1 C kGtk
2

M
1;1
0;2

/:

Note that the Lipschitz estimate in Theorem 1.2 holds only for jıj < ". In fact,
for larger ı the gap may disappear, as it occurs for example in certain graphene-like
systems submitted to constant magnetic fields [15].2

For periodic Weyl symbols Bellissard [8] proved that

jE
g
˙
.ı/ �E

g
˙
.0/j � CT � jıj � L.g/

�5; jıj < ";

and suggested that the correct dependence on the width L.g/ of the gap should be
L.g/�1. This conjecture was confirmed in [5, Theorem 4]; see also [5, Lemma 10].
Along the way, Beckus and Bellissard developed an abstract principle that helps derive
such estimates [5], which we shall aptly invoke and combine with Theorem 1.1 to
prove Theorem 1.2.

1.2. Gabor frames

Results in the style of Theorems 1.1 and 1.2 are typically investigated in mathematical
physics where ı represents Planck’s constant or the strength of a magnetic field. While
we hope that our results may be useful in such questions, our main motivation comes
from an open problem in the theory of Gabor frames. Let ƒ � R2d be a discrete
set, not necessarily a lattice, and consider the set of phase-space shifts G .g; ƒ/ D

¹�.�/gº�2ƒ for some g 2 L2.Rd /. The main problem is to understand when G .g;ƒ/

is a frame, i.e., when the frame inequalities

Akf k22 �
X
�2ƒ

jhf; �.�/gij2 � Bkf k22; for all f 2 L2.Rd /; (1.4)

2We thank H. Cornean for pointing this out to us.
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hold for some constants A; B > 0 independent of f . The optimal constants in (1.4)
B.ƒ/ and A.ƒ/ are respectively the largest and the smallest spectral values of the
frame operator Sg;ƒf D

P
�2ƒhf; �.�/gi�.�/g. Theorem 1.1 then leads to the fol-

lowing statement about the frame bounds of a non-uniform Gabor frame (where
“non-uniform” means that ƒ need not be a lattice). Again, the most convenient con-
ditions on g are in terms of a modulation space.

Theorem 1.3. Let 0 < ˛0 < 1, ˛0 < ˛ < 1=˛0, and g 2M 1
2 .R

d /. Let alsoƒ � R2d

be relatively separated, i.e.,

rel.ƒ/ WD sup
x2Rd

#¹� 2 ƒ \ x C Œ0; 1�d º <1:

Then

j�˙.Sg;ƒ/ � �˙.Sg;˛ƒ/j � Cd � rel.ƒ/ � ˛�.4dC2/0 � kgk2
M1
2

� j1 � ˛j: (1.5)

Theorem 1.3 has a rich history. If ƒ is a lattice, it was first shown in [20] that the
frame bounds depend in a lower semi-continuous fashion on ˛, which implies that the
set of lattices that generate a Gabor frame is an open set. For general non-uniform
sets ƒ, the lower semi-continuity of the frame bounds was proven later in [1].

A particularly important consequence of Theorem 1.3 is the quantitative behavior
of the frame bounds near the critical density. By the density theorem for Gabor frames,
every frame G .g;ƒ/ must satisfy the necessary density conditionD�.ƒ/ � 1, where
D�.ƒ/ is the lower Beurling density and counts the average number of points per
unit volume. If g 2 M 1.Rd /, then even the strict inequality D�.ƒ/ > 1 holds. In
particular, if g 2M 1.Rd / and D�.ƒ/ D 1, then the lower spectral bound of Sg;ƒ is
A.ƒ/ D 0. See [27] for a survey of the density theorem and [1, 26] for the relevant
result for non-uniform Gabor frames. Since the ratio B.ƒ/=A.ƒ/ serves as a con-
dition number of the frame and thus measures the stability of various reconstruction
procedures, it is important to understand how the lower frame bound A.ƒ/ deterio-
rates to zero, as the density ofƒ decreases to 1. Theorem 1.3 says that for an arbitrary
set ƒ of density D�.ƒ/ D 1 the lower frame bound of G .g; ˛ƒ/ behaves like

A.˛ƒ/ . 1 � ˛;

for ˛! 1, ˛ < 1. This amounts to a blow-up of the order .1� ˛/�1 for the condition
number B.˛ƒ/=A.˛ƒ/.

So far, this behavior of the lower frame bound near the critical density has been
proved with special methods only for Gabor frames for square lattices ˛Z2 based on
the Gaussian '.t/ D e��t

2
, see [10], and the exponential functions e�t�Œ0;1/ and

e�jt j, see [28]. In hindsight, these results can be deduced from Bellissard’s result [8].
Theorem 1.3 fully settles the question: the asymptotic behavior A.˛ƒ/ . 1 � ˛ near
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the critical density holds for all Gabor frames G .g; ˛ƒ/ with a window in M 1
2 .R

d /

and an arbitrary discrete set ƒ of density 1, be it a lattice or not, and in arbitrary
dimensions. The condition on the window is only slightly more restrictive than the
general condition g 2 M 1.Rd /, under which the structural results on Gabor frames
hold.

Finally, we provide the following companion to Theorem 1.3.

Theorem 1.4. Under the assumptions of Theorem 1.3, let g be a gap of the spectrum
of Sg;ƒ with length L.g/ and edges �g

˙
.Sg;ƒ/. Then there exist " D ".g/ > 0 and

gaps of the spectrum of Sg;˛ƒ, j1 � ˛j < ", whose edges �g
˙
.Sg;˛ƒ/ satisfy

j�
g
˙
.Sg;ƒ/ � �

g
˙
.Sg;˛ƒ/j � Cd � j1 � ˛j � rel.ƒ/2 � L.g/�1 � kgk4

M1
2

:

While gaps in the spectrum of Gabor frame operators are comparatively less stud-
ied than their spectral edges, general gaps deserve attention. For example, the size of
the smallest gap .0; A/ of a Gabor frame operator coincides with the so-called lower
Riesz bound of the Gabor system. Note however that Theorem 1.4 does not describe
the size of the smallest gap, as it is in principle possible that a spectral gap .0; A/ of
Sg;ƒ may evolve into a gap of Sg;˛ƒ with �g�.Sg;˛ƒ/ > 0 leaving room for a second
gap .0; A0/ in the spectrum of Sg;˛ƒ with A0 < �g�.Sg;˛ƒ/.

1.3. Methods

As our predecessors, the overall structure of our proof of Theorem 1.1 follows Bellis-
sard [8] and consists of three steps: a truncation argument followed by tensorization,
and a reverse heat flow estimate.

A key insight of Bellissard was that the C �-algebra A1Cı that is generated by
¹�.
p
1C ık/ºk2Z2 acting on L2.Rd / (a non-commutative torus) is isomorphic to

a subalgebra of A1 ˝Aı . For non-periodic symbols we use a similar tensorization
argument. Although we can no longer rely on C �-algebra techniques, this difficulty
is circumvented with the help of the metaplectic representation. See Theorem 3.3 and
its comments.

While the overall structure of the proof of Theorem 1.1 is due to Bellissard, the
proof techniques are rather different in the case of non-periodic symbols and draw
from time-frequency analysis and the theory of modulation spaces. In fact, our main
technical contribution is the systematic use of the machinery of time-frequency anal-
ysis.

Theorem 1.2 is proved by combining Theorem 1.1 with an abstract principle due to
Beckus and Bellissard [5], while Theorems 1.3 and 1.4 follow as a further application
of the main results.
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After understanding the fundamental principles underlying the continuous depen-
dence of spectra, Beckus and Bellissard with coauthors have axiomatized and greatly
expanded the range of their methods [6, 7]. In [6] generalized Schrödinger operators
are studied in the context of groupoids and dynamical systems based on C �-algebraic
methods. The final result is a far-reaching general theorem about the continuity of
the spectral map that includes, for instance, Schrödinger operators for solids with
respect to general point distributions in magnetic fields. The corresponding mag-
netic translations obey commutation relations similar to those of the time-frequency
shifts studied in our work. In [7] the authors study the Lipschitz continuity of spectra
of operator families for which the mapping from parameter to operator ˛ ! T˛ is
driven by a dynamical system. This generalization is motivated by and includes the
almost-Mathieu operator, which in our context corresponds to a specific finite sum of
time-frequency shifts. Our results are clearly related and fit into this general context,
but to the best of our knowledge there is no overlap.

The paper is organized as follows. Section 2 summarizes the tools from time-
frequency analysis required for the formulation and for the proof of the main theorem.
Section 3 is devoted to the proof of the main theorems. Section 4 discusses Gabor
systems and their frame operators.

2. Background and tools

2.1. Notation

Euclidean balls are denotedBr.x/. The dilation operator acts on a function f WRd!C

by Daf .x/ D f .ax/, a > 0, and for F WRd � Rd ! C, U denotes the change of
variables UF.x; !/ D F.!;�x/. The tensor product of two functions is defined as
f ˝ g.s; t/ D f .s/g.t/. The symbol . in f . g means that f .x/ � Cg.x/ for all x
with a constant C independent of x.

2.2. Norms and spectral extrema

An important insight in [5, 8] is that the smoothness of the norms of (the polynomial
calculi of) a family of operators determines the smoothness of their spectra in the
Hausdorff metric. We start with the following basic estimate, which we prove for
completeness; these and other closely related statements are implicit in the proofs of
[4, Theorem 2.3.17 and Theorem 2.8.10].

Lemma 2.1. Let H be a Hilbert space, and A;A1; A2 2 B.H / be self-adjoint oper-
ators. For � > kAkB.H/, we have

�C.A/ D kAC �IkB.H/ � � and ��.A/ D � � kA � �IkB.H/:
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Moreover,
j�˙.A1/ � �˙.A2/j � kA1 � A2kB.H/; (2.1)

and
jkA1kB.H/ � kA2kB.H/j � 2 �max

˙
j�˙.A1/ � �˙.A2/j: (2.2)

Proof. For a self-adjoint operator A, it holds that r.A/ D kAkB.H/, where r.A/
denotes the spectral radius of A. For � > kAkB.H/ one thus has

�C.A/C � D r.AC �I/ D kAC �IkB.H/:

For �� we note that �.��.A/ � �/ D r.A � �I/ D kA � �IkB.H/.
Set � D 2max¹kA1kB.H/; kA2kB.H/º. By the first part of this lemma and the

triangle inequality it follows

j�˙.A1/ � �˙.A2/j D jkA1 ˙ �IkB.H/ � kA2 ˙ �IkB.H/j

� kA1 ˙ �I � .A2 ˙ �I/kB.H/ D kA1 � A2kB.H/;

which proves (2.1). To prove (2.2) we first note that

jkA1kB.H/ � kA2kB.H/j

D jmax¹j�C.A1/j; j��.A1/jº � max¹j�C.A2/j; j��.A2/jºj:

For a; b; c; d � 0, the elementary estimate

jmax¹a; bº �max¹c; dºj � 2max¹ja � cj; jb � d jº

then yields that

jkA1kB.H/ � kA2kB.H/j � 2max
˙
jj�˙.A1/j � j�˙.A2/jj

� 2max
˙
j�˙.A1/ � �˙.A2/j:

2.3. The Beckus–Bellissard lemma

Consider a family ¹Aıºjıj<ı0 of bounded self-adjoint operators Aı WH ! H on a
Hilbert space H . For a set of polynomials Q � CŒx� let

CQ WD sup
p2Q

sup
ı1¤ı2

jkp.Aı1/kB.H/ � kp.Aı2/kB.H/j

jı1 � ı2j
:

We say that ¹Aıºı2.�ı0;ı0/ is .p2/-Lipschitz continuous if for every M > 0, we have
CPM <1, where PM denotes the set of all polynomials of the form p.x/ D ˛x2 C

ˇx C 
 with ˛; ˇ; 
 2 R and j˛j C jˇj C j
 j �M .
The following lemma is a minor modification of [5, Lemma 10] (see also [4,

Theorem 2.8.10]).
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Lemma 2.2. Let ¹Aıºjıj<ı0 be a .p2/-Lipschitz continuous family of bounded self-
adjoint operators and set

P .A0/ D ¹p.x/ D x
2
C ˇx C 
 Wˇ; 
 2 R;

jˇj � 2kA0kB.H/; j
 j � 5kA0k
2
B.H/º: (2.3)

Let g be a gap of the spectrum of A0 with edges �g
˙
.A0/ and length L.g/. Then there

exist " D ".g/ > 0 and gaps of the spectrum of Aı , jıj < ", whose edges �g
˙
.Aı/

satisfy

j�
g
˙
.Aı/ � �

g
˙
.A0/j � 3jıj �

CP .A0/

L.g/
; jıj < ": (2.4)

The statement of [5, Lemma 10] involves a larger class than P .A0/ defined by
imposing the same bound on all polynomial coefficients. The proof in [5], however,
readily gives the stronger statement, and will not be repeated.

2.4. Time-frequency representations

We now offer a minimalist account of time-frequency analysis, modulation spaces,
and the associated results for pseudodifferential operators. Detailed expositions can
be found in the textbook [23] and the two recent monographs [9, 13].

For a point z D .x; !/ 2 R2d , the phase-space shift (time-frequency shift) of f
is defined as

�.z/f .t/ D e�i�x�!M!Txf .t/ D e
�i�x�!e2�i!�tf .t � x/;

where Txf .t/ D f .t � x/ and M!f .t/ D e2�i!�tf .t/. In terms of the symplectic
form

Œz; z0� D x0 � ! � x � !0; z D .x; !/; z0 D .x0; !0/ 2 Rd �Rd ; (2.5)

the composition of two phase-space shifts gives

�.z/�.z0/ D ei�Œz;z
0��.z C z0/; z; z0 2 R2d : (2.6)

In particular, �.z/� D �.�z/ and

�.z/��.z0/�.z/ D e2�iŒz
0;z��.z0/; z; z0 2 R2d : (2.7)

The short-time Fourier transform of a function or distribution f on Rd with respect
to a window function g is given by

Vgf .x; !/ D

Z
Rd

f .t/g.t � x/e�2�i!�tdt

D hf;M!Txgi D e
�i�x�!

hf; �.z/gi:
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When g is normalized by kgk2 D 1, Vg WL2.Rd /! L2.R2d / is an isometry [21,23]:Z
R2d

jhf; �.z/gij2 D

Z
R2d

jVgf .z/j
2 dz D kf k22; f 2 L2.Rd /: (2.8)

In terms of the rank-one projections q.z/ 2 B.L2.Rd //,

q.z/ D h � ; �.z/gi�.z/g; (2.9)

the isometry property of the short-time Fourier transform yields the following contin-
uous resolution of the identity: Z

R2d

q.z/ dz D I; (2.10)

where integrals are to be interpreted in the weak sense (2.8).

Identities for the short-time Fourier transform. We will need the following iden-
tity for the short-time Fourier transform of a pointwise product of functions:

Vg.f � h/.x; !/ D . Oh �2 Vgf /.x; !/ D

Z
Rd

Oh.�/Vgf .x; ! � �/d�: (2.11)

The (cross-)Wigner distribution of f; g 2 L2.Rd / is defined to be

W.f; g/.x; !/ D

Z
Rd

f
�
x C

t

2

�
g
�
x �

t

2

�
e�2�i!�tdt: (2.12)

If f D g, we write W.f /.
Finally, we quote some useful facts about the short-time Fourier transform of a

short-time Fourier transform. It is shown in [11, Lemmas 2.1 and 2.2, Proposition 2.5]
that3

F .V'f � V'g/.z/ D U�1.Vgf � V''/.z/; z 2 R2d ; (2.13)

while with x; ! 2 R2d , . Q!1; Q!2/ D .!2;�!1/, and the window ˆ D W.'; '/,

jVˆ.W.f; g//.x; !/j D jV'f .x � Q!=2/V'g.x C Q!=2/j: (2.14)

3The combination U�1F is often called the symplectic Fourier transform and used in addi-
tion to F .
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2.5. Modulation spaces

The family of modulation spaces Mp;q
s;t .R

d / was already defined in (1.2). By chang-
ing the order of integration, we obtain the family of Wiener amalgam spaces. Let
'.t/ D 2d=4e��jt j

2
denote the standard Gaussian in Rd and 1 � p; q � 1, s; t � 0.

Then W p;q
s;t .R

d / consists of all distributions in � 0.Rd / for which the following norm
is finite:

kf kW p;q
s;t
D

� Z
Rd

� Z
Rd

jV'f .x;!/j
p.1C j!j/spd!

�q=p
.1C jxj/tqdx

�1=q
; (2.15)

with the usual modification when p D 1, or q D 1. If p D q, we write W p
s;t .R

d /,
if s D t , we write W p;q

s .Rd /, and if s D t D 0, we write W p;q.Rd /. Any nonzero
function g 2 �.Rd / instead of the Gaussian in (2.15) gives an equivalent norm, i.e.,
kf kW p;q

s;t
� kUVgf kLp;qs;t

; these spaces are often denoted by W.F Lps ; L
q
t /.

Since Vgf .x;!/D e�2�ix�!V Og Of .!;�x/, a comparison of (1.2) and (2.15) shows
that W p;q

s;t .R
d / is the image of the modulation space Mp;q

s;t .R
d / under the Fourier

transform, in particular
kf kMp;q

s;t
� k Of kW p;q

s;t
: (2.16)

Convolution and multiplication in modulation spaces. The space M1;1 is iso-
metrically translation invariant. As a consequence, it satisfies L1 �M1;1 ! M1;1

together with the estimate

kf � gkM1;1 . kf kL1kgkM1;1 : (2.17)

Equivalently, in terms of Wiener amalgam norms,

kf � gkW1;1 . kf kFL1kgkW1;1 ; (2.18)

where
kf kFL1 WD k

Of kL1 :

We will also use the following estimates for convolution of functions and distributions
in modulation spaces, taken from [11, Proposition 2.4]. If f 2 M1.Rd / and g 2
M 1
0;s.R

d / with s � 0, then f � g 2M1;10;s .R
d / and

kf � gk
M
1;1
0;s

. kf kM1kgkM1
0;s
: (2.19)

Let us write Xi to denote the multiplication operator Xif .t/ D tif .t/, 1 � i � d .
The observation

Xi .M!Txf / DM!Tx.Xif /C xiM!Txf;
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and the fact that different windows generate equivalent norms for the spaces
M
p;q
s;t .R

d / and W p;q
s;t .R

d / lead to the estimates

kXif kMp;q
s;t

. kf kMp;q
sC1;t

and kXif kW p;q
s;t

. kf kW p;q
s;tC1

: (2.20)

Similarly, one sees that
k@if kMp;q

s;t
. kf kMp;q

s;tC1
:

Consequently,
kXi@if kMp;q

s;t
. kf kMp;q

sC1;tC1
: (2.21)

Next, we show the following variant of [11, Proposition 2.5].

Lemma 2.3. For f; g 2M 1
sCt .R

d /, s; t � 0, we have W.f; g/ 2M 1
s;t .R

2d / with the
norm estimate

kW.f; g/kM1
s;t

. kf kM1
sCt
kgkM1

sCt
:

Proof. Using (2.14) with ˆ D W.'; '/ and the substitution . Q!1; Q!2/ D .!2;�!1/,

kW.f; g/kM1
s;t
�

Z
R2d

Z
R2d

jVˆ.W.f; g//.x; !/j.1C jxj/s.1C j!j/tdxd!

D

Z
R2d

Z
R2d

jV'f .x � !=2/V'g.x C !=2/j.1C jxj/
s.1C j!j/tdxd!

D

Z
R2d

Z
R2d

jV'f .x/V'g.x C !/j.1C jx C !=2j/
s.1C j!j/tdxd!

D

Z
R2d

Z
R2d

jV'f .x/V'g.!/j.1C j.x C !/=2j/
s.1C j! � xj/td!dx

. kf kM1
sCt
kgkM1

sCt
;

where we used the submultiplicativity of the polynomial weights.

As we note below, the space M1.Rd / contains atomic measures supported on
relatively separated sets.

Lemma 2.4. Let ƒ � Rd be relatively separated. Then � WD
P
�2ƒ ı� 2M

1.Rd /.
Moreover, if rel.ƒ/ WD supx2Rd #¹� 2 ƒ \ x C Œ0; 1�d º then

k�kM1 . rel.ƒ/:

The proof of Lemma 2.4 follows from a direct calculation (which is easily carried
out by taking a window function g 2 M 1.Rd / supported on Œ0; 1�d ) and is therefore
omitted.
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Finally, we will need the embeddings

kf kM1 . kf kL1 . kf kM1;1 ; (2.22)

and the following norm estimates for dilations on modulation spaces:

kDaf kM1;1
0;s

� Cd;s max¹1; adCsºkf k
M
1;1
0;s

; a > 0; s � 0; (2.23)

kDaf kM1
0;s
� Cd;s max¹a�d ; asºkf kM1

0;s
; a > 0; s � 0: (2.24)

See [32, Theorem 1.1] and [12, Theorem 3.2] for the weighted versions.

2.6. Pseudodifferential operators

The modulation spacesM1;10;s .R
2d /, s � 0, are important symbol classes in the theory

of pseudodifferential operators. In particular, the spaceM1;1.R2d / was first used by
Sjöstrand [30] as a class of non-smooth (“rough”) symbols that contains the Hörman-
der class S00;0. See also the early papers [24,25] for a detailed time-frequency analysis
of this symbol class.

The standard definition of the Weyl calculus (1.1) does not reveal how modula-
tion spaces and phase-space methods enter the analysis. This becomes more plausible
when we write a pseudodifferential operator as

h�wf; gi D h�;W.g; f /i

or as a superposition of phase-space shifts

�w D

Z
R2d

U O�.z/�.z/ dz

with UF.x; !/ D F.!; �x/. Taking these formulas for the Weyl calculus as the
starting point, the appearance of modulation spaces is natural and ultimately led to
the following results, which we will use in an essential way.

The composition of Weyl transforms defines a bilinear form on the space of sym-
bols (twisted product)

�w�w D .�]�/w :

Using the symplectic form (2.5), the twisted product of Schwartz class symbols can
be written explicitly as

�]�.z/ D 4d
Z

R2d

Z
R2d

�.z0/�.z00/e4�iŒz�z
0;z�z00� dz0 dz00; (2.25)
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while for general � and � this formula holds in the distributional sense. The twisted
convolution

�\�.z/ D

Z
R2d

�.z0/�.z � z0/e��iŒz�z
0;z0� dz0

is related to the twisted product by

F .�]�/ D .F �/\.F �/: (2.26)

We now quote some basic properties of weighted Sjöstrand classes.

Theorem 2.5. The following facts hold.

(i) If � 2M1;1.R2d /, then � is a bounded operator on L2.Rd / and

k�wkB.L2.Rd // . k�kM1;1 :

(ii) If F 2 W1;1.R2d / and �.F / D
R

R2d F.z/�.z/ dz, then �.F / is bounded
on L2.Rd / with operator norm

k�.F /kB.L2.Rd // . kF kW1;1 :

(iii) For s � 0, M1;10;s .R
2d / is a Banach �-algebra with respect to the twisted

product ] and the involution � 7! � . In particular,

k�]�k
M
1;1
0;s

. k�k
M
1;1
0;s

k�k
M
1;1
0;s

:

(iv) Let jıj < ı0 < 1, Gı 2M1;1.R2d / be real-valued, and set

Tı D .D
p
1CıGı/

w :

Then

kTıkB.L2.Rd // . max¹1; .1C ı/d ºkGıkM1;1

� .1C ı0/
d
kGıkM1;1 : (2.27)

Proof. For (i) and (iii), see [24,25,30]. Item (ii) is just a reformulation when the oper-
ator is written as a superposition of phase-space shifts. (iv) follows from the invariance
of M1;1.R2d / under dilations expressed by (2.23). Note that symbols are functions
on R2d and the correct norm of the dilation is therefore

p
1C ı

2d
.
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3. Proof of the main results

In our proof of Theorems 1.1 we follow Bellissard’s strategy [8] consisting of three
main ingredients: (i) truncate the symbol of Tı to define an operator TR.Tı/ and
compare its spectral extreme values to the ones of Tı (Lemma 3.1); (ii) introduce
a tensorization TR.Tı/

˝ acting on L2.R2d / which preserves the spectrum of TR.Tı/

(Theorem 3.3); and (iii) rewrite TR.Tı/
˝ adequately (Lemma 3.5) so that reverse

heat-flow estimates can be used to compare the spectral extreme values of TR.Tı/
˝

and TR.T0/ (Lemmas 3.7 and 3.8).
The challenge in our case is to find suitable alternative arguments to treat non-

periodic symbols. As a first step, we write the pseudodifferential operator Tı with
symbol �ı DDp1CıGı as a superposition of phase-space shifts (spreading represen-
tation in engineering language)

Tı D

Z
R2d

Ub�ı.z/�.z/ dz D Z
R2d

UcGı.z/�.p1C ız/ dz:
Although in general cGı is a distribution, the analysis of Tı becomes feasible in this
representation. A main tool is the boundedness estimate from Theorem 2.5, which
we will use several times. We will at first assume that ı is positive and use reflection
arguments to cover negative values.

3.1. Truncation error

Fix a real-valued, even, radial function � 2 C1.R2d / such that �.z/D 1, for jzj � 1,
�.z/ D 0, for jzj � 2, and 0 � �.z/ � 1 else, and set �R.z/ D �.z=R/, with R > 0.

We define the truncation of Tı by

TR.Tı/ D

Z
R2d

U.�RcGı/.z/�.p1C ız/ dz: (3.1)

Since � is real-valued and even, it follows that TR.Tı/ is self-adjoint. By Theorem 2.5,
it is enough to bound kGı �c�R �GıkM1;1 in order to derive an estimate of the norm
of Tı � TR.Tı/.

Lemma 3.1. Let 0 � ı < ı0 andGı 2M
1;1
0;2 .R

2d / be real-valued. If we assume that
supjt j<ı0 kGtkM1;1

0;2

<1, then

kGı �c�R �GıkM1;1 . R�2 � sup
jt j<ı0

kGtkM1;1
0;2

:
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In particular, by (2.27),

kTı � TR.Tı/kB.L2.Rd // . R�2 � .1C ı0/
d
� sup
jt j<ı0

kGtkM1;1
0;2

: (3.2)

Proof. Fix a constant K > 0 and choose ˆ 2 M 1.R2d / to be compactly supported
in BK.0/. Let R � 2K. If jxj � R �K, then supp Txˆ � BR.0/ and consequently
VˆcGı.x; !/ � Vˆ.�RcGı/.x; !/ D 0 for jxj � R �K and all ! 2 R2d . Therefore,

kGı �c�R �GıkM1;1
D kcGı � �RcGıkW1;1
�

Z
R2d

sup
!2R2d

jVˆcGı.x; !/ � Vˆ.�RcGı/.x; !/j dx
D

Z
R2dnBR�K.0/

sup
!2R2d

jVˆcGı.x; !/ � Vˆ.�RcGı/.x; !/j dx
. R�2

Z
R2d

sup
!2R2d

.jVˆcGı.x; !/j C jc�R �2 VˆcGı.x; !/j/.1C jxj/2dx
� R�2.1C kc�Rk1/ Z

R2d

sup
!2R2d

jVˆcGı.x; !/j.1C jxj/2dx
� R�2.1C kc�Rk1/kcGıkW1;1

0;2

� R�2.1C kb�k1/kGıkM1;1
0;2

:

Here, we have used that R � 2.R �K/, (2.11), and Young’s inequality to show that
sup! jc�R �2 VˆcGı.x; !/j � k�Rk1 sup! jVˆcGı.x; !/j, and

kc�Rk1 D R2d Z
R2d

jb�.R!/j d! D kb�k1:
Finally, for 0 � R � 2K,

kGı �c�R �GıkM1;1 D kcGı � �RcGıkW1;1
�

Z
R2d

sup
!2R2d

jVˆcGı.x; !/ � Vˆ.�RcGı/.x; !/j dx
.
Z

R2d

sup
!2R2d

.jVˆcGı.x; !/j C jc�R �2 VˆcGı.x; !/j/dx
� .1C kc�Rk1/ Z

R2d

sup
!2R2d

jVˆcGı.x; !/jdx
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� .1C k O�k1/kGıkM1;1

�
4K2

R2
.1C k O�k1/kGıkM1;1

0;2

;

which concludes the proof after adjusting the implied constants.

The following estimate will be helpful to analyze truncations.

Lemma 3.2. For 0 < R � ı�1=2, we have ke
�ı
2 j�j

2
�RkFL1 . 1.

Proof. To prove the estimate we apply the dilation invariance of F L1 and the So-
bolev-type embedding M 2

0;dC1
.R2d / ,! F L1.R2d /. Using multi index notation for

derivatives, we obtain

ke
�ı
2 j�j

2

�.�=R/kFL1 D ke
�ıR2

2 j�j2�kFL1

.
X

j˛j;jˇ j�dC1

k@˛Œe
�ıR2

2 j�j2 � � @ˇ�kL2

.
X

j˛j�dC1

k@˛Œe
�ıR2

2 j�j2 �kL1.B2.0// . 1;

because ıR2 � 1.

3.2. Tensorization

Let ı > 0 and define T˝
ı
WL2.R2d /! L2.R2d / as follows:

T˝
ı
D

Z
R2d

UcGı.z/�.z/˝ �.pız/dz
D

Z
R2d

UcGı.x; !/�.x;pıx; !;pı!/dxd!:
Note that if Gı is real-valued, then both Tı and T˝

ı
are self-adjoint. We emphasize

that the tensorized operator T˝
ı

acts on L2.R2d /, whereas the original operator Tı
acts on L2.Rd /. We similarly define a tensorized operator associated with the trunca-
tion (3.1):

TR.Tı/
˝
D

Z
R2d

U.�RcGı/.z/�.z/˝ �.pız/dz:
Let Sp.d/ denote the symplectic group of all matrices R 2 GL.2d;R/ that satisfy

R�JR D J , with J D
�
0 Id
�Id 0

�
. For each symplectic matrix, there exists a unitary
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operator �.R/, called metaplectic operator, such that

�.R.x; !// D �.R/�.x; !/�.R/�1; (3.3)

see for example [23, Lemma 9.4.3]. We are now ready to prove that Tı and T˝
ı

are
isospectral.

Theorem 3.3. Let 0 � ı < ı0, and Gı 2M1;1.R2d / be real-valued. Then �.Tı/ D
�.T˝

ı
/, and �.TR.Tı// D �.TR.Tı/˝/, for all R > 0.

Proof. Let Rı 2 O.2d/ be an orthogonal transformation that satisfies

Rı.x;
p
ıx/ D .

p
1C ıx; 0/; for every x 2 Rd ;

and set Rı D

�
Rı 0
0 Rı

�
2 R4d�4d : Then Rı 2 Sp.2d/ and

�.Rı/�.x;
p
ıx; !;

p
ı!/�.Rı/

�1
D �.Rı.x;

p
ıx/; Rı.!;

p
ı!//

D �.
p
1C ıx; 0;

p
1C ı!; 0/:

Since
�.
p
1C ıx; 0;

p
1C ı!; 0/ D �.

p
1C ıx;

p
1C ı!/˝ I;

it follows that

Tı ˝ I D

Z
R2d

UcGı.z/�.p1C ıx; 0;p1C ı!; 0/dz
D

Z
R2d

UcGı.z/�.Rı/�.x;
p
ıx; !;

p
ı!/�.Rı/

�1dz

D �.Rı/T
˝

ı
�.Rı/

�1:

Hence, Tı ˝ I and T˝
ı

are unitarily equivalent and therefore �.Tı/ D �.Tı ˝ I / D
�.T˝

ı
/. The same argument applies to TR.Tı/.

Bellissard [8] proved a special case of Theorem 3.3 for periodic symbols with
C �-algebra arguments. Our main insight is that the metaplectic representation allows
one to treat also non-periodic symbols (and perhaps provides a more direct argument
even for periodic ones).

We now extend the resolution of the identity (2.10) to obtain the following expan-
sion of phase-space shifts. Recall that ' is always the normalized Gaussian

'.t/ D 2d=4e��jt j
2

; t 2 Rd : (3.4)

The following proposition, which can be found in [8, Proposition 2 (vi)], is the core
of the argument leading to Theorem 1.1. We provide a short proof for the reader’s
convenience.
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Lemma 3.4. Let ' be the normalized Gaussian (3.4), Œ � ; � � the symplectic form (2.5),
and q the rank-one projection (2.9) associated with '. Then

�.z/ D e
�
2 jzj

2

Z
R2d

e2�iŒz;z
0�q.z0/dz0; z 2 R2d ; (3.5)

where integral converges in the weak sense.

Proof. Let f; g 2 L2.Rd /. Using (2.13), we find thatZ
R2d

e2�iŒz;z
0�
hq.z0/f; gidz0 D F .V'f V'g/.�!; x/

D UF .V'f V'g/.�x;�!/

D Vgf .�z/V''.�z/ D h�.z/f; gie
��jzj2=2:

Since f and g were arbitrary, this implies (3.5).

Next, we apply Lemma 3.4 to inspect the tensorized operator T˝
ı

.

Lemma 3.5. Fix Gı 2M1;1.R2d / for ı > 0 and set

QR.Tı/.z
0/ WD

Z
R2d

e
�ı
2 jzj

2

e2�iŒz;z
0�U.�RcGı/.z/�.z/dz: (3.6)

Then

TR.Tı/
˝
D

1

ıd

Z
R2d

QR.Tı/.z
0/˝ q.z0=

p
ı/dz0: (3.7)

Proof. Let us first observe that if h.z/ D z � z0, then Uh.z/ D Œz; z0� which implies
that for f; g 2 L2.Rd /

hQR.Tı/.z
0/f; gi D UF .e

�ı
2 j�j

2

U.�RcGı/h�.�/f; gi/.z0/; (3.8)

as well as Z
R2d

e2�i
p
ıŒz;z0�

hq.z0/f; gidz0 D Dp
ı
UF �1.hq.�/f; gi/.z/:

Using (3.5) for the second factor in �.z/˝ �.
p
ız/, we may formally write TR.Tı/

˝

as

TR.Tı/
˝
D

Z
R2d

U.�RcGı/.z/�.z/˝ �.pız/dz
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D

Z
R2d

U.�RcGı/.z/�.z/˝ �e �ı2 jzj2 Z
R2d

e2�i
p
ıŒz;z0�q.z0/dz0

�
dz

D

Z
R2d

e
�ı
2 jzj

2

U.�RcGı/.z/�.z/˝ Z
R2d

e2�i
p
ıŒz;z0�q.z0/dz0dz:

For f1; f2; g1; g2 2 L2.Rd /, we therefore get

hTR.Tı/
˝.f1 ˝ f2/; .g1 ˝ g2/i

D hU.e
�ı
2 j�j

2

�RcGı/h�.�/f1; g1i;DpıUF �1.hq.�/f2; g2i/i

D
1

ıd
hF �1U�.U.e

�ı
2 j�j

2

�RcGı/h�.�/f1; g1i/;D1=pı.hq.�/f2; g2i/i
D

1

ıd
hUF .U.e

�ı
2 j�j

2

�RcGı/h�.�/f1; g1i/;D1=pı.hq.�/f2; g2i/i
D

1

ıd
hhQR.Tı/.�/f1; g1i; hq.�=

p
ı/f2; g2ii

D

�
1

ıd

Z
R2d

QR.Tı/.z
0/˝ q.z0=

p
ı/dz0.f1 ˝ f2/; .g1 ˝ g2/

�
:

To justify these calculations, we show that hQR.Tı/.�/f1; g1i 2 L1.R2d / and that
hq.�=
p
ı/f2; g2i 2 L

1.R2d / (with norms that may depend on ı and R). To this end
note, first

khq.�/f; gikL1 D kV'f � V'gkL1 � kV'f kL2kV'gkL2 D kf k2kgk2:

Second, letting for simplicity kf k2 D kgk2 D 1,

jhQR.Tı/.z/f; gij � kQR.Tı/.z/kB.L2.Rd // . kU.M�ze
�ı
2 j�j

2

�RcGı/kW1;1
. ke

�ı
2 j�j

2

�RcGıkW1;1 . ke
�ı
2 j�j

2

�RkFL1kcGıkW1;1 <1;
where we used (2.18) and e

�ı
2 j�j

2
�R 2 �.R2d /. Taking the supremum over z 2 R2d

shows that hQR.Tı/.�/f; gi 2 L1.R2d /.

We need the following estimate on the reversal of the heat-flow, which follows
from a Taylor expansion; see, e.g., [8, Lemma 6].

Lemma 3.6. Let F 2 C 2
b
.R2d / and ˆı.z/ D 1

ıd
e��jzj

2=ı with z 2 R2d and ı > 0.
Then

kF �ˆı � F k1 . ık@2F k1 WD ı
X
j˛jD2

k@˛F k1: (3.9)

Finally, we compare the spectral extreme values of the tensorization TR.Tı/
˝ and

QR.Tı/.0/.
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Lemma 3.7. Let 0 < ı < ı0 andGı 2M
1;1
0;2 .R

2d / be real-valued. If we assume that
supjt j<ı0 kGtkM1;1

0;2

<1, and 0 < R � ı�1=2, then

j�˙.QR.Tı/.0// � �˙.TR.Tı/
˝/j . ı � sup

jt j<ı0

kGtkM1;1
0;2

:

Proof. We proceed in four steps.

Step 1. Note that QR.T0/.0/ D TR.T0/. In addition, by (2.7),

QR.Tı/.z
0/ D �.z0/�QR.Tı/.0/�.z

0/: (3.10)

Consequently, �.QR.Tı/.z// D �.QR.Tı/.0//, as QR.Tı/.z/ and QR.Tı/.0/ are
unitarily equivalent.

Step 2. We note thatQR.Tı/.z/ is self-adjoint for every z 2R2d becauseQR.Tı/.0/
is. Let f 2 L2.Rd / with kf k2 D 1 and fix � 2 R. Then, (3.10) shows that

h.QR.Tı/.z/ � �I/f; f i D h.QR.Tı/.0/ � �I/�.z/f; �.z/f i

� kQR.Tı/.0/ � �IkB.L2.Rd //:

Hence, .QR.Tı/.z/� �I/˝ q.z=
p
ı/� kQR.Tı/.0/� �IkB.L2.Rd //I ˝ q.z=

p
ı/.

Next, we invoke Lemmas 3.4 and (3.7) of Lemma 3.5 to obtain

TR.Tı/
˝
� �I ˝ I D

1

ıd

Z
R2d

QR.Tı/.z/˝ q.z=
p
ı/dz � �I ˝ I

D
1

ıd

Z
R2d

.QR.Tı/.z/ � �I/˝ q.z=
p
ı/dz

� kQR.Tı/.0/ � �IkB.L2.Rd //
1

ıd

Z
R2d

I ˝ q.z=
p
ı/dz

D kQR.Tı/.0/ � �IkB.L2.Rd //I ˝ I: (3.11)

Repeating this argument for �I ˝ I � TR.Tı/
˝ shows that

kTR.Tı/
˝
� �I ˝ IkB.L2.R2d // � kQR.Tı/.0/ � �IkB.L2.Rd //: (3.12)

Step 3. For a lower estimate let f 2 L2.Rd /, kf k2 D 1, and apply Lemma 3.5:

kTR.Tı/
˝
� �I ˝ IkB.L2.R2d //

� jh.TR.Tı/
˝
� �I ˝ I /.f ˝ '/; .f ˝ '/ij

D

ˇ̌̌̌
1

ıd

Z
R2d

hQR.Tı/.z/f; f ihq.z=
p
ı/'; 'i dz � �kf k22k'k

2
2

ˇ̌̌̌
D .�/:
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Since the short-time Fourier transform of a Gaussian is again a Gaussian, we find that

hq.z=
p
ı/'; 'i D jh'; �.z=

p
ı/'ij2 D e��jzj

2=ı
D ıdˆı.z/;

and that the last expression involves a convolution with the scaled Gaussian ˆı . We
can continue as follows:

.�/ D

ˇ̌̌̌ Z
R2d

hQR.Tı/.z/f; f iˆı.0 � z/ dz � �

ˇ̌̌̌
D j.hQR.Tı/.�/f; f i �ˆı/.0/ � �j

� jhQR.Tı/.0/f; f i � �j � khQR.Tı/.�/f; f i � hQR.Tı/.�/f; f i �ˆık1

� jhQR.Tı/.0/f; f i � �j

� sup
khk2D1

khQR.Tı/.�/h; hi � hQR.Tı/.�/h; hi �ˆık1:

In the first term we take the supremum over f 2 L2.Rd /, kf k2 D 1; to the second
term we apply Lemma 3.6. In view of (3.12), this leads to

jkTR.Tı/
˝
� �I ˝ IkB.L2.R2d // � kQR.Tı/.0/ � �IkB.L2.Rd //j

� sup
khk2D1

khQR.Tı/.�/h; hi � hQR.Tı/.�/h; hi �ˆık1

. ı sup
khk2D1

k@2hQR.Tı/.�/h; hik1:

The deductions above together with the first part of Lemma 2.1 (for an appropriate
choice of �) then show

j�˙.QR.Tı/.0// � �˙.TR.Tı/
˝/j . ı sup

khk2D1

k@2hQR.Tı/.�/h; hik1: (3.13)

Step 4. It remains to further estimate the right-hand side of (3.13). Let khk2 D 1.
Using (3.8), the partial derivatives of hQR.Tı/.z0/h; hi are given as follows: with the
notation z0i D .x

0
i ; !
0
i / 2 R2 and i D 1; : : : ; d , let u0i be either x0i or !0i . Then

j@u0
i
@u0
j
hQR.Tı//.z

0/h; hij

D j@u0
i
@u0
j
UF .e

�ı
2 j�j

2

U.�RcGı/h�.�/h; hi/.z0/j
D 4�2jUF .Xi 0Xj 0e

�ı
2 j�j

2

U.�RcGı/h�.�/h; hi/.z0/j;
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for suitable indices i 0; j 0 2 ¹1; : : : ; 2dº. We apply Theorem 2.5 (ii) and obtain

k@2hQR.Tı/.�/h; hik1

. sup
z02R2d

X
i;jD1;:::;2d

ˇ̌̌̌ Z
R2d

U.M�z0e
�ı
2 j�j

2

XiXj �RcGı/.z/h�.z/h; hidz ˇ̌̌̌
. sup
z02R2d

X
i;jD1;:::;2d

kU.M�z0e
�ı
2 j�j

2

XiXj �RcGı/kW1;1
.

X
i;jD1;:::;2d

ke
�ı
2 j�j

2

XiXj �RcGıkW1;1 :
For each of the terms, we use the product property (2.18) and obtain

k@2hQR.Tı/.�/h; hik1 .
X

i;jD1;:::;2d

ke
�ı
2 j�j

2

�RkFL1kXiXjcGıkW1;1 :
By Lemma 3.2, ke

�ı
2 j�j

2
�RkFL1 . 1 for R � ı�1=2, whereas, by (2.20),

kXiXjcGıkW1;1 . kcGıkW1;1
0;2

� kGıkM1;1
0;2

: (3.14)

In conclusion, we have shown that

k@2hQR.Tı/.�/h; hik1 . kGıkM1;1
0;2

;

which, combined with (3.13), completes the proof.

3.3. Differentiation of the symbol

Lemma 3.8. Assume thatGı 2M
1;1
0;2 .R

2d / is real-valued, ı 7! Gı is differentiable,
@ıGı 2M

1;1.R2d / for 0 < ı < ı0 < 1, and 0 < R � ı�1=2. Then

kQR.Tı/.0/ � TR.T0/kB.L2.Rd // . ı � sup
jt j<ı0

.kGtkM1;1
0;2

C k@tGtkM1;1/: (3.15)

Proof. Recall that

QR.Tı/.0/ � TR.T0/

D

Z
R2d

e�ıjzj
2=2U.�RcGı/.z/�.z/dz � Z

R2d
U.�RcG0/.z/�.z/dz:

Using Theorem 2.5 (ii), we estimate the operator norm by

kQR.Tı/.0/ � TR.T0/kB.L2.Rd // . ke
�ı
2 j�j

2

�RcGı � �RcG0kW1;1 :
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Although cGı is a tempered distribution, the short-time Fourier transform

H.ı; x; !/ D V'.e
�ı
2 j�j

2

�RcGı/.x; !/; x; ! 2 R2d ;

is a smooth function and therefore we may express it as

H.ı; x; !/ �H.0; x; !/ D

ıZ
0

@tH.t; x; !/dt:

Then by the definition of the W1;1-norm we have

ke
�ı
2 j�j

2

�RcGı � �RcG0kW1;1 D Z
R2d

sup
!2R2d

jH.ı; x; !/ �H.0; x; !/j dx

�

ıZ
0

Z
R2d

sup
!2R2d

j@tH.t; x; !/j dx dt

� ı sup
jt j�ı

Z
R2d

sup
!2R2d

j@tH.t; x; !/j dx:

Spelling out @tH.t; �/ explicitly and using the identity

V Og Of .x; !/ D e
�2�ix�!Vgf .�!; x/

with Of D e�ıj�j
2=2�RcGı and Og D O' D ' gives

@tH.t; x; !/ D e
�2�ix�!@tV'.F

�1.e
�t
2 j�j

2

�R/ �Gt /.�!; x/

D e�2�ix�!V'.F
�1.@te

�t
2 j�j

2

�R/ �Gt /.�!; x/

C e�2�ix�!V'.F
�1.e

�t
2 j�j

2

�R/ � @tGt /.�!; x/

D
�

2
V'.j � j

2e
�t
2 j�j

2

�RcGt /.x; !/C V'.e �t2 j�j2�Rb@tGt /.x; !/: (3.16)

In the calculations above, we interchanged integration (hidden in V') and differenti-
ation twice to obtain the second equality. To justify this, we construct two integrable
majorants and apply the Leibniz integral rule. We note that, by regularity and support
assumptions on � ,

max¹jF �1.e
�t
2 j�j

2

�R/.z/j; jF
�1.j � j2e

�t
2 j�j

2

�R/.z/jº � CR.1C jzj/
�.2dC1/;
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for a constant CR independent of t , as long as jt j � 1, but dependent on R. Therefore,
using the embedding M1;1.R2d / � L1.R2d / from (2.22),

jF �1.j � j2e
�t
2 j�j

2

�R/.z/Gt .w � z/C F �1.e
�t
2 j�j

2

�R/.z/@tGt .w � z/j

. CR.1C jzj/
�.2dC1/ sup

jt j<ı0

.kGtk1 C k@tGtk1/

. CR.1C jzj/
�.2dC1/ sup

jt j<ı0

.kGtkM1;1 C k@tGtkM1;1/;

as well as

j.F �1.j � j2e
�t
2 j�j

2

�R/ �Gt .y/C F �1.e
�t
2 j�j

2

�R/ � @tGt .y//�.z/'.y/j

. j.kF �1.j � j2e
�t
2 j�j

2

�R/ �Gtk1 C kF
�1.e

�t
2 j�j

2

�R/ � @tGtk1/Tx'.y/j

. CR sup
jt j<ı0

.kGtkM1;1 C k@tGtkM1;1/jTx'.y/j:

This provides the required majorants.
Finally, applying (2.18) to the expression (3.16) and using Lemma 3.2 and (2.20),

we obtain

kQR.Tı/.0/ � TR.T0/kB.L2.Rd //

. ı sup
jt j�ı

.ke
�t
2 j�j

2

�Rj � j
2cGtkW1;1 C ke �t2 j�j2�Rb@tGtkW1;1/

. ı sup
jt j<ı0

.kj � j2cGtkW1;1 C kb@tGtkW1;1/
D ı sup

jt j<ı0

.kGtkM1;1
0;2

C k@tGtkM1;1/:

3.4. Proof of Theorem 1.1

We only consider the right spectral extreme value; the proof for left spectral extreme
value works exactly in the same way.

Let us first assume that ı D ı1 > 0 and ı2 D 0, and let R D ı�1=2. We estimate

j�C.Tı/ � �C.T0/j � j�C.Tı/ � �C.TR.Tı//j C j�C.TR.Tı// � �C.TR.Tı/
˝/j

C j�C.TR.Tı/
˝/ � �C.QR.Tı/.0//j

C j�C.QR.Tı/.0// � �C.TR.T0//j

C j�C.TR.T0// � �C.T0/j:

The first and last terms can be bounded using Lemma 3.1. The second term is zero by
Theorem 3.3. Lemma 3.7 bounds the third term, and Lemma 3.8 bounds the fourth
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term. Altogether, we arrive at

j�C.Tı/ � �C.T0/j .
� 1
R2
C ı

�
.1C ı0/

d sup
jt j<ı0

.kGtkM1;1
0;2

C k@tGtkM1;1/

D 2ı.1C ı0/
d sup
jt j<ı0

.kGtkM1;1
0;2

C k@tGtkM1;1/: (3.17)

Hence, Lipschitz continuity of the spectral extreme values at 0 holds for ı > 0.
The general case �ı0 < ı1 � ı2 < ı0, ı0 < 1, needs an additional argument for

which we introduce a new parameter � . Fix ı1; ı2 and define zT� , 0 � � < �0 D ı0�ı1
1Cı1

,
via its Weyl symbol Dp1C� zG� , where zG� D Dp1Cı1G.1Cı1/�Cı1 . For this choice,
we have zT0 D Tı1 , and zT.ı2�ı1/=.1Cı1/ D Tı2 . By the dilation property (2.23) and
0 < 1C ı1 < 2 we get

k zG�kM1;1
0;2

D kDp1Cı1G.1Cı1/�Cı1kM1;10;2

. kG.1Cı1/�Cı1kM1;1
0;2

� sup
jt j<ı0

kGtkM1;1
0;2

;

as well as

k@� zG�kM1;1 D kD
p
1Cı1

@� ŒG.1Cı1/�Cı1 �kM1;1 . sup
jt j<ı0

k@tGtkM1;1 :

Applying the estimate from (3.17) to zT� and choosing in particular � D ı2�ı1
1Cı1

shows

j�C.Tı1/ � �C.Tı2/j D j�C.
zT0/ � �C. zT.ı2�ı1/=.1Cı1//j

. j� j.1C �0/d sup
jt j<ı0

.kGtkM1;1
0;2

C k@tGtkM1;1/:

The Lipschitz dependence follows from

j� j.1C �0/
d
D
jı2 � ı1j

1C ı1

�
1C

ı0 � ı1

1C ı1

�d
� jı1 � ı2j

2d

.1 � ı0/dC1
;

since ı0 < 1 and 1C ı1 > 1 � ı0. All in all,

j�C.Tı1/ � �C.Tı2/j . jı1 � ı2j.1 � ı0/
�.dC1/ sup

jt j<ı0

.kGtkM1;1
0;2

C k@tGtkM1;1/;

as claimed.

3.5. Proof of Theorem 1.2

Since the desired conclusion should hold for sufficiently small ı, we may assume
that ı0 < 1=2. We shall apply the Beckus–Bellissard lemma (Lemma 2.2). Consider a
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polynomial p.x/D x2C ˇx C 
 , with ˇ; 
 2 R. The Weyl symbol of p.Tı/ is given
by Dp1Cı zGı , where

zGı D D1=
p
1Cı..D

p
1CıGı/].D

p
1CıGı//C ˇ �Gı C 
:

Since M1;10;2 .R
2d / is a Banach algebra with unit element 1 (Theorem 2.5 (iii)), it

follows from (2.23) and ı0 < 1=2 that

k zGıkM1;1
0;2

. .kGık
2

M
1;1
0;2

C jˇjkGıkM1;1
0;2

C j
 j/: (3.18)

Let us use the notation G]ıH WD D1=
p
1Cı..D

p
1CıG/].D

p
1CıH//. If G and H

are Schwartz functions, a computation with (2.26) gives

F .G]ıH/.z/ D

Z
R2d

yG.z0/ yH.z � z0/e��.1Cı/iŒz�z
0;z0� dz0:

Hence, assuming for a moment that Gı is a Schwartz function,

F .@ı.Gı]ıGı//.z/ D @ı.F .Gı]ıGı//.z/

D

Z
R2d

1@ıGı.z0/cGı.z � z0/e��.1Cı/iŒz�z0;z0� dz0
C

Z
R2d

cGı.z0/1@ıGı.z � z0/e��.1Cı/iŒz�z0;z0� dz0
C �i

dX
jD1

Z
R2d

z0jCd �
cGı.z0/ � .z � z0/j �cGı.z � z0/e��.1Cı/iŒz�z0;z0� dz0

� �i

dX
jD1

Z
R2d

z0j �
cGı.z0/ � .z � z0/jCd �cGı.z � z0/e��.1Cı/iŒz�z0;z0� dz0:

Consequently,

@ı.Gı]ıGı/ D ..@ıGı/]ıGı/C .Gı]ı.@ıGı//C

2dX
kD1

�k.@zjk
Gı/]ı.@zj 0

k

Gı/;

(3.19)

for suitable indices j 0
k
; jk 2 ¹0; : : : ; 2dº and �k 2 C, with j�kj D 1=2. To see that

(3.19) is valid in general, we take a sequenceGk
ı
2 �.R2d / such that @ıGkı 2 �.R2d /,

Gkı
w�

��! Gı in M1;10;2 .R
2d /, (3.20)
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and

@ıG
k
ı

w�

��! @ıGı in M1;1.R2d /. (3.21)

For example, define Gk
ı
.z/ WD  .z=k/ � .Gı � �k/.z/, where  2 �.R2d / is chosen

such that 0 �  � 1, and  .z/ D 1 for z 2 B1.0/, and �k.z/ D k2d�.kz/ for a
mollifier �.

Applying consecutively (2.23), (2.20), and Theorem 2.5 (iii), it thus follows

k@ı.Gı]ıGı/kM1;1

. kDp1CıGı]Dp1Cı.@ıGı/kM1;1

C max
j;j 0D1;:::;2d

k.Dp1Cı.@zjGı//].D
p
1Cı.@zj 0Gı//kM1;1

. kGıkM1;1k@ıGıkM1;1 C kGık2M1;1
0;1

. kGıkM1;1k@ıGıkM1;1 C kGık2M1;1
0;2

:

Therefore,

k@ı zGıkM1;1 � k@ı.Gı]ıGı/kM1;1 C jˇjk@ıGıkM1;1

. kGıkM1;1k@ıGıkM1;1 C kGık2M1;1
0;2

C jˇjk@ıGıkM1;1 : (3.22)

Let ı1; ı2 2 .�ı0; ı0/� .�1=2;1=2/. Combining Theorem 1.1 with (3.18) and (3.22),

j�˙.p.Tı1// � �˙.p.Tı2//j

. jı1 � ı2j sup
jıj<ı0

.k zGıkM1;1
0;2

C k@ı zGıkM1;1/

. jı1 � ı2j sup
jıj<ı0

Œ.kGık
2

M
1;1
0;2

C kGıkM1;1k@ıGıkM1;1/

C jˇj.kGıkM1;1
0;2

C k@ıGıkM1;1/C j
 j�:

In particular, if jˇj � 2kT0kB.L2.Rd //, j
 j � 5kT0k
2
B.L2.Rd //

, then, by Theorem 2.5,
jˇj . kGıkM1;1 and j
 j . kGık2M1;1 � kGık

2

M
1;1
0;2

. Hence,

j�˙.p.Tı1// � �˙.p.Tı2//j

. jı1 � ı2j sup
jıj<ı0

.kGık
2

M
1;1
0;2

C kGıkM1;1k@ıGıkM1;1/:

Therefore, by Lemma 2.1, for ı1 6D ı2,

jkp.Tı1/kB.L2/ � kp.Tı2/kB.L2/j

jı1 � ı2j
. sup
jıj<ı0

.kGık
2

M
1;1
0;2

C kGıkM1;1k@ıGıkM1;1/;



K. Gröchenig, J. L. Romero, and M. Speckbacher 834

holds uniformly for all polynomials p 2 P .T0/. This shows that the number CP .T0/

defined in Lemma 2.2 satisfies

CP .T0/ . sup
jt j<ı0

.kGtk
2

M
1;1
0;2

C kGtkM1;1k@tGtkM1;1/: (3.23)

In addition, reinspection of the previous estimates shows that ¹Tıºjıj<ı0 is .p2/-
Lipschitz continuous. Hence, we can invoke Lemma 2.2 and the conclusion follows
from (3.23).

4. Gabor frames

We now apply the results on the Lipschitz continuity of the spectral edges to the Gabor
frame operator.

Let g 2M 1.Rd / and ƒ � R2d be a relatively separated set. The frame operator
of the associated set of phase-space shifts is

Sg;ƒf D
X
�2ƒ

hf; �.�/gi�.�/g D
X
�2ƒ

q.�/f; f 2 L2.Rd /;

where q is the rank-one projection (2.9). The Weyl symbol of q.z/ is just the shift
TzW.g/ of the Wigner distribution of g (2.12). Hence, the Weyl symbol of Sg;ƒ is

�g;ƒ D
X
�2ƒ

T�W.g/:

The spectral extreme values of Sg;ƒ and Sg;˛ƒ are equal to the optimal frame bounds
(1.4) of G .g;ƒ/ and G .g; ˛ƒ/ respectively. We set

1=˛ D
p
1C ı:

The Weyl symbol corresponding to Sg;˛ƒ is

�g;˛ƒ D
X
�2ƒ

T˛�W.g/ D Dp1Cı

�X
�2ƒ

T�D1=
p
1CıW.g/

�
:

Thus, �g;˛ƒ D Dp1CıGı with

Gı D
X
�2ƒ

T�D1=
p
1CıW.g/:

In order to apply Theorem 1.1, we need to calculate the norms of Gı and @ıGı in the
corresponding weighted Sjöstrand classes.
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Lemma 4.1. Let ƒ � R2d be relatively separated and 0 < ı0 < 1. If g 2M 1
2 .R

d /,
then

(i) kGıkM1;1 . rel.ƒ/ � .1C ı/d � kgk2
M1 , ı 2 Œ0;1/,

(ii) kGıkM1;1
0;2

. rel.ƒ/ � .1 � ı0/�1 � kgk2
M1
2

, ı 2 .�ı0; ı0/,

(iii) k@ıGıkM1;1 . rel.ƒ/ � .1 � ı0/�1 � kgk2
M1
2

, ı 2 .�ı0; ı0/.

Proof. Let � D
P
�2ƒ ı�. Then Gı D � �D1=

p
1CıW.g/ and k�kM1 . rel.ƒ/ by

Lemma 2.4.
Furthermore, since g 2M 1

2 .R
d /, its Wigner distribution satisfies

W.g/ 2M 1
0;2.R

2d /;

as a consequence of Lemma 2.3. The convolution relation (2.19) and the dilation
property (2.24) on R2d show that

kGıkM1;1 . k�kM1kD1=p1CıW.g/kM1 . rel.ƒ/ � .1C ı/d � kgk2
M1 ;

as claimed in (i). For (ii) we argue similarly

kGıkM1;1
0;2

. k�kM1kD1=p1CıW.g/kM1
0;2

. max¹1; .1C ı/�1ºk�kM1kgk2M1
2

. .1 � ı0/
�1
� rel.ƒ/ � kgk2

M1
2

:

It remains to determine @ıGı and estimate its norm. First, we note

@ıGı.z/ D @ı

�X
�2ƒ

W.g/
� z � �
p
1C ı

��
D

X
�2ƒ

2dX
iD1

�
zi � �i

2.1C ı/3=2
@iW.g/

� z � �
p
1C ı

�
D �

1

2.1C ı/
� �D1=

p
1Cı

� 2dX
iD1

Xi@iW.g/
�
.z/:

Using (2.19) and (2.24) as above, we prove (iii):

k@ıGıkM1;1 . .1 � ı0/
�1
� k�kM1

2dX
iD1

kXi@iW.g/kM1

. .1 � ı0/
�1
� rel.ƒ/ � kW.g/kM1

1;1

. .1 � ı0/
�1
� rel.ƒ/ � kgk2

M1
2

:

In the last step we have applied (2.21) and Lemma 2.3.



K. Gröchenig, J. L. Romero, and M. Speckbacher 836

An application of Theorem 1.1 now allows us to show the Lipschitz continuity of
the frame bounds of G .g; ˛ƒ/.

Proof of Theorem 1.3. Recall that ˛�1 D
p
1C ı with ı 2 .�1;C1/. Suppose first

that ı � 1=2 and set ı0 D max¹1=2; 1 � ˛20º. Then 0 < ı0 < 1. Let us check that
ı 2 .�ı0; ı0/. By assumption, ı � 1=2 � ı0. In addition,

p
1C ı D 1=˛ > ˛0, and

consequently ı > ˛20 � 1, which shows that �ı < 1 � ˛20 � ı0. We now invoke The-
orem 1.1 and Lemma 4.1 to conclude that

j�˙.Sg;ƒ/ � �˙.Sg;˛ƒ/j . jıj � .1 � ı0/�.dC1/ � sup
jt j<ı0

.kGtkM1;1
0;2

C k@tGtkM1;1/

. jıj � rel.ƒ/ � .1 � ı0/�.dC2/ � kgk2M1
2

� jıj � rel.ƒ/ � ˛�2.dC2/0 � kgk2
M1
2

:

On the other hand, if ı � 1=2, we use the following crude estimate based on Theo-
rem 2.5, (2.23) and Lemma 4.1:

j�˙.Sg;ƒ/ � �˙.Sg;˛ƒ/j � j�˙.Sg;ƒ/j C j�˙.Sg;˛ƒ/j

� kSg;ƒkB.L2/ C kSg;˛ƒkB.L2/

. kG0kM1;1 C kDp1CıGıkM1;1

. .1C ı/d .kG0kM1;1 C kGıkM1;1/

. .1C ı/2d � rel.ƒ/ � kgk2
M1

< jıj � ˛�4d0 � rel.ƒ/ � kgk2
M1 :

Hence, for all ı 2 .�1;1/,

j�˙.Sg;ƒ/ � �˙.Sg;˛ƒ/j . jıj � rel.ƒ/ � ˛�4d0 � kgk2
M1
2

: (4.1)

Finally, observe that since ˛0 < ˛ < 1=˛0 and ˛0 < 1,

jıj D
j1 � ˛2j

˛2
D
1C ˛

˛2
j1 � ˛j

� .˛�10 C ˛0
�2/j1 � ˛j

� 2˛0
�2
j1 � ˛j; (4.2)

which in combination with (4.1) yields (1.5).

Proof of Theorem 1.4. We let again ˛�1 D
p
1C ı and take j˛ � 1j < " with " suffi-

ciently small so that ı 2 .�ı0; ı0/ and ˛1 <˛ < 1=˛1 with ı0 � 1=2 and 1=2< ˛1 <1.
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We invoke Theorem 1.2, Lemma 4.1 and (4.2) to obtain, with possibly a smaller value
of ",

j�
g
˙
.Sg;ƒ/ � �

g
˙
.Sg;˛ƒ/j .

j˛ � 1j

L.g/
� sup
jt j<ı0

.kGtkM1;1k@tGtkM1;1 C kGtk
2

M
1;1
0;2

/

.
j˛ � 1j

L.g/
� rel.ƒ/2 � kgk4

M1
2

;

as claimed.
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